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ABSTRACT

Aims The 50th anniversary of the publication of the seminal book, The Theory

of Island Biogeography, by Robert H. MacArthur and Edward O. Wilson, is a

timely moment to review and identify key research foci that could advance

island biology. Here, we take a collaborative horizon-scanning approach to

identify 50 fundamental questions for the continued development of the field.

Location Worldwide.

Methods We adapted a well-established methodology of horizon scanning to

identify priority research questions in island biology, and initiated it during the

Island Biology 2016 conference held in the Azores. A multidisciplinary working

group prepared an initial pool of 187 questions. A series of online surveys was

then used to refine a list of the 50 top priority questions. The final shortlist

was restricted to questions with a broad conceptual scope, and which should

be answerable through achievable research approaches.

Results Questions were structured around four broad and partially overlapping

island topics, including: (Macro)Ecology and Biogeography, (Macro)Evolution,

Community Ecology, and Conservation and Management. These topics were

then subdivided according to the following subject areas: global diversity patterns

(five questions in total); island ontogeny and past climate change (4); island rules

and syndromes (3); island biogeography theory (4); immigration–speciation–ex-
tinction dynamics (5); speciation and diversification (4); dispersal and coloniza-

tion (3); community assembly (6); biotic interactions (2); global change (5);

conservation and management policies (5); and invasive alien species (4).

Main conclusions Collectively, this cross-disciplinary set of topics covering

the 50 fundamental questions has the potential to stimulate and guide future

research in island biology. By covering fields ranging from biogeography, com-

munity ecology and evolution to global change, this horizon scan may help to

foster the formation of interdisciplinary research networks, enhancing joint

efforts to better understand the past, present and future of island biotas.
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INTRODUCTION

In 1967 Robert H. MacArthur and Edward O. Wilson pub-

lished The Theory of Island Biogeography (MacArthur &

Wilson, 1967), where they expanded upon an earlier paper

in which they first described their equilibrium theory

(MacArthur & Wilson, 1963). In these works, they devel-

oped a general mathematical theory to explain the regula-

tion of species richness on islands. Their theory was based

on the argument that island biotas eventually reach a

dynamic equilibrium between processes that add species,

particularly by immigration (plus, for more remote islands,

speciation; see MacArthur & Wilson, 1963), counterbal-

anced by processes that cause local extinction of species.

Specifically, the model at the core of their theory predicts

that the rates of these two key processes are determined by

geographical context, represented in the first instance by

island area and isolation. Whereas their general theory was

motivated by a desire to formulate ecological and evolu-

tionary theories based upon population level processes and

to introduce a new rigour into the discipline of island bio-

geography, their theorizing was inspired by documented

patterns of species abundance, species richness and turnover

within and across islands (Lomolino & Brown, 2009;

Wilson, 2010).

The seminal work of MacArthur and Wilson has subse-

quently stimulated a substantial research effort on island

biogeography and biodiversity (Whittaker & Fern�andez-

Palacios, 2007; Losos & Ricklefs, 2010), and promoted the

exploration of islands as model systems for a more general

understanding of biological communities (e.g. Warren et al.,

2015). The similarities between island archipelagos and frag-

mented continental landscapes have also triggered interest

in applying MacArthur and Wilson’s theory in conservation

science; for instance, by deriving principles of protected

area design and estimation of species extinctions in frag-

mented landscapes (e.g. Diamond, 1975). In addition to the

colonization–extinction dynamics forming the core of

MacArthur & Wilson’s (1967) theory, the authors included

speciation as a term in the model within the 1963 descrip-

tion of equilibrium theory, and provided a 35-page chapter

on ‘evolutionary changes following colonization’ within their

1967 monograph. Evolutionary processes, however, were set

aside from the early chapters of the monograph, excluded

from statements of the Core IBT (Island Biogeography The-

ory) and the famous intersecting curves graphic, and were

not explicitly integrated in the neutral mathematical formu-

lation of the model (leading to the erroneous but oft

repeated claim that they ignored speciation). The subse-

quent development of molecular genetic tools for evolution-

ary analysis have prompted renewed interest in the

integration of speciation into the Core IBT (e.g. Emerson &

Gillespie, 2008; Rosindell & Phillimore, 2011; Valente et al.,

2015), and improved estimation of historical immigration

dynamics based on phylogenetic relationships among species

(Ronquist & Sanmart�ın, 2011). The Core IBT is in essence a

biologically neutral model – or close to it –, occupying the

first 67 pages of the 1967 monograph, with much of the

next 116 pages devoted to theory concerning population-

and species-level traits of island biotas and their dynamics

(MacArthur & Wilson, 1967). Progress on these latter

themes has arguably been slower than on issues surround-

ing the Core IBT, but recent advances in genomic tech-

niques, trait biology and analytical capacity should move

this agenda forward (e.g. Gillespie et al., 2012; Heleno &

Vargas, 2015; Santos et al., 2016a). Additionally, while the

Core IBT referenced long-term biological dynamics, it did

not take into account the dynamic nature of islands them-

selves, and here too, notable advances are being made (e.g.

Whittaker et al., 2008; Borregaard et al., 2016; Fern�andez-

Palacios et al., 2016).

Fifty years on from its publication, MacArthur & Wilson’s

(1967) book remains one of the most influential texts on

ecology and evolution, with continued debate over its

strengths and limitations. It has been, and will continue to

be, a springboard for research on the origin and maintenance
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of biological communities, with particular reference to mar-

ine island systems, but also extending to other island-like

systems. Half a century since this seminal contribution, it is

time to review both the new and outstanding challenges fac-

ing the broad discipline of island biology, as well as particu-

larly promising research avenues (see e.g. Warren et al.,

2015; Santos et al., 2016b). The present article focuses on

identifying the 50 most fundamental questions for present

and future island biology research. Inspired by previous

studies seeking to identify priority research questions within

a scientific field based on a cornucopia of proven methods

(e.g. Pretty et al., 2010; Sutherland et al., 2011, 2013; Seddon

et al., 2014; Kennicutt et al., 2015), we present the outcome

of a survey-based approach initiated at Island Biology 2016:

the 2nd International Conference on Island Evolution, Ecology

and Conservation, which was held at the University of Azores

in Terceira Island, July 18–22, 2016.

MATERIALS AND METHODS

Prior to the Island Biology 2016 conference, a total of 21

conference attendees (see author list) were identified by the

five survey coordinators (J.P., R.J.W., P.A.V.B., J.M.F.P. and

B.C.E.), to constitute the ‘50 fundamental questions in

island biology’ working group in which each member

encompasses expertise in at least one of the following sub-

ject areas: (1) (Macro)Ecology and Biogeography, (2) Speci-

ation and Extinction, (3) Community Ecology, (4) Biotic

Interactions, (5) Conservation Biology and Global Change,

(6) Dispersal and Colonization, and (7) Palaeobiogeography

and Palaeoecology. Two or three members of the working

group were assigned to each subject area, and they had the

possibility to recruit one or two more members to their

panel. An eighth panel (8) was also formed to identify any

key questions that fell outside the scope of the seven origi-

nal subject areas. Research interests within the ‘50 funda-

mental questions in Island Biology’ working group represent

a broad array of geographic areas, model organisms and

networks of international collaborators. The members of

each subject group were asked to identify at least 15 ques-

tions that they viewed as of fundamental interest within

their subject panel. Members were encouraged to consult

broadly with colleagues, with the mentioned option to invite

non-conference attendees to join their panels, to provide

additional expertise. A total of 197 questions were compiled

in this process, which were screened for duplication or

ambiguity by the five survey coordinators, resulting in a

curated list of 187 questions (hereafter termed List 1;

Fig. 1). To facilitate the practical implementation of the first

voting, questions from List 1 were redistributed into four

main island biology topics (e.g. see Carlquist, 1974; Whit-

taker & Fern�andez-Palacios, 2007; and Losos & Ricklefs,

2010): (1) Island (Macro)Ecology and Biogeography (52

questions) included questions from the subject areas of

(Macro)Ecology and Biogeography, and Palaeobiogeography

and Palaeoecology; (2) Island (Macro)Evolution (63

questions) was used to group questions on Speciation and

Extinction, and Dispersal and Colonization; (3) Island Com-

munity Ecology (27 questions) comprised questions from

Community Ecology, and Biotic Interactions; and (4) Island

Conservation and Management (45 questions) included

questions from Conservation Biology and Global Change.

The 407 attendees of the Island Biology 2016 conference

(see http://www.islandbiology2016.uac.pt) were invited to

participate in four online surveys (Survey 1), one for each

of the four amended groups of topics above. Across the four

surveys, the conference attendees could score each question

as ‘fundamental’, ‘not fundamental’ or leave the answer

blank. The order of the questions was randomized for each

new login, so that a specific order of presentation of ques-

tions could not bias the outcome of the surveys; this strat-

egy was retained for the two following online surveys (see

below). For each of the four topics, survey participants were

also given the opportunity to submit one additional ques-

tion, if they felt such a question was missing from List 1.

At the end of Survey 1, the original survey questions were

ranked according to the total number of participants who

scored a given question as ‘fundamental’, and the top 80

questions selected (List 2). Then, the 44 new questions pro-

posed by survey participants (List 3) were merged with an

equivalent number of questions from List 2, specifically the

44 lowest ranked key questions, to create a second survey

(Survey 2) with 88 questions (List 4). The questions from

List 4 were voted as ‘fundamental’ or ‘not fundamental’ by

the 29 members of the ‘50 fundamental questions in island

biology’ working group, and ranked. The top 44 questions of

List 4 were then refined to eliminate redundant questions or

ambiguities through discussions among the coordinators of

the survey, and then merged with the top 36 questions kept

from List 2. The list of 80 questions (List 5) was then subject

to a third online survey (Survey 3) involving a broader par-

ticipation by extending the invitation to participate to

approximately 400 attendees of the Island Biology 2014 con-

ference held in Honolulu, Hawaii, some of whom did not

attend the Island Biology 2016 conference, and also to the

members of the following island biology related interest

groups: American Society of Naturalists; British Ecological

Society Conservation Specialist Interest Group; Soci�et�e

Franc�aise d’Ecologie; Ecological Society of America; Hellenic

Ecological Society; International Biogeography Society; New

Zealand Ecological Society; the Spanish and the Portuguese

Ecological Societies, and other specific working groups and

e-mailing lists related to island biology that the authors

could identify.

Study shortcomings

Across the different phases of this participative process, a

determined effort was made to select experts, questions and

voters, representative of the full breadth of island biology

research. In addition, the inclusion of 44 questions suggested

online by anonymous attendees of the Island Biology 2016
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conference further contributed to increase the diversity of

backgrounds and expertise reflected in the questions identi-

fied (see Fig. 1). However, despite these efforts, it would be

naive to regard our list as definitive and unbiased, as it inevi-

tably reflects the interests of the particular group of voters

who were contacted and participated in our survey (see e.g.

Sutherland et al., 2013; Seddon et al., 2014). For instance,

from the 27 initial questions on Palaeoecology & Palaeobio-

geography included in the online Survey 1, only one question

(see Q28 in Results section) remained in the final list of 50

questions. This may reflect the fact that only about 10% of

the final survey voters identified Palaeoecology & Palaeobio-

geography as one of their fields of expertise (see Results).

Such biases in the composition of the biologists sampled have

undoubtedly influenced the balance of the questions pre-

sented here. Despite such shortcomings, by performing sev-

eral voting and discussion rounds with a large group of

experts from a wide range of organizations, fields and geo-

graphical regions (see Results, below), we hope to have mini-

mized the consequences of individual preferences and other

subjective choices.

RESULTS

The number of participants voting in the three rounds of

online voting varied. In the first online survey (Survey 1),

the number of participants was distributed into the four

topics as follows: Island (Macro)Ecology and Biogeography

(104 participants); Island (Macro)Evolution (84); Island

Community Ecology (82); Island Conservation and Manage-

ment (91). This round of voting was completely blind and

no information about the scientific profile of the participants

was requested. In the second online survey (Survey 2), only

the 29 authors of this study voted, with each person voting

on all the questions irrespective of topic area.

In the final round of online voting (Survey 3), 303 people

participated, with the 80 submitted questions receiving on

average 286.6 (SD � 2.3) votes. A large proportion of the 80

questions (77 out of the 80) were considered as ‘fundamen-

tal’ by the majority of the voters, and the final ranking was

thus based on the proportion of ‘fundamental’ votes with

respect to the total numbers of votes (‘fundamental’ + ‘not

fundamental’) received for each question. The percentage of

Figure 1 Conceptual scheme showing the procedure used to identify the 50 fundamental questions in island biology (50FQIB).
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fundamental votes varied between 79% (top) and 39% (the

80th question), while the last question making it into the top

50 attracted 62% of positive votes.

The scientific profile of the third survey participants was

highly diverse, being distributed across thematic areas in

island biology as identified by the participants themselves as

follows: Conservation, Management & Global Change (290

participants); Community Ecology (141); Biogeography

(137); Biotic Interactions (99); (Macro)Ecology (76); Disper-

sal (69); (Macro)Evolution (58); Island Theory (45); Palaeoe-

cology & Palaeobiogeography (30); and Plant or/& Animal

Physiology (28). An additional 45 participants identified with

11 less common disciplines. In total, 68.7% (207) of partici-

pants work on islands and/or island-habitat types, while

17.8% (54) of voters focus their research on other ecological

systems. Only 10.2% (31) of participants work both on

island and non-island systems. From the voters that provided

information regarding the geographic circumscription of

their study areas, the following insular systems were well

represented: Oceania, including Australia, Melanesia,

Micronesia, New Zealand, Polynesia, Gal�apagos and Juan

Fern�andez (57 participants); North Atlantic including

Macaronesia (39); Mediterranean (19); Caribbean (13);

Indian Ocean, including the Mascarenes, Socotra and

Madagascar (13); and Indonesia (6).

Below we present the top 50 priority questions in island

biology identified in the present study. For convenience in

presenting the results, questions were compiled into the

four main island topics used earlier (see List 1 above): (1)

Island (Macro)Ecology and Biogeography (including 16

questions); (2) Island (Macro)Evolution (11); (3) Island

Community Ecology (8); and (4) Island Conservation and

Management (15). Information about each question’s final

rank (#) and percentage of votes received (%) is also

provided.

Island (Macro)Ecology and Biogeography

Global diversity patterns

Q1. What are the relative roles of spatial, historical and ecologi-

cal processes in driving taxonomic, phylogenetic and functional

diversity patterns of insular systems? [# 7; % = 75.2]

Q2. How do fundamental biogeographic processes interact

through time and space to establish the island species–area rela-

tionship? [# 22; % = 70.5]

Q3. How do taxonomic, phylogenetic and functional diversity

compare between islands and ecologically similar continental

areas? [# 27; % = 68.7]

Q4. How important are islands as refuges for now extinct main-

land lineages and/or ecosystems? [# 45; % = 64.5]

Q5. How important are oceanic islands as generators of biodiver-

sity and for the assembly of continental biota through reverse-

colonization and/or colonization de novo? [# 49; % = 62.2]

The questions in this section share an emphasis on fun-

damental large-scale topics. The first question [Q1], in par-

ticular, invokes a research agenda covering all types of

island systems and multiple facets of biodiversity. This

question is a worthy reminder of the importance of inte-

grating the dynamics of historical/geographical, long-term

environmental, and contemporary ecological time-scales in

analyses of insular biota. Island biologists need to be aware

of and integrate knowledge from other natural sciences, in

particular from earth systems science, in understanding

long-term dynamics of island platforms as theatres for the

evolutionary play (e.g. Price & Clague, 2002; Fern�andez-

Palacios et al., 2011; Ali & Aitchison, 2014; Skipwith et al.,

2016). How key biogeographical processes of dispersal/mi-

gration, speciation and extinction interact to shape the

form of the island species–area relationship [Q2] remains

an important topic and in particular how these processes

and patterns vary among different island contexts, including

oceanic, continental-shelf, continental fragment and habitat

islands (e.g. Triantis et al., 2012; Pati~no et al., 2014b; Mat-

thews et al., 2016). Comparisons between taxonomic (typi-

cally the species as unit of analysis), phylogenetic and

functional diversity responses across islands [see also Q29]

and between islands and continents [Q3] represent a very

recent development, on which little research has so far been

conducted (but see e.g. Whittaker et al., 2014 and; Weigelt

et al., 2015; for examples of intra and inter-archipelago

analyses, respectively). Our perception of the roles of

islands [Qs 4, 5] as macroevolutionary sinks (sensu Gold-

berg et al., 2005), rather than as sources, has been chal-

lenged in recent years, and possibly needs to be reassessed

(Bellemain & Ricklefs, 2008). It was long understood that,

in general, whereas islands received colonist species from

continents, the reverse process rarely, if ever, happened (e.g.

Carlquist, 1974). This unidirectional view of island colo-

nization was consistent with the notion that islands, as spe-

cies poor and disharmonic systems (i.e. lacking the full

array of forms found on the mainland) were typified by

species that had become poor competitors (in the broad

sense). Moreover, islands were viewed as refugial holdouts

of persistence for a number of ancient forms (e.g. Yoder &

Nowak, 2006; Vargas, 2007; Wood et al., 2015; Shaw &

Gillespie, 2016), swept away by more recently evolved com-

petitors from former mainland bastions. More recently, it

has become apparent that so-called back-colonizations (or

boomerangs sensu Caujap�e-Castells, 2011) from islands to

mainlands, or movements across ocean basins via islands

and colonization de novo of continents, have occurred and

include some colonist lineages that have had great impor-

tance in shaping current biodiversity patterns. Examples

include lineages of birds (e.g. Filardi & Moyle, 2005; Jøns-

son et al., 2011; Jønsson & Holt, 2015), insects (Grady &

DeSalle, 2008) and plants (Carine et al., 2004; Pati~no et al.,

2015; Condamine et al., 2016). For the very reason that

addressing these questions requires an integrative approach

with the intersection of disparate fields and methodological
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approaches, these broad questions [Qs 1–5] remain of cen-

tral importance within island biology, with evident potential

to continue to generate significant changes in our under-

standing of this field.

Island ontogeny and past climate change

Q6. How do rates of colonization, speciation and extinction

change during island ontogeny? [# 9; % = 73.4]

Q7. How do diversification rates of island lineages change with

island age? [# 38; % = 66]

Q8. How important were past geological events and climate

change in promoting island colonization and altering dispersal

pathways? [# 20; % = 70.5]

Q9. How has climate change influenced speciation and extinction

within islands? [# 12; % = 72.7]

Questions 6–9 embrace specific challenges to our under-

standing of the long-term dynamics of insular systems.

Notwithstanding the diverse geological origins and develop-

mental histories of islands, a substantial number of them are

remote, volcanic in origin, and follow a broadly similar

ontogeny. Typically, these islands begin with a building

phase, followed by a gradual shift into erosion and subsi-

dence, eventually leading to them becoming merely sub-

merged features. This developmental pathway, or certain

variants of it, and their biological consequences are inte-

grated within the general dynamic model of oceanic island

biogeography (Whittaker et al., 2008; Borregaard et al.,

2016), which offers predictions concerning rates of coloniza-

tion, speciation, diversification and extinction and how they

vary over the developmental history of islands. Testing such

predictions for speciation and extinction is challenging (see

[Qs 17–20]), and further complicated when island age is also

integrated [Qs 6, 7]. It requires a focus on comparing island-

specific rates among islands of different maturity across

archipelagos, as opposed to within-lineage rates without

implicit reference to island specific rates (sensu Bennett &

O’Grady, 2013), suggesting a need for innovative approaches

involving the comparative analysis of large numbers of time-

calibrated phylogenies.

Improved geodynamic data concerning past climate

change, wind connectivity, ocean currents and sea-level oscil-

lations over the Pleistocene permit the development of more

sophisticated models for inferring shifts in the configuration

of islands and their environment (area, isolation and climate)

through time, and their availability has generated increasing

interest in the implications of these long-term changes for

island biodiversity patterns and processes (e.g. Carine, 2005;

Dalsgaard et al., 2013; Ali & Aitchison, 2014; Rijsdijk et al.,

2014; �Avila et al., 2016; Borregaard et al., 2016; Fern�andez-

Palacios, 2016; Fern�andez-Palacios et al., 2016; Steinbauer

et al., 2016a,b; Weigelt et al., 2016). Integrating colonization

dynamics into these models [Q8] may benefit from

recent comparative phylogenetic approaches (Ronquist &

Sanmart�ın, 2011), while understanding how climate change

has influenced rates and patterns of speciation and extinction

on islands [Q9] appears to be a particularly challenging area

of study.

Island rules and syndromes

Q10. Is trait evolution fundamentally different on islands than

on continents? [# 42; % = 64.9]

Q11. How robust are the various island rules and syndromes

relating to body size, loss of dispersal, colouration, breeding sys-

tem, woodiness and clutch size, among others? [# 47; % = 63.3]

Q12. To what extent are island populations genetically impover-

ished, compared to comparable mainland populations? [# 50; %

= 62]

Since the earliest days of scientific study of island biol-

ogy, it has been understood that islands possess peculiar

forms and otherwise atypical subsets of ecological and taxo-

nomic groups (an aspect of island disharmony). Some part

of this arises from a colonization filter through dispersal

limitation. Following successful colonization and establish-

ment on an island, recently arrived colonists are potentially

exposed to a range of novel biotic and abiotic conditions

that have, in many instances, triggered notable morphologi-

cal, behavioural and ecological shifts (e.g. Kavanagh &

Burns, 2014; Traveset et al., 2015). Indeed, many of these

features were remarked upon and formalized into syn-

dromes or rules in classic works, particularly in Island Life

by Alfred Russel Wallace (1880) and Island Biology by Sher-

win Carlquist (Carlquist, 1974). Not surprisingly, chapter 7

of MacArthur & Wilson (1967), entitled ‘Evolutionary

Changes Following Colonization’, dealt with some of the

most intriguing island syndromes, such as the loss of dis-

persal capacity. Specifically, questions 10 and 11 reflect the

long-lasting interest in phenomena such as flightlessness,

gigantism, super-generalism, or secondary woodiness (re-

viewed in e.g. Jost, 2007; Whittaker & Fern�andez-Palacios,

2007; Losos & Parent, 2010; Lens et al., 2013), where

empirical evidence has often provided conflicting signals

(e.g. for the loss of dispersability, see Cody & Overton,

1996; Pati~no et al., 2013; Kavanagh & Burns, 2014; Vargas

et al., 2014).

A few decades ago, a number of seminal studies (e.g.

Frankham, 1997) introduced the idea that island populations

are typically characterized by low levels of genetic diversity

[Q12]. Recent analyses of the spatial distribution of genetic

variation across island and continental regions have, how-

ever, provided evidence that the expectation of low genetic

diversity cannot always be generalized to island assemblages

(e.g. Fern�andez-Mazuecos & Vargas, 2011; Hutsem�ekers

et al., 2011; Garc�ıa-Verdugo et al., 2015; but see Illera et al.,

2016). It seems likely that future research on island syn-

dromes will need to continue to pay critical attention to: (1)

the statistical robustness of the patterns concerned (e.g. Meiri

et al., 2008); (2) causal explanations for the patterns,
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including the extent to which they reflect in situ evolutionary

change versus non-random colonization/persistence (e.g.

Valido et al., 2004; Lomolino et al., 2013); and (3) the

mechanistic explanations for such distinctive evolutionary

pathways (e.g. Burns et al., 2012; Novosolov et al., 2013;

Itescu et al., 2014). As these island-specific syndromes

develop from the same eco-evolutionary processes that oper-

ate on mainlands, research on islands and continental coun-

terparts (e.g. closely related taxa) [Q12] will be key to

enhancing our fundamental understanding of the underlying

mechanisms.

Island biogeography theory

Q13. How do the dynamics of island communities scale up to

generate the biogeographical patterns predicted by island biogeo-

graphical theories? [# 37; % = 66.3]

Q14. How can we reconcile island biogeography theories with

other ecological and evolutionary theories to contribute to a gen-

eral biodiversity theory? [# 15; % = 72.1]

Q15. How applicable are island biogeographical theories derived

from real islands to other forms of insular system, such as sky

islands and seamounts? [# 48; % = 62.7]

Q16. How can we best incorporate population genetic and/or

phylogenetic data to advance models of island biogeography? [#

28; % = 68.3]

Island biogeography has always been a driver for the

development of general theories in ecology and evolution.

Hubbell’s (2001) ‘neutral theory of biodiversity and biogeogra-

phy’ is one prominent example of how reflection on island

theory (specifically MacArthur and Wilson’s theory) in a

broader context, has continued to generate novel research

directions (e.g. Warren et al., 2015; Santos et al., 2016b).

Neutral theory provides one approach to scaling up from

local scale species abundance distribution patterns and

dynamics to emergent biogeographical patterns [Q13], as

exemplified by recent work by Rosindell and colleagues (e.g.

Rosindell & Phillimore, 2011; Rosindell & Harmon, 2013).

Although questions specifically on species abundance distri-

butions failed to make the final cut in the present survey, the

significance of improving understanding of species abun-

dances in insular settings, and how they link to other

macroecological patterns (such as species–area relationships)

is implicit in questions 13, 14 and 33 (see e.g. Fattorini et al.,

2016).

Another facet of island theory that can be traced back

directly to MacArthur & Wilson (1967) is the application of

theory developed with marine islands (i.e. ‘real islands’) in

mind to other insular contexts [Q15], be they mountain tops

(sky islands, e.g. Sklen�a�r et al., 2014; Steinbauer et al.,

2016b), or other habitat islands isolated by a contrasting

non-water matrix type (e.g. Kisel et al., 2011; Matthews

et al., 2016). MacArthur & Wilson themselves highlighted

the application of their equilibrium theory to habitat islands

in the context of the fragmentation of formerly extensive,

contiguous ecosystems by anthropogenic land use change,

and this remains an area of interest and contention, with the

quantitative implications of such processes for biodiversity

conservation remaining uncertain (Triantis et al., 2010; Axel-

sen et al., 2013; He & Hubbell, 2013; Matthews et al., 2016).

Island biogeographic theory invokes historical biological

processes (colonization, speciation, extinction) to explain

contemporary species distribution patterns, which has yielded

a large body of phylogenetic and population genetic island-

focussed research. Such studies help advance models of

island biogeography [Q16], link short term, within-island

ecological processes to patterns emerging on large spatial or

evolutionary scales, and thus help to unify theories of ecol-

ogy and biogeography (e.g. Johnson et al., 2000; Steinbauer,

2017; see also Qs 17–20). Future statistical advances towards

this goal may include comparing the fit of data among the

predictions of competing phylogenetic and population

genetic simulation models (e.g. Chan et al., 2014; Pati~no

et al., 2015), or combining phylogenetic and population

genetic perspectives into unified statistical frameworks (e.g.

Rannala & Yang, 2003). Combining a phylogenetic perspec-

tive with population genetic approaches may also help to

establish links between macroevolutionary patterns and

underlying microevolutionary mechanisms (e.g. Ricklefs &

Bermingham, 2001; Jordal & Hewitt, 2004; Roderick et al.,

2012; Paun et al., 2016), thus advancing our understanding

of island biogeographic history.

Island (Macro)Evolution

Immigration–speciation–extinction dynamics

Q17. How does the spatial configuration of an archipelago (e.g.

intra-archipelagic connectivity) influence colonization, speciation

and extinction over time? [# 23; % = 70.1]

Q18. What is the nature of the relationship between rates of

extinction and island isolation, if any? [# 46; % = 64.1]

Q19. How do the extinction probabilities of island endemic spe-

cies compare to those of non-endemic species? [# 33; % = 67.2]

Q20. How important are diversity-dependent processes for island

colonization, speciation and extinction? [# 11; % = 73]

Q21. How do anthropogenic extinctions affect estimates of speci-

ation and natural extinction on island systems? [# 43; % = 64.8]

Island biodiversity emerges from the accumulation of spe-

cies through time by colonization and establishment from

outside areas, anagenetic change, and extensive diversifica-

tion, all being counterbalanced by the depletive effects of

extinction. The relative roles of these macroevolutionary pro-

cesses are predicted to be functionally interrelated (e.g.

MacArthur & Wilson, 1963, 1967; Emerson & Kolm, 2005;

Emerson & Gillespie, 2008; Whittaker et al., 2008; Rominger

et al., 2016), but understanding their dynamics over time
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remains a central challenge in island biology. Geographical

context plays an important role in determining how colo-

nization, extinction and speciation [Qs 17, 18] dynamically

vary and interact over time (see Cabral et al., 2014; Papado-

poulou & Knowles, 2015b). While the effect of geography on

macroevolution is well-understood for some processes (e.g.

cladogenesis generally increases with island area; see Kisel &

Barraclough, 2010), for others, this relationship remains lar-

gely unknown (e.g. extinction versus isolation in Q18).

Time-calibrated phylogenies have been of particular interest

in investigating the processes of speciation and colonization,

but they provide no direct evidence for extinction. Thus,

while rates of diversification can be derived directly from

dated phylogenies, estimating the underlying rates of colo-

nization, speciation and extinction is more challenging.

However, it is now possible to apply a model-based approach

to estimate how these processes vary through time (Valente

et al., 2014, 2015), suggesting that there is further potential

for phylogenetics to inform island biogeography. It is impor-

tant that we note here that Q18 does not, in fact, specify a

context involving extinction of endemic species, and the

question of how extinction rate varies with isolation can be

posed for a wide range of island systems and degrees of iso-

lation, including for instance among non-endemic species on

habitat islands (as e.g. Brown & Kodric-Brown, 1977).

Endemic species distributions have been used together

with comparative phylogenetic analysis to infer colonization,

speciation and extinction dynamics with island ontogeny

(Emerson & Orom�ı, 2005; Givnish et al., 2009; Rosindell &

Phillimore, 2011; Shaw & Gillespie, 2016), and may provide

a further means to address the influence of geographical con-

text. Gains may also be made if it were possible to infer per

species contemporary extinction risk due to anthropogenic

change processes (a theme covered at least partially by Q19),

which may also aid conservation strategies (e.g. Qs 42–45).
Several models of island biogeography have either implicitly

(the taxon cycle, see Ricklefs & Bermingham, 2002) or

explicitly (the general dynamic model, Whittaker et al.,

2008) related the single island endemic status of species to

increased extinction probability relative to other species on

the same island. Thus, question 19 can be addressed not only

in a contemporary conservation context but also in relation

to longer-term natural turnover. Although extinction is a dif-

ficult parameter to quantify, simply understanding whether

there is a fundamental difference in extinction risk between

endemic and non-endemic species [Q19] would be a signifi-

cant step forward.

MacArthur & Wilson (1967) expressed their intuition of a

negative feedback of diversity on the accumulation of species

on an island [Q20], either through an increased extinction

rate or through a decreased colonization rate by means of

niche saturation by early colonists. Their argument illustrates

the early foundation of a still debated question: is there a

limit to the number of species a given area can sustain? This

question has been the subject of recent discussions (Harmon

& Harrison, 2015; Rabosky & Hurlbert, 2015) and its

longevity pertains in part to the difficulty of measuring turn-

over rates let alone negative diversity feedbacks on evolution-

ary processes such as speciation. However, a number of

recent methodological developments (Rabosky, 2006; Etienne

et al., 2012; Valente et al., 2015) promise improved analytical

power and have already revealed that diversity-dependence

in both colonization and speciation can potentially be

inferred from empirical data based on island phylogenies

(Valente et al., 2015). The issue of diversity-dependence

[Q20] is central to understanding island biodiversity dynam-

ics, equilibrium and biotic interactions on evolutionary time-

scales [Q6] and promises to remain a key topic over at least

the next few years.

There is no a single path to extinction, and the role of

humans as drivers of distribution range shifts and extinctions

on islands in both recent historical and prehistorical time

has gained increasing attention in the literature. This signifi-

cance can be mirrored in the species listed by the IUCN as

extinct, of which 61% were confined to islands (Tershy et al.,

2015), and among the 20 world territories with the highest

percentages of extinct and threatened species in both bird

and mammal group lists, 19 and 17 are insular, respectively

(Vi�e et al., 2009); remarkable statistics given that the 19 bird

and 17 mammal territories themselves represent a mere 0.6%

and 1.9% of the Earth’s subaerial landmass, respectively (Vi�e

et al., 2009). Compounding these issues is the unknown

degree to which island taxa have been eliminated as a conse-

quence of human colonization of islands and before their

scientific documentation [Q21]. For birds in the Pacific, to

take the most infamous example, extrapolations from the rel-

atively small number of islands studied in detail, suggest that

hundreds of undocumented species extinctions may have

taken place following Polynesian colonization (Steadman,

2006), undermining efforts to estimate natural rates of speci-

ation and extinction from these insular systems [Q21].

Speciation and diversification

Q22. What functional traits (e.g. relating to dispersal capacity,

reproduction, trophic ecology) are associated with high diversifi-

cation rates within and across island systems? [# 2; % = 77.9]

Q23. What traits best predict which groups will undergo adaptive

radiation on islands? [# 17; % = 71.1]

Q24. What is the relative importance of ecological versus geo-

graphical speciation on islands? [# 31; % = 67.8]

Q25. What is the influence of gene flow among islands and/or

between islands and mainland areas on speciation rates? [# 19; %

= 70.8]

Spectacular species radiations are perhaps the best known

feature of oceanic islands (Losos & Ricklefs, 2009). However,

the majority of lineages either do not diversify at all, or only

to a very limited extent, with high diversification rates typi-

cally restricted to a limited number of lineages within an

island or archipelago (for animals see e.g. Ricklefs &
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Bermingham, 2007; and Illera et al., 2012; and for plants see

e.g. Pati~no et al., 2014a). Answering the question of why

only some lineages diversify is central to a deeper under-

standing of island community assembly, the origin of biolog-

ical diversity in general [Q22], and adaptive radiations in

particular [Q23]. Diversified lineages are often associated

with ecological divergence and adaptive radiation, but non-

ecological mechanisms are also expected in insular settings

where the interaction of geology, topography and climate

promote speciation by local geographic isolation [Q24].

As the number of independent phylogenetic and population

genetic studies increases, comparative analyses can shed light

on the functional traits associated with accelerated diversifica-

tion rates [Q22]. This approach has recently demonstrated

that a herbaceous dry-fruited ancestral syndrome is frequently

associated with diversified plant lineages across different archi-

pelagos (Garc�ıa-Verdugo et al., 2014). A more complete

understanding of the contribution and functional relevance of

speciation to island community assembly will require not only

identifying the traits associated with diversification, but also

the drivers underlying their change, and thus those traits that

underscore adaptive radiation [Q23]. Distinguishing among

the drivers of natural selection, sexual selection and non-selec-

tive processes for speciation is not a trivial task, as multiple

drivers may underlie trait divergence. This interconnectedness

among the different drivers of speciation and diversification

[Qs 22–24] is exemplified by delphacid planthoppers of the

genus Nesosydne in the Hawaiian islands. The species of Neso-

sydne are recognized as an adaptive radiation linked to host

plant use, however, sexual selection and non-selective pro-

cesses also contribute to reproductive isolation via divergence

of sexual signals (Goodman et al., 2015). Another interesting

aspect of trait evolution will be to determine whether similar

traits promote high diversification rates in both islands and

mainland areas [see Q10].

Molecular data can provide insight into the importance of

geography and gene flow in the speciation process, both

within islands and among islands and mainland areas [Qs 24,

25]. Intuitively, small amounts of gene flow would seem likely

to retard speciation, but it is increasingly recognised that, at

least under some circumstances, introgression may promote

speciation, and that this might be particularly relevant within

insular settings (see Warren et al., 2015; Faria et al., 2016). To

understand the influence of gene flow among islands and

mainland areas on speciation rates [Q25], robust estimates of

historical gene flow are required. The advent of high-through-

put cost-effective genomic sequencing approaches for non-

model organisms will fuel further advances in our understand-

ing of the interplay between isolation, gene flow and specia-

tion (e.g. Papadopoulou & Knowles, 2015a).

Dispersal and colonization

Q26. What is the importance of founder effects for the evolution

of island lineages? [# 8% = 74.4]

Q27. How frequent is inter-island dispersal and is it enough to

form an archipelago-wide metacommunity, or are islands better

understood as functionally independent communities? [# 26% =

69.1]

Q28. How can palaeoecology contribute to the understanding of

species arrival, establishment and spread on islands? [# 35% =

66.8]

High dispersal rates among islands will push populations

towards genetic homogeneity, whereas low dispersal rates will

facilitate divergence among populations on different islands

and high rates of inter-island speciation (Emerson & Faria,

2014). Despite colonization, establishment and divergence

rates being crucial within island biogeographic theory, both

the frequency of dispersal events between islands [Qs 26, 27]

and actual dispersal mechanism responsible for inter-island

colonization are unknown for most species (for plants see

Heleno & Vargas, 2015). The arrival of colonizing propagules

to remote islands is intrinsically a rare event and even when

they make this journey, successful colonization is contingent

on their reproduction and the establishment of a viable pop-

ulation, which can be equally challenging. In the extreme,

the founder may be a single gravid female, a female with

stored sperm, or a parthenogenetic individual, or at most, a

small group of individuals. Thus, the limited genetic diversity

transported by these individuals may be decisive for the out-

come. Theory suggests that such founder effects may be a

driver of insular evolution, speciation and further diversifica-

tion (e.g. Mayr, 1954; Carson, 1968; Templeton, 1980), but

they may equally select for evolutionary lineages that are less

negatively affected by low genetic variation and inbreeding.

Importantly, and while the relevance of these founder effects

can be particularly clear for the evolution of island lineages

[Q26], they can also be highly relevant for evolution within

habitat islands such as caves, lakes or mountain tops (e.g.

Wessel et al., 2013). This may be particularly relevant if

reduced dispersal ability is a characteristic of island lineages

in general and highly diversified lineages in particular [see

Qs 11 and 22].

One of the key attributes that make islands ideal models for

ecology and evolution is their well-defined borders (Whittaker

& Fern�andez-Palacios, 2007). However, most islands are

embedded in regional groups of islands so that the nearest

coast is not of a continent but of another island. In addition,

islands of high elevation are environmentally diverse (at least

in climatic regimes) and source regions for potential coloniz-

ers can then differ between habitats (Steinbauer, 2017). There-

fore, archipelago configurations and environmental gradients

can blur the lines of what seems the most relevant unit to

study for particular topics within island biology: the archipe-

lago, the island, or ecozones within the island. Intuitively, the

relevance of archipelago-level processes will largely depend on

the frequency of inter-island dispersal, so that when dispersal

is low, island-level processes dominate, and when dispersal is

high, archipelago-level processes become increasingly relevant.

Ultimately, inter-island dispersal can be so important that
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single-island populations are better understood in their

broader context, as part of an archipelagic metapopulation

(Hanski, 1998). As the empirical observation of inter-island

movements is logistically challenging, population genetic data

are particularly valuable for estimating the frequency of inter-

island dispersal and thus for exploring question 27. Recent

studies are providing novel insights in this direction (e.g.

Garc�ıa-Verdugo et al., 2014; Garrick et al., 2014; Spurgin

et al., 2014; Hendrickx et al., 2015; Vargas et al., 2015; Faria

et al., 2016), but more research is needed to generate fine-

grained spatial genetic data within focal archipelagos and to

provide general answers.

Palaeoecology is a field of emerging importance in island

biology. Palaeoecology has been used to understand the conse-

quences of human colonization, frequently characterised by

concomitant waves of extinction (Sadler, 1999; van der Geer

et al., 2016). In addition, climate data have been integrated in

attempts to distinguish plant community compositional

changes in response to shifts in climate from those in response

to human activity (e.g. Nogu�e et al., 2013). Extending the

application of palaeoecology to investigate species arrival,

establishment and spread on islands [Q28] may be more feasi-

ble for species of recent origin, such as those that were intro-

duced by early human colonizers. However, there is also

potential for the analysis of much older native species, where

temporal patterns of trait change can also be integrated [see

Q23] to understand radiations (e.g. DeMiguel, 2016). Finally,

alongside palaeoecological techniques, the emerging field of

palaeogenomics, based on the analysis of ancient DNA, can

become increasingly relevant for conservation by informing

management and restoration decisions [see Qs 42–46, below]
of island ecosystems under past and present anthropogenic

pressure (e.g. Wilmshurst et al., 2014).

Island Community Ecology

Community assembly

Q29. How do taxonomic, phylogenetic and functional diversities

of island communities change during assembly and disassembly

of island systems? [# 39; % = 65.7]

Q30. How do island area, elevation and isolation influence the

community composition and dynamics of island systems? [# 1;

% = 78.9]

Q31. What are the relative roles of island age, phylogenetic group

and functional ecology in determining natural (background)

extinction rates among oceanic island taxa? [# 21; % = 70.5]

Q32. How does the order of colonization influence emergent

outcomes in the assembly of island biotas? [# 13; % = 72.1]

Q33. How important are rare species for the functioning of

island communities? [# 30; % = 67.8]

Q34. How does in situ evolution drive the functioning of island

ecosystems? [# 14; % = 72]

Comparisons of species richness among islands are evolv-

ing with the incorporation of more informative estimators of

diversity using taxonomic, phylogenetic and functional trait

data. How these measures of diversity respond to island

ontogenetic change at the community level, and how they

are influenced by other abiotic parameters [Qs 29–31]
remains largely unexplored (but see Santos et al., 2011,

2016a; Whittaker et al., 2014; Cardoso et al., 2015). The

unpredictability that accompanies island assembly by colo-

nization raises the question of how important colonization

order (i.e. priority effects) may be in explaining assembly

patterns on both ecological and evolutionary time-scales

[Q32]. For example, for evolutionary patterns of assembly it

has been suggested that a ‘founder takes all’ density-depen-

dence principle may account for tendencies towards

monophyly in diverse genera of flowering plants that have

diversified in situ on certain oceanic archipelagos

(Silvertown, 2004; Silvertown et al., 2005). In addition, phy-

logenetic evidence supports the proposition that a ‘progres-

sion-rule’ pattern of younger species being derived from

older species found on successively older islands is common-

place among oceanic archipelagos (Carstensen et al., 2013;

Shaw & Gillespie, 2016). Waters et al. (2013) suggest that it

is likely that dispersal of related lineages is ongoing, but that

establishment of the first founding lineages effectively reduces

the probability of establishment by subsequent migrants (see

also Schaefer et al., 2011). Extending this logic, one can pro-

pose that abundance or range size differences between func-

tionally similar species may be a consequence of colonization

order, although over longer time-scales, taxon cycle dynamics

may develop a sequential pattern of colonization, followed

by population expansion and subsequent contraction of

range of earlier colonists (e.g. Wilson, 1961; Ricklefs &

Bermingham, 2002; Carstensen et al., 2013; Economo et al.,

2015). Given the historical dimension to this topic, compara-

tive phylogenetic analyses for the estimation of relative colo-

nization times should continue to be a profitable approach.

The majority of the species on Earth present restricted dis-

tributions and/or small abundances, with comparatively few

being cosmopolitan in distribution. Remote islands possess

high numbers of endemic species, which are, by nature of

the limited size of islands, rare in the sense that they have

small global ranges. What is less clear is whether, in the

absence of human interference, island endemic species are

also rare in terms of population sizes and local density,

which constitute distinct forms of rarity. The implications of

the potential loss of rare species for other species with which

they interact, and for overall patterns of ecosystem form and

function, remain under-researched [Q33], with most illustra-

tions of ecological cascades focussed on a limited range of

vertebrate taxa (e.g. giant tortoise, bird communities), which

may well have originally been rare only in the sense of hav-

ing restricted ranges. To address this issue will require better

data on species distribution and abundance as well as sys-

tematic and comprehensive community-level assessments of
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ecosystem form and function (e.g. Traveset et al., 2013;

Trøjelsgaard et al., 2013).

Similarly, the importance of local assembly and in situ

evolution for ecosystem functioning [Q34] remains underex-

plored (see Warren et al., 2015). As one of the few case stud-

ies in the literature, Rominger et al. (2016) compiled

ecological, genetic and phylogenetic data from a suite of

Hawaiian endemic arthropods across a geological chronose-

quence to investigate the relative roles of dispersal and

in situ differentiation in the assembly of plant–herbivore net-

works. Similar, comparative, plot-based and experimental

approaches to exploit the natural chronosequences provided

by oceanic islands hold promise for addressing questions

[e.g. Qs 29, 32] posed in this section seeking to integrate

ecological and evolutionary theory (e.g. Heleno et al., 2010;

Trøjelsgaard et al., 2013).

Biotic interactions

Q35. How do climate and sea-level changes influence biotic

interactions on islands? [# 18; % = 71]

Q36. How do biotic interactions (within and between trophic

levels) influence immigration, extinction and speciation rates on

islands? [# 3; % = 77.2]

The Quaternary period (the last 2.58 Myr) has been a per-

iod of major climatic fluctuation between glacial and inter-

glacial conditions, which have driven associated eustatic

changes in sea-level, with an amplitude of the order of 120–
130 m. Interglacial periods are times of high sea-level stands

while the lowest sea-levels are typical of late glacial stages

(e.g. the Last Glacial Maximum c. 21 ka). These changes

result in altered island area, elevation and effective degree of

isolation, largely in synchrony with changing regional climate

regimes. Indeed, many islands have emerged and submerged,

or joined and been parted from larger land-masses, reitera-

tively, during this period.

On theoretical grounds, islands affected by such processes

are expected to have shown pulses of enhanced immigra-

tion and/or extinction, e.g. with sea-level rise after the

LGM driving pulses of extinction, especially from former

land-bridge islands. In turn these changes must be linked

to altered patterns of biotic interaction via competition,

predation, predator-release, altered pollination- or dispersal-

networks [Q35]. Recent improvements in understanding of

both regional climate and sea-level adjustments open the

possibility to search for such effects in the structure of con-

temporary island biotas. Conversely, over time, ecological

and evolutionary adjustments in biotic interactions can be

expected to alter rates of immigration, extinction and speci-

ation and thus equilibrial levels of species diversity (Wilson,

1969; Whittaker & Jones, 1994; Gravel et al., 2011) [Q36],

although quantifying such effects remains challenging. Simi-

larly, how those interactions and dynamics have been and

may be modified under future climate change and, for

instance associated sea-level change, is a topic of

considerable uncertainty (Tylianakis, 2009; Montoya & Raf-

faelli, 2010). In a recent review, Barraclough (2015) sum-

marizes that, among other consequences, ecological

interactions among species can promote evolutionary

changes through coevolution, and/or alter evolutionary out-

comes by influencing selection pressures relative to specific

abiotic conditions. Such divergent outcomes depend on

species numbers and the distribution of interaction

strengths across the interaction network space.

One framework for analysing changes in interaction net-

works was provided by Holt (1996, 2010), who put forward

a model on the spatial limitations to food web size and

structure, based on Core IBT, called the trophic theory of

island biogeography. In a subsequent development, Gravel

et al. (2011) developed a stochastic model of multispecies

occupancy dynamics, which showed that trophic interactions

could have a substantial impact on how immigration and

extinction rates determine patterns of species richness on

islands. Their model focuses on herbivory or predation, but

it does not consider mutualistic interactions (like pollina-

tion or seed dispersal) or host–parasite interactions, which

are crucial for biodiversity maintenance and island coloniza-

tion. Nonetheless, Gravel et al. (2011) also found that

immigration–extinction dynamics could promote greater

occupancy of generalist versus specialist taxa in small areas.

Although their approach is promising, it relies on mechanis-

tic models for simplifying and linking whole-community

empirical evidence (Barraclough, 2015). Further improve-

ments to such models, for example, by incorporating mutu-

alistic and/or host-parasite interactions, will be of value for

understanding the role of biotic interactions in island com-

munity assembly.

Island Conservation and Management

Global change

Q37. How, if at all, do island biotas differ from continental bio-

tas in their response to global change? [# 32; % = 67.5]

Q38. Are island species more prone to extinction than their clos-

est relatives on the mainland, and if so, why? [# 4; % = 75.5]

Q39. How can we identify which island taxa are most at risk

from global change and what are their risk-associated traits? [# 5;

% = 75.4]

Q40. What determines anthropogenic extinction rates among

island taxa? [# 25; % = 69.7]

Q41. How do anthropogenic changes within islands impact on

the capacity of island species to respond successfully to climate

change? [# 44; % = 65.3]

The Earth’s ecosystems and their biotas are increasingly

transformed by direct and indirect human pressures (e.g.

Barnosky et al., 2012), a process particularly evident on

many islands (Caujap�e-Castells et al., 2010; Kueffer & Kaiser-

Bunbury, 2014; Tershy et al., 2015). Thus, it remains crucial
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to better understand how island systems may respond to

anthropogenic threats such as habitat loss, biological invasion

and climate change. This urgency is clearly captured by our

survey-based approach, with the two-first questions of this

subsection focusing on how island and continental biotas

differ in their response to global-change processes in which

humans are increasingly dominant [Qs 37, 38]. Island organ-

isms are often characterized by globally small population

sizes, limited geographical distribution ranges, and endemics

of narrow distribution, driven by limited habitat availability

and unique traits resulting from prolonged evolutionary iso-

lation (e.g. Whittaker & Fern�andez-Palacios, 2007). It is gen-

erally thought that these features, in combination with

multiple anthropogenic change agents on islands, combine to

make island species more prone to human-induced extinc-

tion than their continental counterparts [Qs 37, 38]. Despite

long-standing hypotheses (e.g. Elton, 1958), most studies

have focussed either on island or continental systems, and

more comparative studies are urgently needed, to provide

better resolution on levels of island endangerment and the

specific factors and combinations of them that drive extinc-

tion risk (but see e.g. Bowen & Vuren, 1997; Siliceo & D�ıaz,

2010; Traveset et al., 2016).

Despite the increasing interest in species responses to

ongoing global change, current predictions and conclusions

greatly vary among regions and taxa (e.g. Urban, 2015). Ris-

ing rates of extinction create an urgent need to identify the

traits and mechanisms that render species vulnerable to

extinction [Qs 39, 40], by answering questions such as to

what extent phylogenetic lineages are equally at risk from the

same anthropogenic threats (e.g. Ducatez & Shine, 2016)?

Although some traits (e.g. large-bodied animals, flightless-

ness, strong ecological specialization) have been associated

with species rarity and their proneness to extinction (e.g.

Boyer, 2008; Kirkpatrick & Peischl, 2012; Illera et al., 2016),

case studies document that adaptive mechanisms can counter

the genetic disadvantages associated with small population

sizes, rescuing species from the negative consequences of

anthropogenic environmental change (e.g. Lavergne et al.,

2012). Therefore, studies that identify the level of risk that

global change poses to species and the specific traits that

contribute to extinction risk on islands should remain a pri-

ority [Qs 39, 40], with a particular focus on how climate

change may interact with other threat factors [Q41]. Gaining

such information can help identify, forecast and mitigate

anthropogenic threats, ultimately leading to the development

of more cost-effective preventative and management strate-

gies (Cardillo & Meijaard, 2012).

Conservation and management policies

Q42. How can we identify islands that are more susceptible to

biodiversity loss in the coming decade, and what are the most

efficient and cost-effective methods (i.e. policy; education;

research; management) for safeguarding their biodiversity? [# 6;

% = 75.3]

Q43. What are the best strategies for in situ conservation of

island species impacted by non-native species? [# 16; % = 71.6]

Q44. What are the most effective methods for responding to the

anthropogenic extinction crisis on islands? [# 29; % = 68.3]

Q45. How can we best implement long-term monitoring schemes

on islands to provide quantitative evidence of changes within

island ecological systems? [# 36; % = 66.7]

Q46. How can conservation interests best be integrated with

other island stakeholder interests (particularly tourism) on popu-

lated islands? [# 41; % = 65.3]

Whereas island biologists are well aware that solutions to

island conservation problems require broad interdisciplinary

approaches (Kingsford et al., 2009), the questions in this and

the next section [Qs 42–50] are deliberately oriented to sci-

entific issues within island biology that may inform manage-

ment strategies [Q42]. While the impacts of non-native

species [Q43, see also Qs 47–50] are not unique to islands,

remote islands provide some of the most familiar and dra-

matic cases (e.g. the impact of brown tree snake on Guam,

and of rats, cats, rabbits, mongoose and goats on many

islands), with much recent effort devoted to developing effec-

tive control and eradication methods that minimize non-tar-

get effects [Qs 42–46]. The scale of the problem is such that,

despite notable successes (see e.g. Olivera et al., 2010; Riv-

era-Parra et al., 2012; Nogales et al., 2013; Stokstad, 2013;

Robinson & Copson, 2014), increased efforts are evidently

needed. The integration of biodiversity conservation goals

with those of other stakeholders [Qs 42, 46] is an area where

much less published work exists and the potential for politi-

cal conflict is rife (e.g. Fern�andez-Palacios & de Nascimento,

2011; Fernandes et al., 2015), but in which the engagement

of biologists with other specialists in the development of

strategies and monitoring of impacts is surely crucial (e.g.

Gil et al., 2011; Bentz et al., 2013).

Invasive alien species

Q47. What are the impacts of novel biotic interactions between

and among alien and native species on island biodiversity and

ecosystem functioning? [# 10; % = 73.3]

Q48. How does the invasion stage (i.e. colonization, establish-

ment, and long-term adaptation) of alien taxa affect distribution

ranges and biotic interactions of native insular biotas? [# 24; % =

69.8]

Q49. To what extent can alien species act as functional substi-

tutes for extinct native species on islands? [# 40; % = 65.5]

Q50. How do the ecological effects of introduced species differ

from those of naturally arriving colonist species on islands? [#

34; % = 66.9]

Biotic invasions constitute one of the greatest threats to

island native biodiversity (e.g. Caujap�e-Castells et al., 2010;

Kueffer et al., 2010; McCreless et al., 2016). Given their geo-

graphic isolation, replicated numbers and discrete zonal
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ecosystems, islands are model systems for understanding how

biological invasions affect community structure and ecosys-

tem function, eventually leading to more efficient conserva-

tion and management strategies. A major challenge and a

priority in island conservation is to better understand the

responses of ecosystems (Kueffer et al., 2010) and, particu-

larly, biotic interaction networks (Sax & Gaines, 2008;

Heleno et al., 2013) to invasion [Q47]. It has been proposed

that the underlying determinants and subsequent outcomes

of invasions may vary depending on the invasion stage (i.e.

the introduction–naturalization–invasion continuum; for a

review see Richardson & Py�sek, 2012). Little is known (but

see Traveset et al., 2013) about how the different invasion

stages negatively impact geographic distributions and biotic

interactions of native insular biotas [Q48]. With a majority

of the economic and practical efforts focused on the ‘inva-

sion’ stage (Richardson & Py�sek, 2012), research that broad-

ens and improves our understanding of the factors

implicated in the establishment and naturalization of intro-

duced organisms [Q48] will have important consequences

for the management and control of biological invasions on

islands.

Following the logic of MacArthur & Wilson (1967; see also

the ‘saturation point’ proposed by Sax & Gaines, 2008), the

natural and/or anthropogenic addition of new colonizers can

potentially result in the local extinction of measurable num-

bers of native species, with knock-on consequences for

ecosystem functions performed by lost species (e.g. McCon-

key & Drake, 2006). More information is needed on the

functional roles played by alien species on islands and the

extent to which some may become effective substitutes for

extinct native species [Q49] (Traveset et al., 2013). The exist-

ing literature shows a clear bias towards certain taxonomic

groups (for birds, see e.g. Heleno et al., 2013) and the lim-

ited evidence to date suggests that introductions rarely fully

compensate the functional roles of lost native species (Sobral

et al., 2016; but see Olesen et al., 2002). Studies in which the

effects of new natural colonizers and those introduced by

humans are compared [Q50] remain virtually absent, due at

least in part to the difficulties in defining nativeness in

organisms for which there is no historical (e.g. fossil, obser-

vation) and/or molecular evidence (e.g. Essl et al., 2015;

Pati~no & Vanderpoorten, 2015).

DISCUSSION

We conducted this horizon-scanning exercise to help

advance the field of island biology through the identification

of 50 key questions to coincide with the 50th anniversary of

MacArthur and Wilson’s seminal monograph. The intention

was to generate and select questions of broad scope, answer-

able through realistic research approaches. Although updates

of the present list of questions will be necessary in the com-

ing years, we hope that this contribution will supplement

recent efforts to pinpoint challenges and advances in island

biology research (e.g. Fern�andez-Palacios et al., 2015; Warren

et al., 2015; Borges et al., 2016; Borregaard et al., 2016; San-

tos et al., 2016b), as it captures many of the top issues and

challenges identified as cross-cutting subject areas. Such a

multilateral approach may foster the formation of interdisci-

plinary networks formed by island ecologists, evolutionary

biologists, managers and policy makers.

It is clear that addressing many of the 50 questions will

benefit from an interdisciplinary and integrative approach.

To take one methodological area as illustrative, phylogenetics

has been a core element within research across the first three

subject areas of our study. It features explicitly within five

questions [Qs 1, 3, 16, 29, 31], and is implicit within many

others [e.g. Qs 7, 18, 20, 32]. As the number of published

phylogenies increases, researchers will likely find new ways to

exploit them, and novel approaches published in recent years

(e.g. Ronquist & Sanmart�ın, 2011) provide a firm foundation

for continued advances. We suggest that the field is likely to

see increased efforts to integrate across large numbers of

independent phylogenies to address macroecological and

macroevolutionary questions in island biology.

Despite the long and critical influence of islands on eco-

logical and evolutionary theories, the focus of efforts has

typically remained limited to the scale of individual islands

or single archipelagos. In the coming years, the analysis of

biogeographical dynamics performed through the compara-

tive study of multiple archipelagos may provide us with a

better understanding of the regulation of biodiversity at

higher levels of spatial organization (e.g. Price & Wagner,

2011; Cabral et al., 2014; Triantis et al., 2015). To achieve

this will require suitable comparable data across islands and

archipelagos, and it is here that we believe that much pro-

gress can be made over the next 50 years. Coarse-grained

analyses of island-scale biota such as those of Price & Wag-

ner (2011), Cabral et al. (2014), Pati~no et al. (2014b) and

Triantis et al. (2015) can reveal recurrent patterns that

either invoke or suggest process-based explanations. We

predict that analogous but spatially fine-grained compara-

tive analyses across islands and archipelagos will prove

equally enlightening. Recent plot- or site-based approaches

among and within habitats within islands (e.g. Heleno

et al., 2010; Emerson et al., 2017), among islands (e.g.

Rominger et al., 2016) and among archipelagos (Cicconardi

et al., 2017) offer useful and powerful frameworks. The key

will be to coordinate across geographic regions to generate

comparable data through replicated (or at least comparable)

sampling. Such sampling can be directed towards questions

from across the four subject areas within which the 50

questions have been grouped, with the importance for con-

servation and management having already been demon-

strated (Heleno et al., 2010). Such sampling calls for

increased connectivity among research programs. This is in

itself a logistical and financial challenge, but with the

potential for high rewards.

The 50 fundamental questions identified in this paper

emphasize the potential for island biology to inspire and

guide empirical, theoretical and applied research questions
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related to ecological, evolutionary and conservation science.

We hope that this first list of questions compiled under the

legacy of MacArthur and Wilson’s Theory of Island Biogeog-

raphy provides a source of inspiration for constructive dis-

cussions about the future agenda of island research and a

fruitful arena for the coming generations of island biologists.
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