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Abstract

Este trabajo se centra en el estudio del formalismo del funcional densidad (DFT), y
en él hacemos un gran énfasis en cómo la estructura de un material tienen un gran im-
pacto en sus propiedades. A modo de ejemplo, se proporciona una sencilla demostración
de la existencia de bandas en el espectro del Hamiltoniano para sistemas unidimension-
ales cuando el potencial es periódico. A continuación, se demuestran los dos grandes
teoremas de la DFT. Estos teoremas, junto al ansatz de Kohn and Sham y el principio
variacional de la mecánica cuántica, conducen a las llamadas ecuaciones de Kohn y
Sham. Seguidamente se discuten varios de los métodos de aproximación más usuales
para resolver computacionalmente las mencionadas ecuaciones. Todos estos métodos
descritos, o versiones más elaboradas de ellos, aparecen implementados en rutinas del
programa VASP, el cual utilizamos en este trabajo a fin de realizar cálculos para el
diamante y el grafito. En concreto estudiamos las curvas de enerǵıa-volumen para am-
bas fases del carbono, y las ajustamos a ecuaciones de estado. También se calculan las
bandas de enerǵıa a distintas presiones de ambos materiales y se estudia la evolución del
gap del diamante. Para finalizar se introduce la función de localización electrónica, la
cual permite visualizar las zonas con mayor probabilidad de localización de electrones.

1 Introduction
Since the discovery of the electron as a carrier of negative charge, physicists have tried to

determine its importance in the properties of a material. The first attempt was due to Drude
(1900), when he proposed a classical model where the electrons in metals were only scattered
because of nuclei and did not interact among themselves. Despite being so simple, this model
predicts several properties of metals, as their conductivity or their resistance. However, it fails
to predict the dependence of these properties with a magnetic field, but its predictions work
as limiting values for some magnitudes. The most remarkable feature of Drude’s model is
that all of its magnitudes depend on the electronic density, which characterizes the material.
Even if this model is classical, this electronic density plays an fundamental role.

With the arrival of Quantum Mechanics, specifically with the discovery Schrödinger equa-
tion (1925), a model of free electrons for the electrons of metals is proposed, whose main
properties, such as the Fermi energy, depend once again on the electronic density. Later
on, the Dirac-Fermi statistics is introduced, which takes into account that not all electrons
excited with an external excitation due to Pauli exclusion principle, and the only electrons
that respond to this field will be those near to the so called Fermi surface, as the occupancy
of their energies is less than one. And precisely this Fermi surface does also depend on the
electronic density. Therefore, it appears that the density is something more important than
it was suspected at the beginning. At this point, it was just a matter of time to produce a full
quantum mechanical theory in which the density is the main variable defining the properties
of the system, and that theory is the density functional theory (DFT) of Hohemberg, Kohn
and Sham of 1965.

To sum up, in this memory we will see that the recurrent appearance of the electronic
density has a central role in order to explore and explain the properties of the materials. We
will see that all the properties of a material depend on its ground state electronic density.
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2 Fundamental concepts and definitions

2.1 The Bravais lattice
Crystallography studies crystalline matter, i.e, arranged in a periodic array. There is in-

terest on how the properties of a crystalline solid emerge from its underlying crystal structure.
One example of this is diamond and graphite, which are both, with very different structure
and properties, made of carbon (C)

The concept of Bravais lattice is introduced to model this periodic arrangement. We
define a Bravais lattice as “an infinite array of discrete points with an arrangement and
orientation that appears exactly the same, from whichever of the points the array is viewed”
( [5], p.64). And precisely on this mesh is where identical groups of atoms are placed, named
as the basis of the lattice. In fact, we can define more precisely a Bravais lattice as the set
of points with position vector ~R of the form:

~R = n1~a+ n2~b+ n3~c ni ∈ Z (2.1)

where {~a,~b,~c} form a so called set of lattice generators. From now on we will denote this
set as RRR. The parallelepiped spanned by these vectors is a unit cell of the lattice. A cell is
called primitive if it contains only one lattice point, so its volume is minimum with respect
to other choices of the cell. The vectors that span this primitive cell are called primitive
generators. By convention, the reference system is chosen in such a way that if the atoms
are inside the cell their coordinates with respect to primitive generators will be less or equal
to one.

The norms (a, b, c) and relative angles (α, β, γ) of these vectors are used in order to
classify the Bravais lattice cells into seven crystal system (see Figure 1). One can always
choose a primitive cell with the full symmetry of the Bravais lattice, the Wigner-Seitz
primitive cell. This cell is constructed by considering the region around a lattice point that
is closer to that point than to any other lattice point.

Even so there are other ways to classify them. For instance, we could introduce a classi-
fication in terms of the symmetry elements of the lattice. This is useful for computacional
purposes, as from a small portion of the cell one can reconstruct the entire cell using the
symmetry operators, see ref. [14].

2.2 The reciprocal lattice
The first section introduces the concept of Bravais lattice which from now on will be

called direct lattice. The periodic arrangement is in the origin of the periodic potential
and also on the symmetry properties of the wave function, through Bloch’s theorem. For
computational purposes, we are interested in the electronic Fourier expansion of periodic
quantities:

f(~r) =
∞∑
j=0

cj · ei
~kj ·~r (2.2)

In order for to f(~r) be periodic, i.e. f(~r) = f(~r+ ~R) for all ~R ∈ RRR, only certain wave vectors
~kj are allowed. The exponential in [2.2] must have the periodicity of the lattice:

ei
~kj ·(~r+~R) = ei

~kj ·~r ⇐⇒ ~kj · ~R = 2π ∀~R ∈ RRR (2.3)
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Figure 1: Classification of Bravais lattice [6]

If we define the reciprocal lattice generators (~bi) as:

~b1 := 2π
Ω · (~a2 × ~a3) ~b2 := 2π

Ω · (~a3 × ~a1) ~b3 := 2π
Ω · (~a1 × ~a2) (2.4)

with Ω = ~a1 · (~a2 × ~a3), i.e. the volume of the parallelepiped formed by the ~ai vectors of the
primitive unit cell, it is easily shown that ~ai ·~bi = 2πδij. If we span the wave vectors ~ki in
this basis:

~ki = k1i~b1 + k2i~b2 + k3i~b3 (2.5)

From equation [2.3] it follows that kji should be integers. The set of all wave vectors satisfying
[2.5] is a Bravais lattice, named the reciprocal lattice, whose primitive vectors are ~bi. From
now on we will denote the reciprocal lattice as R∗R∗R∗. Equation [2.2] can be rewritten as:

f(~r) =
∑
~k∈R∗R∗R∗

c~k · e
i~k·~r (2.6)

The Wigner-Seitz primitive cell of the reciprocal lattice is called the first Brillouin zone
(FZB).

For the wavefunctions, which are Bloch functions, it is usual to choose Born-von
Kármán boundary conditions or periodic boundary conditions (PBC), which consist
in enclosing the system into a parallelepiped of dimensions N1 × N2 × N3 with the integers
Ni large enough, and impose periodic boundary conditions on it:

ψ (r1 +N1R1, r2 +N2R2, r3 +N3R3) = ψ(~r) (2.7)
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where {ri}3
i=1 are the components of the position vector ~r. Then, the wave vectors can be

expanded as:

~k =
3∑
i=1

(
mi

Ni

)
· ~bi mi ∈ Z (2.8)

and the plane waves expansion [2.6] for ψ follows.

2.3 Periodic potentials in one dimension
We have already seen that crystalline matter is modeled as an infinity array of cells where

groups of atoms are placed, but what are the physical implications of such an arrangement?
We will see that the symmetry of the lattice is in the origin of energy bands in the spectrum
of the Hamiltonian, also called Schrodinger operator, of the system. We will now show this
for a one dimensional lattice, see ref. [15]. The Hamiltonian we are going to consider in this
section is:

Ĥ = − ~2

2m ·
d2

dx2 + V (x) (2.9)

where the potential V(x) satisfies:

• V (x+ a) = V (x) where a is the spatial periodicity of the 1D-lattice.

• V (x) is a piece-wise continuous and bounded function.

The standard approach to this problem is to solve the eigenstate equation of the Hamil-
tonian:

Ĥψ(x) = Eψ(x) −→ − ~2

2m
d2ψ

dx2 + V (x)ψ(x) = Eψ(x) (2.10)

But in order to use many of the results of the ODE calculus we must admit complex eigen-
values for the equation: E ∈ C. We need to see equation [2.10] not as an eigenvalue problem
but rather as a differential equation problem, and at the end we will extract the physical
implication by restricting E to the real line.

The point of all this section is to show that the spectrum of the Schrödinger operator has
a band structure. For this, we will need to introduce some useful concepts and theorems, but
not all of them will be proven because of the limited scope of this work.

From the general theory of ODE we know that there exists two fundamental solutions,
namely: ψE1 (x) and ψE2 (x), and any other solution can be expressed as a linear combination
of these fundamental solutions:

ψE(x) =
2∑
i=1

AiψEi (x) Ai ∈ C (2.11)

The initial conditions for the fundamental solutions are chosen conveniently as:

ψE1 (0) = 1 dψE1
dx

∣∣∣∣∣
x=0

= 0

ψE2 (0) = 0 dψE2
dx

∣∣∣∣∣
x=0

= 1


(2.12)
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Theorem. ψE1 , ψE2 are entire functions 1 of E (at a fixed x). Also, the derivative of the
fundamental solutions are entire functions.

We will see that this theorem is the key to prove that the spectrum have gaps of forbidden
energies because of the continuity restriction on ψE1 and ψE2 .
Definition. The fundamental matrix of the ODE is:

M(x,E) :=
ψE1 (x) ψE2 (x)

dψE
1

dx (x) dψE
2

dx (x)

 (2.13)

The determinant of the fundamental matrix is known in the literature as the Wronskian
of the ODE, and for equation [2.10] it is constant rather than a function of E or x.
Proof. We are going to show that : [det (M (x,E))]′ = 0. The Wronskian is:

det (M (x,E)) = ψE1 (x) · dψE2 (x)
dx − dψE1 (x)

dx · ψE2 (x) (2.14)

and the derivative:

[det (M (x,E))]′ = dψE1 (x)
dx ·dψ

E
2 (x)
dx +ψE1 (x)·d

2ψE2 (x)
dx2 −d2ψE1 (x)

dx2 ·ψE2 (x)−dψE1 (x)
dx ·dψ

E
2 (x)
dx =

=y −
2m
~2 ψ

E
1 (x) · (E − V (x)) · ψE2 (x) + 2m

~2 · (E − V (x)) · ψE2 (x) · ψE2 (x) = 0

(2.15)Using equation [5]

Then, the Wronskian is a constant, in particular, det (M (x,E)) = cte = det (M (0, E)) = 1.
We will see later that the determinant is important to evaluate the spectrum of the translation
operator.

At least for now we are not using the fact that the potential is periodic, so this result is
completely general in the sense that it does not depend on the choice of potential. We are
going to use this piece of information now. If ψE(x) is a solution then φE(x) = ψE(x+ a) is
solution too because of the translational symmetry. This does not mean ψE(x) = φE(x), only
that both functions are solution of the same differential equation. How are both solutions
related to each other? Recall that any solution can be expanded in terms of the fundamental
solutions, thus:

ψE(x+ a) =
2∑
i=1

ai · ψEi (x) (2.16)

In particular, this is valid for the shifted fundamental solution ψEj (x+ a):

ψEj (x+ a) =
2∑
i=1

aij · ψEi (x) (2.17)

To calculate this coefficients let’s consider the j shifted fundamental solution and its derivative
evaluated at x = 0:

ψEj (a) = a1
j · ψE1 (0) + a2

j · ψE2 (0) (2.18)
1An entire function is a differentiable function on the complex plane.
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dψEj
dx (a) = a1

j ·
dψE1
dx (0) + a2

j ·
dψE2
dx (0) (2.19)

We see that this is nothing else than the component of the fundamental matrix evaluated at
x = a:

aij = M i
j(a,E) (2.20)

Thus, a general shifted solution can be expanded in terms of the fundamental solutions as:

ψE(x+ a) =
2∑
l=1

AlψEj (x+ a) =
2∑
l=1

2∑
i=1

AlM i
l(a,E)ψEj (x) (2.21)

A standard strategy to solve eigenvalue problems is to find commuting operators and
solve simultaneously both eigenvalue equations. In view of the symmetry of the system one
proposes the translation operator defined as:

Tψ(x) = ψ(x+ a) (2.22)

By direct calculation we see that [T,H] = 0. Therefore T and H have common eigenvectors
that we are going to denote as ψEλ(x). Then, we are solving simultaneously the equations:

HψEλ(x) = EψEλ(x) (2.23)

TψEλ(x) = λψEλ(x) (2.24)

The elements of the family {ψEλ}λ∈CE∈C are called Bloch functions.
Floquet’s theorem. Any Bloch function has the form:

ψEλ(x) = λx/aφE(x) where: φE(x+ a) = φE(x) (2.25)

We want bounded solutions of the differential equation, so λ must be a pure phase, i.e:

λ = eiθ which θ ∈ (−π, π] (2.26)

In the physics literature the wave number (k) is commonly used instead of θ:

k := θ/a −→ k ∈
(
−π
a
,
π

a

]
(2.27)

In later discussion, we will see that in order that the first theorem remains valid we need
the k interval to be open. Floquet’s theorem is expressed finally as:

ψEλ(x) ≡ ψEk (x) = eikxφE(x) where: φE(x+ a) = φE(x) (2.28)

Now we are going to reformulate equation [2.24] in terms of the fundamental solutions of
eq . [2.10]:

TψEλ(x) = λ · ψEλ −→
2∑
l=1

2∑
i=1

(Aλ)l ·M(a,E)il · ψEi (x) = λ ·
2∑
i=1

(Aλ)i · ψEi (x) (2.29)

Notice that the coefficients of the expansion of ψEλ depend on λ because the fundamen-
tal solutions of a differential equation cannot depend on the eigenvalue of the translation
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operator, so λ must be understood as the label of the i coefficient. Given that ψEj (x) are
independent we obtain:

2∑
l=1

M(a,E)il · (Aλ)
l = λ · (Aλ)i (2.30)

Then, we observe that
(

(Aλ)1

(Aλ)2

)
is an eigenvector of M(a,E) with eigenvalue λ.

Let λ1, λ2 ∈ C be the eigenvalues of the fundamental matrix at x=a. Then, in some basis
we have:

M(a,E) =
(
λ1 0
0 λ2

)
(2.31)

We can calculate the determinant and the trace of this matrix that are independent of
the basis chosen:

det (M(a,E)) = λ1 · λ2 = 1 see eq [2.15] (2.32)

tr{M(a,E)} = λ1 + λ2 (2.33)

From the former equation and [2.26] we have that:

λ2 = 1/λ1 = e−ik·a −→ tr{M(a,E)} = λ1 + λ2 = 2 · cos(k · a) (2.34)

Recall the definition of the fundamental matrix eq. [2.13], so in that basis the trace is:

tr{M(a,E)} = ψE1 (a) + dψE2
dx (a) (2.35)

It is customary to define the following function:

γ(E) = cos(k · a) = 1
2

(
ψE1 (a) + dψE2

dx (a)
)

(2.36)

Due to the first theorem γ is an entire function of E because it is defined as the sum of two
entire functions. This function is known once the fundamental solutions of the differential
equation are obtained.

Suppose we know a solution of equation [2.36] (E0, k0), by continuity of γ any E in a suf-
ficiently small neighborhood of E0 solves equation [2.36] for some k. Otherwise, suppose that
E0 does not solve equation [2.36] for any k, then any E in a sufficiently small neighborhood of
E0 does not solve equation [2.36]. But this is not necessarily the case for the extreme points
of the interval, that is k = π/a, because γ would not be continuous at this point if this was
the case contradicting the first theorem. So the domain of k is restricted to k ∈

(
−π
a
,
π

a

)
,

see [15].

In conclusion, in the one dimensional case, if the potential is periodic then the spectrum
of the Hamiltonian of the system consists of the union of separate open intervals, commonly
called energy bands in physics literature.
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3 Theoretical background

3.1 The Born-Oppenheimer approximation
The form of the general non-relativistic Hamiltonian for a molecular cluster or a solid is:

Ĥ = T̂e + V̂ee + T̂N + V̂NN + V̂eN =

=
Ne∑
i=1

P̂ 2
i

2mi︸ ︷︷ ︸ + 1
2

Ne∑
i=1

Ne∑
j=1

e2

|r̂ij|︸ ︷︷ ︸
+

Nc∑
I=1

P̂ 2
I

2mI︸ ︷︷ ︸ +
Nc∑
I=1

Nc∑
J=1

zIzJe
2

|R̂IJ |︸ ︷︷ ︸ −
Ne∑
i=1

Nc∑
I=1

zIe
2

|R̂I − r̂i|︸ ︷︷ ︸ (3.1)

= T̂e, kinetic = V̂ee, Coulomb = T̂N , kinetic = V̂NN , Coulomb = V̂eN , Coulomb
energy of the interaction energy of interaction interaction between

electrons between the the nuclei between nuclei nuclei and electrons
electrons

where zIe and e are the charge of the nuclei and the electrons, respectively and ZI is the
atomic number of the I atom. There are 3Ne variables describing electrons, ~ri, labeled with
lowercase Latin indices, and 3Nc variables describing cores, ~rI , labeled with uppercase Latin
indices, see [8].

Without doing any approximations this Hamiltonian is very difficult to deal with. It
is not only about the dimensionality of the problem, 3Ne + 3Nc, but the coupling degrees
of freedom makes the eigenstate equation unsolvable, as we just cannot solve a system of
3Ne + 3Nc coupled differential equations. In order to reduce the size of the problem, we can
neglect the motion of the cores due to the difference of masses between nucleons and electrons
(mI/me ∼ 5 · 10−4). This approach is known as the Born-Oppenheimer approximation. The
kinetic energy of the nuclei term is not the only term that vanishes, but also the potential
due to core-core interactions is constant, so we can ignore it in order to solve the eigenstate
equation for the electrons. In conclusion, the Hamiltonian that we are going to consider from
now on is:

Ĥ =
Ne∑
i=1

P̂ 2
i

2mi

+
Ne∑
i=1

Vnucl(r̂i) + 1
2

Ne∑
i=1

Ne∑
j=1

e2

|r̂ij|
(3.2)

The term that contains the information about the material is:

Vnucl(r̂i) = −
Nc∑
I=1

zI e
2

|R̂I − r̂i|
(3.3)

3.2 The electron density
The particle density operator of a N-particles system is defined as, see [8]:

n̂(~r) :=
N∑
i=1

δ(~r − ~ri) (3.4)

where ~ri are the coordinates that describe each particle. The particle density operator is the
analog to the charge density of points charges in classical electrodynamics. The difference is
that we cannot talk about the precise position of electrons anymore but of their probability

11



to be found at a certain position. The expectation value of this operator for a given state,
ψ, is the particle density:

n(~r) = 〈ψ|n̂(~r)|ψ〉
〈ψ|ψ〉

= N
∫
ψ(~r, ~r2 · · ·~rN)ψ∗(~r, ~r2 · · ·~rN) d3r2 · · · d3rN (3.5)

where ψ is a state of the N-particle system normalized to 1.
The density is nothing but the probability to found a particle of the system at the position

~r. So the normalization condition for ψ can be written as :

N =
∫
n(~r) d3r (3.6)

This is precisely the reason why this expectation value is called the electron density, because
it is a function of the spatial coordinates that integrated over all the space give us the number
of electrons.

This quantity does not seem in principle a very promising one to solve our problem but
we will see that is indeed the key function. The reason for this is that the properties of a
system of interacting fermions is uniquely determined by the electron density of the ground
state of the system according to a celebrated theorem from 1964 by Hohember and Kohn,
see [9].

3.3 The Hohenberg-Kohn theorem(s)
The variational principle of Quantum Mechanics is the theorem that will allow us to

establish a direct relation between the density and the potential generated by the ions of
the material VeN , but it also provides the path to derive the so called Kohn-Sham equations.
The theorem states that the expectation value of the Hamiltonian reaches a minimum at the
ground state of the system, i.e:

〈ψ|Ĥ|ψ〉
〈ψ|ψ〉

≥ EG (3.7)

where EG is the energy of the ground state.

Theorem 1. The ground state of the system is determined uniquely by its particle
density.

Proof. The first step of the proof is showing that the density determines uniquely the
external potential Vext (V̂eN). Let’s assume that there exist two different potentials V (1)

ext and
V

(2)
ext , whose difference is not just a constant, that lead to the same density n(~r), and that

admit the decomposition:

V
(i)
ext =

N∑
j=1

v
(i)
ext (3.8)

Therefore there are two different Hamiltonian Ĥ1 and Ĥ2. Consequently, the ground
states of these Hamiltonians are different, namely |ψ1〉 and |ψ2〉 with associated energies E(1)

and E(2), respectively. Taking into account that |ψ2〉 is not the ground state of Ĥ1, it follows
from [6] that:

E(1) = 〈ψ1|Ĥ1|ψ1〉 < 〈ψ2|Ĥ1|ψ2〉 (3.9)
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The second term can be written as:

〈ψ2|Ĥ1|ψ2〉 = 〈ψ2|Ĥ2|ψ2〉+ 〈ψ2|Ĥ1 − Ĥ2|ψ2〉 =

= E(2) +
∫ (

v
(1)
ext(~r)− v

(2)
ext(~r)

)
n(~r) d3r > E(1) (3.10)

Swapping the indices (1) and (2) we get the inequality:

E(2) < E(1) +
∫ (

v
(2)
ext(~r)− v

(1)
ext(~r)

)
n(~r) d3r (3.11)

Adding up both sides of the inequalities we get:

E(1) + E(2) < E(1) + E(2) # (3.12)

Thus, there are not two different external potentials leading to the same particle density, i.e,
there exist a one to one relation between the external potential and the particle density:

n(~r)⇐⇒ Vext(~r) (3.13)

This result allows us to write Vext = Vext[n], and therefore, the full Hamiltonian is deter-
mined by the density, as well as the ground state of the system, |ψ〉 = |ψ[n]〉.

Theorem 2. For any external potential Vext, an energy functional:

E(HK)[n] = F(HK) +
∫
vext(~r)n(~r)d3r (3.14)

can be defined, with F(HK)[n] a universal functional, independent of the external potential.
For a particular choice of the potential vext, the energy functional E(HK) has a minimum
when n(~r) is the ground state density n0(~r), and E(HK)[n0(~r)] is the ground state energy.

Proof. Let C(n) be the set of all the wave functions with density n, see [11]:

C(n) :=
{
ψ ∈ H : n = N

∫
ψ∗(~r)ψ(~r)d3r

}
(3.15)

Then, from the variational principles of quantum mechanics, it follows:

EG ≤ min
ψ∈H

[
〈ψ|Ĥ|ψ〉

]
= min

n

[
min
ψ∈C(n)

〈ψ|Ĥ|ψ〉
]

= min
n

(
E(HK)[n]

)
(3.16)

where E(HK)[n] is:

E(HK)[n(~r)] := min
ψ∈C(n)

 〈ψ[n]|T̂ + V̂ee + V̂ext︸ ︷︷ ︸
Ĥ

|ψ[n]〉

 = min
n

T [n] + Vee[n]︸ ︷︷ ︸
F (HK)[n]

+
∫
vext(~r) · n(~r) d3r


(3.17)

where F (HK)[n] is a universal functional in the sense that it does not depend on vext. There-
fore, it is independent of the material as long as we state beforehand that vext is the only
term that contains the information about the underlying crystalline structure. Thus, if n0 is
the density that minimized 3.17, then E(HK)[n0] = EG, i.e. the ground state energy of the
system.

13



3.4 The Kohn-Sham equations
There is no straightforward method to calculate the universal functional F (HK)[n] because

there is no analytic expression for the one to one relation between n and Vext, so there is no
evident way to minimize the last functional through the density. In 1965, Kohn-Sham [12]
proposed a practical approach to this problem: to recast the many-body interacting problem
using an auxiliary non interacting system. They proposed as an ansatz that, for every ground
state density nG(~r) of an interacting electron system, there exists a non-interacting system
with the same ground state density.

For a non-interacting system, with single-particle eigenstates φi, the density can be de-
composed as:

n(~r) =
N∑
i=1

φi(~r) · φ∗i (~r) (3.18)

Using the second quantization formalism it can be shown that the effective potential according
to first order perturbation theory is the interaction between two charged densities, which
coincides with the Hartree potential:

VH [n] = 1
2

∫
n(~r)

(
e2

|~r − ~r ′|

)
n(~r ′) d3r d3r′ (3.19)

So, it is convenient to explicitly show this term in the general formulation.
The kinetic energy of the non-interacting system which will allow us to interpret the

equation obtained by means of the variational principle, is:

To[n] =
N∑
i=1
〈φi|T̂ |φi〉 = −

(
~2

2m

)
N∑
i=1

∫
(∆φi)φ∗i d3r (3.20)

Then, the energy functional is written as:

E(HK) = T [n] + Vee[n] +
∫
Vext(~r)n(~r)d3r =

= T0[n] + VH [n] +
∫
Vext(~r)n(~r)d3r + EXC [n] (3.21)

where the last term is the so called exchange and correlation energy, namely:

Exc[n] = (T [n]− To[n]) + (Vee[n]− VH [n]) (3.22)

Notice that, up to now, no approximation has been made.
The advantage of writing E(HK)[n] as in 3.21 is that, using the variational principle, we

can easily derive the Kohn-Sham equations (see appendix):[
−
(
~2

2m

)
∆ + Veff (~r)[n]

]
φi(~r) = εiφi(~r) (3.23)

with:
Veff (~r) = V

′

H(~r) + Vnucl(~r) + Vxc(~r)[n] =

= 1
2

∫
n(~r)

(
e2

|~r − ~r ′|

)
d3r′︸ ︷︷ ︸

V
′

H(~r)

−
Nc∑
I=1

zI e
2

|R̂I − r̂|︸ ︷︷ ︸
Vnucl(~r)

+ δExc
δn︸ ︷︷ ︸

Vxc(~r)[n]

(3.24)
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Then, the ground state of the system is shown to be:

EG =
N∑
j=1

εj + Exc −
∫
Vxv(~r)n(~r)d3r − e2

2

∫ n(~r) · n(~r ′)
|~r − ~r ′|

d3r d3r′ (3.25)

The Kohn-Sham equations are the analog of the Schrödinger equations for independent par-
ticles in an effective field Veff . The main difficulty is the exchange and correlation term Vxc
because it is the only unknown in this equation: just as an example, the expectation value of
the kinetic energy of the interacting system is unknown till we solve the problem. Notice that
the former development admit many generalization as for an spin-polarized system, multi-
component system and even ensemble from statics physics! From now on, we will discuss the
different methods that are used in order to overcome all those difficulties.

3.5 Approximation methods
3.5.1 Local density approximation (LDA) and generalized gradient

approximation (GGA)

All the formalism described before makes no sense unless we are able to develop some
approximating expression for the exchange and correlation functional Exc. One of the most
usual approximations is the so called Local Density Approximation (LDA), in which we assume
that the density changes slowly and that the functional takes the form:

E(LDA)
xc [n(~r] =

∫
εxc(~r)n(~r)d3r (3.26)

where εxc is the many-body energy per electron of an uniform gas of interacting electrons with
density n(~r). There exist Monte Carlo calculations that provide an analytic expression of ε
for an unpolarized homogeneous electron gas, see [8]. In this approximation, the exchange
and correlation potential takes the form:

Vxc(~r)[n(~r)] = εxc(~r) + n(~r)dε(n(~r))
dn(~r) (3.27)

and the ground state of the system within this approximation is:

EG =
N∑
j=1

εj −
∫
n(~r)dε(n(~r))

dn(~r) d3r − e2

2

∫ n(~r) · n(~r ′)
|~r − ~r ′|

d3r d3r′ (3.28)

Another level of the approximation is to assuming that εxc depends also on the gradient of
the density, rather than only on the density:

E(GGA)
xc [n(~r] =

∫
εxc(n(~r), ~∇n(~r))n(~r)d3r (3.29)

which is the approximation we will use in order to perform the calculations for diamond and
graphite. This approximation is known as the Generalized Gradient Approximation (GGA).

Even though, we will need further approximations in order to make the calculations of
the solutions of the Kohn-Sham equations computationally accessible, such as using a plane
wave basis orthogonalized to core states, or to use different potential in the inner core region
that reproduce the outer region states.
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3.5.2 The plane waves (PW) and the orthogonal plane waves (OPW) method

Plane waves are a suitable basis set of functions because they incorporate in a matricial
way the PBC of the system, that is, the kinetic energy operator is diagonal in this basis and
the matrix element of the potential involve its Fourier transform. For a given wave vector
~k ∈ FBZ we define the set: 〈

~r
∣∣∣ ~k + ~Gi

〉
= W~ki

(~r) = 1√
Ω
ei
~ki·~r (3.30)

with ~ki = ~k + ~Gi , ~Gi ∈ R∗R∗R∗ and Ω is the volume of region where the plane wave is orthogo-
nalized. The wave vectors are chosen such that if i > j the kinetic energy of the plane wave
associated with ~Gi is greater than the associated with ~Gj.

The potential that is considered is the effective potential of the Kohn-Sham equations
using Rydberg atomic units 2:

V (~r) = 1
2

∫
n(~r)

(
e2

|~r − ~r ′|

)
d3r′ −

Nc∑
I=1

zI e
2

|R̂I − r̂|
+ Vxc(~r) (3.31)

The matrix elements of the Hamiltonian in this basis set:〈
~k + ~Gi

∣∣∣ Ĥ ∣∣∣~k + ~Gj

〉
=
〈
~k + ~Gi

∣∣∣−∆
∣∣∣~k + ~Gj

〉
+
∫

Ω
W ∗
~ki

(~r)V (~r)W~kj
(~r) d3r =

= k2
j δij + 1

Ω

∫
Ω
V (~r) · e−i( ~Gi− ~Gj)·~r d3r︸ ︷︷ ︸

v( ~Gi− ~Gj)v( ~Gi− ~Gj)v( ~Gi− ~Gj)

= k2
j δij + v(~Gi − ~Gj) (3.32)

The matrix elements of the Hamiltonian are nothing but the Fourier transform of the effective
potential for the auxiliary system plus a contribution coming from the kinetic energy operator
which is diagonal in this representation (in practice, it can be convenient to consider a non-
local potential 〈~r | v |~r ′〉 = v(~r, ~r ′), but in these notes we will consider for the sake of simplicity
the case of a local potential 〈~r | v |~r ′〉 = v(~r, ~r ′)δ(~r − ~r ′))

The plane waves basis previously defined allows us to expand any wave function ψ~k(~r)
with a fixed wave vector ~k ∈ FBZ as 3:

ψ~k(~r) = ei
~k·~r

 ∞∑
i=0

ci(~k) · e
i ~Gi·~r
√

Ω


︸ ︷︷ ︸

u~k
(~r)

=
∞∑
i=0

ci(~k) ·W~ki
(~r) (3.33)

The ground state energy of the system for a given state ψ~k(~r) can be obtained by means of
the variational principle of Quantum Mechanics (eq. 3.7) :
〈
ψ~k

∣∣∣Ĥ∣∣∣ψ~k〉 =
∞∑
i=0

∞∑
j=0

c∗i (~k)cj(~k)
〈
W~ki

(~r)
∣∣∣ Ĥ ∣∣∣W~kj

(~r)
〉

=
∞∑
i=0

∞∑
j=0

c∗i (~k)cj(~k)
[
k2
j δij + v(~Gi − ~Gj)

]
=

=
∞∑
i=0

c∗i (~k)


∞∑
j=0

cj(~k)
[
k2
j δij + v(~Gi − ~Gj)

] = E (3.34)

2see Appendix A-1: Atomic units.
3See Bloch’s theorem for the multidimensional case A.2.
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Introducing E into the summation:

〈
ψ~k

∣∣∣Ĥ∣∣∣ψ~k〉 =
∞∑
i=0

c∗i (~k)


∞∑
j=0

cj(~k)
[(
k2
j − E

)
δij + v(~Gi − ~Gj)

] = 0 (3.35)

The term between brackets must be zero because the coefficients of the expansion are inde-
pendent:

∞∑
j=0

cj(~k)
[(
k2
j − E

)
δij + v(~Gi − ~Gj)

]
= 0 (3.36)

The last equation is a homogeneous linear system. In order to have a non-trivial solution the
determinant of the associated matrix must be zero:

det
((
k2
j − E

)
δij + v(~Gi − ~Gj)

)
= 0 (3.37)

So far the expansion of the bloch’s functions has not been truncated but one needs to define
a cut-off energy Ec. In order that plane waves expansion [3.33] converge to ψ~k(~r), the coef-
ficients of the expansion (c~k) must decrease when

∥∥∥ ~Gi

∥∥∥ increase. In the literature it is usual
to define the cut off energy based on the kinetic energy of the plane waves:

Ec ≥
~2

2mi

·
∥∥∥~k + ~Gi

∥∥∥ (3.38)

The problem of expanding crystal states in a plane wave basis is the huge number of co-
efficients needed to reproduce them. The physical origin of this problem comes from the
divergence of the Coulomb’s potential at the core positions producing rapid oscillations in
the wavefunctions.

The number of coefficients needed can be reduced if we consider that the cores states
(ψcore

n (~r)) are already known, that is, the eigenvalue problem for those states are solved:

Ĥψcore
n (~r) = E core

n · ψcore
n (~r) n = 1, 2, · · · , nc (3.39)

These states do not satisfie Floquet’s theorem, but we can define the so called Bloch’s sum
for each core state:

Φcore
n,~k

(~r) = 1√
N

∑
~R∈RRR

ei
~k·~R · ψcore

n (~r − ~R) (3.40)

Notice that Bloch’s sum satisfies:

Φcore
n,~k

(~r + ~R′) = ei
~k·~R′ · Φcore

n,~k
(~r) ~R′ ∈ RRR (3.41)

In fact, Bloch’s sum have the same energy that the associated core state due to the transla-
tional invariance of the system, i.e.,

[
Ĥ, T̂−~R

]
= 0:

ĤΦcore
n,~k

(~r) = 1√
N

∑
~R∈RRR

ei
~k·~R · Ĥψcore

n (~r − ~R) = 1√
N

∑
~R∈RRR

ei
~k·~R · ĤT̂−~R ψ

core
n (~r) =

= 1√
N

∑
~R∈RRR

ei
~k·~R · T̂−~R Ĥ ψcore

n (~r) = 1√
N

∑
~R∈RRR

ei
~k·~R · T̂−~RE

core
n ψcore

n (~r) = E core
n · Φcore

n,~k
(~r)

(3.42)

17



The idea is to construct the secular equation [3.37] in such a way that only provide information
about the more energetic states, i.e, the outer states ψouter

i (valence and conducting states).
We define a set of functions orthogonal to the Bloch’s sum associated to the core states as:

W⊥⊥⊥~ki
(~r) = W~ki

(~r)−
nc∑
n=1

〈
Φcore
n,~k

∣∣∣W~ki

〉
· Φcore

n,~k
(~r) (3.43)

We can span any outer state to Φcore
n,~k

in this set as:

ψouter
i (~r) =

∞∑
j=1

cij ·W⊥⊥⊥~ki
(~r) (3.44)

From the same procedure that leads to eq. [3.37] it follows:

det
(〈
W⊥⊥⊥~ki

∣∣∣ Ĥ ∣∣∣W⊥⊥⊥~kj

〉
− E

〈
W⊥⊥⊥~ki

∣∣∣W⊥⊥⊥~kj

〉)
= 0 (3.45)

Now we will express the matrix element of the last equation in terms of the matrix element
in the plane waves basis:

•
〈
W⊥⊥⊥~ki

∣∣∣ Ĥ ∣∣∣W⊥⊥⊥~kj

〉
=
〈
W~ki

∣∣∣ Ĥ ∣∣∣W~kj

〉
− 2 ·

〈
W~ki

∣∣∣ [ nc∑
n=1

E core
n ·

∣∣∣Φcore
n,~k

〉 〈
Φcore
n,~k

∣∣∣] ∣∣∣W~kj

〉
−

+
〈
W~ki

∣∣∣ [ nc∑
n=1

nc∑
l=1

E core
l

∣∣∣Φcore
n,~k

〉 〈
Φcore
n,~k

∣∣∣Φcore
l,~k

〉 〈
Φcore
l,~k

∣∣∣] ∣∣∣W~kj

〉
=

=
〈
W~ki

∣∣∣ Ĥ ∣∣∣W~kj

〉
−
〈
W~ki

∣∣∣ [ nc∑
n=1

Ecore
n ·

∣∣∣Φcore
n,~k

〉 〈
Φcore
n,~k

∣∣∣] ∣∣∣W~kj

〉
(3.46)

• − E
〈
W⊥⊥⊥~ki

∣∣∣W⊥⊥⊥~kj

〉
=
〈
W~ki

∣∣∣− E1 ∣∣∣W~kj

〉
+ 2 ·

〈
W~ki

∣∣∣ [ nc∑
n=1

E ·
∣∣∣Φcore

n,~k

〉 〈
Φcore
n,~k

∣∣∣] ∣∣∣W~kj

〉
−

−
〈
W~ki

∣∣∣ [ nc∑
n=1

nc∑
l=1

E
∣∣∣Φcore

n,~k

〉 〈
Φcore
n,~k

∣∣∣Φcore
l,~k

〉 〈
Φcore
l,~k

∣∣∣] ∣∣∣W~kj

〉
=

=
〈
W~ki

∣∣∣− E1 ∣∣∣W~kj

〉
+
〈
W~ki

∣∣∣ [ nc∑
n=1

E ·
∣∣∣Φcore

n,~k

〉 〈
Φcore
n,~k

∣∣∣] ∣∣∣W~kj

〉
(3.47)

Taken into account the last two equations, [3.45] can be written as:

det

(〈
W~ki

∣∣∣ [Ĥ − E1 +
nc∑
i=1

(E − E core
n )

∣∣∣Φcore
n,~k

〉 〈
Φcore
n,~k

∣∣∣] ∣∣∣W~kj

〉)
=

= det
(〈
W~ki

∣∣∣ Ĥ + V̂ (rep)
∣∣∣W~kj

〉
− E · δij

)
= 0 (3.48)

with :

V̂ (rep) =
nc∑
n=1

(E − E core
n )

∣∣∣Φcore
n,~k

〉 〈
Φcore
n,~k

∣∣∣ with E > E core
n (3.49)

This operator is energy dependent and non-local and can be interpreted as a repulsive po-
tential produced by core states.
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3.5.3 The pseudopotential method

In the last section the non-local repulsive potential V (rep) that arises from the orthogonal
character of the outer states with respect to the inner states somehow reduces the interactions
that feel the valence electrons. The problem that led to introduce such an effective Hamilto-
nian was the huge number needed in plane wave expansion in order to describe accurately the
valence wave function in the inner core region. The goal behind the pseudopotential method
is to reproduce the same effect by taking into account that in the core region the potential
is softer than in the outer region. The natural question is what prescription shall we impose
on the pseudopotential to reproduce such effect? As long as we are only interested in getting
rid of the oscillating part of the valence wave function, the non-oscillating part must remain
the same. For that purpose it is usual to define a cut-off radius (rc) such that:

ψpseudo(~r) =
{
ψnodeless(~r) if r < rc
ψreal(~r) if r > rc

(3.50)

where ψnodeless is the solution obtained by solving the Schrodinger equation by replacing
the all-electron interaction with the pseudopotential and ψreal is the solution without such
replacement. This conditions suggest a very interesting approach [10]: to construct the
pseudopotencial by solving the inverse problem, i.e. given a convenient nodeless form for the
pseudo wave function, like [3.50], found the pseudopotential such that:

[−∆ + V (pseudo)]ψpseudon (~r ) = εn · ψpseudon (~r) (3.51)

where εn are the original eigenvalues of the original Hamiltonian. The pseudo wave function
can be separated into radial and angular parts: Rnl(r), Y m

l (θ, ψ). The radial Schrödinger
equation for the radial part of the pseudo wave function is:[

d2

dr2 + l(l + 1)
2r2 + V (pseudo)(r)

]
rRnl(r) = εn rRnl(r) (3.52)

with continuity of the radial wave function and its derivative:

Rnl(r) =


Rpseudo
nl (r) if r < rc,l

Rreal
nl (r) if r > rc,l

(3.53)

It can be shown that the solution of this equation is uniquely determined by the value of the
radial wave function and its derivative at rc,l. This conditions can be written as:

d

dr
log

(
R

(real)
nl (r)

)∣∣∣∣∣
rc,l

= 1
R

(pseudo)
nl (rc)

dR
(pseudo)
nl (r)
dr

∣∣∣∣∣∣
rc,l

(3.54)

A further request is needed in order that the density in the core is correctly normalized, this
is: ∫ rc,l

0
r2[R(real)

nl (r)]2dr =
∫ rc,l

0
r2[R(pseudo)

nl (r)]2dr (3.55)

This is the so called norm-conservation condition.
In order to solve for V (pseudo)(r) in eq. [3.51] we must solve the radial equation for a reference
configuration using the effective potential [3.31] to obtain the radial wave function:

V (pseudo)(r) = εn −
l(l + 1)

2r2 + 1
2rR(pseudo)

nl (r)
d2

dr2 [rR(pseudo)
nl (r)] (3.56)
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Figure 2: Conventional cells of graphite and diamond.

4 Ab initio calculations for selected materials

4.1 Introduction
In the previous chapters we summaries the general density functional framework for the

study of solids in the hope that this approach would make affordable the computation of the
solution of the N-body problem. The density plays a fundamental role in this scheme, as it
allows us to transform the N-body problem into N one-body problems. Then, we discussed
how the rapid oscillation of the wave function, due to the divergence of the Coulomb’s po-
tential at the core positions, needs too many plane waves for its expansion, leading to first
the concept of orthogonal plane wave expansion (OPW) and later, to the concept of pseu-
dopotential. The goal of this chapter is to make use of all these methods, and others that we
do not explicitly explain because it is out of the scope of this work, to study diamond and
graphite, the two natural forms of carbon (see figure [3] generated using the free software
package VESTA [3], which is dedicated to the visualization for electronic and structural
analysis). These materials were chosen because they are the best examples of how the struc-
ture of a system has a huge impact on its properties : for instance, diamond is known as the
hardest material, but this is not the case of the graphite, even when both are made up of the
same chemical element.

In this chapter we will go through the entire process of the simulations, putting special
emphasis on their generation procedure and comparing the results with the experiments,
when this is possible.

4.2 Methodology
In order to perform the calculation we used the Viena Ab initio Simulation Package

(VASP), which implements the DFT methodology explained in the previous sections in a
scheme of pseudopotentials and a basis of plane waves. First, we are going to explain how to
configure a general simulation and what is the configuration chosen in our case.

20



We have to differentiate four different input files:

1. POSCAR: In this file we introduce the structure of the material we are interested
in, i.e. we introduce the coordinates of the lattice generators [2.1] in a three by three
matrix and the position of the atoms with respect to this basis. If we were interested in a
bidimensional material, we would have to simulate it by enlarging the third dimension,
so that we get layers sufficiently separated so that the interaction between them is
negligible.

2. POTCAR: This file contains the pseudopotential for each atomic species of the mate-
rial, as it appears in the official site of VASP [2]. There are different methods designed
to calculate the pseudopotential, and so there are different options to choose for each
atomic species.

3. KPOINTS: This file contains the grid for the Brillouin zone integration, or in general,
for solving the Kohn-Sham equations. There are two main options: to introduce the
spacing of the mesh and choose a method to create it automatically, or to introduce it
manually. The latter is very convenient to calculate the band structure of the material
along high symmetry directions once a self-consistent calculation has been performed
and we have the ground state charge density.

4. INCAR: This file contains the parameters of the simulation, such as the method
used to integrate over the mesh declared in the KPOINTS file, the energy cut-off in the
plane wave expansion, the treatment of the Fermi surface, and what type of calculations
one is going to perform (self-consistent, atomic relaxation previous atomic relaxation
calculation of stress and forces, etc). The specific parameters will be discussed along
this section because each one of them needs to be explained in the proper context.

The structure of the material is known from X-ray diffraction experiments, i.e. the po-
sition of the atoms and the symmetry of the lattice, see [14] to see how this is done. This
is the only information, together with the atomic species involved, that we know about the
material, which is the main reason why this kind of simulations are called ab initio, or
from first principles, as the knowledge of the underlying crystal structure of the material
is enough to compute all of its properties. We have to study the convergence of the energy
with the cut-off energy [3.38] and the number of points chosen on the Brillouin zone (k-points
for short from hereafter) in order to set its optimal values for the later calculations. In order
to test the convergence of the energy with the cut-off energy we have to fix the configuration
and the k-points and check whether the difference between the energies obtained changes
from one particular cut-off energy to another or not. The same argument works for study-
ing the convergence of the energy with the k-points. The set up of the KPOINTS file is
more complicated. We need to choose the spacing of the grid of the Brillouin zone on each
direction. For instance, in the case of the diamond we choose an uniform spacing on the
three directions, but this is not the case on graphite. In order to try to cover the Brillouin
zone uniformly, we need to take into account that the cell is hexagonal, and that there are
two lattice parameters, a and c, where a is the lattice parameters of the hexagonal lattice
in the same layer and c is the distance between layers. We choose the same spacing in two
directions and the third part of the former spacing in the third direction. Both tests can be
seen in figure [3]. In this situation, we choose as cut-off energy 520 eV in both cases. As
mentioned above, for diamond we choose a uniform grid of 8 × 8 × 8 and for the graphite
24 × 24 × 8. This means that the method that generates the grid of the Brillouin zone will
take, for example, 24 points along the x and y directions and 8 along the z direction (in the
reciprocal space).
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a) Diamond b) Graphite

Figure 3: First row: test of convergence in the cut-off energy. Second row: test
of convergence of the energy in the number of k-points.

4.3 Details of the calculations
The calculations are done using a self-consistent method. The method starts using a

trial density function ntrial(~r) and solves Kohn-Sham equations [3.23], or a generalized version
of them. From the solutions a new density can be computed, nout(~r). This method is called
self-consistent because if ntrial(~r) − nout(~r) > ε for some fixed threshold ε, then the Kohn-
Sham equations are solved again but using a modified density n(~r), constructed from ntrial
and nout as the new trial density. This process stops when the difference between the trial
density and the one obtained by solving the equations is less than ε.

Once the solution of the self-consistent method is obtained, the forces between the atoms
must be checked. The forces on the i-th atom are computed as the minus the gradient of the
energy with respect to the atomic positions:

~Fi = −~∇~ri
E (4.1)

We have to take into account that the whole system must be in its ground state, which includes
the cores, but with the Born-Oppenheimer approximation we get rid of the dynamics of all
the ions, and they are only seen by the electrons because of the field they produce through the
pseudopotential. Then, we must also find the ground state for the structure by optimizing
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the lattice position of the ions so that the forces on them are ideally become zero. The same
argument works for the stress tensor, whose components are defined as the derivative of the
energy with respect to the strain tensor, but with the difference that we now allow a diagonal
stress tensor, which means that the pressure that the material feels is hydrostatic. Then,
once we move an ion or deform the cell, we must start again the self-consistent electronic
method in order to obtain the correct density for the new configuration. We will say that
the structure is relaxed if the the forces acting on each atom are zero and the stress tensor is
diagonal. Sometimes we may not want the system to relax, and in those cases we just need
to indicate it in the INCAR file.

4.4 Results and analysis
In the following discussion we are going to present the results obtained using the optimal

values of the cut-off energy and the k-points introduced in the previous section. In order to
achieve better clarity in our exposition, we will structure these results in three main sections:
in the first one we include the direct results of the simulations and the appropriate numerical
fit to a state equation (EOS), as well as discussing the evolution of the lattice parameters
and obtaining the bulk modulus. After this, we will explain the procedure followed in order
to compute the energy bands, and finally a brief introduction to the electronic localization
function (ELF) will be made.

4.4.1 Equations of state

The main aim of this section is describing the computational procedure followed to calcu-
late, analyze and process the raw output data produced by the simulations. This procedure
starts by introducing the numerical information that corresponds to the volume of each
primitive cell of the material, which allows the program to automatically adjust the lattice
parameters to the input volume. Once the software has finished this process, we carry out
an indexed search in the OUTCAR output file using the Linux grep command, in order to
extract the numerical values of pressure and energy. As we also need to eliminate the unnec-
essary information from the output string, and this process needs to be repeated for every
single volume, we resort to the creation of a Python program that will automate the parsing
and create a file ready to be used for graphical representations.

Up to this point, the influence of residual dipole-dipole interaction between atoms, which
is called Van der Waals interaction, in the studied materials has not been taken into account,
but it needs to be introduced if we want to explain the stability of graphite, as in its absence
no visible energy minimum can be detected in the energy-volume curve. The necessary
computational processes for the inclusion of this interaction in the calculations is already
implemented in the VASP routine, we only need to activate a flag in the INCAR file, and
repeat the previous calculations. The previous absence of an energy minimum for graphite
is now resolved, as can be seen in figure 4, where a clear minimum can be observed. Based
on this graph we can also conclude that the only effect of the Van der Waals interaction on
diamond is a shift on the energy values, that we removed by changing the energy reference.

The following graph also shows various numerical fits to the calculated data, which is
our next step in the analysis of the simulation results. These fits have been computed using
the Birch-Murnaghan equation with four free parameters, B0, B′0, V0 and E0, whose optimal
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values in a least-squares approach can be found for each data set:

E(V ) = E0 + 9V0B0

16


(V0

V

) 2
3
− 1

3

B′0 +
(V0

V

) 2
3
− 1

2
 (4.2)

where B0 denotes the bulk modulus and the subindex refers to the equilibrium volume (V0):

B0 = −V0

(
∂P

∂V

)
V=V0,T=0

(4.3)

and B′0 is its derivative with respect to pressure at the equilibrium volume, V0, and E0 is the
energy at V0

Figure 4: Energy-Volume curves

Below we include the values of the parameters B0 and B′0 obtained for each one of the
numerical fits, in order to compare them with the experimental values:

Numerical fit Experimental values [13]
Diamond B0 = 430.14 GPa B′0 = 3.12 B0 = 442 GPa
Graphite B0 = 43.93 GPa B′0 = 10.95 B0 = − GPa

Table 1: Comparison between the numerical fits and the experimental values.

Using the same data already produced by the simulations, we can also plot pressure-
volume graphs for diamond and graphite, which allow us to gain a deeper insight into the
physical behaviour of the studied materials:
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(a) P-V graph for diamond. (b) P-V graph for graphite.

Figure 5: Pressure-volume graphs for diamond and graphite.

Using the same search technique already applied to obtain the pressure and energy data,
we now search for the lattice parameters of the relaxed structure. It is important to note
that, in the ionic relaxation, the process of generalized force minimization is constrained to
a fixed selected volume. Studying the of this new set of data with pressure, we obtain the
following graphs:

(a) Diamond. (b) Graphite.

Figure 6: Lattice parameters evolution for diamond (left) and graphite (right)

Here we can observe how an increase on the volume of the cell entails a significative rise
in the interplanar distance, c, while the parameter that represents the minimum distance
between atoms, a, varies very slowly with pressure. Note that the relation between volume
and pressure can be observed in the previous graphs, see 5. When it comes to diamond, the
graph reveals that the lattice parameter decreases with an increase in pressure (equivalently,
with a decrease in volume), as it is theoretically expected. In order to facilitate a compar-
ison between the results obtained in the simulations with the experimental ones, we have
elaborated the table that follows:
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Simulations values at T = 0 K Experimental values at T = 298 K [13]
Diamond a = 2.53 Å a = 3.57 Å
Graphite a = 2.4 Å c = 5.28 Å a = 2.52 Å c = 4.12 Å

Table 2: Comparison between the calculated lattice parameters and experimental values.

4.4.2 Electronic energy bands

In order to obtain the energy bands, it is necessary to split the necessary calculation in
two parts. The first one consists in relaxing the structure so we can obtain the self-consistent
charge density (VASP file: CHGCAR) for these structures. And secondly, using the relaxed
structure (VASP file: CONTCAR) and the aforementioned self-consistent charge density, we
repeat the simulations but this time without relaxing the structure and solving the Kohn-
Sham equations for selected points in the FBZ. In this case the high-symmetry directions
along which bands are going to be calculated are manually introduced, which can be seen in
the following schematic figures:

(a) Diamond. (b) Graphite.

Figure 7: Brillouin zone and high symmetry directions for diamond [4] and graphite [4].

In these representations, as well as visualizing the energy bands, on the right margin of
each graph we show the electronic density of states (DOS), which is defined as the number of
electronic Kohn-Sham levels, εn(~k), per volume in the ~k-space, normalized to the volume of
the crystal (given in arbitrary units). Here the number of bands used in order to elaborate
the graphical representations has been limited, as the number of calculated bands is finite and
this means that the visualization of the last bands would not be accurate, taking into account
the overlapping between bands. It is also important to note that the origin of the energy
is always taken at the maximum of the highest occupied band. This means that this origin
coincides with the maximum of the eighth band in graphite, as each carbon atom contributes
four electrons and there are four of these atoms in each conventional cell because each band
(degenerated in spin) can only accept two electrons. Similarly, there are two carbon atoms in
the unit cell of diamond, which means that the origin of energy coincides with the maximum
of the fourth valence band.
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(a) Energy bands at P = −0.01 [kbar] (b) Energy bands at P = 403.44 [kbar]

Figure 8: Energy bands on diamond.

(a) Energy bands at P = 0.08 [kbar] (b) Energy bands at P = 367.78 [kbar]

Figure 9: Energy bands on graphite.

When we analyze diamond we can observe the existence of an energy gap, where the
density of states is null, as it can be seen on the representation of this density of states.
We can also study the behaviour of the energy gap when the volume increases, which will
the the opposite of the behaviour when the pressure increases, as it can be inferred from
the pressure-volume graph presented before. It is important to take into account that the
energy gap is measure the difference between the maximum of the last occupied band (at the
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zone center or Γ position in diamond) and the minimum of the first conduction band (in the
Γ − X direction). The described behaviour of the energy gap with volume and pressure is
represented in the following plots:

Figure 10: Evolution of the energy gap

Considering a fixed reference volume, that we choose among the ones used in the com-
putational simulations so that is it as close as possible to the one for which experimental
information is available, we can elaborate a table that allows us to compare the information
generated by these simulations with the experimental results:

Calculated value at T = 0 K Experimental values [13]
Indirect gap Eg,ind [eV ] 4.12− 4.3 5.48 at T = 300 K

dEg,ind/dp [eV/bar] 4.5 · 10−7 2 · 10−7 at T = 80 K

Table 3: Comparison between the numerical fits and the experimental values.

4.4.3 Electronic localization function (ELF)

The main underlying foundation of the electronic localization function (ELF) is the con-
cept of Fermi’s hole, i.e. the distribution of the probability of finding another electron in the
neighborhood of a reference electron, when both have the same spin. Then, it is related to
the concept of electronic localization function through the probability density for finding an
an electron with spin σ in ~r when a second electron with spin σ′ is situated in ~r ′. As it is
out of the scope of this work, we will not explicitly derive the expression that results from
the previous considerations:

ELF = (1 + χ2
σ)−1 (4.4)

with:

χσ = Dσ(~r)/D0(~r) (4.5)

and

Dσ =
N∑
i=1

∥∥∥~∇ψi(~r)∥∥∥2
− 1

4

∥∥∥~∇n(~r)
∥∥∥

n(~r) and D0(~r) ∝ n(~r)5/3 (4.6)
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where n(~r) is the self-consistent electronic density described in previous sections. As far
our calculations are concerned, it is only important to know that 0 ≤ ELF ≤ 1, where
values close to 1 means a high probability of finding the electron and values close to 1/2
indicate a similar behaviour to the one exhibited by an electron gas. When it comes to the
computational process involved in the computation of the ELF, it is quite similar to the
one applied for the determination of the bands: the first part consists in a self-consistent
calculation to relax the structure, and the second one allows us to compute the ELF using
the already relaxed structure and charge density. These simulations generate the information
contained in the following graphs for diamond and graphite:

Figure 11: Electronic localization function (ELF) isosurface for ELF = 0.75 (left) and
value of the ELF along the C-C bond for diamond (right).

Figure 12: Electronic localization function (ELF) isosurface for ELF = 0.86 (left) and
value of the ELF along the C-C bond for graphite (right).

These figures were elaborated from the raw data produced by the simulations, using the
VESTA program and considering an isosurface of constant ELF. The distance between two
of these atoms is 1.54 Å for diamond and 1.4 Å for graphite. In the case of both materials
we can observe how the maximum electronic localization can be found in the interatomic
position, which is indicative of a covalent bond. For further information, see [7] and [1].
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5 Conclusions
In this work, the enormous efficacy of the density functional framework has become clear,

both from a practical and a theoretical point of view, as it has allowed me to calculate
various macroscopic parameters of solids within a fully quantum mechanical framework, and
thus it has enabled me to compare theoretical predictions with experimental results. As
we mentioned in the work, it was necessary to program a few Python scripts in order to
parse all the raw outputs of the results of the calculations and represent them graphically.
After this treatment and analysis of the data, we can conclude that the theoretical results
underestimate the magnitude of the gap, which is a well-known feature of the Kohn-Sham
theory, as it is a theory for the ground state and the gap involves excited states, not properly
accounted for at this level. I have also studied the effect of the structure and symmetry of a
material on its properties, by studying two phases of carbon, both with different properties.

This work has also allowed me to reinforce and expand my knowledge of Quantum Me-
chanics, as I not only had to understand the theoretical fundaments of DFT, but also apply
them to a practical situation, where as I commented before, can compare theoretical predic-
tions and experimental results.

As a possible future extension of this work, I can mention the mathematical study of the
role of the symmetry of a system on other properties, as well as a more in-depth analysis
of the selected materials using different pseudopotentials and exchange-correlation potentials
for the theoretical calculations, in order to check their impact on the final results, and a
detailed study of the vibrational properties of both solids. Finally, this process could also be
applied to the analysis of other interesting structures and materials.
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A Appendix

A.1 Table of atomic units
In this appendix we present the usual units that are used along this work. The Hamil-

tonian [3.1] is written in Gaussian units, but there exist more ways to choose the system of
units 4:

A.2 Bloch’s theorem for the multidimensional case
In this appendix we are going to derive Bloch’s theorem for the multidimensional case.

The proof is based on the translational symmetry of the system and the bounded character
of the wave functions.

Theorem. The solutions of the time-independent Schrödinger equation for a particle in
a periodic external field:

Ĥ = −∆ + V (~r) with V (~r + ~R) = V (~r) ~R ∈ RRR (A.1)

have the form:

ψ~k (~r) = ei
~k·~ru~k (~r) (A.2)

Proof. As long as the system has translational symmetry, the Hamiltonian commutes with
translations, i.e.: [

Ĥ, T~R

]
= 0 (A.3)

Therefore, the translations and the Hamiltonian have common eigenvectors:

Ĥψ = Eψ

T~Rψ = c(~R)ψ

}
(A.4)

The key point in all of this proof is to find out which are the eigenvalues of the translation
operator using its properties. Let’s consider the action of two different translations on an
eigenvector, T~R and T~R ′ . On one hand we get:

T~RT~R ′ ψ = c(~R)c(~R ′)ψ (A.5)
4This figure is extracted from [8], p. 190.
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One the other hand, T~RT~R ′ is a translation in the direction of ~R + ~R ′:

T~RT~R ′ ψ = T~R+~R ′ ψ = c(~R + ~R ′)ψ (A.6)

Therefore, the eigenvalues of the translation operator satisfy:

c(~R + ~R ′) = c(~R)c(~R ′) (A.7)

For each translation on the direction of a lattice generator (~ai), see [3.51], we can write:

c(~ai) = ei2πxi (A.8)

Hence, in the general case, where ~R = ∑3
i=1 ni~ai, we define:

~k =
3∑
i=1

xi~bi with: ~ai ·~bi = 2πδij (A.9)

So, the general form of the eigenvectors of the translation operators is:

c(~R) = ei
~k·~R (A.10)

Hence, recalling the definition of c [A.4]:

ψ(~r + ~R) = ei
~k·~Rψ(~r) (A.11)

Claim. The function:

u~k (~r) = e−i
~k·~rψ(~r) (A.12)

is periodic, i.e. u~k (~r + ~R) = u~k (~r).
Proof. We just need to substitute directly into the definition of u and take into account the
former result:

u~k (~r + ~R) = e−i
~k·~re−i

~k·~rψ(~r + ~R) = e−i
~k·~re−i

~k·~Rei
~k·~Rψ(~r) = e−i

~k·~rψ(~r) (A.13)

which concludes the proof.
Then, if we solve the last equation for ψ we get:

ψ(~r) = ei
~k·~ru~k (~r) (A.14)

which is the desired result.

A.3 Some explicit calculations related to the electron density
The aim of this appendix is to ascertain all the relations related to the electron density,

given along this work without proof.
Let’s consider the expectation value of an operator F̂ as to a state Ψ(~r1, ~r2, · · · , ~rN):

〈
F̂
〉

Ψ
= 〈Ψ|F̂ |Ψ〉
〈Ψ|Ψ〉 (A.15)
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with F̂ of the form:

F̂ =
N∑
i=1

f̂(~r;~ri) (A.16)

where ~ri are the spatial coordinates of each particle of the system and f̂ acts multiplicatively
on Ψ. Without loss of generality, we are going to consider that the state Ψ is normalized to
one, since the normalized constant can be absorbed by f̂ . Inserting these considerations into
[A.29]:〈

Ψ
∣∣∣∣∣
N∑
i=1

f̂(~r;~ri)
∣∣∣∣∣Ψ
〉

=
N∑
i=1

∫
Ψ∗(~r1, ~r2, · · · , ~rN)f̂(~r;~ri)Ψ(~r1, ~r2, · · · , ~rN) d3r1 d

3r2 · · · d3rN =

(A.17)

=
N∑
i=1

∫
f̂(~r;~ri)

[∫
Ψ∗(~r1, ~r2, · · · , ~rN)Ψ(~r1, ~r2, · · · , ~rN)d3r1 d

3r2 · · · d3rN

]
d3ri = (A.18)

The integration over the ~ri spatial coordinate does not depend on i, because ~ri is just a
dummy variable, so we can just change its label by ~r ′:

=
N∑
i=1

∫
f̂(~r;~r ′)

[∫
Ψ∗(~r1, ~r2, · · · , ~rN)Ψ(~r1, ~r2, · · · , ~rN)d3r1 d

3r2 · · · d3rN

]
d3r′ = (A.19)

=
∫
f̂(~r;~r ′)

[
N
∫

Ψ∗(~r1, ~r2, · · · , ~rN)Ψ(~r1, ~r2, · · · , ~rN)d3r1 d
3r2 · · · d3rN

]
d3r′ (A.20)

By means of measurement we cannot distinguish which particle is being measured, and the
wave function must have a well-defined behaviour under an interchange of particles:

Ψ(~r1, ~r2, · · · , ~ri, · · · , ~rj, · · · , ~rN) = ±Ψ(~r1, ~r2, · · · , ~rj, · · · , ~ri, · · · , ~rN) (A.21)

In eq. A.20 we can interchange the first and the i-th position vectors and relabel all the
integration variables:

=
∫
f̂(~r;~r ′)

[
N
∫

Ψ∗(~r ′, ~r2, · · · , ~rN)Ψ(~r ′, ~r2, · · · , ~rN) d3r2 · · · d3rN

]
︸ ︷︷ ︸

n(~r ′)

d3r′ (A.22)

Hence, the expectation value of F̂ as to Ψ:〈
F̂
〉

Ψ
=
∫
f̂(~r;~r ′) · n(~r ′) d3r′ (A.23)

Eq. [3.5] and [3.11] can be proven by means of this result. Let’s consider the density operator:

n̂ =
N∑
i=1

δ(~r − ~ri) f̂(~r;~ri) = δ(~r − ~ri) (A.24)

The expectation value of the density operator is the electron density:

n(~r) = 〈n̂〉Ψ =
∫
δ(~r − ~r ′) · n(~r ′) d3r′ = N

∫
Ψ∗(~r, ~r2, · · · , ~rN)Ψ(~r ′, ~r2, · · · , ~rN) d3r2 · · · d3rN

(A.25)
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The expectation value of the external potential trivially follows from the former result:〈
Ψ
∣∣∣∣∣
N∑
i=1

vext(~ri)
∣∣∣∣∣Ψ
〉

=
∫
vext(~r) · n(~r)d3r (A.26)

From now on in we will consider a system of non-interacting fermions. The wave function
of such a system must be antisymmetric as to an interchange of particles, and we take it as
an Slater determinant:

Ψ(~r1, ~r2, · · · , ~rN) = 1√
N !
· det


ψ1(~r1) ψ2(~r1) · · · ψN(~r1)
ψ1(~r2) ψ2(~r2) · · · ψN(~r2)

... ... . . . ...
ψ1(~rN) ψ2(~rN) · · · ψN(~rN)

 (A.27)

Instead of using the determinant notation, we will use an expanded version of it:

Ψ(~r1, ~r2, · · · , ~rN) = 1√
N !

∑
σ∈ΠN

εσ · ψσ1(~r1) · ψσ2(~r2) · · · ·ψσN
(~rN) (A.28)

where ΠN is the symmetric group of degree N, σi is the i-th slot of the array σ ∈ ΠN and
εσ = ±1 is its parity.
Let’s consider again the expectation value of an operator F̂ as to a state Ψ(~r1, ~r2, · · · , ~rN):

〈
F̂
〉

Ψ
= 〈Ψ|F̂ |Ψ〉
〈Ψ|Ψ〉 (A.29)

with F̂ of the form:

F̂ =
N∑
i=1

f̂(~r;~ri) (A.30)

where ~ri are the spatial coordinates of each particle of the system and f̂ does not act multi-
plicatively on Ψ.

〈
Ψ
∣∣∣∣∣
N∑
i=1

f̂(~r;~ri)
∣∣∣∣∣Ψ
〉

= 1
N !

N∑
i=1

∑
σ∈ΠN

∑
γ ∈ΠN

εσ εγ 〈ψσ1 · · ·ψσN
| f̂(~r;~ri) |ψγ1 · · ·ψγN

〉 = (A.31)

= 1
N !

N∑
i=1

∑
σ∈ΠN

∑
γ ∈ΠN

εσ εγ

∫
ψ∗σ1(~r1) · · ·ψ∗σN

(~rN) f̂(~r;~ri)ψγ1(~r1) · · ·ψγN
(~rN) d3r1 · · · d3rN =

(A.32)

= 1
N !

N∑
i=1

∑
σ∈ΠN

∑
γ ∈ΠN

εσ εγ δσ1,γ1 · · ·
∫
ψ∗σi

(~ri)f̂(~r;~ri)ψγi
(~ri) d3ri · · · δσN ,γN

(A.33)

Each term of the sum vanishes except for those permutations γ ∈ ΠN , whose i-th element
differs from the i-th elements of σ ∈ ΠN . We now inquire as to that different element. Let’s
remember the definition of a permutation:(

1 2 3 · · · i · · · N
σ1 σ2 σ3 · · · σi · · · σN

) ?︷︸︸︷=
(

1 2 3 · · · i · · · N
γ1 γ2 γ3 · · · γi · · · γN

)
(A.34)
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The second row contains all the natural numbers up to N ordered in all possible ways. If
all the terms of both permutations are the same, except for i-th element, which is unknown,
the permutations are identical. Inserting this consideration and relabelling the integration
variable 5:

= 1
N !

N∑
i=1

∑
σ∈ΠN

∫
ψ∗σi

(~r ′) · f̂(~r;~r ′) · ψσi
(~r ′) d3r′ (A.35)

We must bear in mind that σi is just the i-th slot of the permutation, and there are (N-1)!
permutations with the same element at the i-th slot:

= 1
N !

N∑
i=1

(N − 1)!
N∑
j=1

∫
ψ∗j (~r) · f̂(~r;~ri) · ψj(~r) d3r

 =
N∑
j=1

∫
ψ∗j (~r) · f̂(~r;~ri) · ψj(~r) d3r

(A.36)

Hence, the expectation value of F̂ as to Ψ is:〈
Ψ
∣∣∣∣∣
N∑
i=1

f̂(~r;~ri)
∣∣∣∣∣Ψ
〉

=
N∑
i=1
〈ψi|f̂(~r;~ri)|ψi〉 (A.37)

Thus, the electron density of non-interacting system is:

n(~r) = 〈n̂〉Ψ =
N∑
i=1
〈ψi|δ(~r − ~r ′)|ψi〉 =

N∑
i=1

ψ∗i (~r)ψi(~r) (A.38)

The expectation value of the kinetic energy of the non-interacting system follows from the
previous result:

To[n] = 〈Ψ|T̂ |Ψ〉 =
N∑
i=1
〈ψi|T̂ |ψi〉 (A.39)

A.4 Derivation of the Kohn-Sham equations
In this appendix we are going to derive explicitly the Kohn-Sham equations. Let us

consider the functional:

E(HS)
[
{φi}Ni=1, {φ∗i }Ni=1

]
=

N∑
i=1
〈φi|T̂ |φi〉+ 1

2

∫
n(~r)n(~r ′)
|~r − ~r ′|

d3r d3r′+

+
∫
Vnucl(~r) · n(~r) d3r + Exc[n] (A.40)

subjected to orthonormalization constrains:∫
φi(~r)φj(~r) d3r = δij (A.41)

and with:

n(~r) =
N∑
i=1

φi(~r)φ∗i (~r) (A.42)

5If both permutations are the same, the parity too, so ε2σ = 1
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We introduce a set of Lagrange multipliers {λij}Ni,j=1 in order to take into account the former
constraints:

F
[
{φi}Ni=1, {φ∗i }Ni=1

]
= E(HS)

[
{φi}Ni=1, {φ∗i }Ni=1

]
−

N∑
i=1

N∑
j=1

λij

[∫
φ∗i (~r)φj(~r) d3r − 1

]
(A.43)

From the variational principle it follows that the first order variation of F with respect to
any state φk must be zero:

δF := F
[
{φi}Ni=1, {φ∗i }Ni 6=k , φ∗k + δφ∗k

]
− F

[
{φi}Ni=1, {φ∗i }Ni=1

]
= 0 (A.44)

We are going to compute the variation of each term separately.
The variation of the first term is easy to compute as long that the only term that remains

occurs when the index of the sum is k, and the rest cancel out when we perform the variation:

δ[1]1 =
N∑
i 6=k

∫
φ∗i (~r) T̂ φi(~r) d3r +

∫
[φ∗k(~r) + δφ∗k(~r)] T̂ φk(~r) d3r −

N∑
i=1

∫
φ∗i (~r) T̂ φi(~r) d3r

(A.45)

where δ[1]1 indicates that we are taking the variation of the first term of equation [1]. Then,
the last equation is reduced to:

δ[1]1 =
∫
δφ∗k(~r)

[
T̂ φk(~r)

]
d3r (A.46)

The computation of the second term must be done carefully because in the double sum the
state φk appears more than one time. First, if i 6= k in the j sum, then the term δψ∗k appears
one time. Similarly, for i = j the term appears again, and also in the case i = j = k. We
will just sketch the relevant terms of the calculations:

i = k, ∀j 6= k :
N∑
j 6=k

∫ [φ∗k(~r) + δφ∗k(~r))]φk(~r)φ∗j(~r ′)φj(~r ′)
|~r − ~r ′|

d3rd3r′ −→ (A.47)

The only relevant term −→
∫
δφ∗k(~r)

[∫ ∑N
j 6=k φ

∗
j(~r ′)φj(~r ′)
|~r − ~r ′|

d3r′
]
φk(~r) d3r (A.48)

Similarly we have:

j = k, ∀i 6= k :
N∑
i 6=k

∫
φ∗i (~r)φi(~r) [φ∗k(~r ′) + δφ∗k(~r ′))]φk(~r ′)

|~r − ~r ′|
d3rd3r′ −→ (A.49)

The only relevant term −→
∫
δφ∗k(~r ′)

[∫ ∑N
i 6=k φ

∗
i (~r)φi(~r)

|~r − ~r ′|
d3r

]
φk(~r ′) d3r′ (A.50)

Finally, the term with i = j = k:∫ [φ∗k(~r) + δφ∗k(~r))]φk(~r) [φ∗k(~r) + δφ∗k(~r ′))]φk(~r ′)
|~r − ~r ′|

d3rd3r′ −→ (A.51)

The only relevant terms −→
∫
δφ∗k(~r ′)

[∫
φ∗k(~r)φk(~r)
|~r − ~r ′|

d3r

]
φk(~r ′) d3r′+
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+
∫
δφ∗k(~r)

[∫
φ∗k(~r ′)φk(~r ′)
|~r − ~r ′|

d3r′
]
φk(~r) d3r + o(δφ∗k)2 (A.52)

Thus, the first order variation of the second term of [1] is:

δ[1]2 =
∫
δφ∗k(~r)

[∫
n(~r ′)
|~r − ~r ′|

d3r′
]
φk(~r) d3r (A.53)

The variation of the third term is easy to calculate, and so we just give the result:

δ[1]3 =
∫
δφ∗k(~r)Vnucl(~r)φk(~r) d3r (A.54)

and by definition of functional derivative, the variation of the last term is:

δ[1]4 =
∫
δφ∗k(~r) ·

(
δExc
δφ∗k

)
d3r =

∫
δφ∗k(~r)

(
δExc
δn

)
φk(~r) d3r (A.55)

where we applied the analog to the chain rule to the functional derivative.
Finally, to compute the variation of the last term of eq. [4] we only have to bear in mind

that the only contribution to the variation appears when i=k:

δ[4]2 =
∫
δφ∗k(~r)

 N∑
j=1

λkj · φj(~r)
 d3r (A.56)

Therefore, the total variation of F is:

δF =
∫
δφ∗k(~r)

T̂ φk(~r) +
[∫

n(~r ′)
|~r − ~r ′|

d3r′
]
φk(~r) + Vnucl(~r)φk(~r) +

(
δExc
δn

)
φk(~r)−

N∑
j=1

λkj · φj(~r)
 d3r = 0

(A.57)

Hence, since the variation δφ∗k is arbitrary, the terms inside the brackets must be zero:[
T̂ +

∫
n(~r ′)
|~r − ~r ′|

d3r′ + Vnucl(~r) +
(
δExc
δn

)]
︸ ︷︷ ︸

F (KS)

φi(~r) =
N∑
j=1

λij · φj(~r) (A.58)

Let’s consider a non-degenerate linear transformation Λ independent of the coordinates such
that:

φi(~r) =
N∑
j=1

Λijψj(~r) (A.59)

Applying this transformation to the last equation:

F (KS)ψn(~r) =
N∑
k=1

 N∑
j=1

N∑
k=1

Λ−1
ni λijΛjk

ψk(~r) (A.60)

We impose that the transformation Λ is such that the the terms of the matrix multiplication
in brackets are the element of a diagonal matrix:

F (KS)ψn(~r) = εnψn(~r) (A.61)

Notice that the existence of such a matrix Λ that makes the matrix λ diagonal is a consequence
of the hermiticity of F (KS), so its eigenvectors are orthogonal, and then the orthogonalization
constraint [2] can be relaxed to just a normalization constraints, which implies the last result.
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