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Objetivo: El objetivo de este trabajo es, mediante la aplicación y la ampliación el conocimiento adquirido durante
el grado, entender y explicar las ideas fundamentales en las que se basa la Teoŕıa de Cuerdas, aśı como obtener o
presentar algunos de sus resultados.

Objetive: The objective of this work is to, through the application and expansion of the knowledge acquired during
the degree, understand and explain the fundamental ideas on which String Theory is based, as well as to obtain
some of its results.

Abstract

El siguiente trabajo comienza, en su primer caṕıtulo, tratando de enfatizar por qué se ha desarrollado la Teoŕıa
de Cuerdas, explicando a qué cuestiones busca dar solución, para ello se exponen una serie de ideas que giran
entorno a la búsqueda histórica de la unificación en la f́ısica. Tras esta breve discusión, se repasa en el siguiente
caṕıtulo la cuerda clásica, dado que es el elemento del que se derivan e inspiran modelos más complejos que se
tratan en sucesivos caṕıtulos, precisamente se utiliza la misma para ilustrar cómo se aplican los conceptos de
acción y mecánica lagrangiana al estudio de campos, y dejar aśı patente la efectividad de estas herramientas.
También se derivan, a modo de ejemplo, una serie de expresiones correspondientes a campos complejos tales como
la ecuaciones de Schrödinger y Dirac, con ello se persigue realzar el poder de la acción en la f́ısica matemática.
En el caṕıtulo 4 se estudia la part́ıcula puntual relativista, aqúı nos detenemos para repasar las bases de la
relatividad especial, explicar las coordenadas del cono de luz y comprender la compactificación como v́ıa para la
posibilidad de dimensiones adicionales. Tras ello, se expone como estudiar la part́ıcula relativista empezando por
la propuesta de una acción, desgranando a partir de la misma las ecuaciones de movimiento correspondientes.
Posteriormente, en el caṕıtulo 6, se utiliza este modelo para mostrar cómo se realiza el proceso de cuantización
de una teoŕıa no cuántica. Para ello, se localizan las variables dinámicas del sistema y se transforman en los
consiguientes operadores, se obtienen las relaciones de conmutación, se define un hamiltoniano del que se pone
a prueba su validez y se construyen el espacio de estados y la ecuación de Schrödinger de la part́ıcula cuántica
libre.

En paralelo, se comienza a estudiar la cuerda relativista. Mediante la hoja del mundo generada por la cuerda,
que es una idea basada en la ĺınea del universo de la part́ıcula puntual, se justifica la acción de Nambu-Goto,
esta acción pasa a ser la base la base de nuestro modelo. A partir de esta y de las condiciones de contorno
que imponemos a los extremos de nuestra cuerda, derivamos su ecuación de ondas, la forma de su enerǵıa
potencial, obtenemos que los extremos de las cuerdas libres se mueven transversalmente a la velocidad de la luz
y evaluamos las leyes de conservación de la misma. Con esta información desarrollamos la solución de la ecuación
de movimiento, que luego, sin llegar a demostrar expĺı citamente, presentamos en el formalismo del cono de luz,
definiendo en el proceso los modos transversales de Visasoro. Finalmente cuantizamos la cuerda relativista
siguiendo un procedimiento similar al de la part́ıcula puntual, y discutimos como la primera se convierte en
un oscilador armónico, cuyos modos de vibración marcan la diferencia con segunda. Por último presentamos,
sin ánimo de demostrar expĺıcitamente, como la Teoŕıa de Cuerdas bosónica predice la existencia de hasta 26
dimensiones, es decir, 22 dimensiones adicionales.
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1 Introduction[1][2][3]

La Teoŕıa de Cuerdas es una teoŕıa unificadora, y por lo tanto, busca proveer de una explicación común a una
amplia variedad de fenómenos de una manera simple y elegante. En esencia, propone que la materia no está
compuesta por part́ıculas tal y como normalmente las entendemos, sino por pequeños elementos unidimensionales
que recuerdan a las cuerdas, siendo las caracteŕısticas de estas cuerdas la causa fundamental de las propiedades
de la misma, aśı como de sus interacciones. Esta teoŕıa ha sido motivo de discusión desde que fue propuesta
en la década de 1960, y para entender por qué es merecedora de tanto interés, primero debemos comentar los
problemas que pretende resolver.

String Theory is a unifying theory, and therefore, seeks to provide a common explanation to a wide variety
of phenomena in a simple and elegant way. In essence, it proposes that matter is not composed by particles
as we usually think about them, but by small one-dimensional elements that resemble to strings, and that the
characteristics of those strings, are the fundamental cause of the properties of latter, as well as their interactions.
This theory has been a topic of discussion since it was first proposed in the 1960s, and for understanding why is
worthy of such an interest, we must first comment on the problems it tries to solve.

1.1 The standard model

Before 1936 only three particles of matter (the electron, the proton and the neutron) and one of interaction (the
photon) were known, those four particles allowed scientists to explain a wide variety of phenomena related to
the composition of matter, and it seemed that not much was left to discover. But with the detection in that
same year of the muon by Carl D. Anderson and collaborators, particle physics changed radically. After that
discovery, many experiments proved the existence of dozens of new particles, even antiparticles and many of the
known particles turned out not to be fundamental (not composed by others) as well. All what we know to the
date about the fundamental components of matter and their physical properties is contained into the Standard
Model.

Figure 1: The Standard Model of Particles

The Standard Model (Fig 1) groups the elements in families according to their similarities and classifies them
logically. For instance, we can see that the electron, the muon and the tau share the same spin and charge,
and both have an associated neutrino, but they differ in their mass, and each one has his own leptonic number.
With this in mind, we can think of at least two questions that arise, to which the Standard Model provides no
answer. Why do we have the particles we have and not others, and which is the reason for these properties?
It looks like the interpretation of particles as extensionless, apart from being already counterintuitive, imposes
an intellectual barrier that prevents us from delving into these issues. However, the degrees of freedom that a
one-dimensional chain possesses gives us a richer starting point.
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1.2 The unification of the fundamental interactions

There are four known fundamental forces or interactions in matter, this forces are; electromagnetism, strong or
colour interaction, weak interaction and gravity. The three first, have associated interaction gauge bosons (see
Fig 1), which transfer to one particle of matter to the other certain effects due to the corresponding force and
vice versa. For the EM interaction we have the photon, the weak interaction is mediated by the W+, W− and
Z0 bosons, and the strong force is carried by eight different gluons. It is really interesting to know that trough
the Weinberg-Salam model of electroweak interactions, EM and Weak interactions have already been unified,
and currently there are several Theories of Great Unification (TGU) that attempt to unify them along with
the colour interaction. Although this last step has not been verified yet, it seems that what we understand as
different interactions can have a profound, common origin. But, Where’s the gravity in all of this?

Because of the success of the theory of general relativity, gravity has been interpreted and understood in a
radically different way compared to the other forces. According to general relativity, in principle there is no
gravitational gauge boson, and this interaction is a consequence of the deformation of space-time due to bodies
with mass, in other words, the dynamics of a body due to gravity are determined by the metric tensor gµλ(x),
where no interaction boson appears. Even thought general relativity works satisfactorily in the prediction of
astrophysical and cosmological events, if we take into account how the other three forces work, it is not crazy to
think that it must also exist a gauge boson for gravity, that has been named graviton, but due to the relative
weakness of this interaction, it has a series of properties that make this hypothetical boson much harder to find.
Precisely, one of the vibrational modes obtained in String Theory, predicts the existence of a closed string with
the same properties that would need to have the graviton, this result will not be obtained in this work, since we
will limit ourselves to the development of open strings, but we will show the general procedure of quantization.
Obviously, this mathematical model alone doesn’t prove that the graviton has to exist, and that the reductionist
perspective of interactions, which assumes that all forces must be related somehow, has to be correct. But there
are some good reasons to think so, as it wouldn’t be the first great unification in the history of physics.

1.3 Our conception of physics

If we take a look at the history and development of physics, several cases of unification can be found, of which
we can mention a couple. By the end of the eighteenth century, Charles-Augustin de Coulomb had provided
a consistent theory for electrostatics, shortly after, some subsequent experiments showed that electricity had a
sort of relation with a phenomena known since the ancient Greeks, magnetism. After many new observations
and experiments made by Biot, Savart, Ampère and others, James Clerk Maxwell constructed a set of equations,
known as Maxwell equations or equations of electromagnetism, which collect an inseparable connection between
magnetism and electricity. Another important unification was achieved in 1928, when Paul Dirac managed to
introduce special relativity in the formalism of the non-relativistic Schrödinger equation applied to an electron,
and finding a common expression for two independently-developed heavyweights of physics, special relativity
and quantum mechanics.

As we stated in the previous section, general relativity works, and is one of the cornerstones of nowadays physics.
But, it is a classical theory, and therefore, we have a framework in which we assume well-defined trajectories, with
no uncertainty in the position and/or the momentum. This essentially means that this theory is not governed
by the Heisenberg uncertainty principle, something which is completely incompatible with quantum mechanics.
This presents an inconsistency in the way we interpret the universe, and at least one of this theories has to be
modified if we want to solve this dilemma. The reason why both theories have survived for so long independently,
is that usually have very different ranges of application, while the first one focuses on planets, stars and super
massive objects at a macroscopic level, the latter studies systems from their smaller components, as they are
electrons or molecules. The successive attempts made to quantize general relativity have failed, and it seems
necessary to think outside of the box in order to find an answer to this persisting problem. As we will see during
the development of this work, String Theory presents itself as an elegant candidate to unify this two conceptions
of nature.
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2 The classical string

Comenzamos nuestro estudio de la Teoŕıa de Cuerdas repasando brevemente la mecánica de la cuerda clásica
homogénea, ya que este es el elemento en el que se inspira dicha teoŕıa. La exposición de estos resultados
podŕıa parecer omitible, pero a medida que empecemos a obtener conclusiones significativas en sucesivos caṕıtulos,
regresaremos aqúı para compararlos.

We start our analysis of String Theory by briefly revising the mechanics of a classical homogeneous string, as
it is the element in which this theory is inspired. The exposition of this results could seem omitible, but as we
start getting significant conclusions in subsequent chapters we will return here to compare them.

2.1 Review of the results for a classical string

Lets imagine an homogeneous string of length a, where we have two scalar magnitudes of relevance, the mass
density µ0, and the tension T0. We name x the longitudinal coordinate which follows the length of the string
when it is at rest, and y the coordinate in which transverse oscillations may occur, so there is a two-dimensional
frame. We also impose the condition of small oscillations around equilibrium, which means that:

∂y

∂x
� 1 (1)

The condition above ensures that the length of the string along the x coordinate remains approximately constant
during motion, and that the tension stays unchanged. When two infinitesimally close points of the string A(x,0)
and B(x+dx,0), are displaced from the equilibrium configuration by a small perturbation that meets the condition
(1), they shift to new coordinates A(x,y) and B(x+dx, y+dy), and therefore suffer a vertical force due to the
tension of the string:

dFv = T0
∂y

∂x
|x+dx − T0

∂y

∂x
|x ' T0

∂2y

∂x2
dx (2)

Where we have just applied the definition of the derivative in the second equality. By using Newton’s second
law, we can obtain a relation between this force and the vertical acceleration of our string:

T0
∂2y

∂x2
dx = (µ0dx)

∂2y

∂t2
(3)

And by cancelling the dx at each side, we obtain the equation of motion, that takes the form of a wave equation:

∂2y

∂x2
− µ0

T0

∂2y

∂t2
= 0 (4)

Where v0 =
√
T0/µ0 is the velocity of the wave. For solving (4) we need to know some initial and boundary

about the string, the two most common boundary conditions are, the Dirichlet boundary condition, in which
the extremes of the strings are fixed, and the Neumann boundary condition, in which the extremes are confined
into vertical oscillations:
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Figure 2: Dirichlet and Neumann conditions applied to a classical string

Both conditions are also relevant in the case of fundamental strings that appear in String Theory, as they can
be attached to D-dimensional elements called D-branes that limit their movement, and to which we will refer
later. For now, in our still non-relativistic world, we know that if we apply to our wave equation (4) the Dirichlet
boundary conditions, we obtain sinusoidal oscillation solutions of the form:

yn(x) = Ansin
(nπx

a

)
; n = 1, 2, 3, .... (5)

Where An is the amplitude of the oscillation and n is a natural number. On the other hand, for the Neumann
boundary conditions, we obtain a quite similar result:

yn(x) = Ancos
(nπx

a

)
; n = 1, 2, 3, .... (6)

For both conditions (5) and (6) we have the same value of the allowed frequencies:

ωn =

√
T0

µ0

(nπ
a

)
n = 1, 2, 3, .... (7)

The results that have been enumerated, will serve us as reference, so when we face relativistic, less intuitive
strings, we can deal with them mildly. The reader must keep in mind that, in the same way that Rutherford
atomic model is taught as a first approximation to more accurate quantum atomic models, the classical string is
just a rude, but simple example, that serves us as an starting point in the process of understanding fundamental
strings. On the other hand, this set of equations will also serve us as reference for evaluating how useful can
lagrangian mechanics be in the study of strings, as we are going to see in the following chapter.
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3 The action[3][4]

En este caṕıtulo, vamos a repasar brevemente los fundamentos de la mecánica lagrangiana, aśı como el con-
cepto de acción S, después explicaremos como la mecánica lagrangiana puede ser adaptada al estudio de campos
complejos, y finalmente, vamos a ilustrar la relevancia de este formalismo estudiando algunos ejemplos. En
conjunto, el propósito de este análisis es enfatizar el poder de estas herramientas para derivar resultados f́ısicos,
y mostrar la variedad de ecuaciones de evolución, tanto dinámicas como cinemáticas, que pueden ser derivadas
de una acción definida apropiadamente.

In this chapter, we are going briefly review the basics of lagrangian mechanics, as well as the concept of action
S, then we will explain how lagrangian mechanics can be adapted to the study of complex fields, and finally, we
are going to illustrate the relevance of this formalism by studying some examples. The overall purpose of this
analysis is to highlight the power of this tools for deriving physical results, and to show how many cinematic
and dynamic equations of evolution can ultimately be derived from an appropriately defined action.

3.1 Lagrangian mechanics and equations of motion

First, we state that any action can be defined in terms of the lagrangian of the system by the following expression:

S =

∫
P

L(qn(t), q̇n(t), t)dt n = 1, 2, 3, .... (8)

Where P is the path that follows the element whose movement we are interested on, and q and q̇ are the natural
variables of the Lagrangian, the Lagrangian can also depend explicitly on t. The only paths with physical
meaning, are those that make the action stationary against infinitesimal variations of the q spatial coordinates,
so for obtaining those paths, we have to make δS = 0. If we impose this condition to (8) we derive the well-known
Lagrange equations:

∂L

∂qn
− d

dt

(
∂L

∂q̇n

)
= 0 n = 1, 2, 3, .... (9)

If we have non-punctual objects, we can work in terms of the lagrangian density L too, which is related to the
lagrangian by its integration over all spatial coordinates:

L = T − V =

∫
d3rL (10)

In this situations, is usually easier to work directly with the lagrangian density. For instance, we can return
to our classical string (see section 2.1) and derive, in an alternative way, the equation of motion (5). We start
by identifying the kinetic energy T, throughout the relation T = 1

2
mv2, integrated over the points that form a

string of length a, we get that:

T =

∫ a

0

1

2
(µ0dx)

(
∂y

∂t

)2

(11)

Where remember that µ0 is the mass density of our homogeneous string. For the potential energy, we know that
the work made in stretching an infinitesimal segment of the string is given by T0∆l, where the stretch ∆l is the
change of length suffered by that segment in an oscillation:

∆l =
√

(dx)2 + (dy)2 − dx =

√1 +

(
∂y

∂x

)2

− 1

 dx ' 1

2

(
∂y

∂x

)2

dx (12)

In the last step we performed a Taylor expansion over the square root. So the potential energy V of the whole
string due to its stretching is:

V =

∫ a

0

1

2
T0

(
∂y

∂x

)2

dx (13)
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Then the lagrangian is easily calculated by its definition L=T-V, which integrated between the initial and final
times gives us the action:

S =

∫ tf

ti

dt

∫ a

0

L dx =

∫ tf

ti

dt

∫ a

0

[
1

2
µ0

(
∂y

∂t

)2

− 1

2
T0

(
∂y

∂x

)2
]
dx (14)

Now, we can check the equation of motion (4) by calculating δS and making it zero. We start doing so by
performing the change y(t,x) −→ y(t,x) + δy(t, x) in the expression of the action(14):

S [y + δy] =

∫ tf

ti

dt

∫ a

0

[
1

2
µ0

(
∂ (y + δy)

∂t

)2

− 1

2
T0

(
∂ (y + δy)

∂x

)2
]
dx =

=

∫ tf

ti

dt

∫ a

0

[
1

2
µ0

((
∂y

∂t

)2

+

(
∂δy

∂t

)2

+ 2
∂y

∂t

∂δy

∂t

)
− 1

2
T0

((
∂y

∂x

)2

+

(
∂δy

∂x

)2

+ 2
∂y

∂x

∂δy

∂x

)]
dx =

We use the condition (1) to neglect a couple of terms, and we regroup the remaining ones:

=

∫ tf

ti

dt

∫ a

0

[
1

2
µ0

(
∂y

∂t

)2

− 1

2
T0

(
∂y

∂x

)2
]
dx+

∫ tf

ti

dt

∫ a

0

[
µ0
∂y

∂t

∂δy

∂t
− T0

∂y

∂x

∂δy

∂x

]
dx

Where the first term is just the action given in (14), and therefore, the second one is δS. We develop it for
finding the equations of motion:

δS =

∫ tf

ti

dt

∫ a

0

dx

[
µ0
∂y

∂t

∂δy

∂t
− T0

∂y

∂x

∂δy

∂x

]
=

=

∫ tf

ti

dt

∫ a

0

dx

[
∂

∂t

(
µ0
∂y

∂t
δy

)
− µ0

∂2y

∂t2
δy − ∂

∂x

(
T0
∂y

∂x
δy

)
+ T0

∂2y

∂x2
δy

]
=

=

∫ a

0

dx

[
µ0
∂y

∂t
δy

]t=tf
t=ti

+

∫ tf

ti

dt

[
−T0

∂y

∂x
δy

]x=a
x=0

−
∫ tf

ti

dt

∫ a

0

dx

(
µ0
∂2y

∂t2
− T0

∂2y

∂x2

)
δy = 0

The first term just vanishes when we define the initial and final configurations of the string for a given trajectory.
The second term depends on the endpoints of the string x=a and x=0, so with some boundary condition (see
Fig (2)), we can get rid of this one too. And, if we equate what is inside the integrals in the last term, we just
have obtained the equation of motion of a string (4)! Now that we have contrasted our results for a classical
string with the use of an action, is a good moment for introducing two quantities that will be very useful in
following chapters and derive from lagrangian mechanics:

Pt ≡ ∂L

∂ẏ
= µ0

∂y

∂t
; Px ≡ ∂L

∂y′
= −T0

∂y

∂x
(15)

Where ẏ = ∂y
∂t

and y′ = ∂y
∂x

. The first quantity Pt is precisely the momentum density of the string, while the
second one has a deeper interpretation in relativistic strings (see chapter 5). By applying the definitions (15),
we can rewrite the equation of motion (4) of an one dimensional classical string in a more fashionable way:

∂Pt

∂t
+
∂Px

∂x
= 0 (16)

3.2 Fields and mathematical physics

As we mentioned in the introduction, String Theory is also a theory of fields, and we will have to work with
operators and wave functions characteristic of quantum mechanics. For working in this frame by our own, we
need a reliable mathematical tool, and with that purpose, we introduce lagrangian mechanics expanded to the
study of complex fields. This formalism is oriented towards a lagrangian which is dependent, not on generalised
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coordinates q and velocities q̇, but on fields labelled as Aj and their associated velocities ˙Aj , as well as their
complex conjugates A ∗j and ˙A ∗j .

L =

∫
d3rL (Aj , ˙Aj , ∂iAj ,A

∗
j , ˙A ∗j , ∂iA

∗
j ) (17)

Where the ∂i symbol refers to a derivation over each spatial coordinate. The derivatives ∂iAj and ∂iA
∗
j are

not considered to be independent variables, as they can be directly derived from the fields. Note that we must
obtain two sets of equations, one for the fields and other for the complex conjugated fields, this equations are:

d

dt

∂L

∂ ˙Aj

=
∂L

∂Aj
−
∑
i

∂i
∂L

∂(∂iAj)
(18)

d

dt

∂L

∂ ˙A ∗j
=

∂L

∂A ∗j
−
∑
i

∂i
∂L

∂(∂iA ∗j )
(19)

This new equations are quite similar to the classical Lagrange equations (9), which we used for studying the
classical string. But, in this case, we have added an extra term that includes the variations of the fields over all
spatial coordinates, it kind of make sense, since as it costs energy to have the field vary in time, it must also
cost energy to have the field vary in space.

For illustrating how the equations (18) and (19) work, we can apply them to a complex classical field known as
the Schrödinger matter field. This field is given by the lagrangian density

L =
i~
2

(
Φ∗Φ̇− Φ̇∗Φ

)
− ~2

2m
∇Φ∗ · ∇Φ− V (r)Φ∗Φ (20)

to which we apply the equation (19):

∂L

∂Φ̇∗
= − i~

2
Φ;

∂L

∂Φ∗
=
i~
2

Φ̇− V (r)Φ;
∂L

∂(∂jΦ∗)
= − ~2

2m
∂jΦ

i~Φ̇− V (r)Φ +
~2

2m
∇2Φ = 0 (21)

We have just obtained the Schrödinger equation for a particle in a central potential! It is worth noting that if
we instead apply the equation (18) to the action above

∂L

∂Φ̇
=
i~
2

Φ∗;
∂L

∂Φ
= − i~

2
Φ̇∗ − V (r)Φ∗;

∂L

∂(∂jΦ)
= − ~2

2m
∂jΦ

∗

i~Φ̇∗ − V (r)Φ∗ +
~2

2m
∇2Φ∗ = 0 (22)

and we compare this result to (21), we can check how we have reached the complex conjugate expression of each
other. So in fact, we get the same result with both of them.

Another illustrative example, consists in the derivation of the Dirac equation (see introduction). As we previously
stated, this equation is an improvement of the Schrodinger equation applied to particles of spin one half since it
also takes into account relativistic effects. For this case, our given lagrangian density is:

L = −c~ϕ∗γµ
∂

∂xµ
ϕ−mc2ϕ∗ϕ µ = 0, 1, 2, 3 (23)

In the above, we use the Einstein’s convention for indexes, the value µ = 0 refers to the temporal coordinate and
the values µ = 1, 2, 3 to the spatial coordinates x,y,z. We must take into account that, as we are working now
with special relativity, we are in the four-dimensional Lorentz frame. The symbols γµ that appear in (23) are
the Dirac matrices, which are simply spinorial extensions of the Pauli matrices. The fist of them γ0, is defined
as:
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γ0 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 (24)

While the others, which we label with the lateen letter i because it is the convention with the spatial components,
turn out to be:

γi =

(
0 −iσi
iσi 0

)
(25)

Where the σi values are the Pauli matrices. We just have to apply the Lagrange equation (19) to our new
lagrangian density (23). The required calculations are done below:

∂

∂xµ

(
∂L

∂( ∂ϕ
∗

∂xµ
)

)
= 0 =⇒ ∂L

∂ϕ∗
= −c~γµ

∂

∂xµ
ϕ−mc2ϕ = 0

Where we have just used a simplified version of the equation (19), see how the index µ covers all spatial and
time derivatives over the complex variable ϕ. So in the end, after reordering the terms, we get none other than
the Dirac equation: (

γµ
∂

∂xµ
+
mc

~

)
ϕ = 0 (26)

We see how the Dirac equation is in fact a set of equations, one for each value the index µ can take. This
expression is of great relevance in quantum electrodynamics, since enables us to study particles of spin one half,
which, in fact, are all the fundamental particles of matter (see Fig 1).

A particular set of fields contained in the group of complex conjugated fields, is the set of scalar fields. This
ones are characterised by a lagrangian density dependent only of real variables, the general expression of the
lagrangian density for this fields is:

L = L
(
φ, φ̇, ∂iφ

)
=

1

2
(φ̇)2 − 1

2
∂iφ∂iφ−

1

2
m2φ2 (27)

to which if we apply the still valid equation (18) to our lagrangian density (23), we obtain the Klein-Gordon
equation:

− ∂2φ

∂t2
+∇2φ−m2φ = 0 (28)

This equation is an equivalent of the Dirac equation, but for particles of spin zero as, for example, the pions.
We hopefully have highlighted the power that provides to a physicist a properly defined action, and how many
formulas and physical results can be derived from one, of which we have seen a few. In fact, even Einstein’s
field equations of general relativity can be derived from an action (for further reading see Classical field theory
Volume 2, Landau and Lifshitz, Chapter 11). As you may have already realised, the main difficulty of this
method, usually lies in finding a correct action that allow us to derive the correct evolution equations.
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4 The relativistic point particle[3][5][6]

Antes de comenzar con las cuerdas relativistas, vamos a comentar algunos resultados fundamentales de la rela-
tividad especial, y cómo se aplica esto al conjunto de coordenadas conocidas como coordenadas del cono de luz.
Después, mostraremos como todo el formalismo de la relatividad especial puede ser fácilmente expandido a un
sistema de d dimensiones espaciales, y trataremos de entender como esas dimensiones extra pueden encajar en
nuestro universo. Tras esto, combinaremos nuestro conocimiento de la relatividad especial con lo que hemos
explicado de la mecánica lagrangiana, al hacerlo, obtendremos las ecuaciones de movimiento para una part́ıcula
puntual relativista. Finalmente, los resultados obtenidos con la part́ıcula relativista serán aplicados al gauge de
las coordenadas del cono de luz. Este es el último paso previo antes de comenzar con las cuerdas relativistas.

Before starting with relativistic strings, we are going to comment on some fundamental aspects about special
relativity, and how they apply to a particular set of coordinates called light-cone coordinates. After that, we will
show how all the formalism of special relativity can be easily expanded to a system of d spatial dimensions, and
then try to understand how can extra dimensions fit in our universe. Then, we will combine special relativity with
what we have explained about the action and lagrangian mechanics, by doing so, we will obtain the equations of
motion for a relativistic particle. Finally, the results obtained for the relativistic point particle will be applied
to the light-cone coordinates gauge. This analysis is the final step in our path towards the relativistic strings.

4.1 Special relativity

In our experience, for locating any punctual event in space and time we need a maximum of four coordinates,
three spatial coordinates and the time. With this four values, we can define the following vector, that represents
a point in a four dimensional space:

xµ = (x0, x1, x2, x3) ≡ (ct, x, y, z) (29)

Where c is the constant value of the speed of light in the vacuum. By defining the Minkowski metric tensor ηµν

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (30)

we can set that the distance or interval between any two events in space-time is:

− ds2 = ηρµx
ρxν = xµx

ν (31)

Where ηρµ defines the scalar product between the two vectors xρ and xν , which are four-dimensional as defined
by (29), and correspond to two arbitrary events according to a certain inertial system or frame. Since the times
of Galileo, we know that two (or more) observers located in different inertial frames can, and will usually, differ
about the value of this vectors, independently of how good their respective measurements are. But, on the other
hand, and according to the theory of special relativity, both of the observers must always agree about the value
of the interval (31) between these two events:

ds2 = ds′2; For any reference system (32)

Any magnitude that meets the condition of showing the same value in all inertial reference systems is called a
Lorentz invariant. According to the value of this interval, we have three possibilities, if the interval fulfils that
ds2 > 0 we have timelike separated events, which can be causally related, if ds2 < 0 we have spacelike separated
events, which cannot be causally related, and if ds2 = 0 we have light-like separated events. The important stuff
about this property of the interval, will be exploited in the study of relativistic strings. Returning to our dilemma
of the observers in disagreement, the relation between their observations, even though they may be different, is
given by the Lorentz transformations, which ensure that the condition (32) is satisfied. This transformations can
be written in a very simple way, without loosing any important information, for the particular case in which both
observers share the same origin of their frames (O=O’) at t=t’=0, and the relative spacial movement between
them is along the x-axis. By doing so, we express the Lorentz transformations in their matricial form:
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Lµν =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

 (33)

Where γ = 1√
1−β2

and β = v
c
, being v the velocity of one observer according to the other. Henceforth, when we

talk about boosts or Lorentz transformations, we will assume this particular configuration. Two very important
physical magnitudes are the energy and the momentum. The relativistic energy and momentum can be obtained
in terms of the rest mass of a body and the factor γ:

E = γmc2; ~p = γm~v (34)

With this two quantities we define the following four-vector called four-momentum:

pµ = (p0, p1, p2, p3) ≡
(
E

c
, ~p

)
(35)

The four-momentum will be very useful in our study of relativistic elements, since is intrinsically related to some
important conservation laws. This four-vector also contains an important Lorentz scalar:

p2 ≡ p · p = −mc2 (36)

We could extend talking about many other concepts and results concerning special relativity, but is not the
purpose of this dissertation, and we have already reviewed almost all the basic relativistic fundamentals that we
need to handle for studying the relativistic phenomena in which we are interested. Now, we proceed to rewrite
all of this concepts in terms of a new more interesting coordinates, the light-cone coordinates.

4.2 The world line and light-cone coordinates

The line generated by all the points covered by particle along its trajectory in a D-dimensional frame, is called
the world line. We must not mistake the world line of a particle with the 3-dimensional conventional trajectory,
since the latter one doesn’t even takes into account the time as a coordinate. For showing intuitively how the
world line works, we can limit ourselves to a simple 2-dimensional world, with only one spatial coordinate x1 = x
and one time coordinate x0 = ct. The following picture is a representation of a generic world line in a plane:

Figure 3: Spacetime diagram of a world line

In the figure, we have represented two lines DA and CB, of slope c and -c respectively, this two lines are
the physical limits in which the world-line of a particle that goes through the origin O is confined, since the
trespassing of this limits, would mean that we have a particle faster than light! Because of this theoretically
absolute frontier, we define the light-cone coordinates as:

x+ ≡ 1√
2

(x0 + x1) (37)
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x− ≡ 1√
2

(x0 − x1) (38)

You can check how, trough this new definitions, we have located our new axis in the limits of the light-cone.
With the new coordinates (37) and (38) we can define the new vectors xµ = (x+, x−, x2, x3), were we have left
the rest of the coordinates, which we will call transverse coordinates, untouched. While working with light-cone
coordinates, one must take into account that the concept of velocity becomes a little tricky, since time itself is
no longer a coordinate, as well as x. Although both x+ and x− are defined in terms of both a temporal and
a spacial coordinate, by convention, is usual to establish x− as the spacial coordinate and x+ as the temporal
coordinate. Since we have performed a change of coordinates, we must rewrite the Minkoski metric tensor:

ηµν =


0 −1 0 0
−1 0 0 0
0 0 1 0
0 0 0 1

 (39)

Another relevant consequence, is that the light-cone four-momentum new values are:

p+ =
1√
2

= (p0 + p1) (40)

p− =
1√
2

= (p0 − p1) (41)

Finally, we can obtain the new form of the Lorentz transformations matrix for a boost with the conditions
previously presented in (33). For our old coordinates (29), we have that the equations contained in the matrix
(33) essentially mean that:

x0′ = γ
(
x0 − βx1

)
; x1′ = γ

(
−βx0 + x1

)
; x2′ = x2; x3′ = x3

So, if we apply the definition of light-cone coordinates (37) (38) we get that

x+′ =
1√
2

[
x0′ + x1′

]
=

1√
2

[
γ
(
x0 − βx1

)
+ γ

(
−βx0 + x1

)]
=

γ√
2

[
x0(1− β) + x1(1− β)

]
=

=
γ(1− β)√

2

[
1√
2

(
x+ + x−

)
+

1√
2

(
x+ − x−

)]
= γ(1− β)x+

if we follow the same procedure for x−

x−′ =
1√
2

[
x0′ − x1′

]
=

1√
2

[
γ
(
x0 − βx1

)
− γ

(
−βx0 + x1

)]
=

γ√
2

[
x0(1− β)− x1(1− β)

]
=

=
γ(1− β)√

2

[
1√
2

(
x+ + x−

)
− 1√

2

(
x+ − x−

)]
= γ(1− β)x−

The coordinates x2 and x3 remain the same, so no more calculations are needed. We find that the expression
for the Lorentz transformations matrix in light-cone coordinates is:

Lµν =


γ(1− β) 0 0 0

0 γ(1− β) 0 0
0 0 1 0
0 0 0 1

 (42)

Another curious result because, according to the above, we can define the light-cone coordinates as those in which
the Lorentz transformations for inertial systems are diagonal. As an advance, the most interesting property of
this coordinates will show up in the quantization of relativistic strings, where the process turns out to be very
natural.
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Until now, when we have talked about special relativity, we have always assumed a four-dimensional frame.
But as we will see in one the most astonishing results of String Theory, there must exist several extra spatial
dimensions in our universe for this theory to be correct, let’s take a look at how can this be possible

4.3 Extra dimensions: The concept of compactification

As we previously stated, we have never required of more than four coordinates or dimensions for locating a
punctual event in any experiment ever. But, on the other hand, and as we will prove, String Theory predicts the
existence of several extra dimensions. On paper, this doesn’t represent a big issue for special relativity, which
can be easily expanded to any dimensional space-time of range D:

xµ = (x+, x−, x2, x3, x4, ...., xd) (43)

Where D = d+1, being D the number of total dimensions, while d is the number of spacial dimensions of the
system. Note that we are using light-cone coordinates, so our new D-dimensional metric tensor is:

ηµν =



0 −1 0 0 0 0 0
−1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 ... ... ...
0 0 0 0 ... ... ...
0 0 0 0 ... ... 1


(44)

The same procedure must be followed for safely expanding all the elements of special relativity in as many
dimensions as we want. The problem here is that, although the paper holds it, How can extra-dimensions merge
with observation? The first thought that comes to mind is that it is not possible, but theoretical physics suggests
a pretty reasonable alternative answer, which relies on the concept of compactification. First of all, a dimension
is said to be compactified when the values that the coordinate related to that dimension takes are periodic, for
understanding how this works, we can imagine a simplified example.

Imagine that somebody is in a world where you can only move forward and backward, in other words, you only
have one spatial dimension. Now, imagine that this person does the only thing he or she can, start walking
aimlessly hoping for something to happen. After a while, he or she realises that every time a certain distance
is covered, he or she returns to the starting point, and that this distance is a constant, which we can call it as
we want, for example, 2πR. This experience shows our observer a periodicity in the dimension, which we can
expressed by writing:

w ∼ w + 2πR (45)

Mathematicians call a definition of this kind an identification, and it means that our dimension has a periodicity,
hence it is compactified. There are many possible kinds of compactifications, and our current example is just the
simplest of them all. In fact, the form of the identification constant provides us a clue about the mathematical
shape, or orbifold, of the compactification, since it takes the form of the perimeter of a circle. See how by knowing
the interval 0 ≤ w ≤ 2πR, which is called fundamental domain, and the identification (45), we have completely
defined the properties of the dimension w. In principle, the constant the value of R can be as big or as small as
we want, but for being compatible with the real world, it must be extremely short, according to many experts in
String Theory, we could be talking about the scale of magnitude of the Planck length lP = 1.616255(18)x10−35

m, this ridiculously tiny size would be the reason of why we have not detected any extra dimension yet. By
combining a compactified dimension w, as defined by (45), with the four usual space-time dimensions, we can
build up a five-dimensional world, this has been already proposed and is known as the Kaluza-Klein theory:

xµ ≡ (t, x, y, z, w); w ∼ w + 2πR (46)

In the figure (4), we have that for every point in space, there is a fifth dimension which is compactified and
takes the form of a circle, this dimension is what we have represented by w in (46). This means that even if a
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Figure 4: Representation on the plane of the Kaluza-Klein extra dimension

particle (or a string) seemed to be static in the traditional dimensions x, y and z, it could be moving extremely
fast along the w dimension without us noticing it.

4.4 Action and equations of motion of a relativistic point particle

In chapter 3, we showed how powerful the action is in the obtainment of physical results, now we are going to
obtain the equations of motion of a relativistic point particle using this tool. First, the action of a non-relativistic
free particle is given by its kinetic energy, so we have the following non-relativistic action:

Snr =

∫
P

Ldt =

∫ tf

ti

1

2
mv2dt (47)

After analysing the above, we can quickly check that this action allows particles to move at any velocity, but
according to special relativity this situation is forbidden, so therefore (47) cannot be correct. A second condition
arises from the fact that, for finding an appropriate action which satisfies special relativity, we must ensure that
all the observers in the different Lorentz frames derive the same equations of motion. Our last condition, which
any relativistic or non-relativistic action must satisfy, is to ensure that the action shows the correct units of
[Energy] · [T ime] . Due to all the above, we propose the following action:

S = −mc
∫

P

ds = −mc2
∫ tf

ti

dt

√
1− v2

c2
(48)

For the last equality we have just applied the definition of the interval (31) and the Lorentz transformations
(33). In the right term, we have a factor mc2, which has units of energy, multiplying something that has units
of time (the square root is adimensional), so we get the correct magnitude of the action. The square root also
ensures that v < c, since the opposite would lead to non-physical results. See also how the equations of motion
will be the same in all reference systems, because we have used only Lorentz scalars! Due to the definition of the
action itself, we can inmediately derivate the relativistic lagrangian, and by performing an expansion up to first
order of the latter, we can check how, for small velocities, it is completely compatible with the non-relativistic
Lagrangian given by the action (47):

L = −mc2
√

1− v2

c2
' −mc2 +

1

2
mv2; v << c (49)

The first term is constant, so it doesn’t affect any derivation, while the second one is exactly the same that
we found in in the non-relativistic scenario. We can continue checking the validity of (48) by calculating the
canonical momentum:

~p =
∂L

∂~v
= −mc2

(
− ~v
c2

)
1√

1− v2

c2

=
m~v√
1− v2

c2

(50)
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This momentum is just the relativistic momentum for a free particle, and in the particular case of v � 1 we
return to the the classical non-relativistic expression.

Another interesting property about the action of a free point particle is the reparameterization invariance. The
world line (see fig (3)), which remember is the trajectory of the particle in space-time, can be defined at any
point by giving a single parameter, as for example, the proper time τ . The parameterization, is in fact a common
property of any line, lets use it to to rewrite the interval (31):

ds2 = −ηµν
dxµ

dτ

dxν

dτ
(dτ)2 (51)

We utilised a trick above by multiplying and dividing by the same thing, so if we substitute it in the action (48)
we get:

S = −mc
∫ tf

ti

√
−ηµν

dxµ

dτ

dxν

dτ
dτ (52)

The results derived from the action cannot depend on the choice of parameter, the proper time is obviously a
parameter with an important physical relevance, but we can choose any other and obtain the same equations.
Lets see how this can be checked for an arbitrary parameter σ. We perform a change of variable using the chain
rule:

dxµ

dτ
=
dxµ

dσ

dσ

dτ

If we perform this change of variable in (52), we get that

S = −mc
∫ tf

ti

√
−ηµν

dxµ

dσ

dxν

dσ

dσ

dτ
dτ = −mc

∫ t′f

t′i

√
−ηµν

dxµ

dσ

dxν

dσ
dσ

The above result takes the same form as (52), but with different values of the integration limits, this is logical
since the τ and σ are not identical, we say then that the mentioned action is manifestly reparameterization
invariant. The previous conclusion is relevant, because it means that we can choose the parameter that suits us
better for our calculations and also preserve the action unchanged, this is the same idea behind the canonical
transformations of classical Hamiltonian mechanics.

Once the preparations are finished, is the time for deriving the equations of motion for a relativistic point particle.
We start doing so by calculating the δS

δS = −mc
∫ tf

ti

δ(ds) (53)

by using the definition of the interval (31) and the symmetry of the metric tensor (30) we get that

δ(ds) = −ηµνδ(dxµ)
dxν

ds
(54)

so we substitute (54) in (53)

δS = −mc
∫ tf

ti

−ηµνδ(dxµ)
dxν

ds
= mc

∫ tf

ti

ηµν
d(δxµ)

dτ

dxν

ds
dτ (55)

We need to rewrite the above so we have something multiplying the variation of the coordinates δxµ. For
obtaining so, we use the property of the derivation of the product:

δS = mc

∫ tf

ti

dτ
d

dτ

(
ηµνδx

µ(τ)
dxν

ds

)
−
∫ tf

ti

dτδxµ(τ)

(
mc ηµν

d

dτ

dxν

ds

)
(56)

As it is usual in this cases, and we already saw for the non-relativistic string, we have a first term that disappears
when we set the initial conditions, and a second term which is the one that really interests us. In the example
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of a classical string (14), we had a third term related with the extremes of that object, but it doesn’t show up
here since we have a punctual particle. Because of this reasons, we overview the study of the first term, which
we know will disappear, and we focus on the latter:

δS = −
∫ tf

ti

dτδxµ(τ)

(
mc ηµν

d

dτ

dxν

ds

)
= −

∫ tf

ti

dτδxµ(τ)ηµν
dpν

dτ
= −

∫ tf

ti

dτδxµ(τ)
dpµ
dτ

(57)

After this calculations, it becomes clear that for the variation of the action to be zero, we need our equations of
motion to be:

dpµ
dτ

= 0 (58)

An important aspect about this result, is that we have not required either the momentum pµ or its counterpart
pµ to be of a certain dimension. It is true that in (35) we initially defined this vector as a four-dimensional vector,
taking the index µ the values µ = 0, 1, 2, 3, but as we explained in section 4.3, there is no impediment in theory to
expand this definition to D dimensions. Other fundamental conclusion, which supports our previous assumption
of defining the action as (48), is that (58) means that the energy and classical momentum are conserved, we
could have not expected otherwise for a free particle. Also, due to reparameterization invariance, the equations
of motion must hold for other arbitrary parameters than the proper time τ , which can be defined from any
reference system, this means that we have obtained a Lorentz invariant equations of motion.

4.5 Light-cone point particle

To finish with our analysis of the relativistic point particle, we are going to apply the light-cone gauge to this
object. This formalism will result to be very useful when we quantize this model, which will be the previous
step in the quantization of the relativistic string. We begin expressing the action of the relativistic particle (52)
more compactly by simplifying the term inside the square root

ηµν
dxµ

dτ

dxν

dτ
= ηµν ẋ

µẋν = ẋ2 (59)

so our action for the point particle (48) in natural units (c=e=~=1), takes the new form

S = −m
∫ τf

τi

√
−ẋ2dτ (60)

and therefore the equations for conjugated momentum components (35) are:

pµ =
∂L

∂ẋµ
=

mẋµ√
−ẋ2

(61)

Remember that the components of the momentum are conserved according to our equation of motion (58). Now,
we define the light-cone gauge of the particle, by defining a gauge, what we are doing is stating a condition that
a free relativistic point particle fulfils. This condition is satisfied in a certain reference system, which is precisely
the one we impose, choosing a certain gauge doesn’t alter the equations of motion, and it is only a help for
simplifying the process:

x+(τ) =
1

m
p+τ (62)

This gauge is very logical, since the momentum divided by the mass has units of velocity and we set the parameter
τ to have units of time. If we derive with respect to τ the gauge expression above, substitute it in the equation
for the momentum (61) applied to the p+ coordinate and we square it, we obtain the following constraint:

ẋ2 = −1 −→ pµ = mẋµ (63)

Where we have applied the equation (61) for the momentum to the second expression, this relation between the
momentum and the velocity of the string allows us to rewrite the constraint of the light-cone gauge (63):
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p2 +m2 = 0 (64)

See how the imposition of the light-cone gauge reduces in one the number of independent components of the
momentum that a free point particle can hold. This constraint can be developed by expanding into light-
cone components throughout the metric tensor (44). We do so by labelling the transverse coordinates xI =
(x2, x3, .., xd):

− 2p+p− + pIpI +m2 = 0 −→ p− =
1

2p+

(
pIpI +m2

)
(65)

So we get that one of the components of the momentum is not independent from the others due to the imposed
constraint. The solution for the other coordinates turns out to be:

x−(τ) = x−0 +
1

m
p−τ (66)

xI(τ) = xI0 +
1

m
pIτ (67)

Where the x−0 and xI0(τ) are constants, check how a term of this kind does not appear in (62), but it is the only
difference between them. After this results of the light-cone gauge, we conclude that we only need to know the
value of the coordinates x+(τ), x−(τ) and xI(τ) for being able to fully describe the movement of the relativistic
point particle. If we take a look at their expressions (72), (76) and (77), we can find in their dependence, the
following dynamical variables that we ought to know for describing the relativistic point particle:(

x−0 , p
+, xI , pI

)
(68)
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5 The relativistic string[3]

Ahora vamos a construir un modelo para las cuerdas relativistas, que son aquellas cuerdas que vibran tan
rápidamente que no pueden ser estudiadas con métodos no relativistas. Para ello, nos basaremos en la part́ıcula
puntual relativista y en el enfoque de parametrización del caṕıtulo anterior, de esta forma obtendremos y jus-
tificaremos la acción de Nambu-Goto. Desde esta acción seremos capaces de derivar y entender, aplicando la
mecánica lagrangiana, las sorprendentes conclusiones que surgen de estas velocidades tan extremas, también a su
vez obtendremos las cantidades conservadas en estos objetos matemáticos. Al final, recuperaremos las coordenadas
del cono de luz para obtener, mediante la aplicacion de la invariancia frente a reparametrizaciones de la hoja
del mundo, los modos de oscilación normales de Visasoro, estos modos se mostrarán como una representación
sencilla desde la que podremos cuantizar las cuerdas relativistas.

We are now going to build a model for relativistic strings, which are those strings that vibrate so fast that they
cannot be studied with non-relativistic methods. For doing so, we will base on the relativistic point particle
and the parameterization approach of the previous chapter, thus, in this fashion we will obtain and justify the
Nambu-Goto action. From the Nambu-Goto action, we will be able to derive and understand, by applying
lagrangian mechanics, the surprising results that arise from this extreme velocities, as well as obtaining the
conserved quantities present in this mathematical objects. In the end, we will recover the light-cone coordinates
for obtaining, trough applying the reparameterization invariance of the world sheet, the Visasoro transverse
modes, this modes will naturally show up as a simple representation from where we can quantize relativistic
strings.

5.1 Parameterization of the world sheet

We explained in the previous chapter how a point particle describes a line in the space-time called the world
line. In the same fashion, the set of points that compose a string, generate a surface in space-time, this surface
is conventionally called the world sheet of a string. If the string is open, the world sheet will have a folded plane,
and if the string is closed we will have a cylindrical-like form.

Figure 5: Spacetime diagram of two world sheets, at the left and open string and at the right a closed string

We must be aware that, from now on, the strings with which we are going to deal now are not made by rope,
or by any other day-to-day material, what we are going to approach are mere mathematical one-dimensional
elements with no inner structure whatsoever. To parameterize the world sheet surface created by this strings we
will need two parameters instead of one, so any point of the world sheet in a D-dimensional world can be located
knowing only this two values, we set this parameters to be dimensionless (in contrast to the point particle) and
we call them τ and σ :

X(τ, σ) =
(
x0(τ, σ), x1(τ, σ), x2(τ, σ), ..., xd(τ, σ)

)
(69)
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Hereinafter, we will reserve the capital letter X to coordinates in the world sheet, that is, in space-time. On the
other hand, in the target space there is also generated another surface, composed by all the positions that the
string takes with time, for this vectors we will use the classic ~x. This surface is a projection of the world sheet
in space, and can be parameterized with two parameters too, we call them ξ1 and ξ2:

~x(ξ1, ξ2) =
(
x1(ξ1, ξ2), x2(ξ1, ξ2), ..., xd(ξ1, ξ2)

)
(70)

Note that the above vector is purely spatial, while (69) has also a temporal component x0(τ, σ). We will see
first how to parameterize the surface created in the target space, and then we will apply this results to the
world sheet. For calculating the area of a small two-dimensional element in the target space surface, we rely on
the fact that, for an infinitesimally small region, this surface is equivalent to a parallelogram. The sides of this
parallelogram will be:

d~v1 =
∂~x

∂ξ1
dξ1; d~v2 =

∂~x

∂ξ2
dξ2 (71)

Where we are using the chain rule to write the sides in terms of the parameters. The reason why each of the
vectors depends only on one of the parameters is simply because it is the easier to define the parameters this
way. This simplification has an important foundation since, as we proved in the case of a point particle, the
election of parameters is arbitrary, so we can define them as we wish. The differential of area represented by the
two vectors above is:

dA = |d~v1||d~v2||sinθ| (72)

Where θ is the angle between the two vectors. By applying some basic trigonometric properties, and the definition
of the Euclidean scalar product, we can work out a little bit the above:

dA = |d~v1||d~v2|
√

1− cos2θ =
√
|d~v1|2|d~v2|2 − |d~v1|2|d~v2|2cos2θ =

√
(d~v1 · d~v1)(d~v2 · d~v2)− (d~v1 · d~v2)2 (73)

Then we substitute the value of the vectors as given by (71)

dA = dξ1dξ2

√(
∂~x

∂ξ1
· ∂~x
∂ξ1

)(
∂~x

∂ξ2
· ∂~x
∂ξ2

)
−
(
∂~x

∂ξ1
· ∂~x
∂ξ2

)2

(74)

So the total area that a string generates in the target space is given by the integration of the above:

A =

∫
dξ1dξ2

√(
∂~x

∂ξ1
· ∂~x
∂ξ1

)(
∂~x

∂ξ2
· ∂~x
∂ξ2

)
−
(
∂~x

∂ξ1
· ∂~x
∂ξ2

)2

(75)

See how this area is in fact the trajectory followed by the string in space, it would be the result of taking photos
of the string at many consecutive times and putting them together. Now we define the following matrix, in
which are involved the derivatives above:

gij =

[
∂~x
∂ξ1
· ∂~x
∂ξ1

∂~x
∂ξ1
· ∂~x
∂ξ2

∂~x
∂ξ2
· ∂~x
∂ξ1

∂~x
∂ξ2
· ∂~x
∂ξ2

]
(76)

You can check how it resembles the form of a metric tensor in a two-dimensional space, something that is more
clear when we write the area (75) in the more elegant way:

A =

∫
dξ1dξ2

√
g (77)

Where g is the determinant of the matrix gij . We will now check how the reparameterization invariance that we
supposed to hold in this case, for doing so, we know that if we have a set of variables which describe a particular
system, we can perform a change of the variables of integration throughout the Jacobian matrix:
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dξ1dξ2 =

∣∣∣∣det( ∂ξi
∂ξ̃j

)∣∣∣∣ dξ̃1dξ̃2 = |detJ | dξ̃1dξ̃2 (78)

Where (ξ̃1, ξ̃2) are two new arbitrary parameters and J is the Jacobian. We also know that the metric tensor gij
must have a mathematical relationship with the metric tensor corresponding to the new parameters g̃ij , and is
that both of them must hold the same interval (see (31)). This is expressed mathematically such as:

gij(ξ
1, ξ2)dξidξj = g̃km(ξ̃1, ξ̃2)dξ̃kdξ̃m (79)

If we make use of the chain rule at the right side of the equation we obtain that:

gij(ξ
1, ξ2) = g̃km(ξ̃1, ξ̃2)

∂ξ̃k

∂ξi
∂ξ̃m

∂ξj
(80)

Which, after applying the definition of the Jacobian and taking the determinant at both sides leads us to:

√
g =

√
g̃
∣∣∣detJ̃∣∣∣ (81)

Here
∣∣∣detJ̃∣∣∣ is the Jacobian correspondent to the change of variables from the ones with an accent to those

without it. By combining the result above with (78), and substituting in there the definition of the area in the
target space (77), we derive a quite expected result:

A =

∫
dξ1dξ2

√
g =

∫
dξ1dξ2

√
g̃
∣∣∣detJ̃∣∣∣ =

∫
|detJ | dξ̃1dξ̃2

√
g̃
∣∣∣detJ̃∣∣∣ =

∫
dξ̃1dξ̃2

√
g̃

Proving the reparameterization invariance of the area! Now that we have obtained the area of the surface
generated by the string in the target space, and we have successfully proven its invariance, we can approach the
problem of the area of the world sheet. This is the surface which is equivalent to the world line that we studied
in the point particle chapter, and therefore, also has a deep physical meaning, narrowly related with the action.
In this case the reasoning is very similar, we define the area vectors of the world sheet in analogy with (72):

dvµ1 =
∂Xµ

∂τ
dτ dvµ2 =

∂Xµ

∂σ
dσ (82)

So we would expect the area of the world sheet in terms of the parameters to be:

dA =
√

(d~v1 · d~v1)(d~v2 · d~v2)− (d~v1 · d~v2)2 (83)

Now we have supposed a similar expression to the one we obtained for the target space (73), where the dot refers
to the relativistic product as defined by the metric tensor in (31). Due to this different scalar product, unlike
in the purely spatial case, it turns out that the products on the left side of the square root can be negative,
meaning that we could eventually have an imaginary number, something that we cannot allow in the physical
concept of area. In the case of a world sheet, we have that either d~v1 or d~v2 will be timelike vectors, meaning
that the norm of one of them is negative. Subsequently, we have to perform a change of sign inside the the whole
square root, by substituting (82) and integrating over the range of the parameters we get the following area:

A =

∫
dτdσ

√(
∂X

∂τ
· ∂X
∂σ

)2

−
(
∂X

∂τ

)2(
∂X

∂σ

2
)

(84)

The physical paths that a string will cover between two different configurations are those that make this area
minimal, this is of course a key concept behind the whole idea of the action. A very important concept that
we must really beware of in the case of open strings, is that the world sheet only allows us to keep track of the
endpoints of itself. Now we are going to derive the relationship between the area of the world sheet and the
action of the string, this action is called the Nambu-Goto string action.
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5.2 The Nambu-Goto action: Equations of motion and boundary conditions

After revising the derivation of the action for the particular case of a relativistic point particle (52), and taking a
look at the expression of the area of the world sheet generated by a string (84). One can figure out that a logical
action for a relativistic string could be defined as proportional to the area of the world sheet, we must keep in
mind that this area is a Lorentz scalar and invariant under reparameterization, how it could not be otherwise.
We must also not forget that the action has units of [Energy] · [T ime]. Due to all the above, the Nambu-Goto
string action is proposed:

S =

∫ τf

τi

dτ

∫ σ∗

0

dσL
(
Ẋµ, X ′

µ
)

= −T0

c

∫ τf

τi

dτ

∫ σ∗

0

dσ

√(
Ẋ ·X ′

)
− (Ẋ)2(X ′)2 (85)

Where remember that L
(
Ẋµ, X ′

µ
)

is the lagrangian density. The parameter σ has been defined within the

limits σ ∈ [0, σ∗], this two values denote the endpoints of the string. We have also made a change in the notation
in the sake of simplification:

Ẋµ ≡ ∂Xµ

∂τ
X ′

µ ≡ ∂Xµ

∂σ
(86)

See how we have used two Lorentz scalars, the speed of light c and the tension of the string T0 to ensure that we
obtain the right units, this action is for a free relativistic string, meaning by free that it is not affected by any
interaction. In the same fashion as we did in the case of a surface in the target space, we can use with a matrix
to simplify the expression above:

γαβ =

[
(Ẋ)2 Ẋ ·X ′

Ẋ ·X ′ (X ′)2

]
(87)

And by taking the determinant γ, we can rewrite the Nambu-Goto action in a manifestly reparameterization
invariant form:

S = −T0

c

∫ τf

τi

dτ

∫ σ∗

0

dσ
√
−γ (88)

If you remember how we derived the momentum densities for a non-relativistic string (15), you saw that we
only needed of two conjugated momentum densities, Pt and Px, this was due to fact that we could confine our
oscillations to a single coordinate. For relativistic strings we will require of up to 2 ·µ different components, this
momentum densities can be calculated from lagrangian mechanics:

Pτ
µ ≡

∂L

∂Ẋµ
= −T0

c

2
(
Ẋ ·X ′

)
X ′µ − 2(X ′)2Ẋµ

2

√(
Ẋ ·X ′

)
− (Ẋ)2(X ′)2

= −T0

c

(
Ẋ ·X ′

)
X ′µ − (X ′)2Ẋµ√(

Ẋ ·X ′
)
− (Ẋ)2(X ′)2

(89)

Pσ
µ ≡

∂L

∂X ′µ
= −T0

c

2
(
Ẋ ·X ′

)
Ẋµ − 2(X ′)2X ′µ

2

√(
Ẋ ·X ′

)
− (Ẋ)2(X ′)2

= −T0

c

(
Ẋ ·X ′

)
Ẋµ − (X ′)2X ′µ√(

Ẋ ·X ′
)
− (Ẋ)2(X ′)2

(90)

The momentum components obtained are extremely complex, since they depend on up to 2 · µ different deriva-
tives each. Due to this complexity, choosing the correct parameterization that allow us to eliminate as much
components as possible will be crucial. Returning to the action as written in (85), we derive the equations of
motion of a relativistic string by calculating δS:

δS =

∫ τf

τi

dτ

∫ σ∗

0

dσ

[
∂L

∂Ẋµ

∂(δXµ)

∂τ
+

∂L

∂X ′µ
∂(δXµ)

∂σ

]
= (91)

We introduce the results obtained above:

δS =

∫ τf

τi

dτ

∫ σ∗

0

dσ

[
Pτ
µ
∂(δXµ)

∂τ
+ Pσ

µ
∂(δXµ)

∂σ

]
=
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=

∫ τf

τi

dτ

∫ σ∗

0

dσ

[
∂

∂τ
(δXµPτ

µ) +
∂

∂σ
(δXµPσ

µ )− δXµ

(
Pτ
µ

δτ
+

Pσ
µ

δσ

)]
(92)

You can check how if we develop the derivatives that appear in the last equality and sum, we basically return
to the previous one but, by writing them in this way, we can separate some terms. This is useful for knowing
the equations of motion, that appear by making δS = 0.

δS =

∫ τf

τi

dτ
[
δXµPσ

µ

]σ1
0
−
∫ τf

τi

dτ

∫ σ∗

0

dσδXµ

(
Pτ
µ

δτ
+

Pσ
µ

δσ

)
(93)

So finally, the equations of motion derived from the Nambu-Goto action for a relativistic string are:

Pτ
µ

∂τ
+

Pσ
µ

∂σ
= 0 (94)

This equations are quite similar to the one obtained for a classical string (16) but, of course, the momentum
densities take notoriously different forms! We must also comment on the fact that we have not set the range of
values that takes the index µ, so the current analysis is not conditioned by, or requires of a particular number
of dimensions. Now, as we did with the classical string, lets evaluate the boundary conditions. As we have
already commented on, strings can be attached to D-branes, and this elements are responsible of the boundary
conditions, this surfaces can be of various dimensions, conditioning the vibrations of the strings.

As we know, the Dirichlet boundary condition fixes the position endpoints of the string, in String Theory this
is equivalent to fixing the endpoints of the string to the surface of a D-brane. So basically, we have that the
position of the endpoints fulfils the following condition:

∂Xµ(τ, 0)

∂τ
=
∂Xµ(τ, σ∗)

∂τ
= 0 µ 6= 0 (95)

Obviously, fixing the position of some points in space doesn’t mean that the time has to be fixed too, so µ 6= 0.
On the other hand, we have the free point boundary condition, which means that the string is not attached to
any object. this is equivalent to having a space-filling D-brane:

Pσ
µ (τ, 0) = Pσ

µ (τ, σ∗) = 0 (96)

In this case we have that the index µ can also take the value µ = 0, this is neccesary for the conservation of the
energy

5.3 The Nambu-Goto action: Some fundamental results

With all the results that we have derived, we can start doing some calculations. For instance, we can calculate the
rest energy of an stretched relativistic string of length a, which we assume is extended along the x1 coordinate,
so we have the following boundary conditions:

X1(τ, 0) = 0 X1(τ, σ∗) = a; Xµ(τ, σ) = 0 µ 6= 0, 1 (97)

Remember that when we talk about the parameter σ = 0, we refer to one of the endpoints, and when we write
σ = σ∗, we refer to the other. All the other points of the string at a particular time will be also a funcion of
the parameter σ, so we have that the position X1 is a function of the parameter σ and then X1 = f(σ). For
the x0 coordinate, we can simply choose a reference system that moves with the same inertia as the string, so
X0 = cτ , see how this can be done because the string is not vibrating, when all the points share the same inertia
and therefore, all share the same proper time. Because of all the above, our string is represented by the vector:

Xµ(τ, σ) = (cτ, f(σ),~0) (98)

Where ~0 refers to the remaining spatial coordinates. This is in fact all what we need for calculating the string
action (85):
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Ẋµ = (c, 0,~0); X ′
µ

= (0, f ′(σ),~0) −→ (Ẋ)2 = −c2; (X ′)2 = (f ′(σ))2; Ẋ ·X ′ = 0 (99)

We substitute the values above in the expression of the action, and we get that:

S = −T0

c

∫ τf

τi

dτ

∫ σ∗

0

dσ
√

0− (−c2)(f ′(σ))2 = −T0

∫ τf

τi

dτ (f(σ∗)− f(0)) =

∫ τf

τi

dτ(−T0a) (100)

We have stated that the string is at rest, so the energy is purely potential and as a consequence L = -V =
-T0a , which thereforr means that what we have inside the integral is just potential energy of a string at rest.
This conclusion tells us that the length of the string is proportional to the potential energy. We can find the
relationship between the length and the mass of the string by a simple calculation:

µ0c
2 =

E

a
=
V

a
−→ µ0 =

T0

c2
(101)

So basically, this conclusion leads us to thinking that a longer string will have a bigger potential energy, which
means a bigger mass. This result is in fact very logical, and applies to many objects, but we are going to see now
how open relativistic strings show up other non-intuitive properties, especially when they have free endpoints
that show the boundary condition (96).

Now, lets see what happens when the string vibrates. In this case, for discerning between the overall movement
of string endpoints and the vibrational movement, we have to differentiate between the overall velocity of the
string endpoints ~v, and the transverse velocity ~v⊥, which is the projection of the velocity perpendicular to the
world-sheet. For doing so, we have that for any vector ~u, its component perpendicular to a unit vector ~n, is
given by the mathematical expression:

~u⊥ = ~u− (~u · ~n)~n (102)

If we define the variable s to be the length along the world sheet, and therefore the normal vector to the latter
is ∂X

∂s
, we get that the transverse velocity of the string is:

~v⊥ =
∂X

∂t
−
(
∂X

∂t
· ∂X
∂s

)
∂X

∂s
(103)

Here t is the variable of time, which must correspond, as well as s, to a particular reference system. This variables
can be written in terms of parameters as we have been doing lately, we can set the relationship between the
length of the string and the parameter σ trough the chain rule of derivation:

∂X

∂s
=
∂X

∂σ

dσ

ds
(104)

So if we again set t = τ , we find for the Minkowski vector (29):

(Ẋ)2 = −c2 +

(
∂~x

∂t

)2

(X ′)2 =

(
∂~x

∂σ

)2

Ẋ ·X ′ =
∂~x

∂t
· ∂~x
∂σ

(105)

Take into account that the vectors ~x always refer to spatial coordinates. If we substitute the above, along with
the transverse velocity, in the expression for the conjugated relativistic momentum at the endpoints (90), we
can rewrite it like:

Pσµ = −T0

c2

(
∂~x
∂s
· ∂~x
∂t

)
Ẋµ +

(
c2 −

(
∂~x
∂t

)2) ∂X′µ

∂s√
1− v2⊥

c2

(106)

Remember that according to the boundary condition for free endpoints (96), the above must be zero at σ = 0
for all values of µ. In particular, for the µ = 0 component we obtain that:
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Pσµ = −T0

c

(
∂~x
∂s
· ∂~x
∂t

)√
1− v2⊥

c2

= 0 (107)

For this momentum density to be zero, we need the numerator to be null, which means that:

∂~x

∂s
· ∂~x
∂t

= 0 At the endpoints (108)

Here we have that the product of two derivatives is zero, this derivatives over the spatial vectors only satisfy
the above condition at the endpoints. If you remember that s is the spacial coordinate along the string, the first
derivative must be the tangent vector of the string, while the second derivative is basically the velocity. With
this information in mind, we conclude that the endpoints move transversely to the string.

v⊥ = v At the endpoints (109)

(v⊥ = v at the endpoints), so any other movement of this points does not have any physical meaning, this con-
clusion shows that talking about free endpoints is equivalent to talking about the Neumann boundary condition.

Now, we have to return to the boundary condition (96), but applied to the rest of the components of the
relativistic momentum density (106) at the endpoints, this are the values where the index µ 6= 0. We can
immediately simplify this expression by applying the above condition (108) and substituting the total spatial
velocity ~v = ∂~x

∂t
:

Pσµ =
T0

c2

(
c2 − v2

)
X ′

µ√
1− v2

c2

= −T0

√
1− v2

c2
∂Xµ

∂s
= 0 (110)

The only option for this to be null for all values of Xµ, is that v=c !
‘ (

∂~x

∂t

)2

= c2 At the endpoints (111)

This is our first major result in String Theory. The reason why the free endpoints can move at the speed of light,
is because they do not have a mass in the classical sense, the string as a whole is the one that actually has a
mass due to the tension of the points that compose it. We must also understand that saying that the endpoints
can vibrate at the speed of light, is not the same as saying they can move straightforward at this velocity. In
this case we would have that the whole string would move at this velocity, and therefore, what we rudely see as
a particle, would move at the speed of light, this only happens in the case of the massless particles (See Fig (1)).

We have learnt how to calculate the energy of an static string, and we have also studied the cinematic of the
endpoints of a free string, lets find now a form of the equations of motion more familiar than the expression (94).
For this purpose, we write the relativistic momentum densities (89) and (90) in terms of the transverse velocity
(103):

Pτµ =
T0

c2

ds
dσ√

1− v2⊥
c2

∂Xµ

∂t
(112)

Pσµ = −T0

√
1−

v2⊥
c2
∂Xµ

∂s
(113)

See how with the use of transverse velocity, the momentum densities take a more manageable shape which
resembles to special relativity formulas. After substituting the above in the equation of motion (94), we obtain,
for the spatial components (µ 6= 0) the following relation:

~Pτ

∂τ
= −

~Pσ

∂σ
−→ ∂

∂σ

[
T0

√
1−

v2⊥
c2
∂~x

∂s

]
=
T0

c2

ds
dσ√

1− v2⊥
c2

∂ ~v⊥
∂t

(114)
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Which can be simplified a little bit if we apply the chain rule for getting rid of the σ derivative at both sides:

∂

∂s

[
T0

√
1−

v2⊥
c2
∂~x

∂s

]
= T0

√
1−

v2⊥
c2
∂ ~v⊥
∂s

= µ0
1√

1− v2⊥
c2

∂ ~v⊥
∂t

(115)

In the last identity, we just applied the previously discovered formula that relates the rest mass and tension of a
string (101), we have also used that v⊥ = v. At each side of the above equation we can find a Lorentz factor γ,
we know from special relativity that some properties or magnitudes in matter are subjected to cinematic motion,
being it specially notable at close to light-speed velocities. Among these magnitudes are of course included the
mass, and therefore the tension of the strings. For aesthetic purposes, we rewrite this two magnitudes like:

Teff = T0

√
1−

v2⊥
c2

= T0γ
−1; µeff = µ0

1√
1− v2⊥

c2

= µ0γ (116)

For finally obtaining:

µeff
∂2~x

∂t2
= Teff

∂2~x

∂s2
−→ ∂2~x

∂s2
− µeff
Teff

∂2~x

∂t2
= 0 (117)

This is a pretty wave equation that we know pretty well, you can check how similar it is to the classical wave
equation by taking a look at it in chapter 2 (4). From this result one can figure out the resemblance between
relativistic strings in String Theory and the classical strings, in fact, in the non-relativistic limit where v << c,
we have basically the same equation, as it would be expected.

5.4 Conserved charges and currents

In all physical problems, there exist some conservation laws that allow us to understand the dynamics of physical
systems, knowing the invariance and symmetry properties in each situation usually simplifies the labour when
analysing complex systems, and String Theory is not exception. First, we will say that we have a conserved
D-dimensional current jα in the Minkowski space when it complies that:

∂αj
α = 0 (118)

Every current is intrinsically tied to a charge, in our case, by a charge we refer to any magnitude to which we can
assign a value that encompasses the totality of the string. For instance, we have that if we apply the conservation
rule above to the electromagnetic current, which is defined as jαEM = (cρ,~j), we obtain the continuity equation
for the electric charge:

∂αj
α
EM =

∂ρ

∂t
+∇ ·~j = 0 (119)

In lagrangian mechanics, we have that charges are associated to lagrangians L, while currents are associated to
lagrangian densities L . In this formalism we have that, if a given coordinate qk does not explicitly appear in the
lagragian (or lagrangian density), we can assure that the conjugated momentum pk (or conjugated momentum
density Pk ) associated to this coordinate is conserved. In this case we say that pk is a conserved charge (or
that Pk is a conserved current):

Qk =
∂L

∂q̇k
= pk; jk =

∂L

∂q̇k
= Pk (120)

In the world-sheet, which is the case that interests us, we have a charge associated with each of the components
of the momentum of the string pµ, this charges are conserved in the case of a free string, as we imposed in the
boundary condition (96). On the opposite, this is not necessarily true for the Dirichlet boundary condition (95).
Without pretending it, we have already been working with two relevant currents of the world sheet, that are
given by the two lagrangian momentum densities with which we have been working on:

jτµ = Pτ
µ ; jσµ = Pσ

µ (121)
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We have above the currents associated with the two different conjugated momenta in the world sheet, so the
total momentum current is then a composition of both of them j = (jτµ, j

σ
µ). If we apply the definition of the

conservation of the current to j we obtain that:

∂αj
α
µ = ∂τ j

τ
µ + ∂σj

σ
µ =

∂Pτ
µ

∂τ
+
∂Pσ

µ

∂σ
= 0 (122)

We recover the equations of motion of a relativistic string (94)! This result shows that the current j is conserved
in the world sheet, which also means that the total momentum pµ of the string is conserved so we have that:

dpµ
dt

= 0 (123)

This is the same result we obtained for the relativistic particle (58), something that is not surprising at all
since the conservation of the momentum for an object moving freely is an already well-known result. But, the
conclusion (123) reinforces our election of the Nambu-Goto action (85) as the action of a relativistic string.

Apart from the momentum density components (remember that the zeroth component of this vector is the energy
density, which therefore is conserved), other interesting set of currents can be defined by:

Mα
µν = XµPα

ν −XνPα
µ (124)

We have to be careful about the meaning of the indexes here. The index α takes the values of the parameters
τ and σ with which we are working with, this is done in the same fashion as in (122). While the parameters µ
and ν simply cover the D dimensions of our frame. By integrating over the contour of the world-sheet, we can
calculate the charges associated to this currents:

Mµν =

∫
S

(
M τ
µνdσ −M σ

µνdτ
)

=

∫ (
XµPτ

ν −XνPτ
µ

)
dσ (125)

Here we have that the components M0i (or −Mj0 since the matrix is antisymmetric) correspond to the boosts
along the three spatial directions, whereas the components Mij are associated with the three basic rotations. In
fact, we have that the three components of the angular momentum are L1 = M23, L2 = M31 and L3 = M12.
At the end of this dissertation, we will retake the definition above for justifying the dimensionality of spacetime
that String Theory imposes.

5.5 General solution of the equations of motion for an open string

We have now collected the main conclusions that result from relativistic strings, that provide us with the relevant
information we need to understand for describing the mean characteristics of this elements. What we are going to
do in this section, is to obtain the general equations of motion for an open relativistic string with free endpoints,
from now on, as long as we don’t say otherwise we are only going to focus on open strings, although many of the
properties of open strings are shared by their closed partners. If we had applied the methodology used in (115)
to all the components, including the temporal one, of the momentum densities in (112) and (113), we would
have obtained the the same equations of motion but extended to Xµ:

∂2Xµ

∂s2
− µeff
Teff

∂2Xµ

∂t2
= 0 (126)

This result can be expressed in a more elegant way if we take into account the relation between mass density
and tension of the string given by (101), this, units (c=~=e=1) is:

Ẍµ − µeff
Teff

X ′′µ −→ Ẍµ −X ′′µ = 0 (127)

We must keep in mind that the above is simply a wave equation, so it has a general solution of the form:

Xµ (τ, σ) =
1

2
(fµ (τ + σ) + gµ (τ − σ)) (128)
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By applying the Neumann boundary conditions that we deduced (96), we can restrict the above to a solution
which fullfils that:

∂Xµ

∂σ
(τ, σ = σ∗ = π) =

1

2

(
f ′µ (τ + π) + f ′µ (τ − π)

)
= 0 (129)

See how we have called σ∗ = π one of the endpoints of the strings, this is a very common convention in String
Theory. In the case of closed strings we would have had that σ∗ = 2π, this election of the endpoint parameter
value marks the fact that we have a closed surface. For the above boundary condition to be true, we have that
f ′µ must be a function of periodicity 2π, so we can perform a Fourier series to the derivative f ′µ(τ ± σ):

f ′µ(τ ± σ) = fµ1 +

∞∑
n=1

(aµncos n(τ ± σ) + bµnsen n(τ ± σ)) (130)

After integrating the above and substituting it into the general solution for a free relativistic string we obtain
that:

Xµ (τ, σ) = fµ0 + fµ1 τ +

∞∑
n=1

(Aµncos nτ +Bµnsen nτ) cos nσ (131)

As we are approaching quantum formalism, we can start writing our results in such a way. With this purpose,
we manipulate a little bit the term between the parenthesis:

Aµncos nτ +Bµnsen nτ = − i
2

(
(Bµn + iAµn) einτ − (Bµn − iAµn) e−inτ

)
= −i

√
2α′√
n

(
aµ∗n einτ − aµne−inτ

)
(132)

We have introduced in the last equality the slope parameter α′, which is very common in String Theory, this
parameter is inversely proportional to the tension of the string and is defined as α′ = 1

2πT0~c
. Look how the

factors aµ∗n and a∗n resemble to anihilation and creation operators. If we declare the first term in the general
equations of motion (131) to be the initial position, or initial configuration or the string, and the second one to
be related with the momentum of the string we obtain that:

Xµ(τ, σ) = xµ0 + 2α′pµτ − i
√

2α′
∞∑
n=1

(
aµ∗n einτ − aµne−inτ

) cos nσ√
n

(133)

This is an interesting equation with a lot of physics behind, by the way, if we eliminate the terms inside the
sum, we obtain the movement of a free particle with initial position xµ0 and momentum pµ. On the other hand,
the right side sum terms are the ones which contain the possible oscillation modes of the relativistic string, this
oscillations are determined by the value of the coefficients aµ∗n and a∗n and the tension of the string T0, which is
implicit in the slope parameter α′. The presence of the imaginary number i does not make this terms imaginary,
as the oscillation coefficients cancel this due to the way they were defined (132). It is important to remark that
this oscillations happen in as many dimensions as values the index µ takes, this oscillations in various dimensions
are expected to explain the different properties that the so called fundamental particles show.

Before ending this section, we perform another change in the notation, to write the equations of motion in terms
of a single set of parameters:

αµ0 =
√

2α′pµ; αµn = aµn
√
n; αµ−n = aµ∗n

√
n (134)

So our equation of motions (133) takes the form of:

Xµ(τ, σ) = xµ0 +
√

2α′αµ0 τ + i
√

2α′
∞∑
n6=1

1

n
αµne

−inτcos nσ (135)

Until now, we have obtained the general solution of the equation of motion for an oscillating relativistic string
with free endpoints, and we have written it in a compact form. Now we are going to end with the relativistic
particle by applying the light-cone gauge that we utilised for the point particle.
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5.6 General solution of the equation of motion in light-cone coordinates

As we commented on in the introduction, for making the relativistic results that we have obtained of physical
value, we have to make them compatible with quantum mechanics too. With the purpose of obtaining a model
for quantum relativistic strings, we will quantize the relativistic strings that we have developed, by saying so,
we mean to quantize the equation of motion of a the relativistic strings. But prior to quantize anything, we
must write the solution of the equation of motion in the light-cone coordinates formalism because streamlines
the process of quantization.

If you remember from chapter 4, we defined the light-cone coordinates in terms of the Cartesian ones, in equations
(37) and (38) when we were dealing with the point particles. We are going to retake them now for the strings,
so we have the set of coordinates Xµ =

(
X+, X−, XI

)
, where we have named the unchanged coordinates

XI = (X2, X3, ..., Xd). since the transverse coordinates XI remain untouched, they will have the same solution
of the equation of motion as obtained in (135):

XI(τ, σ) = xI0 +
√

2α′αI0τ + i
√

2α′
∞∑
n 6=0

1

n
αIne

−inτcos nσ (136)

The whole idea behind this change of coordinates relies on the solution for the other two coordinates X+ and
X−. In fact, the solutions for this two coordinates, once applied the boundary conditions to the wave equation
solutions are:

X+ (τ, σ) =
√

2α′α+
0 τ (137)

X− (τ, σ) = x−0 +
1

p+
L⊥0 τ +

i

p+

∑
n 6=0

1

n
L⊥n e

−inτcos nσ (138)

The mathematical development can be found in the reference, but due to its length and complexity we will omit
it. We have above that L⊥n are the transverse Visasoro modes, which are defined as:

L⊥n ≡
1

2

∑
p∈Z

αIn−pα
I
p (139)

We can see how the solution of the component X+ (137) is very simple, since we have that it only depends on one
of the coefficients, being the rest of them null. The solution for the second component X− (138) seems a little bit
more complicated, but it depends on only three things, the αIn coefficients of the transverse coordinates XI , the
momentum density p+, and the initial condition of the string along that coordinate x−0 . The set of expansions
that we have presented will turn out fundamental in the quantum string, were the Visasoro oscillation modes
turn to be operators.

The relativistic analysis of the string is now finished, all the results obtained are of great physical relevance,
but some of them, as are the generators in (125) and the Visasoro oscillation modes (139), will show up their
importance in the process of quantization.
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6 The relativistic quantum point particle[3][7]

Hasta ahora, hemos construido un modelo para la cuerda relativista pero, como hemos repetido debidamente
durante esta disertación, necesitamos cuantizarlo para hacerlo compatible con la mecánica cuántica. Como paso
previo, vamos a aprender cómo se realiza el proceso de cuantización para el caso más simple de una part́ıcula
relativista. En este caso, ya hemos encontrado las variables dinámicas que definen el sistema en el caṕıtulo 4,
aśı que la cuantización consistirá simplemente en la transformación de las variables clásicas en operadores, que
definiremos tanto en la representación de Schrödinger como en la Heisenberg. Tras este proceso, construiremos
el espacio de estados de este sistema.

So far, we have built up a model for the relativistic string but, as it has been duly repeated over this dissertation,
we need to quantize it in order to make it compatible with quantum mechanics. Before doing it, we are going
to learn how the process of quantization is done for the simpler case of a relativistic point particle. In this case,
we previously found the relevant dynamical variables that define the system in chapter 4, so the quantization
simply consists of the transformation of this classical variables into operators, which we will define both in the
Schrödinger and Heisenberg pictures. After this process, we will finally we construct the state space of the
system.

6.1 The Schrödinger and Heisenberg pictures

In quantum mechanics, the uncertainty principle prevents us from defining the position or the momentum of an
object as a well-defined variable, instead, it tells us that that all objects have an inherent uncertainty that can
only be cleared up by making a measurement. Our approach so far, both with the relativistic point particle and
the relativistic string, has consisted in the derivation of physical results regardless of this property of matter,
this is an approximation that can be taken in many situations, but it is practically forbidden when studying
phenomena at the Planck scale, since this scale is precisely the range in which fundamental strings are found.
The so called first quantization, which is the one that we are going to perform, consists in transforming a given
non-quantum theory into a quantum one by transforming the dynamical variables of a system into operators, the
effect of this operators on the wave function of the system will provide us with the physical information about
the state of the system at a given situation.

There are two mean pictures in quantum mechanics, the Schrödinger picture and the Heisenberg picture. The
Schrödinger picture, regards the wave functions as entities that change in time following the famous Schrödinger
equation (See (21))

i~ d
dt
|Ψ〉S = Ĥ |Ψ〉S (140)

while the operators can only depend on time explicitly. On the other hand, the Heisenberg picture construes that
the wave functions remain unchanged, whilst the operators are the ones that, implicitly and/or explicitly, evolve
in time, the evolution of a generic Heisenberg operator is governed by its commutator with the Hamiltonian H
of the system:

dÔH
dt

=
∂Ô

∂t
− i
[
ÔH , Ĥ (p(t), q(t); t)

]
(141)

These two pictures are completely equivalent and always show the same physical results, but sometimes, during
what we have left of work, the use of one the pictures will show up to be more useful than the use of the other.
For differentiating between both of them, we will add the time label to the Heisenberg operators and states. The
relation between the operators in the two different pictures will be given by the propagator of the system

U(t) = e−iĤt (142)

by the following relation:

Ôt) = Û†(t) Ô U(t) (143)

The operator on the left hand is in the Heisenberg picture, while the operator on the right side is in the
Schrödinger picture. We also have that Û†(t) is the complex conjugate of U(t), we must remember that the
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Hamiltonian H is an observable, so we have that H† = H. Finally, the commutation relations between the
operators in both representations do not change from one picture to the other, for instance, the commutator
between the position and the momentum operators is, in natural units:

[q, p] = [q(t), p(t)] = i (144)

6.2 Quantization of the point particle

In chapter 4, while deriving the solutions of the equation of motion for a relativistic particle under the light-cone
gauge (62), (66) and (67), we concluded that the dynamical variables of the system where:(

x−0 , p
+, xI , pI

)
(145)

This are the variables required for knowing the evolution of a point particle classically, so in quantum mechanics,
we should expect the operators related with the variables above to be the CSCO of the free quantum point
particle. Therefore we define the following Schrödinger picture operators:(

x̂−0 , p̂
+, x̂I , p̂I

)
(146)

On the opposite, the Heisenberg picture operators, where we highlight the temporal dependency, turn out to be:(
x̂−0 (τ), p̂+(τ), x̂I(τ), p̂I(τ)

)
(147)

The commutation relations between the different operators, which work equally for Schrödinger and Heisenberg
operators, are just the usual. so according to (144) we have that:[

x̂I , p̂J
]

= iηIJ ,
[
x̂−, p̂+

]
= iη−+ = −i (148)

Remember that ηµν is the Minkowski metric tensor, which we have adapted to light-cone coordinates and
expandend to extra dimensions (44). All the other commutation relations result to be null or can be derived
from the ones above.

So far, defining our momentum and position operators has not been a very difficult task. But now we have to
define the appropriate Hamiltonian of the system, since it is the operator that really allows us to evaluate the
time evolution of any system in both pictures, instead of trying to derive it, we propose the following Hamiltonian
of the system:

Ĥτ) =
1

2m2

(
p̂I(τ)p̂I(τ) +m2

)
(149)

We can check the validity of this Hamiltonian by testing it with the evolution equation (141). If we obtain the
same conservation rules which were obtained in the non-quantic situation, it will mean that we are heading in
the right direction. For the dynamical momentum operators p+ and pI , the commutators vanish quickly:

i
dp̂+(τ)

dτ
=
[
p̂+(τ), Ĥτ)

]
= 0 (150)

i
dp̂I(τ)

dτ
=
[
p̂I(τ), Ĥτ)

]
= 0 (151)

Very logical, since the conservation of the momentum is also present in quantum mechanics. For the third
operator of our CSCO (147) the result is quite similar:

i
dx̂−0 (τ)

dτ
=
[
x̂−0 (τ), Ĥτ)

]
= 0 (152)

The last commutator, which in fact is a set of commutators corresponding to the position of the particle along
the transverse coordinates, is calculated in the same fashion, but with a different result:
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i
dx̂I(τ)

dτ
=
[
x̂I(τ), Ĥτ)

]
=

[
x̂I(τ),

1

2m2

(
p̂J(τ)p̂J(τ) +m2

)]
=

1

2m2

[
x̂I(τ), p̂J(τ)p̂J(τ)

]
=

=
1

2m2

([
x̂I(τ), p̂J(τ)

]
p̂J(τ) + p̂J(τ)

[
x̂I(τ), p̂J(τ)

])
= i

p̂I(τ)

m2

So we have that:

dx̂I(τ)

dτ
=
p̂I(τ)

m2
(153)

This conclusion is equivalent to the one which would be obtained by deriving the classical equation of motion
(67). So now, we got that the evolution of the four operators that conform the CSCO of the relativistic point
particle, is in line with their classic homologues. All the other operators can be constructed in terms of these
four, so their commutators can be calculated from the latter. This results reinforce our ansatz (149) of the
Hamiltonian.

To finish with the point particle, we develop the momentum space. This can be done by labelling with the
continuous indexes P+ and ~P I the different states that the point particle can show, so we have then the
following set of kets:

|P+, ~P I〉 (154)

In this base, the eigenvalues of the different momentum operators on this states are:

p̂+ |P+, ~P I〉 = P+ |P+, ~P I〉 ; p̂I |P+, ~P I〉 = P I |P+, ~P I〉 ; (155)

p̂− |P+, ~P I〉 =
1

2P+

(
P IP I +m2

)
|P+, ~P I〉 (156)

In the last equation, the relation between the different momentum components (65) was applied. Finally, the
spectrum of energies of the quantum point particle is:

H |P+, ~P I〉 =
1

2m2

(
p̂I p̂I +m2

)
|P+, ~P I〉 (157)

So the Schrödinger equation is:

i
∂

∂τ
|Ψ〉 =

1

2m2

(
P IP I +m2

)
|Ψ〉 (158)

By obtaining the Schrödinger equation, we have concluded the study of the quantum point particle. This example
has allowed us to explain the procedure of quantization in a very simple fashion, so now we can finally focus on
the quantum string, and achieve the main objectives of this project.
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7 The open bosonic string [3]

Para cerrar nuestro análisis, vamos a obtener nuestros resultados más interesantes, estos requieren de unos
cálculos ciertamente complicados, y para tratar de seguirlos vamos a apoyarnos en el desarrollo de la part́ıcula
cuántica. Esta gúıa nos permitirá establecer las relaciones de conmutación entre los diferentes operadores de la
cuerda cuántica, aśı como proponer un Hamiltoniano, desarollaremos este último para comprobar como la cuan-
tización convierte a la cuerda relativista en un oscilador armónico en las coordenadas transversales de la misma.
Finalmente, aplicaremos la conservación de la carga a los generadores Mµν para imponer la dimensionalidad del
espacio tiempo D.

For closing our analysis, we are going to obtain our most interesting results, they require some certainly compli-
cated calculations, and for trying to follow them we are going to support ourselves on the quantum particle. This
guide will allow us to establish the commutation relations between the different operators of the quantum string,
as well as for proposing a Hamiltonian, we will develop the latter for checking how the quantization transforms
the relativistic string into a harmonic oscillator in the transverse coordinates of the string. Finally, we will apply
the conservation of the charge of the generators Mµν for imposing the dimensionality of the spacetime D

7.1 String operators, commutators and Hamiltonian.

We found, while studying the relativistic string, two different expressions for the same equation of motion, these
equations were (94) and (127). By comparing both, we deduce that the momentum densities Pσµ and Pτµ are
just derivatives of the spacetime coordinates:

Pσµ =
1

2πα′
Xµ′ ; Pτµ =

1

2πα′
Ẋµ (159)

Where we again have introduced the slope parameter (132), which implicitly includes the tension T0, and secures
the units of the overall expression. In line with the point particle (65), we also find that the density momentum
components are not independent:

Pτ− =
π

2p+

(
PτIPτI +

XI′XI′

(2πα′)2

)
(160)

Remember that the conjugated momentum density Pτµ is the one related to the momentum of the string pµ.
So, similarly to what we did with the point particle, we define our Schrödinger operators:(

X̂I(σ), x̂−0 , P̂
τI(σ), p̂+

)
(161)

See how although the Schrödinger operators don’t depend on the parameter τ , which we associated with time,
some of them do depend on the parameter σ ∈ [0, π], which we associate with the length of the string. The
Heisenberg operators are obtained from the Schrödinger ones according to equation (143):(

X̂I(τ, σ), x̂−0 (τ), P̂τI(τσ), p̂+(τ)
)

(162)

The commutation relations are similar to the ones obtained in the previous chapter, but with an important
difference, and is that we expect operators dependant on σ acting on different points of the string to commute.
Therefore we set: [

X̂I(σ), P̂τJ(σ′)
]

= iηIJδ(σ − σ′) (163)

There is a Dirac delta instead of a Kronecker delta because σ takes continuous values, this ensures that operators
acting on different points of the string commute. The only other not null commutator among our set is:[

x̂−0 , p̂
+] = −i (164)

Now we must define our Hamiltonian, so we propose the following one:
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Ĥ = 2σ′p̂+p̂− = 2σ′p̂+
∫ π

0

dσP̂τ− (165)

Which after applying the density momentum relation (160) becomes:

Ĥ(τ) = πα′
∫ π

0

dσ

(
P̂τI(τ, σ)P̂τI(τ, σ) +

X̂I′(τ, σ)X̂I′(τ, σ)

(2πα′)2

)
(166)

For checking the validity of the Hamiltonian above, we can evaluate the time evolution of some of the Heisenberg
operators (162). For instance we have that for the transverse coordinates X̂I :

i
dX̂I

dτ
=
[
X̂I(τ, σ), Ĥτ)

]
=

[
X̂I(τ, σ), πα′

∫ π

0

dσ′
(

P̂τJ(τ, σ′)P̂τJ(τ, σ′) +
X̂J′(τ, σ′)X̂J′(τ, σ′)

(2πα′)2

)]
=

We have that all the X̂µ operators commute between themselves, so the above simplifies to

=

[
X̂I(τ, σ), πα′

∫ π

0

dσ′P̂τJ(τ, σ′)P̂τJ(τ, σ′)

]
=

Which after applying the commutation relation (163) becomes:

= 2πα′i

∫ π

0

dσ′P̂τJ(τ, σ′)ηIJδ(σ − σ′)

Because in the integral we have a Dirac delta, the infinitesimal sum is reduced to a single term (σ′ = σ), this is
one of the properties of this distribution. The metric tensor ηIJ , in practice just acts as a Kronecker delta so,
the time evolution of the position operator X̂I obtained from the Hamiltonian (166) is:

dX̂I

dτ
= 2πα′P̂τI(τ, σ) (167)

This result is equivalent to expression for the momentum density (159) that we had at the beginning of the
chapter! Similar results are obtained by evaluating the time evolution of the other components of the conjugated
momentum operators. We conclude this section by quantizing the Neumann boundary condition. This condition
was stated for a free relativistic string (96) in chapter 5, and now we must adapt it to quantum mechanics by
writing it in terms of the corresponding operator:

∂σX
I(τ, σ = 0) = ∂σX

I(τ, σ = σ∗) = 0 (168)

7.2 The quantum string as a harmonic oscillator

Since there is a new Hamiltonian of the system, given by the formula (166) in terms of the transverse coordinates.
It arises a need of defining a new action for the string in terms of this coordinates, because of this, we define the
new action in terms of the transverse operators of the system to be:

S =

∫
dτdσL =

1

4πα′

∫
dτ

∫ π

0

dσ
(

ˆ̇XI ˆ̇XI − X̂I′X̂I′
)

(169)

As we showed in the derivation of the Schrödinger (21) and Dirac (26) equations, we can proceed with the actions
composed by operators (or fields), in a similar way as we proceed with the actions composed by variables. By
applying this property we can check that the action (169) produces the already known equivalence between the
derivative of the position vector and the momentum density (159):

∂L

∂ ˆ̇XI
=

1

2πα′
ˆ̇XI = P̂τI (170)

In fact, if we combine the above with the relation between the lagrangian density and the hamiltonian density
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H = PτIẊI −L (171)

we effectively recover our Hamiltonian but in the Schrödinger picture:

Ĥ(τ) =

∫ π

0

dσ

(
πα′P̂τIP̂τI +

X̂I′X̂I′

4πα′

)
(172)

At this point, and as in the same fashion as we did with the relativistic string, an expansion of the transverse
operators X̂I is required:

X̂I = q̂I + 2
√
α′
∞∑
n=1

q̂In
cos nσ√

n
(173)

By deriving with respect to the two parameters τ and σ, we obtain the following derivatives:

ˆ̇XI = ˆ̇qI + 2
√
α′
∞∑
n=1

ˆ̇qIn
cos nσ√

n
(174)

X̂I′ = −
√
α′
∞∑
n=1

q̂In
√
nsen nσ

√
n (175)

The process of substituting the above in the action (169), and the subsequent application of the relation between
the lagrangian and the Hamiltonian ends up in the following expression:

Ĥ = α′p̂I p̂I +

∞∑
n=1

n

2

(
p̂Inp̂

I
n + q̂Inq̂

I
n

)
(176)

This is a sum over all the oscillation modes of a quantum harmonic oscillator! This result is absolutely funda-
mental in String Theory, it tells us that the spectrum of energies of the string has a continuum component given
by the operators, but also a quantized term given by the oscillation modes above.

7.3 Dimensionality of spacetime

The calculation of the dimensionality of spacetime is on of the most important calculations in String Theory.
As we are not going to do it explicitly, we will comment on the fundamentals on which it is based.

We start from Visasoro oscillation modes that we presented for the relativistic string, which allowed us to write
the light-cone coordinates as a Fourier expansion over the coefficients αIn. In quantum mechanics, they become
a set operators called Visasoro operators:

L̂⊥n
∑
p∈Z

α̂In−pα̂
I
p (177)

Where the former coefficients α̂In act now as creation and anihilation operators, which are intrinsically related
to the different oscillation modes of the string. If we take a look to L⊥0 in more detail by expanding it:

L̂⊥0 =
1

2

∑
p

α̂I−pα̂
I
p =

1

2
α̂I0α̂

I
0 +

1

2

∞∑
p=1

α̂I−pα̂
I
p +

1

2

∞∑
p=1

α̂Ipα̂
I
−p (178)

If we exchanged the order of the operators in the last sum, we would arrive to the following result:

L̂⊥0 =
1

2

∑
p

α̂I−pα̂
I
p = α̂I0α̂

I
0 +

1

2

∞∑
p=1

α̂I−pα̂
I
p +

1

2

∞∑
p=1

pηII =

L̂⊥0 =
1

2

∑
p

α̂I−pα̂
I
p = α̂I0α̂

I
0 +

1

2

∞∑
p=1

α̂I−pα̂
I
p +

1

2
(D − 2)

∞∑
p=1

p (179)
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Where D is the dimensionality of spacetime. The main problem with the above, is that we have an infinite sum
over the natural numbers in the term on the right, this leads to nonphysical divergences. So we must focus on
this term since it is the root of the problem. We call it:

a =
1

2
(D − 2)

∞∑
p=1

p (180)

For calculating the value of a, and therefore the dimensionality D, we retake the world-sheet charges that we
defined in (125) while studying the relativistic string. This generators, which we said that were related with the
angular momentum of the string as well as their boosts, can be simplified by substituting in there the relations
between the momentum and the derivatives of the coordinates (159):

M̂µν =
1

2πα′

∫ π

0

dσ

(
X̂µ ˆ̇

Xν − X̂ν ˆ̇Xµ

)
(181)

This can be expanded in the same way we did with the Hamiltonian in (172):

M̂µν = xµ0p
ν − xν0pµ − i

∞∑
n=1

(
α̂µ−nα̂

ν
n − α̂ν−nα̂µn

)
(182)

We expect that the commutators between the different M−I components of the above charges to be zero, the
calculation of this commutators leads to the following expression:

[
M̂−I , M̂−J

]
= − 1

α′p̂+2

∞∑
n=1

(
α̂I−nα̂

J
n − α̂J−nα̂In

)
·
(
n

[
1− 1

24
(D − 2)

]
+

1

n

[
1

24
(D − 2) + a

])
(183)

Where there is the number of dimensions D and the parameter a that we defined in (180). For this to be zero,
we have to impose the following conditions:

D = 26 a = −1 (184)

We have obtained that there must be 26 dimensions, this means that we have 22 extra rows in our metric
tensor (44), as we already noted, in the hypothetical case of the existence of this dimensions, they should be
compactified. With this oustanding result we conclude our introduction to String Theory.
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8 Conclusions

In first place, we have that a great part of the results obtained in String Theory, as the conservation of the
momentum or the potential energy, are completely compatible with those obtained for the point particle, while
those who are particular for the string, as the movement of the endpoints and the vibrational modes, are indeed
very difficult to check, this is due to the expected Planck scale of both for the string and for the compactified
dimensions, which require of an enormuos amount of energy to be detected. This would make, to the eyes of our
current technology, both the string and the particle to seem equal but, it is expected that, with the development
of new and more powerful laboratories, we will be able to check which of them is the correct interpretation. We
must also take into account that the have only commented on the bosonic String Theory, which cannot serve as
a model for fundamental particles, since most of them are fermions, in fact there are currently up to five different
fermionic String Theories.

In the development of the present work, we have been able to apply a wide variety of mathematical tools,
from the differential calculation used to make the action extreme, to the resolution of integrals for solving
commutation relations. Along the way, we have also used linear algebra to study both the metric tensor and
Lorentz transformations, and we have applied boundary conditions to different equations of motion. From the
physical point of view, Lagrangian mechanics has been repeatedly applied, and it also has been expanded to
the study of fields, both scalar and complex, special relativity has also been applied along the work, while of
quantum mechanics has been used in the final chapters. The use of so many mathematical and physical tools
along the present work, makes String Theory a frame in which, even though if it turns out to be an incorrect
theory, can be very instructive for thinking outside of the box on the search for solutions to complex problems.
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