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Extended Abstract
La mejora de las técnicas observacionales ha permitido aumentar considerablemente
tanto el catálogo de observaciones como el conocimiento sobre las anisotropías del fondo
cósmico de microondas, favoreciendo el desarrollo de la cosmología. Con el objetivo
de reproducir la evolución de los fenómenos cosmológicos y predecir las observaciones
de futuras misiones científicas se realizan simulaciones de N-cuerpos en supercom-
putadores, debido al alto costo tanto en memoria come en tiempo computacional al
considerar un número elevado de partículas. En el caso práctico del presente trabajo, se
realiza una breve introducción al modelo cosmológico estándar así como a los parámet-
ros que lo caracterizan y se realizan diferentes simulaciones cosmológicas empleando
el código PKDGRAV3 para un volumen cúbico de lado 100 Mpc/h, partiendo de un
redshift inicial z = 49 hasta tiempos actuales almacenando diez pasos temporales de
la distribución de partículas. Los objetos a estudiar serán partículas de materia oscura
cuya dinámica puede ser descrita por las ecuaciones de un fluido ideal de presión nula.
Para analizar el comportamiento estadístico de las distribuciones de materia obtenidas,
se desarrollará el formalismo teórico de la estadística a un punto y a dos puntos con el
fin de aplicarlo sobre dichos resultados.

En primer lugar, se implementarán dos de los criterios de asignación de masa más
comunes para interpolar la distribución de materia, de naturaleza discreta, a una malla
que divide el volumen total en celdas cúbicas. A continuación, se obtiene la función
de distribución de las fluctuaciones de la densidad de materia sobre la densidad crítica
usando como base los resultados de simulaciones de 1283 y 2003 partículas, compara-
ndo cómo la función filtro escogida afecta a la construcción de esta y las diferencias
observadas para ambas simulaciones. El siguiente punto será ajustar las mediciones al
modelo lognormal, el cual es el modelo analítico más sencillo para caracterizar com-
portamientos no lineales de una distribución estadística. Asimismo, se estudiará la
evolución de la distribución con el redshift a través del análisis de los cuatro primeros
momentos de esta, obteniéndose que, con el paso de tiempo, las zonas con sobreden-
sidad de materia colapsan, concentrando la mayor parte de la materia y vaciando
progresivamente las demás regiones del Universo, lo que da lugar a la formación de
estructuras como halos de materia oscura.

En relación al análisis estadístico a dos puntos, se parte de la distribución discreta
de materia para obtener la función de correlación, la cual mide la probabilidad de
encontrar un par de objetos separados por una cierta distancia en comparación con
lo que se observaría para una distribución aleatoria. Para ello, se miden los histogra-
mas DD (Data-Data), DR (Data-Random) y RR (Random-Random), los cuales dan
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pie a definir una serie de estimadores como los sugeridos por Peebles y Landy-Szalay,
ofreciendo resultados muy similares. La medición también es realizada para difer-
entes instantes temporales, haciéndose un estudio de la evolución de la influencia de
la gravedad en la formación de estructura a diferentes escalas en distintas épocas del
universo. El espectro de potencias, definido como la transformada de Fourier de la
función de correlación, se expresa en términos del módulo al cuadrado de la transfor-
mada de Fourier de la función de sobredensidad, lo que presenta una ventaja en tiempo
computacional con respecto a la función de correlación, por lo que es la función más
extendida para caracterizar la estadística a dos puntos. Debido a la naturaleza discreta
de la muestra estadística, las mediciones presentan un error conocido como ’shot-noise’
el cual se puede modelizar como Poissoniano, además de introducirse deformaciones en
la forma del espectro al emplear la implementación FFT (Fast Fourier Transform) de-
bidas al criterio de asignación de masa y al efecto de aliasing, introducido al considerar
condiciones de frontera periódicas en virtud del Principio Cosmológico. La asignación
de masa se traducirá en una pérdida de potencia a bajas escalas en referencia a las
predicciones teóricas, más acentuada para CIC que para NGP y el aliasing producirá
un exceso de potencia cerca de la frecuencia de Nyquist debido a la influencia de los
modos de mayor frecuencia, aspecto que será tratado en detalle en el desarrollo teórico.

Para contrastar si los resultados de la simulación son los esperados y si la medición del
espectro se ha realizado adecuadamente, se siguen dos procedimientos. en primer lugar,
se mide el espectro de potencias empleando la suma directa, ofreciéndonos una medida
de este libre del efecto de asignación de masa, lo que permite corroborar la bondad de
las correccioens realizadas. A continuación, se emplea la herramienta online CAMB, la
cual resuelve las ecuaciones de Boltzmann, ofreciendo un espectro de potencias teórico
como solución, el cual podemos ajustar a los parámetros cosmológicos empleados por
PKDGRAV3 y que nos permite comprobar que los resultados de la simulación y los
teóricos coinciden. Finalmente, se cierra el proyecto con la discusión sobre la evolución
temporal del espectro de potencias con el tiempo.
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1 Introduction
Cosmology is an observational science, i.e., the sample of events that we can observe is
unique in the sense that it is not possible to reproduce the same event in the same con-
ditions as many times as we want, we can only observe them in a particular place and
at particular time. A galaxy survey has galaxies placed at different cosmological times
and then try to reconstruct the complete process joining the different observations of
the evolution. The development of supercomputers with high processing and storing
capacity provides the possibility to run N-body simulations with large number of par-
ticles to follow the evolution of the matter distribution. The mass tracers we choose to
develop the calculations are test particles whose properties are similar to dark matter
particles, a theoretical type of matter postulated for the first time by Lord Kelvin and
Henri Poincaré and inferred by the German astronomer Fritz Zwicky in 1933 from his
work on the Coma Cluster. It was introduced to explain experimental observations in
which the amount of baryonic matter is not enough to justify the gravitational effects
observed, being its principal characteristic that this type of matter must not feel elec-
tromagnetic interaction. In the framework of Cosmology, the existence of this kind of
matter is essential to be able to build a model that explains the formation of struc-
tures at different scales; in other words, without dark matter we cannot explain the
formation of galaxies and clusters.

The particles will evolve under the rules of a dynamic scenario, according to the
Standard Cosmological Model. The natural law that takes the central role of this
study is the gravitational force, formulated by Isaac Newton in 1687, which establishes
the interaction between two objects with mass as a central and attractive force whose
module is directly proportional to the product of the masses and inversely proportional
to the square of the distance between their centers. The Cosmological principle, which
is based on large amount of observations over the years and establishes that the distri-
bution of matter at large scales must be homogeneous and isotropic, will be recursive
along the development of the project to define the boundary conditions of the simu-
lated Universe and check the properties of the simulation at large scale, which must
be in concordance with an homogeneous distribution of matter. Last but not least,
space-time is not static, it evolves following the General Relativity theory. Hubble’s
observations pointed that galaxy velocity increases with the distance and recent obser-
vations like the Cosmological Microwave Background (CMB) by Planck Collaboration
et al. (2016) or measurements in far supernovas show cosmologists that the Universe is
in an accelerated expansion which can be considered isotropic. This created the need
to introduce a new component, the dark energy, which can be understood as a negative
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pressure that curves the geometry of the space in absence of matter.
The study of the large scale structure of the Universe improves our understanding

of the same revealing information about how the gravity force influences the distribu-
tion of matter, providing a tool to study the formation of cosmological structures like
clusters or halos along the time.



2 Objectives
The main objectives of this bachelor project were:

• To perform cosmological simulations with different mass resolution using the
PKDGRAV3 code in a 100 Mpc/h box with the object of analysing the matter
density.

• To characterize the main parameters of the standard cosmological model ΛCMB
involved in initial conditions and evolution of the matter distribution.

• To develop and understand the theoretical formalism of one-point and two-point
statistics in configuration space and in Fourier space to characterize the distri-
bution in different scales and at different instances.

• To implement and discuss the difference NGP and CIC mass assignment methods
to filter the discreet distribution of matter.

• Measure the density probability function of matter distribution and study the
evolution of early moments with the redshift.

• To measure correlation function for a low resolution simulation using different
estimator methods and study its evolution.

• To measure power spectrum for low resolution simulations and compare simula-
tion results with theoretical models.



3 The Standard Cosmological Model
El presente trabajo se desarrollará en el marco del modelo cosmológico estándar, ΛCDM,
el cual se sustenta la Teoría de la Relatividad General y ciertas consideraciones en
tensor energía-momentum, así como en la consideración de un espacio homogéneo e
isótropo, describe de forma satisfactoria las observaciones conocidos seis parámetros:
la densidad bariónica, la densida de materia oscura (CDM), la edad del universo, el
índice espectral, la fluctuación en la amplitud de la curvatura y la profundidad óptica
de reionización.

We first introduce the theoretical framework within which this study has been con-
ducted. The development of the General Relativity theory (Weinberg, 1972; Ridler,
1977) to explain the gravity interaction and the advances on observational cosmology
allow us to construct a cosmological model to describe the first instants, the evolution
and the fate of the Universe. The most accepted model is ΛCDM, which is mainly
based in two concepts: the cosmological constant Λ is a fundamental constant which
explains the accelerated expansion of the Universe introducing a vacuum energy, which
we refer as dark energy, and the Cold Dark Matter (CDM, Planck Collaboration et al.,
2016; Dodelson, 2003; Peebles, 1980), a type of dark matter whose velocity is well
below the relativistic limit, necessary condition to structure formation. Some of the
main assumptions of the Standard Cosmological Model are that the correct theory to
describe the gravity interaction on cosmological scales is General Relativity, and to
consider that the Universe is approximately, statistically homogeneous and isotropic,
apart from spatially flat, on large scales. It is considered also that initial conditions
were Gaussian, i.e., the gravitational interaction had no influence over the initial mat-
ter distribution, thus it follows a random distribution. For simplicity, dark matter
is collisionless, and electromagnetic forces are negligible at large scales for baryonic
matter.

The Universe is in expansion and this expansion only depends on time, being the
same for all the points of the space. Therefore, it is useful to express the proper
coordinates as a function of the scale factor, a(t), and the comoving coordinates, x(t),
(Padmanabhan, 1993; Dodelson, 2003; Cepa, 2007):

r(t) = a(t)x(t) (3.1)

where r(t), the new vector of coordinates, owns to physical space.
We begin from Einstein field equations, which establish a relation between the space
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geometry and the amount of matter and energy that it contains by the equation (Wein-
berg, 1972; Cepa, 2007; Pérez Hernández, 2018; Ridler, 1977):

Rµν −
1

2
Rgµν = 8πTµν − Λgµν (3.2)

where Rµν is the Ricci curvature tensor, R is the Ricci scalar, gµν is the metric tensor
and Tµν is the stress-energy tensor. The gravitational constant, G, and the speed of
light in vacuum , c, are taken in natural scale where both are equal to one. The right
side of the equation contains the geometrical terms, whose solution we are interested in
and, the left side, the sources of field that we have to introduce to solve the equations.
The Standard Cosmological Model characterizes matter and energy distribution by
a set of parameters which we will explain at the end of the section. Considering
cosmological parameters from ΛCDM (Planck Collaboration et al., 2016; Dodelson,
2003) and imposing an homogeneous and isotropic space, we can introduce an ansatz
for the metric and obtain a solution for Einstein field equations, which gives as a
result the set of equations that governs the evolution of a universe with Friedmann-
Lemaître-Robertson-Walker metric, Friedmann equations (Cepa, 2007; Padmanabhan,
1993; Peebles, 1980; Weinberg, 1972):

H2 =

(
ȧ

a

)2

=
8π

3
ρ− k

a2
+

Λ

3
,(

ä

a

)
= −4π

3
(ρ+ 3p) +

Λ

3

(3.3)

The expansion rate of the Universe H(t) is defined by the first equation as a function
of the scale factor, a(t), and of the density of matter ρ considered in the model. The
parameter k is a constant of integration, and is not determined by the theory. Its value
has relevant implications in the curvature factor, and its sign determines the type of
geometry of the universe, being a de Sitter space if k > 0, anti de Sitter if k < 0 and a
Minkowski space for k = 0. The second equation quantifies the accelerated expansion,
which depends on the matter density and on the pressure field P . In addition, to
solve the above equations and obtain the scale factor as a function of time, we need to
add another relation which relates pressure and density, the state equation. For dark
matter fluid, this equation is given by P = 0. The full calculation is developed with
more detail in Appendix I (8).

Another interesting parameter that can be defined from the Friedmann equations
is the critical density of matter, ρcrit, the limit from matter starts to collapse, whose
expression is given in terms of two constants:

ρcrit =
3H2

0

8πG
(3.4)
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In order to give a description of matter distribution of the Universe, it is necessary
to measure the values of cosmological parameters required by the model. These are
inferred experimentally from observations realized by (Planck Collaboration et al.,
2016), which measured the anisotropy of temperature and polarization of the Cosmic
Microwave Background (CMB) radiation. Considering the Hubble reduced parameter
h = 0.73, defined as the value of the expansion rate at present days normalized to an
expansion rate of 100 km s−1 Mpc−1, and Ω, the fraction of the matter density relative
to the critical density, the ΛCDM model can be described by six parameters (Planck
Collaboration et al., 2016):

• the baryon fraction Ωbh
2 = 0.02227± 0.00020;

• the CDM fraction Ωch
2 = 0.1184± 0.0012;

• the age of the Universe t0 = 13.799± 0.021 Gyr;

• the scalar spectral index ns = 0.9667 ± 0.0040, which describes how density
fluctuations vary with the scale;

• the curvature fluctuation amplitude ∆2
R = 2.441+0.088

−0.092× 10−9 which measures the
deviation from flatness;

• the reionization optical depth τ = 0.066 ± 0.012 which offers a measure of the
line-of-sight free-electron opacity to CMB radiation (Griffiths et al., 1999).



4 Statistical analysis of the large
scale structure of the Universe

El primer objetivo del proyecto será caracterizar la distribución estadística de las fluc-
tuaciones de la densidad en distintos momentos de la evolución del Universo. Para la
aplicación de un formalismo analítico en la modelización, se introducirán dos funciones
filtro correspondientes a los criterios NGP y CIC, para esparcir la información asociada
a la distribución de materia, generando un muestreo cuasicontinuo de los valores de
estas fluctuaciones. A continuación, se plantea el modelo lognormal para caracterizar
la distribución estadística a un punto y se dan argumentos que justifican su uso. Para
caracterizar la influencia de la gravedad en la formación de estructuras a distintas
escalas, se realiza un estudio de estadística a dos puntos realizando una estimación
de la función de correlación empleando el método de Landy-Szalay. En virtud de las
propiedades del espacio de Fourier, se estudiará el espectro de potencia de materia
que no es sino la transformada de Fourier de la función de correlación, mucho más
conveniente computacionalmente. Se pondrán a discusión las diferentes correcciones
a esta metodologíao ralcionadas con el shot-noise, el efecto de asignación de masa y
aliasing derivados de la implementación de la transformada rápida de Fourier (FFT)
para la medición.

4.1 Introduction of mass assignment schemes to
measure the fluctuations of density field

After characterizing the main aspects that governs the evolution of the Universe, it is
time to analyse the dark matter behaviour under the conditions imposed by the model.
Assuming a primordial matter distribution at redshift 49, we will study the evolution
of it in the context of a N-body problem, defining a cubic volume in a comoving space
as the stage where we will put a set of point masses in, interacting under the universal
gravity law.

Firstly, we define the main concept of the analysis, the overdensity distribution,
which describes the fluctuations of the density field in relation to its average value. In
this description of the field, it is expected that in regions whose density value is higher
than the critical density of the Universe, the matter will begin to collapse, so we can
identify this places with positive values in overdensity field. On the other hand, the
regions with negative values will be related to regions in space that are ’drained’, i.e.,



8 Statistical analysis of the large scale structure of the Universe

the matter in these regions will tend to flow to regions with higher density because
of the attractive nature of gravity. The critical density of Universe depends on the
parameters of the Cosmological model used and, in case of a N-body simulation, as
all the test particles have the same mass, this will be asigned in concordance with
the critical density, so the average density which depends on the number of particles
contained in the total volume will play the same roll. The continuous overdensity field
is defined as (Peebles, 1980; Padmanabhan, 1993; Jing, 2005; Cui et al., 2008):

δ(r) = ρ(r)− ρ

ρ
. (4.1)

The Universe we observe can be considered as point-process (e.g. a Poisson realization)
of an underlying continuous density field. For simplicity, we consider that all the
particles have the same mass, so we can define the overdensity in terms of the number
of particles per unit of volume like:

δ(r) = n(r)− n

n
. (4.2)

To make an analytical discussion of the problem, it is convenient to define the over-
density function as a continuum. However, in real cases, it would be describe as a
collection of Dirac-deltas attending to its discrete nature. In order to apply a continu-
ous analytical formalism, we will smooth the discrete sampling of particles introducing
a grid to divide the total volume of our simulation in cubic cells and then follow a
scheme to assign mass to each one, assuming the compromise of lost part of the infor-
mation in favour of spreading it. Mathematically, the transformation is described as a
convolution product (Peebles, 1980; Padmanabhan, 1993; Jing, 2005; Cui et al., 2008):

δ(rg) =
∫

δ(r)W (r− rg)dr. (4.3)

In the expression above, we introduce the vector rg which takes the values of the
centers of the cells in the discrete configuration space, being g = L

Nb
the minimum

distance between two centers, which is the minimum module of rg, where L is the size
of the box and Nb is the number of cells along each axis (Cui et al., 2008).

In particular, we will introduce the most usual schemes to make the assignment doing
a brief description for one-dimensional cells through the mass assignment function or
window function, but the result can be generalized as a product of the values of this
function for each axis (Hockney & Eastwood, 1981; Cui et al., 2008; Jing, 2005).

• Nearest Grid Point (NGP): This is the simplest method to assign mass to
each cell. Conceptually, we associate the information of the particle to the cell
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Figure 4.1: Window functions in configuration space and in Fourier space, where x-axis
values are expressed in terms of l and k-axis in units proportional to Nyquist
frequency. The information contained in a certain range in configuration space
is spread throughout all Fourier space.

whose center is closer to it. NGP window function can be written like:

W (x) =

{
1, if |x| < g

2

0, if |x| > g
2

(4.4)

• Cloud in Cell (CIC): This scheme spreads the information of the localization
of a particle over the nearest cell and over the closest cells to this. To consider the
relative orientation of the particle inside a cell, the window function is defined in
such a way that only the two closest cells are assigned a fraction of the mass (in
one-dimensional description), being eight cells in the case of a three-dimensional
space. CIC window function can be written like:

W (x) =

{
1− |x|, if |x| < g

0, if |x| > g
(4.5)

We could have chosen any other definition for the CIC window function but, considering
the convolution theorem, eq. (4.3) can be rewritten as a product in Fourier space, the
Fourier transform of the window function can be generalised as (Cui et al., 2008):

W (kx) =

(
sin πkx

2kN
πkx
2kN

)p {
p = 1, NGP
p = 2, CIC

(4.6)

These functions depend on the Nyquist frequency kN = π
l

(Nyquist, 1928), which is
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defined as the half of the maximum frequency that satisfies the boundary conditions
of the considered volume and the spacial resolution of configuration space.

4.2 A model for the probability density function
Once the overdensity distribution is obtained, we wonder about what is the best math-
ematical description of the density fluctuations. The lognormal model is proposed to fit
the distribution of density fluctuations in a continuous approach and will be discussed
in detail. Before continuing with theoretical development, it is important to explain
why we are theoretically motivate to use the lognormal model to reproduce the PDF
(Probability density Function) of the overdensity random field (Jones, 1990).

On one side, the observations performed by Hubble (1934) led him to notice that
the number of galaxies in a two-dimensional grid on the sky follows a distribution like
(4.14). Recent cosmological simulations show that this model is a reasonable approxi-
mation for a continuous density field, but it is necessary to improve it to alleviate the
bias introduced by the discreteness of the sampling (Jones, 1990).

On the other side, for large scales we can consider linear fluctuations in density field
that correspond to a Gaussian distribution, but this approach is not suitable for small
scales, where clustering processes are important in and a non linear noise is expected.
Inflation models (Barrow & Coles, 1990) consider that at the beginning of the Universe,
the fluctuations on the density field were Gaussian, which implies that Fourier modes
were independent but, in the pass of time, the effect of gravity force caused that these
modes become to couple, mostly in small scales, where its influence is bigger. This
analysis invites us to consider that the main fluctuations depend on the product of
local random phases of Fourier space as:

Y =
∏
i

Xi

In addition, if we consider the Central Limit Theorem, taking natural logarithms in
both sides of the expression, we will find that:

lnY =
∑
i

lnXi (4.7)

According to this theorem, the variable lnY follows a Gaussian distribution, which
implies that Y must follow a lognormal distribution.

If we put our attention in the dynamic evolution of the system, considering dark
matter as an ideal fluid, the mass conservation will be given by the continuity equation
(see more details in Appendix I 8). If we take a comoving reference system, we will
obtain the relation:

1

ρ

dρ

dτ
= −∇v (4.8)
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Considering a initial Gaussian peculiar velocity field whose divergence scales with τ ,
following the law (∇v)τ = (∇v)τ0 τ

τ0
, we can find a solution for the equation above like:

ρ(x) = ρ0e
ϵ(x)τ2 (4.9)

where ϵ(x) is a Gaussian field, obtaining that the density field follows a lognormal
distribution.

Another indicator to use a lognormal model is the study of biased model for galaxy
or cluster formation, which suggests a exponential relation between the number of
galaxies per unit of mass inside and outside of superclusters (Jones, 1990).

Last but not least, the lognormal model is a simple way to characterize the non-linear
fluctuations, whose sampling spectrum is defined positive and whose behaviour can be
described analytically, having the same free parameters as Gaussian random field.

It is important to note that, considering the Moment Generation Function M(s)
defined by the expression:

M(s) =
∞∑
0

µ′
ns

n

n!
(4.10)

where µ′
n is the moment n of the distribution, leads to a divergence for positive values

of s for this kind of PDF. As a result, lognormal distribution is not completely de-
termined by its moments, so one can construct at least another different distribution
with the same moments. Physically, we can understand this non-uniqueness property
as consequences of the influence of high-density regions on high-order moments (Jones,
1990). To treat strong clustering regions, it is possible to apply Fry’s hierarchical dis-
tributions (Fry, 1985) which are completely characterized by their moments, but the
question of the non-uniqueness nature of the matter distribution is still open.

Therefore, we develop in detail the main model aspects. Let us consider a variable
X(r) that follows a normal distribution with PDF (Jones, 1990):

P (x) =
1√
2πσ

e−
(x−µ)2

2σ2 (4.11)

where µ is the main value of X(r) which we will denote as x in equations and σ2 is the
variance of the distribution.

A variable y will follow a lognormal distribution if its shape is y = eX(r). In order
to obtain the PDF of a lognormal distribution, we rewrite (4.11) in terms of ln y:

P (ln y) =
1√
2πσ

e−
(ln y−µ)2

2σ2 (4.12)

The differential probability of measure a certain value of ln y is given by:

f(ln y)d ln y =
1√
2πσ

e−
(ln y−µ)2

2σ2 d ln y =
1√
2πσy

e−
(ln y−µ)2

2σ2 dy (4.13)



12 Statistical analysis of the large scale structure of the Universe

From the last term, we can obtain the expression of the PDF for a lognormal distri-
bution:

P (y) =
1√
2πσy

e−
(lny−µ)2

2σ2 (4.14)

For the overdensity PDF, we will follow the approach of (Hongguang Bi, 2003) to
obtain the expression considering physical constraints. If we consider y = ρ

ρ0
, the mean

value of y will be:
y =

1√
2πσ

∫
exe−

(x−µ)2

2σ2 dx (4.15)

Developing and reorganising the exponential argument, we can solve the integral in a
simple way:

y =
1√
2πσ

∫
e
−
(

2σ2x
2σ2 +x2−2xµ+µ2

2σ2

)
dx

=
1√
2πσ

∫
e
−
(

x2−2(σ2+µ)x+µ2

2σ2

)
dx

=
1√
2πσ

∫
e
−
(

x2−2(σ2+µ)x+(σ2+µ)2−(σ2
0+µ)2+µ2

2σ2

)
dx

=
1√
2πσ

∫
e
−
(
µ+σ2

2

)
e−

(x−(σ2+µ))2

2σ2 dx

= e
−
(
µ+σ2

2

)
(4.16)

The mass conservation implies that ρ must satisfy the relation ρ = ρ0 and y = 1, so:

µ = −σ2

2
(4.17)

Substituting this relation in (4.14), we finally obtain that:

P

(
ρ

ρ0

)
=

1√
2πσ ρ

ρ0

e−

(
ln ρ

ρ0
+σ2

2

)2

2σ2 (4.18)

This equation characterizes the lognormal distribution under physical conditions,
which gives us a theoretical tool to predict the expected behaviour of the overdensity
density PDF.

4.3 The two-points correlation function
The two-points statistics measures the statistical dependence between the values of two
points of a field (Peebles, 1980; Dodelson, 2003; Padmanabhan, 1993). Let us consider a
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random process whose values can be characterized by one parameter . Then, construct
a vector whose components are values of the random process shifted by a certain lag in
the parameter. Considering the array which contains the values of the random process
as a vector, the autocorrelation function is defined as the main value of the normalized
scalar product between the two vectors and each value of this is characterized by the
lag in the parameter. Values of autocorrelation function close to one are related with
a strong linear dependence for processes related by a certain lag, otherwise, for values
near zero the points will not be correlated, i.e., the values of the field related by the
shift are independent. In general, we will refer to this function as the correlation
function, which is very usual in statistical mechanics and, in our case, the lag in the
parameter will be the distance between to particles of the sample. We can consider this
simplification (in general, this parameter is the vector which connects the particles)
because of the condition of isotropy imposed by the cosmological principle.

Let X(r) be a scalar field, by definition, the differential probability of measuring a
certain value of the field in the position r1 and another certain value in position r2 is
given by (Landy & Szalay, 1993; Peebles, 1980; Dodelson, 2003):

δP = N2(1 + ξ12(r))dr1dr2 (4.19)

where the two-points correlation function, ξ12(r), introduced in the identity above is
defined as:

ξ12(r) =
⟨(X1 − ⟨X⟩)(X2 − ⟨X⟩)⟩

⟨X⟩2
(4.20)

being X1 and X2 two elements of the sampling of values of X field. If we take the density
field, changing X1 for ρ(r0) and X2 for ρ(r + r0), having in account the definition of
overdensity field (4.1), we can write the correlation function as follows:

ξ12(r) = ⟨δ(r0)δ(r + r0)⟩ (4.21)

where the mean value denotes an integration over r0.

Physically, the correlation function can be interpreted as a measurement of the
gravity influence on matter distribution at different spatial scales. In cosmology, it
is common to define it as the probability of finding a pair of galaxies separated by
certain distance r. This probability is referred to a random distribution in order to
highlight the difference between an Universe with and without gravity interaction.
The random reference is not included in the mathematical definition of correlation
function, so it is useful to develop estimator methods to introduce this information in
the definition. In relation with the computational cost, these estimators will allow us
to perform the measurement for a large sample in a reasonable time. The estimator
methods studied are based on the arrays DD (Data-Data), DR (Data-Random) and
RR (Random-Random), whose measurement will be explained with more detail in the
analysis section. There are several ways to construct reasonable estimators using these
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arrays, but we will focus our attention on those proposed by Landy & Szalay (1993):

1 + ξ12(r)



DD

RR

DD

DR

DD +RR− 2DR

RR

(4.22)

The last of the estimators is known as the Landy-Szalay estimator, and is the most used
in the literature because it reduces the uncertainty in the measure (Landy & Szalay,
1993).

4.4 Power Spectrum
To characterize the two-points statistics of a distribution, the natural way is to calculate
the correlation function, but it is not the best way to approach the task. If we apply the
Fourier transform over it, we find that it can be expressed as the square of the module
of the overdensity function in Fourier space. This function is called Power Spectrum,
whose definition is (Padmanabhan, 1993; Peebles, 1980; Jing, 2005):

P (k) = ⟨|δ(k)|2⟩ (4.23)

where ⟨...⟩ means the ensemble average. When we developed the correlation function
formalism, we directly simplify the dependence on the direction but, considering that
we will work over simulation data, we must to deal with the general case in theoret-
ical development and the approach will be introduced later, in the practical section,
performing the measurement of the mean value of the function in spherical caps. The
Fourier transform of the overdensity is given by:

δ(k) = 1

Vµ

∫
Vµ

δ(r)e−ikrdr (4.24)

where Vµ is a large volume in which we can consider that the density field is periodic,
according to cosmological principle. As we discussed in section 4, the distribution of
matter obtained from the simulation is discrete so, taking the expression (4.2), we
define the discrete Fourier Transformation of δ(r) as follows:

δd(k) = 1

Vµn

∫
Vµ

n(r)e−ikrdr− δKk,0 (4.25)

As consequence of using a bound volume, the sample of Fourier modes is finite, so
we introduce the Kroneker delta as δK as the Fourier transformation of a constant. For
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simplicity, we will consider that the normalization factor is independent of the definition
of the Fourier Transform, considering how definition for the same only the integral,
which will simplify the lecture of the development. The distribution of particles can
be described as a sample of Dirac deltas such n(r) =

∑
i δ

D((r)− (r)i). Developing the
operation above, we obtain that:

δd(k) = 1

N

∑
i

nie
−ikr1 − δKk,0 (4.26)

where N = Vµn and we have divided the volume Vµ in differential elements dVi, taking
them so small that the number of particles inside of each box will be ni ∈ {0, 1} and,
as consequence, ni = n2

i = n3
i = .... Keeping in mind the fact that ⟨ni⟩ = ndVi and

⟨ninj⟩i ̸=j = n2dVidVj[1+ ⟨δ(ri)δ(rj)⟩], we develop the following calculation (Jing, 2005;
Hockney & Eastwood, 1981):

⟨δd(k1)δ
d∗(k2)⟩ =

1

N2

∑
i,j

⟨ninj⟩e−i(rik1−rjk2) − δKk1,0δ
K
k2,0

=
1

N2

∑
i ̸=j

⟨ninj⟩e−i(rik1−rjk2) +
1

N2

∑
i

⟨ni⟩e−iri(k1−k2) − δKk1,0δ
K
k2,0

= ⟨δ(k1)δ
∗(k2)⟩+

1

N
δKk1,k2

(4.27)

In the last step, we introduce the complex exponential inside the ensemble average and
then use the discrete Fourier properties to express ⟨ninj⟩ in Fourier space, neglecting
the origin contribution term. This approach was chosen in order to illustrate the
dependence on continuous Power Spectrum in the discrete development. Finally, if we
take k1 = k2 = k, we have found the expression of the Power Spectrum in terms of the
DFT (Jing, 2005; Hockney & Eastwood, 1981; Peebles, 1980):

P (k) = ⟨|δ(k)|2⟩ − 1

N
(4.28)

The difference between the continuous and discrete Power Spectrum is called shot noise.
This term has its origin in the discretization nature of the sampling of particles, being
associated to a Poissonian noise.

4.5 Measurement of Power Spectrum with FFT, the
aliasing effect

It is important to remember that we want to characterize the statistical behaviour
of an N-body simulation with N a large number, so the direct summation previously
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described is not appropriate to measure the Power Spectrum due to the high com-
putational time. The most used method is the Fast Fourier Transform (FFT), which
uses window functions with the aim of smoothing the information and reducing the
calculations as follows (Jing, 2005; Hockney & Eastwood, 1981):

δf (k) = 1

N

∑
g

nf (rg)e
irgk − δKk,0 (4.29)

where nf (rg) is the convolved density defined in the same way as (4.3).Then, we will
apply a process similar to that used before to obtain the contribution of the window
function to the Power Spectrum measurement. In theoretical development of this
section, we will take H = g to denote the grid spacing. Following the approach of Jing
(2005), we introduce the sampling function Π(r) =

∑
n δ

D(r − n) in the convolution
product definition, where n is an integer vector:

n′(r) = Π
( r
H

)∫
n(r1)W (r1 − r)dr1 (4.30)

The introduction of H−1 factor is very important with a view to construct a dimen-
sionless sampling function. If we consider a continuous definition for FFT, δ′d(r), it is
easy to prove that δ

′d(r)=δd(r):

δ
′f (r) = 1

N

∫
n

′f (r)e−irkdr− δKk,0

=
1

N

∫ ∑
g

δD
( r
H
− g
)∫

n(r1)W (r− r1)e−irkdr1dr− δKk,0

=
1

N

∑
g

∫
n(r1)dr1

∫
δD
[
1

H
(r− rg)

]
W (r− r1)e−irkdr− δKk,0

=
1

N

∑
g

∫
n(r1)W (rg − r1)e−irgkdr1 − δKk,0

=
1

N

∑
g

nf (rg)e
−irgk − δKk,0 = δf (r)

(4.31)

where g is an integer vector.

Before continuing with the main demonstration, we will rewrite the sampling function
to show explicitly the origin of aliasing effect. According to its definition, it is easy
to see that the sampling function can be described by a sinusoidal function, whose
frequency is equal to the double of Nyquist frequency 2kN = 2π

H
(Nyquist, 1928), but

the configuration space is discrete, which implies that this is not the only choice, any
frequency that can be written as k = nkN is possible too. Therefore, the sampling
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function can be read as (Kirchner, 2005):

Π(r) =
∑

n
cne

−i2kNnr (4.32)

If we measure the coefficients of Fourier Serie, we will obtain that cn = 1 for Π
(r1
H

)
,

so:
Π
(r1
H

)
=
∑

n
e−i2kNnr (4.33)

Therefore, we divide the total volume Vµ in differential volumes dVi as in the previous
case, so that the FFT of the overdensity field can be written as:

δf (k) = 1

N

∫
Vµ

Π
( r
H

)∑
i

niW (r− ri)e−irkdr− δKk,0 (4.34)

Then, the ensemble average of δf (r1)δf∗(r2) will be:

⟨δf (r1)δf∗(r2)⟩ =
1

N2

∫
Vµ

Π
(r1
H

)
Π
(r2
H

)[∑
i ̸=j

⟨ninj⟩W (r1i)W (r2j) +
∑
i

⟨ni⟩W (r1i)W (r2i)
]

× e−i(r1k1−r2k2)dr1dr2 −
1

N

∫
Vµ

Π
(r1
H

)∑
i

⟨ni⟩W (r1i)e−ir1k1δKk2,0dr1

− 1

N

∫
Vµ

Π
(r2
H

)∑
i

⟨ni⟩W (r2i)eir2k2δKk1,0dr2 + δKk1,0δ
K
k2,0

(4.35)

where rik = ri − rk.
Next step will be to develop the expression term by term. For the first, we obtain:

1

N2

∫
Vµ

Π
(r1
H

)
Π
(r2
H

)∑
i ̸=j

⟨ninj⟩W (r1i)W (r2j)e−i(r1k1−r2k2)dr1dr2 =

∑
n1,n2

∑
i ̸=j

∫
Vµ

[1 + ⟨δ(ri)δ(rj)⟩]W (r1i)W (r2j)e−i(r1k′
1−r2k′

2)dr1dr2 =

∑
n1,n2

∑
i ̸=j

[1 + ⟨δ(ri)δ(rj)⟩]
∫
Vµ

W (r1i)e−ir1k′
1dr1

∫
Vµ

W (r2j)eir2k′
2dr2 =∑

n1,n2

∑
i ̸=j

[1 + ⟨δ(ri)δ(rj)⟩]e−i(rik′
1−rjk′

2)W (k′
1)W

∗(k′
2) =∑

n1,n2

[δKk′
1,0δ

K
k′

2,0 + ⟨δ(k1)δ
∗(k2)⟩]δKk′

1,k′
2
|W (k′

1)|2

(4.36)

where k′ = k+2kNn. Following the development of this term, we obtain for the second:
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1

N2

∫
Vµ

Π
(r1
H

)
Π
(r2
H

)∑
i

⟨ni⟩W (r1i)W (r2i)e−i(r1k1−r2k2)dr1dr2 =

1

N

∑
n1,n2

∑
i

∫
Vµ

W (r1i)W (r2i)e−i(r1k′
1−r2k′

2)dr1dr2 =

1

N

∑
n1,n2

δKk′
1,k′

2
|W (k′

1)|2

(4.37)

We obtain the third and the fourth terms as:

1

N

∫
Vµ

Π
(r1
H

)∑
i

⟨ni⟩W (r1i)e−ir1k1δKk2,0dr1 =

δKk2,0
∑

n1,n2

∑
i

∫
Vµ

W (r1i)e−ir1k′
1dr1 =

δKk2,0
∑
n1

δKk′
1,0W (k′

1)

(4.38)

From the results (4.36), (4.37) and (4.38), we found:

⟨δf (r1)δf∗(r2)⟩ =
∑

n1,n2

[⟨δ(k1)δ
∗(k2)⟩δKk′

1,k′
2
|W (k′

1)|2 +
1

N
δKk′

1,k′
2
|W (k′

1)|2

−δKk′
1,0δ

K
k′

2,0|W (k′
1 = 0)|2 − δKk′

1,0δ
K
k′

2,0W (k′
1 = 0)− δKk′

1,0δ
K
k′

2,0W
∗(k′

2 = 0) + δKk1,0δ
K
k2,0]

(4.39)

According to the Fourier Transform definition, W (k′ = 0) can be read as:

W (k′ = 0) =
∫

W (r)dr (4.40)

The window function is normalized by definition, which means that W (k′ = 0) = 1,
so:

⟨δf (r1)δf∗(r2)⟩ =
∑

n1,n2

δKk′
1,k′

2
|W (k′

1)|2P (k′
1) +

1

N
δKk′

1,k′
2
|W (k′

1)|2] (4.41)

Finally, for k1 = k2 = k, we conclude that (Cui et al., 2008; Jing, 2005):

⟨|δf (k)|2⟩ =
∑

n
[|W (k′

1)|2P (k′) +
1

N
|W (k′)|2] (4.42)

This expression shows how mass assignment function contributes to Power Spectrum
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and shot noise and how the discreetness of configuration space and periodic boundary
conditions introduces the alias sums.



5 PKDGRAV3

Para iniciar la parte práctica del trabajo, se compila el código de simulación de N-
cuerpos PKDGRAV3 y se corren simulaciones de distinta resolución espacial en un
volumen cúbico de lado 100 Mpc/h desde un redshift inicial 49 hasta un redshift a
tiempo actual almacenando diez pasos temporales y se muestra en un mapa de color
la distribución de densidades obtenidas a distintos redshift en distintas regiones del
volumen.

The first step of the practical component of the bachelor project was to generate
the sampling of particles of our particular Universe in different time instants using
PKDGRAV3 1 (Douglas Potter, 2016), a parallel code to perform N-body simulations.

The number of particles used in N-body simulations has grown enormously in order
to improve the accuracy of the results and better compare with observations. Initially,
codes calculated gravity force using the particle-particle (PP) methods, implementation
whose computational time scales with O(N2). Therefore, for large amount of particles
it was impossible to perform simulations. Codes that use particle-mesh (PM) methods
based on FFT, allow to reduce computational time, scaling with O(N lnN), at the cost
of resolution for the same number of particles. PKDGRAV3 uses the Fast Multipole
Method (FMM) to perform the interaction calculation, computational time scales with
O(N) and makes possible to run simulations with trillions of particles.

The FMM method consists on approximating interaction forces with a multipolar
expansion. It makes use of PP method to calculate with high accuracy the interaction
with the nearest particles and, taking into account that the weight of the terms of the
expansion decreases with the distance, approximates the large-range forces by cell-cell
(CC) method. This process can be performed by a tree-code, a binary tree-code in
case of PKDGRAV3 where parent cells, i.e., the closest cells to the base of the tree,
are divided along the longest axis into two equal volume child cells.

Another interesting characteristic of PKDGRAV3 is that it generates the initial
conditions at initial redshift, defined by a set of cosmological parameters, in contrast
with most cosmological codes that need to use auxiliary codes to obtain them. Apart
from N-body simulations, PKDGRAV3 can also perform hydrodynamical simulations,
but this is not the object of our study.

1The code is publicly available at https://bitbucket.org/dpotter/pkdgrav3/src/master/

https://bitbucket.org/dpotter/pkdgrav3/src/master/
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5.1 Simulations

PKDGRAV3 was compiled on a MacBook Air by the student and then was used to
perform four simulations with the same volume but different number of particles. The
set of the initial parameters of the simulation are listed in table 5.1.

Parameter Value
L 100 Mpc/h
zin 49
h 0.67
Ω0 0.32
ΩΛ 0.68
σ8 0.83
ns 0.96

Table 5.1: Set of cosmological parameters used in simulations.

The initial redshift of the simulation is 49, saving matter distribution properties like
the positions of the particles for ten time steps. The file format used in this work is
HDF52.

The first simulation was run with N = 1283, a bit more than 2 million particles.
It was considered that this number was reasonable to have a statistical sampling suf-
ficiently large, taking into account the computational limitations of the laptop. The
second simulation was perform with 8 million particles in order to increase the spatial
resolution, given by the inverse of the cubic root of the number of particles, if the
volume of the box simulation is normalized. In theoretical sections, we will discuss
about the excessive computational cost of the correlation function and the direct sum
of Fourier Transform measurements, so we performed other two simulations with less
resolution using over N = 323 and N = 643 particles respectively to be able to measure
them in a reasonable period of time.

Before describing the statistical analysis of the simulations, we plot the distribution
of overdensity obtained from different regions of the volume and at different times
(Figure 5.1). In this way, we display the formation of structures, paying attention
to the yellow filaments of the colour maps which are associated with large matter
concentration.

2The official website of HDF5 is http://www.h5py.org

http://www.h5py.org
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Figure 5.1: Colour maps of ln(δ + 1) for the simulation with N = 1283. On columns, we
show three slices along z axis, where the central column is associated with the
center of the volume and the other columns show symmetric regions in relation
to the center. On rows, the time of the slices varies from the first redshift
saved to actual time, passing through an intermediate epoch. To measure the
overdensity function, a 643 grid was used.



6 Statistical analysis of the N-body
simulation

En la presente sección se detallarán las mediciones estadísticas realizadas con la dis-
tribución de particulas de la simulación de N cuerpos. En primer lugar se introduce la
implementación de los esquemas de interpolación en tres dimensiones NGP y CIC así
como sus efectos sobre los histogramas medidos. Se discute el modelo log-normal para la
distribución de densidades de la materia y su comportamient como función del tiempo
cosmológico. Se observa el aglutinamiento de materia y su efecto en la distribución
de las densidades en el volumen cosmológico simulado. A continuación se detalla la
metodología seguida para medir la función de correlación de dos puntos, usando esti-
madores basados en la distribución de pares de objetos en la simulación. Finalmente,
se mide el espectro de potencias de la distribución empleando las funciones de FFT im-
plementadas en Python, discutiéndose los efectos de shot noise, asignación de masa y
aliasing empleando los esquemas NGP y CIC y se comparan con la medida ofrecida por
la DFT (Discrete Fourier Transform). Se realiza una verificación de que la simulación
se ejecuta correctamente al comparar los espectros medidos con los teóricos ofrecidos
por CAMB y se muestra la evolución temporal del espectro de potencia observando
su desviación del comportamiento lineal con forme avanza el tiempo, describiendo el
comportamiento esperado.

6.1 Difference between NGP and CIC mass assignment
Once we have obtained the results of the simulation, we start the practical part of
the project analysing the statistical properties of the data using the NGP and CIC
mass assignment schemes. In order to measure the overdensity function, we divide the
original volume of the simulation (100 Mpc/h) in 643 cubes because the FFT algorithm
that we will apply later uses a radix-2 implementation (Cooley & Turkey, 1965) which
scales with N log2N and it was considered that this amount is enough to bin the space
and perform the calculation in a reasonable time.

The most simple scheme is the NGP method, which is easy to implement, reading
the idea behind the window function as an histogram, so one only have to define the
limits of each bin, i.e., the cubes in which the whole space was divided and then count
how many particles are inside each one. It is not only the easiest method to implement
in Python, but also the most efficient because the function histogram2D of the Numpy
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library allows to construct a 2D histogram of a data sample, so it is enough to use a
single loop along one of the axis to complete the operation.

On the other side, the CIC algorithm is a bit more complicated to construct. The
main scheme of the code developed by the student is the following: first, a particle is
selected and the index of the box that contains it is obtained; then, we measure the
window function associated with its position, obtaining the index of the cells over the
information will be spread as well as the contribution of the particle to each one, and
finally, the result is added to the whole space matrix. After performing a loop over all
particles, the mean density of particles is introduced. The code was implemented as
follows:

1'''CIC window function analysis'''
2#Matrix needed in W_CIC
3bin7=np.array←↩

↪→ ([[0,0,1],[0,1,0],[0,1,1],[1,0,0],[1,0,1],[1,1,0],[1,1,1]])
4Zeros=np.zeros((7,3))
5

6def W_CIC(r,index):
7 #Calculate the position of the center of the cell and
8 #the relative orientation of the particle in the box
9 rc=(index+0.5)*2*l/bins-l

10 sg=np.sign(r-rc)
11

12 #Create Index matrix of the relevant cells
13 Index=index+Zeros
14 Index+=sg*bin7
15

16 #Degenerate cases
17 if 0 in sg:
18 Index=Index[(bin7[:,sg==0]==1).flatten()]
19

20 #Add the first cell
21 Index=np.vstack((index,Index))
22

23 #Calculate the position of the center of the other cells
24 Rc=(Index+0.5)*2*l/bins-l
25

26 #Get W values
27 Rr=abs(r-Rc)*bins/(2.*l)
28 W=1-Rr
29 W=W[:,0]*W[:,1]*W[:,2]
30

31 #Correct Index
32 Index[Index==bins]*=0
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33 Index=Index.astype(int)
34 return Index,W
35

36#CIC implementation weighting particle by particle
37def CIC(F):
38

39 F_Overd=[]
40 V_norm=cuad*(bins)**(-3)#Normalize volume
41

42 for n in range(len(F)):
43 Overd=np.zeros((bins,bins,bins))
44 R=np.array(F[n]['dark']['position'])#Take position array
45

46 for Rn in R:
47 #Obtain indexes. Then, to correct extremal cases.
48 index=(Rn+l)*bins/(2*l)
49 index[index==bins]-=1
50 index=index.astype(int)
51

52 #Obtain the values of W to put in Overd and indexes of the ←↩
↪→ cells to fill

53 I,W=W_CIC(Rn,index)
54

55 #Fill Overd matrix
56 for i, w in zip(I, W):
57 Overd[i[0],i[1],i[2]]+=w
58

59 #Overdensity values:
60 Overd/=len(R[:,0])*V_norm
61 Overd-=1.
62 #Storing
63 F_Overd.append(Overd)
64

65 return F_Overd

This CIC scheme assigns mass to the cells neighbouring the particle’s cell. Therefore,
in accordance with the finite dimensions of the simulated volume, periodic boundary
conditions must be introduced to measure correctly the values of the window function
in the boundary cells. This is introduced in the code changing the box index with
value bins (i.e., the number of bins, which will be the index of the following box of the
last box) for 0, getting that the adjacent cell in the right side of the last cell was the
first for each axis. The same correction should be done in the other side of the array
of cells but, by default, Python considers the index -1 is associated to the last position
of an array.
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Figure 6.1: Histograms obtained for ln(δ + 1) for different epochs applying NGP and CIC
mass assignment schemes for the largest simulations. A Gaussian fit was done
to the non-zero values.

The most complex part of the code was the design of the window function. First, we
constructed the matrix that contains the indexes of the cells into which we distribute
the mass of the selected particle. To determine these cells, one puts a reference system
in the center of the cell of the selected particle and obtain the signs of the coordinates
of the particle’s relative position vector to this system. This way, we can locate the
particle in one of the octants in which this system divides the box. The next step will be
to construct an array that contains the indexes of the cells closer to the first octant and
then to multiply the coordinates of the vectors by the sign obtained for each coordinate
in the step before. Now, we have the indexes of the desired boxes for the general case
but, although it is highly unlikely, in order to avoid troubles in the performance,
degenerate cases must be treated. The sinus function is zero if the argument is zero,
therefore, we only have to exclude the indexes that imply a movement along the axis
where the particle coordinates match with the box coordinates using the lines specified
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Figure 6.2: The overdensity PDF, using the log-normal model to fit the data of the simu-
lation with N = 2003.

in the code. Then, we evaluate the window function and the implementation of the
same will be completed.

Both mass assignment schemes were applied over the largest simulations, Figure 6.1,
in order to sample the matter density field on a 3-dimensional Cartesian grid. In case
of NGP, we found that the low densities sampling is rather noisy. The reason is the
discrete values that overdensity function can take according to the scheme chosen, thus
it only offers the possibility to count particles in each box. The smoothing of the CIC
method provide a more continuous representation of the density field closer to the
result expected. Considering the advantages of the CIC mass assignment scheme, we
will use only CIC in the analysis of one-point statistical distribution.

6.2 The log-normal model for the distribution of matter
A Gaussian model for the distribution of matter was used in Figure 6.1. We chose to
show the distribution of the natural logarithm of the overdensity function (plus one
in order to avoid negative arguments) in first place because the normal distribution is
easier to distinguish. If we plot the histogram of the overdensity, we will find the results
of Figure 6.2. As expected, the log-normal model fits with accuracy the distribution
for lower redshifts. It is also suitable to describe the behaviour at higher redshifts, but
at time is passing, gravity continues increasing the non-linearity of the distribution so,
as consequence, the discrepancy between measurements and model increases.

Therefore, the next task is to study the evolution of the distribution moments with
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Figure 6.3: Evolution of the distribution moments with the redshift. CIC mass assignment
was applied over the simulation with N = 200 to measure them.

the advance of time. At the beginning of the Universe, the distribution of matter
density was Gaussian. Then, the gravitational force starts to couple Fourier modes
and the PDF evolves to a log-normal distribution in times of the order of the first
redshift saved by the simulation. The structure formation can be discussed in terms
of the early moments: mean value, variance, skewness and kurtosis. As expected, the
mean value decreases with time, which means that gravity makes the regions with
a value of density upper than the critical density of the Universe collapse and then
these tend to attract matter to themselves so, the most part of the Universe matter
starts to concentrate in specific regions and the volume of low density regions increases
considerably. As gravity forces are attractive, the trend is set to continue.

The discussion in terms of the variance will be interesting when we consider a normal
distribution. Under this conditions, the variance is related with the amount of values
closer to the mean value that have a highly probability to be found. The increment of
this moment with time indicates that the amount of regions with different structure
formation increases too. Regarding the skewness, this moment measures the asymme-
try of the normal distribution, pointing that if its value is positive, the values with
more probability to be found will be shifted to the left with respect to the center of the
Gaussian PDF, skewing the shape of the function. On the other hand, kurtosis mea-
sures the weight of the values far from the mean value in the distribution. Attending to
Figure 6.3, the growth of skewness can be interpreted as the regions that concentrate
most of the matter in Universe are very small in comparison with the total volume,
whilst the kurtosis shows that the sample of values of overdensity increases with time,
increasing also the richness of structures that we can observe.
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6.3 Measuring the correlation function

To measure the correlation function, we start from the array of positions obtained from
the simulation with N = 323, at z = 0, in order to make possible its calculation, which
scales with N2. Apart from this, we distribute randomly 643 particles in the same
volume to measure the contrast of a Universe without gravity. As we explained in the
theoretical development, the correlation function can be obtained as a combination of
the arrays DD, DR and RR.

Let us consider two samples of particle positions, D and R. We are interested to know
the probability of finding a couple of particles separated by a distance r. Considering
that one of the particles owns to D and the other to R, Landy-Szalay (Landy & Szalay,
1993) proposed to measure the arrays as the following: firstly, we focus our attention
in one particle in D, then we consider spherical caps with center in the position of the
selected particle and count the number of particles inside each cap, considering the
distribution R in the measurement. This calculation can be evaluated as an histogram
and stored in an array. This process must be repeated for each particle in D, adding
the result to the previous array. This way, we will obtain a final array with the number
of couples of particles found in each interval of distance defined by the spherical caps.
The limits of each cap will be separated by the same distance in a decimal logarithmic
scale and each interval will be identified by the distance of its center to the center of
the sphere. In this description an important detail is missing: the maximum radius of a
spherical cap must be the half of the length of the box to be consistent with the length
of the box considered and to avoid to deal with the corners of the same. Then, if we
consider a particle that is not in the center, some caps will be outside of our volume.
Keeping in mind again the cosmological principle, we will assume periodic boundary
conditions and replicate the volume in order to complete the measurement. Another
option, which is the followed in the implementation, is to shift the center of the box
to the position of the particle considered changing the reference system and relocating
the necessary particles.

If we define the measurement as hist(DR), i.e., the number of pairs contained in
range [r, r+dr] and considering the procedure for the pairs DD and RR, the normalized
expressions for these arrays are (Landy & Szalay, 1993):

DD =
2

n(n− 1)
hist(DD)

RR =
2

nr(nr − 1)
hist(RR)

DR =
1

nnr

hist(DR)

(6.1)

where n is the number of pairs in the data sample and nr the number of pairs in the
random sample. Combining these estimators as in (4.22), we find agreement among
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Figure 6.4: Two-point correlation function measured using three different estimators sug-
gested at redshift zero.

them, as we show in Figure 6.2.
The shape of the measured two-point correlation function is as we expected: in small

scales, we found an overcrowding of objects as consequence of the gravity domain and,
on the other hand, the value of the correlation function for pairs separated by large
distances tends to one (considering 1 + ξ), which means that they follow a random
distribution. This observation agrees with the gravity law, the magnitude of the force
decreases with the square of the distance so we expect that at large scales the contribu-
tion of it is negligible. Therefore, the Universe at large scale seems to be homogeneous,
in concordance with the Cosmological Principle. It is important also to note the dis-
crepancies observed for the different methods at small scales. They are associated to
the resolution of the simulation what is proportional to the softening length used by
PKDGRAV3 (Douglas Potter, 2016) to smooth force evaluations of closer particles.

The most extended estimator in Cosmology is the Sandy-Szalay purpose because
of the reduction of the error bars associated with the measurements. Unfortunately,
we cannot prove this improvement (see Figure 6.4). This is because we only take one
random distribution as reference and the errorbars that we considered were measured
assuming a Poissonian distribution for the values of the histograms and performing
the standard dispersion of the errors according to the expression of each estimator.
The errors considered in (Landy & Szalay, 1993) are obtained as the variance of the
average of the measurements of the estimator using one hundred of random references,
a calculation that cannot be performed in this project because of the computation time.

Finally, we chose the Landy-Szalay estimator to show the evolution of the correlation
function with redshift (see Figure 6.5). On scales of 10h−1 Mpc, the behaviour of the the
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Figure 6.5: Evolution of correlation function with redshift. The curve with less amplitude
is related with early times in the simulation and the curve with the most with
present days.

distribution does not vary significantly with redshift, which introduce an upper limit to
the range of influence of gravity in matter distribution. On the other side, the excess
of matter in closer regions grows with time and, the shortest the distance between
the pair, the greater the accumulation will be. It is recommended (Landy & Szalay,
1993) to use a random sampling with large number of particles than the distribution
in order to improve the comparison. Unexpected oscillations and behaviours observed,
specially in curves for early epochs, can be related with a low quality of the random
sample. This can be improved generating more random samplings and then obtaining
the average of them (Landy & Szalay, 1993), but this could not be implemented for
lack of time.

6.4 Measuring the matter Power Spectrum
For the last task of the project, we take the matter overdensity distribution calcu-
lated using the NGP and CIC methods, and then apply the FFT implemented in the
FFTWpy library of Python to obtain the Fourier transformation of it. The Power Spec-
trum was measured according to equation (4.23), performing an average in spherical
shells, whose width is constant in the decimal logarithm of the modes, without apply-
ing any of the corrections discussed in theoretical section over the measurement. To
observe the effect of corrections in the Power Spectrum (see Figure 6.6), we apply the
shot-noise correction which is negligible because N is large and then the mass assign-
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Figure 6.6: Measurements of Power Spectrum obtained using NGP and CIC schemes, where
we compare the FFT measurement with its correction by shot noise and mass
assignment.

ment correction, dividing the Power Spectrum corrected by shot noise by the square
of the window function in Fourier space (equation (4.6)). It is only an approximation
to equation (4.42), where we do not consider corrections to aliasing effect. Comparing
the spectra after and before corrections, it is observed that, at large scales, the mass
assignment have no relevant effects on the shape, but it produces a loss of power at
smaller scales. This result is what we expected considering that at large scales the
distribution of matter is homogeneous, so the criteria used to assign mass to cells will
not change significantly the measurement but, when we go to small scales where the
distribution of matter is more complex in comparison with structure formation, the
way chosen to compute the density field is relevant. Once the correction is done, NGP
and CIC measurements offer closer results which means, in principle, that the correc-
tion was implemented correctly. According to the definition (4.23), Power Spectrum
is an dimensionless function but the normalization used in Cosmology (Peebles, 1980;
Dodelson, 2003; Padmanabhan, 1993) is given by V

Nm
, where V is the peculiar comoving

volume of the simulation and Nm is the number of modes of the Fourier space.
At this point we verify whether the simulation performed offers acceptable results

for the evolution of the matter distribution is not possible yet. Firstly, we must to
be sure that the result obtained for the corrected Power Spectra is what we expected.
Keeping in mind the theoretical development of Power Spectrum, the most direct way to
measure it is performing DFT, which is also the most expensive. DFT was implemented
by the student and the result, corrected by shot-noise, is shown in Figure 6.7. FFT
and DFT results are closer, which means that the power spectrum of the simulated
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Figure 6.7: Comparison between theoretical Power Spectrum obtained from CAMB and
the simulation measurements corrected by shot noise and mass assignment at
present days. PKDGRAV3 lineal Power Spectrum is plotted too, verifying that
it is with concordance with CAMB.

matter distribution was measured successfully.
Now, we have all the ingredients to check if the simulation obtained from PKD-

GRAV3 code is in concordance with cosmological models. To do so, we use the online
tool CAMB 1 to obtain two theoretical curves for power spectrum. The first is the
linear power spectrum, which is related with the matter distribution with Gaussian
fluctuations, and the other is a non-linear power spectrum, which differs from the pre-
vious at lower scales where high values of overdensity function differs from the lineal
approximation, which results in an excess of power (for more details, see Appendix
II 9). Cosmological parameters used in PKDGRAV3 were introduced in the configu-
ration. This way, we can check if the behaviour of the measured power spectrum is
closer to linearity or non-linearity. In addition, we introduce the Power Spectrum used
by PKDGRAV3 to generate the initial conditions, where it is expected that the power
spectrum was linear.

Before present the results, we need to introduce the theoretical shape of a linear
power spectrum (see Appendix II (9)), given by Hu (1997):

P (k) = AknT (k, z)2
(
D1(z)

D1(0)

)2

(6.2)

where A is a normalization constant, n is the spectral index, T (k, z) is the transfer
1https://lambda.gsfc.nasa.gov/toolbox/tb_camb_form.cfm

https://lambda.gsfc.nasa.gov/toolbox/tb_camb_form.cfm
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Figure 6.8: Evolution of Power Spectrum with redshift. The spectrum at redshift zero is at
the top, and the obtained in first time saved is at the bottom.

function defined as the ratio of time-integrated growth on a particular scale as compared
to that on scales far larger than the Jeans scale (Jeans, 1902). D1(z) is the growth
factor of the Universe and is normalized with its value at redshift zero.

Historically, it has been adopted the use of the dimensionless power spectrum as
∆2 = k3P (k)

2π2 , which measures the contribution of perturbations per unit logarithmic
interval at wavenumber k to the variance in the matter density fluctuations (Peebles,
1980; Padmanabhan, 1993). To normalize this function, the literature suggests to use
the parameter σ8 defined as the amplitude of the linear power spectrum at present days
in a scale R = 8 Mpc/h:

σ2
8 =

∫
dk

k
∆2|W (R = 8, k)|2 (6.3)

where W (R, k) is the Fourier transform of the top hat function, given by:

W (R = 8, k) =
3

(8k)3
(sin(8k)− 8k cos(8k)) (6.4)

To normalize the theoretical curves, we obtain σ8 for the theoretical function and
then the σ8 of the simulation is imposed in this way:

Pth =

(
σsim
8

σCAMB
8

)2

P (k) (6.5)
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As we explained previously, PKDGRAV3 uses a file which contains the transfer
function that used to generate the initial conditions, so we take it too and use eq. (6.2)
and eq. (6.3) to measure the linear power spectrum of the code 6.7. Once all power
spectra are correctly normalized, we compare them in a plot, obtaining that the non-
linear power spectrum fits satisfactory simulation measurements. Finally, we can be
sure that Power Spectrum measurement and PKDGRAV3 performance are right.

Finally, we discuss the evolution of Power Spectrum with redshift. As Figure 6.8
shows, the spectral amplitude grows with pass of time, preserving its shape for large
scales and deviating from the liner behaviour for low scales. It is a prove of clustering
processes at low scales but we must interpret this result carefully. In scales closer to
Nyquist frequency aliasing effect is important so a limit to trust the measurement must
be defined.



7 Conclusion
The statistical analysis of the matter distribution shows that one-point statistics is very
useful to make an quantitative description of its evolution, beginning from a log-normal
distribution at redshift of the first snapshot stored which can be understood as a normal
distribution taking the natural logarithm of the overdensity, whose main value moves
to low densities with time. Matter tends to collapse in regions whose density is higher
than the critical density and it accumulates progressively in this spots. The two-point
statistical analysis reveals how gravity influences at different scales to structure forma-
tion, having more importance in the smallest scales. Two-point correlation function
results show us that the three estimators proposed offer close results which agree with
the expected distribution of matter for redshift zero and the experience of the imple-
mentation shows the difficulty of the task, which is related with the computationally
efficiency of the code for a large volume of calculations. This fact motivates the study
of two-point statistics through the Power Spectrum formalism, whose technical details
were discussed in depth in order to obtain the physical information of the system with
high quality, i.e. avoiding as much as possible the noise introduced in the measurement
by the technique.

Regarding the technical part of the development, we have shown that the N-body
code PKDGRAV3 performs the evolution of matter distribution according to standard
cosmological model ΛCDM predictions. The detailed knowledge about how window
functions assigns mass to cells was essential to predict its influence in the shape of
power spectrum measured, specially in small scales.

Throughout the three months of the project, has acquired the basis to understand the
current cosmological theories as well as the limitations in parameter constrains. The
theoretical development of the tasks not only expands his wisdom about statistical
techniques and Fourier space properties, it also shows how to apply this mathematical
tools to analyze the gravity effects over matter distribution. Apart from this, pro-
gramming skills in Python language have been improved to be able to approach the
calculations required by the study, specially skills related with code efficiency.

In order to improve as the results obtained, as well as the methodology applied in this
bachelor’s project, it is proposed to implement the measurement of correlation function
and direct Fourier transform in parallel code using C++ to reduce the computational
time, which was one the most important difficulties in the development of work. This
way, it could be possible try to use more random references in order to discuss the L-S
error results. It would be interesting to increment the size of the box of the simulation,
this way we could see more details in Power Spectrum and correlation function. A
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higher mass resolution, i.e., to run a simulation with larger number of particles (for a
fixed volume) will increase the details observed in the analysis of one-point and two-
point correlation function , allowing to increment the size of the grid , increasing the
amount of modes in Fourier space. In addition, it would be also interesting to discuss
the influence of the resolution offered by PKDGRAV3 related with the softening length,
allowing to establish a limit henceforth not consider as true the measurements. To go
further in cosmological analysis, the analysis of the slope in Power Spectrum in small
scales could be done in order to apply a fractal analysis of the matter distribution to
show more details about the structure of the survey.



Bibliography
Barrow J., Coles P., 1990, MNRAS, 244, 188

Cepa J., 2007, Cosmología Física. Ediciones Akal

Cooley J. W., Turkey J. W., 1965, Math. Comput., 19: 297-301

Cui W., Liu L., Yang X., Wang Y., Feng L., Springel V., 2008, ApJ, 687, 738

Dodelson S., 2003, Modern Cosmology. Academic Press, Elsevier Science

Douglas Potter Joachim Stadel R. T., 2016, Computational Astrophysics and Cosmol-
ogy

Eisenhart L. P., 1961, Continuous Groups of Transformations. Dover Publications, New
York

Eisenhart L. P., 1962, Riemannian Geometry. Princeton University Press, Princeton,
N. J.

Fry J. N., 1985, ApJ, 289, 10

Griffiths L. M., Barbosa D., Liddle A. R., 1999, MNRAS, 308, 854

Helgason S., 1962, Differential Geometry and Symmetric Spaces. Academic Press, New
York

Hockney R. W., Eastwood J. W., 1981, Computer simulations using particles. Mc
Graw-Hill

Hongguang Bi Li-Zhi Fang L. F. Y. J., 2003, ApJ, 598, 1

Hu D. E. . W., 1997, ApJ, 511 5

Hubble E., 1934, ApJ, 79, 8

Jarosik N., et al., 2011, ApJS, 192, 14

Jeans J. H., 1902, Philosophical Transactions of the Royal Society of London Series A,
199, 1

Jing Y. P., 2005, ApJ, 620, 559

http://dx.doi.org/10.1086/592079
https://ui.adsabs.harvard.edu/abs/2008ApJ...687..738C
http://dx.doi.org/10.1046/j.1365-8711.1999.02777.x
https://ui.adsabs.harvard.edu/abs/1999MNRAS.308..854G
http://dx.doi.org/10.1088/0067-0049/192/2/14
https://ui.adsabs.harvard.edu/abs/2011ApJS..192...14J
http://dx.doi.org/10.1098/rsta.1902.0012
https://ui.adsabs.harvard.edu/abs/1902RSPTA.199....1J


Bibliography 39

Jones P. C. . B., 1990, MNRAS, 248, 1

Kirchner J. W., 2005, Phys. Rev. E, 71, 066110

Landy S. D., Szalay A. S., 1993, ApJ, 412, 64-71

Lewis A., 2014, DAMTP, CITA, IoA, Sussex

Marchese L., 2018, Friedmann equations. The Newtonian derivation of Friedmann equa-
tions and an introductory study of them as a dynamical system

NASA 2019, CAMB Web Interface, https://lambda.gsfc.nasa.gov/toolbox/tb_camb_form.cfm

Nyquist H., 1928, Transactions of the American Institute of Electrical Engineers, 47,
617

Padmanabhan T., 1993, Structure formation in the universe. University of Cambridge

Peebles P., 1980, The large scale structure of the universe. Princeton: Princeton Uni-
versity Press

Planck Collaboration et al., 2016, A&A, 594, A13

Pérez Hernández F. J., 2018, Relatividad general (Grado en Física). Departamento de
Astrofísica, Universidad de La Laguna

Requena Plens J. M., Rocamora Zamora J., 2019, Plantilla TFG/TFM

Ridler 1977, Essential Relativity. Special, general and cosmological. Springer-Verlag

Weinberg S., 1972, Gravitation and cosmology, principles and applications of the gen-
eral theory of relativity. John Wiley & Sons Inc

http://dx.doi.org/10.1109/T-AIEE.1928.5055024
https://ui.adsabs.harvard.edu/abs/1928TAIEE..47..617N
https://ui.adsabs.harvard.edu/abs/1928TAIEE..47..617N
http://dx.doi.org/10.1051/0004-6361/201525830
https://ui.adsabs.harvard.edu/abs/2016A%26A...594A..13P


8 Appendix I: Friedmann equations
Firstly, we will introduce the metric considered in The Standard Cosmological Model
and then we will use it to obtain the Friedmann equations from Einstein’s field equa-
tions.

According to the development of Weinberg (1972), Eisenhart (1961), Eisenhart
(1962), Helgason (1962), the most general form for a metric consistent with the Cos-
mological Principle is given by:

ds2 = gab(v)dv
advb + f(v)

(
du2 +

k(u · du)2)
1− ku2

)
(8.1)

where u and v are vectors that belong to the different maximal symetric subespaces
that is composed the general space, f(v) is a positive function and k is the sign of the
kurvature factor K, which can take the values:

k = +1 if max. sym. subsp. has K > 0

k = −1 if max. sym. subsp. has K < 0

k = 0 if max. sym. subsp. has K = 0

(8.2)

If we take the coordinates: 
∫
(−g(v)) 1

2dv ≡ t

u1 ≡ r sin θ cosφ
u2 ≡ r sin θ sinφ

u3 ≡ r cos θ

(8.3)

We obtain the Robertson-Walker-Friedmann-Lemaitre metric Cepa (2007),Weinberg
(1972),Padmanabhan (1993),Ridler (1977):

ds2 = −dt2 + a2(t)

(
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

)
(8.4)

where a(t) is the scale factor. In this process, we obtain the expression for the metric
following geometrical arguments, without introducing the distribution of matter and
energy of the universe, so the scale factor cannot be determined. In order to obtain it,
Einstein’s field equations must be solved.
Einstein’s field equations Weinberg (1972),Cepa (2007), Pérez Hernández (2018), Ridler
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(1977) are given by:
Rµν −

1

2
Rgµν = 8πTµν − Λgµν (8.5)

where Rµν is the Ricci curvature tensor, R is the Ricci scalar, gµν is the metric tensor
and Tµν is the stress-energy tensor. The gravitational constant G and the speed of light
in vacuum c are taken in natural scale where both are equal to one. The cosmological
parameter Λ can be introduced in the equation according to the range of freedom of
the solution of the metric.

For the case of an ideal fluid, i.e., a fluid in which viscosity forces can be neglected,
we obtain Cepa (2007),Peebles (1980),Pérez Hernández (2018),Weinberg (1972):

Rα
β −

1

2
Rδαβ + Λδαβ = 8π[−(p+ ρ)δα0 + p]δαβ (8.6)

where δαβ is the Kroneker delta and p and ρ are the pressure and density field respec-
tively.
From (8.4), measuring the Christoffel symbols, the components of the Ricci curvature
tensor are given by Cepa (2007),Weinberg (1972),Ridler (1977):

R0
0 =

3ä
a

R1
1 = R2

2 = R3
3 =

ä
a
+ 2ȧ2+2ϵ

a2

Rα
β = 0 if α ̸= β

(8.7)

So, the Ricci scalar is obtained as a sum of each component:

R = 6

(
ä

a
+

ȧ2 + ϵ

a2

)
(8.8)

From (8.6), using (8.7) and (8.8), we can obtain the pressure and density field as
function of the scalar factor and its derivatives:p = − 1

8π

(
2ä
a
+ ȧ2+ϵ

a2
− Λ

)
if α = β = 1, 2, 3

ρ = 1
8π

(
3 ȧ2+ϵ

a2
− Λ

)
if α = β = 0

(8.9)

where we replace the pressure expresion in the second identity using the first.

If we reorganize the first identity and then combine both equations properly, we
finially find the Fridmann equations Cepa (2007),Padmanabhan (1993),Peebles (1980),Wein-
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berg (1972):

H2 =

(
ȧ

a

)2

=
8π

3
ρ− k

a2
+

Λ

3
,(

ä

a

)
= −4π

3
(ρ+ 3p) +

Λ

3

(8.10)

The redshift is defined as Weinberg (1972),Cepa (2007), Padmanabhan (1993):

z =
λ0 − λ1

λ1

(8.11)

where λ0 is the wavelength of a wave measured at present days and λ1 the wavelenth
measured in the source.
According to Relativistic Doppler effect, redshift can be written as:

z =
a(t0)

a(t)
− 1 (8.12)

with t0 the present days time. If we use a Taylor expansion, redshift can be expressed
as function of the Fridmann equations evaluated at present days:

z ≈ H0(t0 − t) +H2
0 (1 +

1

2
q0)(t0 − t)2 (8.13)

where H0 is the Hubble’s constant at present days and q0 = − ä
aH

∣∣∣
t=t0

is the acceleration
parameter.



9 Appendix II: Linear Power
Spectrum

Let r be the coordinates of a space whose metric is given by (8.4). Consider the set of
moments of the Boltzmann equation, composed by Peebles (1980), Dodelson (2003):

• Mass conservation equation: (
δρ

δt

)
r
+∇r(ρu) = 0 (9.1)

• Motion equation: (
δu
δt

)
r
+ (u∇r)u = −∇rΦ (9.2)

and the Poisson equation, which denotes the source of gravity and closes the system:

∇2
rΦ = 4πGρ (9.3)

where u is the velocity, ϕ is the potential field of the force, ∇ is the gradient operator
and ∇2 is the Laplace operator.

We define the comoving coordinates as follows:

x =
1

a
r (9.4)

u = (̇a)x + v(x, t) (9.5)
Consider a function shuch as f = f(t,x). Then its parcial derivatives respect to t

and x as a function of r coordinates are given by:(
δf

δt

)
r
=

(
δf

δt

)
x
− ȧ

a
x∇f

∇ = a∇r

(9.6)

where we rename ∇ = ∇x.
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We introduce the density field as a function of overdensity function Peebles (1980),Do-
delson (2003):

ρ = ρb(t)(1 + δ(x, t)) (9.7)

From (9.1), (9.6),(9.7), we find:(
δ

δt
− ȧ

a
x∇
)
[ρb(1 + δ)] +

ρb
a
[(1 + δ)(ȧx + v)] = 0 (9.8)

Taking time derivatives in (8.10), we find that ρ̇b = −3 ȧ
a
, so:

δ(δ)

δt
+

1

a
∇[(1 + δ)v] = 0 (9.9)

For Poisson’s equation (9.3), we find:

1

a2
∇2Φ = 4πGρb(1 + δ) (9.10)

If we consider the field ϕ(x, t) from Fridmann equations (8.10), such as:

Φ(x, t) = ϕ(x, t) + 2

3
πGρba

2x2 +
1

6
Λa2x2 (9.11)

we find:
∇2ϕ = 4πGa2ρbδ (9.12)

For motion equation (9.2), we find:(
δ

δt
− ȧ

a
x∇
)
(ȧx + v) + 1

a
(ȧx + v)∇(ȧx + v) =

−1

a
∇ϕ− 4

3
πGρbax +

1

3
Λax

(9.13)

which we can simplify as:

δv
δt

+
ȧ

a
v +

1

a
(v∇)v = −1

a
∇ϕ (9.14)

Using a linear perturbation description, we will neglect terms of order vδ and v2,
obtaining from (9.9) and (9.14):{

δ(δ)
δt

+ 1
a
∇v = 0

δv
δt

+ ȧ
a
v + 1

a
∇ϕ = 0

(9.15)
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Finally, using Poisson’s equation (9.12), we find:

δ2(δ)

δt2
+ 2

ȧ

a

δ(δ)

δt
= 4πGρbδ (9.16)

The general solution of this equation is:

δ = A(x)D+(t) +B(x)D−(t) (9.17)

where D+(t) is a increasing function of time and D−(t) a decreasing function of time,
both independent. According to observations, we consider that D−(t) is not a physical
solution, so δ = A(x)D+(t).

From the calculation in Dodelson (2003), bearing in mind the Power Spectrum def-
inition (4.23), we can write:

P (k) = 2πδ2H
kn

Hn+3
0

T 2(k)

(
D+(z)

D+(z = 0)

)2

(9.18)

where δH is a constant, n is the spectral index, T (k) is the transfer function and D+(z)
is called the growth factor.
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