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Abstract

In this Trabajo de Fin de Máster a state-of-the-art hydrodynamic solver has been studied and
implemented, namely the Meshless Finite Volume scheme (MFV). We have heuristically derived
the latter scheme after a brief review of the most used scheme in hydrodynamic, cosmological
simulations: Smoothed Particle Hydrodynamics (SPH).

All the implementation has been carried out inside a state-of-the-art cosmological N-body
code, PKDGRAV3. To take advantage of the parallelism strategy of the latter code, it has been
studied in depth. Its structure and general workflow has been understood to allow for an easy and
non-intrusive implementation of the hydrodynamics. In this way, we can successfully deploy our
code in a laptop or in a high-performance, parallel computer, achieving good scaling properties.

The hydrodynamics has been implemented independently from other codes to provide another
test of the scheme, as there are few codes using MFV. In some cases, they provide significantly
different results, even when running standard hydrodynamic tests.

We have tested our implementation with a set of cases with known (analytical) solution.
With them, we checked that our code: is second-order in space; allow for individual time steps
to decrease the time-to-solution; it does not artificially transport angular momentum; it provides
adaptive resolution thanks to its Lagrangian nature and conserves energy and mass to machine
accuracy. We find that another code implementing the MFV scheme, namely, the public version
of GIZMO, is not fully conservative as stated in the literature.

In the future, we expect to add the gravity forces to the scheme and all the physics required
to provide Large Scale Structure simulations. Knowing that this is a difficult task due to the
demanding computational requirements, we have implemented the scheme having in mind a
future porting to Graphics Processing Units (GPUs) to further decrease the time-to-solution.
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Resumen

En este Trabajo de Fin de Máster hemos implementado un esquema numérico de vanguardia
para la resolver las ecuaciones de la hidrodinámica: Meshless Finite Volume (MFV). Hemos
derivado este esquema numérico tras una breve descripción de Smoothed Particle Hydrodynamics
(SPH), el esquema más usado hoy en d́ıa en el contexto de las simulaciones cosmológicas.

Toda la implementación se ha realizado dentro de un código de última generación para
resolver el problema de N-cuerpos en contextos cosmológicos, PKDGRAV3. Para poder aprovechar
al máximo la estrategia de paralelización de este, lo hemos estudiado en detalle. Hemos examinado
tanto su estructura como su funcionamiento para poder implementar de manera sencilla y no
intrusiva la hidrodinámica. De esta manera, podemos ejecutar nuestro código en un portátil o
un nodo de altas prestaciones sin mayores problemas.

El código se ha desarrollado de la manera más independiente posible para probar que MFV
funciona como se espera, ya que hay pocos códigos que usen dicho esquema. Incluso, en algunos
casos, hay diferentes códigos que dan diferentes resultados usando el mismo esquema.

Hemos puesto a prueba nuestra implementacion con diferentes casos con solución conocida.
Gracias a ellos, hemos comprobado que nuestro código: es de segundo orden espacial; permite
el uso de pasos de tiempo individuales para disminuir el tiempo de cómputo; no transporta
momento angular de manera artificial; adapta su resolución espacial gracias a la naturaleza
Lagrangiana del método y conserva masa y enerǵıa hasta errores de redondeo numérico. Por otra
parte, hemos encontrado que GIZMO, que también usa MFV, no es totalmente conservativo, tal
y como se afirma en el art́ıculo que describe el código.

En el futuro queremos añadir la gravedad al esquema numérico, además de toda la f́ısica
que se requiere para realizar simulaciones de Estructura a Gran Escala. Teniendo en mente
que esta es una tarea dif́ıcil debido a su alto coste computacional, hemos implementado el
esquema pensando en una futura versión capaz de usar Tarjetas Gráficas (GPUs) para acelerar
los cálculos.

ii



Chapter 1

Introduction

Throughout this chapter, a brief justification of why we need to take into account
gas dynamics in cosmological simulations is presented (section 1.1). Therein, the most
used formalism, Smooth Particles Hydrodynamics, will be briefly explained (section 1.1.1).
The state-of-the-art Meshless Finite Volume formalism, which is the core of the present
work, will be derived (section 1.1.2).

Afterwards, the base code within which all the development has been carried out,
PKDGRAV3, will be detailed in section 1.2.

1.1 Gas dynamics

Approximately only 15% of the matter content of the universe is formed by baryons
(Planck Collaboration et al., 2018), being this the only component that we can detect
through direct observations. Therefore, correctly simulating the baryonic component is
crucial to compare the results of simulations with observations. The primordial baryonic
matter is mainly formed by a mix of Hydrogen and Helium. Matter self-interact through
gravity whilst baryons also self-interact via pressure forces.

At small scales, the pressure slows down the collapse of baryons inside dark matter
halos. Indeed, unless cooling effects are taken into account, the gas is not compressed
enough to form stars (Schaye et al., 2010). Furthermore, the gas dynamics have been
proven to be able to modify the dark matter density profiles of virialized halos thanks
to feedback due to exploding supernovae. This latter effect has been studied extensively
during recent years with different simulations (Benitez-Llambay et al., 2018; Di Cintio
et al., 2013).

In summary, nowadays taking into account the gas dynamics in cosmological simulations
is of paramount relevance in order to accurately describe the dynamics of dark matter
tracers and to derive cosmological parameters (Balaguera-Antoĺınez and Porciani, 2013).1

From a numerical point of view, there are two main ways to simulate the evolution of

1Otherwise, there are semi-analytical and empirical models to populate with galaxies dark matter
halos from N-body simulations, but these statistical methods are out of the scope of this work.
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the gas throughout cosmic time. The difference between both approaches lies on the
discretization of the gas elements.

In the first ones, gas elements are represented by particles that in general move with
the fluid velocity, thus these schemes are of Lagrangian nature. These schemes have the
great advantage that they naturally adapt the resolution where there is a higher density of
particles. This is essential for cosmological simulations, where the matter density ranges
over ∼ 10 orders of magnitude (i.e. ,we can have enormous voids with almost no particles,
and extremely dense regions in the centre of halos, all within the same computational
volume). It has been used successfully in plenty of simulations (see Bahé et al., 2017;
Schaye et al., 2015; Springel, 2005; Wang et al., 2015, for examples).

The second ones are extensively used in other fields of Astrophysics such as Solar
Physics (e.g., Felipe et al., 2010; Gudiksen et al., 2011, among others), and engineering
(e.g., Lani et al., 2013, OPENFOAM, and others). In those fields, the density contrast
inside the computational volume is small enough (although it can be of a few orders of
magnitude) that the space can be subdivided in a grid. In general, the nodes of grid do
not move with time, and thus these methods are of Eulerian nature.

Although we will not discuss the latter for cosmological simulations, it is important to
notice that there are codes that use grids. They either use adaptive ones (e.g., AREPO,
Nelson et al., 2018; Springel, 2010b) or subdivide the grid where more resolution is needed
(e.g., ENZO or RAMSES, Bryan et al., 2014; Teyssier, 2002, respectively). The latter
codes use Adaptive Mesh Refinement (AMR). This technique is based on a Cartesian grid
which can be subdivided multiple times where more resolution is needed. Thus the use of
grid codes is by no means negligible.

In section 1.1.1 we briefly describe the traditional Smoothed Particle Hydrodynamics
(SPH) scheme that has been used for most particle based simulations. Then, in section 1.1.2,
we will describe in detail the state-of-the-art Meshless Finite Volume scheme that has
been implemented in this work.

1.1.1 SPH formalism

The SPH scheme was first developed by Lucy (1977) and Gingold and Monaghan
(1977) to avoid the use of Cartesian grids. In this small description, we will use the
standard formulation depicted in Springel and Hernquist (2002), which is still extensively
used (a more general derivation can be found in Hopkins, 2013).

SPH defines the fluid quantities from a kernel interpolation of the states of tracer
particles. The particles themselves can be thought as portions of the fluid, located at ri,
moving with velocity vi and having mass mi. Furthermore, the thermodynamic state of
the particle can be defined using its specific internal energy, ui, or specific entropy, si.

Critical to the SPH formalism is the density estimate

ρi =
N∑

j=1

mjW (rij, hi), (1.1)

2



for a set of N particles, where rij ≡ rj − ri and W is a smoothing kernel of characteristic
size h, the smoothing length. The latter is defined such that the kernel volume contains
constant mass.2

From the Lagrangian of the set of N particles, Springel and Hernquist (2002) showed
that the equations of motion are:

dvi
dt

= −
N∑

j=1

mj

[
fi
pi
ρ2i
∇iW (rij, hi) + fj

pj
ρ2j
∇jW (rij, hj)

]
, (1.2)

where p denotes the pressure and ∇i is the derivative with respect to the coordinates of
the i-th particle and

fi =

(
1 +

hi
3ρi

∂ρi
∂hi

)−1
. (1.3)

The latter term arises from the consideration that the smoothing length is allowed to
smoothly change both in time and space.

This formulation is composed of anti-symmetrical pair-wise interactions, thus it con-
serves energy, entropy and momentum as long as the smoothing lengths contain constant
mass.

Unfortunately, in many physical scenarios discontinuities can arise and eventually
shocks will develop, increasing the entropy of the fluid. As SPH is inviscid and non-diffusive
by construction the entropy would remain constant along the shock, thus a wrong solution
would be obtained. To correctly capture shocks, an extra term to equation 1.2 must be
added. This term is the artificial viscosity. It is artificial in the sense that is prescribed
ad-hoc, but in general it is representative of the micro physics that take place well below
the resolved scales. The viscosity will tend to smooth out the shock over a few resolution
elements (particles in this case), and can be added as,

(
dvi
dt

)

visc

= −
N∑

j=1

mjΠij∇iW̄ij, (1.4)

where the viscosity tensor, Πij, is definite positive and different from zero when particle
i and j are approaching each other. The kernel is symmetrized, for example, as W̄ij =
1
2
(W (rij, hi) +W (rij, hj)).

The addition of this term in the equations of motion creates entropy at a rate

dA

dt
=

1

2

γ − 1

ργ−1i

N∑

j=1

mjΠijvij · ∇iW̄ij, (1.5)

where the entropic function, A, is defined as P = A(s)ργ.
Despite of the exceptional conservation properties, the standard SPH scheme have

important drawbacks. Most of them comes from the difficulties SPH has with handling

2This definition is not unique, but this one conserves energy explicitly.
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discontinuities. For example, the suppression of fluid mixing (Agertz et al., 2007) and
artificial transport of angular momentum (Cullen and Dehnen, 2010). Nonetheless, there
have been extensive research aiming to improve the standard SPH scheme during last years
(e.g. Cullen and Dehnen, 2010; Hopkins, 2013; Saitoh and Makino, 2013), and modern
SPH is still broadly used in cosmological and galaxy formation codes (e.g., Barnes et al.,
2017; Schaye et al., 2015; Wadsley et al., 2017, to name a few).

1.1.2 Meshless Finite Volume formalism

In recent years a new formalism has been proposed by Lanson and Vila (2008a,b)
for the solution of conservation equations without relying on building a mesh. In the
following, we will present a heuristic derivation of the scheme based on Gaburov and
Nitadori (2011) and Hopkins (2015).

First, we look for a weak solution (LeVeque, 1992) for the system of hyperbolic partial
differential equations moving in a frame with velocity vframe,

∂U

∂t
+∇ · (F + vframe ⊗U) = S (1.6)

where the conserved quantities, their fluxes and the source term3 are, for the fluid equations,
respectively

U =



ρ
ρv
ρe


 ; F =




ρv
ρv ⊗ v + pI
(ρe+ p)v


 ; S =




0
0
0


 (1.7)

and ρ, v, e = u+ 1
2
v2 are the mass density, fluid velocity and specific total energy. We

denote the outer product as ⊗ and the identity matrix as I. The density, pressure and
internal energy, u, of the fluid are linked through the equation of state (EOS) u(p, ρ). In
this work, we will always use the ideal gas EOS,

u =
p

ρ(γ − 1)
(1.8)

where γ is the adiabatic index. To obtain the weak solution, we multiply equation (1.6) by
a differentiable test function φ(x, t) and then integrate over the spatial (Rν) and temporal
domains (R+):

0 =

∫

Rν×R+

φ

[
∂U

∂t
+∇ · (F + vframe ⊗U)− S

]
dxdt = (1.9)

−
∫

Rν×R+

[
U
∂φ

∂t
+∇φ · F +∇φ · vframe ⊗U + φS

]
dxdt = (1.10)

−
∫

Rν×R+

[
U
dφ

dt
+∇φ · F + φS

]
dxdt (1.11)

3Although the source terms are zero for the ideal gas, we have kept them in the derivation as they can
include gravity, cooling, and other effects not taken into account yet in our implementation.
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For the first step, we have integrated by parts both the U and F terms, and the
boundary terms arising from those integrations are zero because we assume that φ vanishes
at the boundaries. To obtain the final weak formulation we have defined the comoving
(Lagrangian) derivative of a generic function f(x, t) as df/dt = ∂f/∂t+ vframe · ∇f .

The spatial part of this integral is discretized in a set of N points arbitrarily distributed
in Rν . To that end, we use a partition of unity such as:

ψi(x) = ω−1(x)W (x− xi, h(x)) ω(x) =
N∑

j=1

W (x− xj, h(x)) (1.12)

The kernel function, W , must have compact support of size h, the smoothing length,
so in practice the sum is only performed over those particles that lie inside the support
of W , S. The normalization factor, ω, can be understood as an estimate of the local
particle number density, if we assume that the kernel is normalized to unity such that∫
Rν W (x, h(x))dx = 1.

By definition, 1 =
∑N

i=1 ψi(x) for any x. In a physical sense, we are partitioning
each point of space into contributions of different particles. Those contributions are
proportional to the “effective” volume of the i-th particle at x. Having this in mind, we
can use this to approximate the integral of an arbitrary function,

∫

Rν
f(x)dx =

N∑

i=1

∫
f(x)ψi(x)dx ≈

N∑

i=1

fi

∫
ψi(x)dx ≡

N∑

i=1

fiVi, (1.13)

where we have adopted the notation fi ≡ f(xi). As we anticipated, Vi ≡
∫
ψi(x)dx ≈

ω−1i +O(h2) is the effective volume of particle i. For the third step, we have assumed that
f(x) changes smoothly over the domain dominated by the contribution of the i-th particle.
If desired, higher order expansions can be done for this term. However, this is enough
to achieve the desired second-order accuracy. We can directly apply the discretization
scheme (1.13) to the weak solution (1.11):

N∑

i=1

∫

R+

[
ViUi

(
dφ

dt

)

i

+ Vi (∇φ)i · Fi + φiSi

]
dt = 0 (1.14)

For further development of this solution, we need an estimate for ∇φ. Lanson and
Vila (2008a) proposed a second-order accurate meshless partial derivative:

(∇f)αi ≈ (Dαf)i ≡
∑

j∈Si
(fj − fi)ψ̃αj (xi), where (1.15)

ψ̃αj (xi) ≡ Bαβ
i (xj − xi)

βψj(xi), (1.16)

¯̄Bi ≡ ¯̄E−1i , and (1.17)

Eαβ
i ≡

∑

j∈Si
(xβj − xβi )(xαj − xαi )ψj(xi). (1.18)
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For the definition of ψ̃αj we have used the Einstein summation notation, and Si denotes
the set of particles lying inside the support of the i-th particle, i.e., its neighbours.
Inserting (1.15) into the weak solution (1.14),

∫

R+

dt

N∑

i=1

φi

[
− d

dt
(ViUi)−

∑

j∈Si

[
ViF

α
i ψ̃

α
j (xi)− VjFα

j ψ̃
α
i (xj)

]
+ ViSi

]
= 0, (1.19)

where we have integrated by parts the first term and rearranged the second term as4

N∑

i=1

Vi(∇φ)i · Fi =
N∑

i=1

Vi
∑

j∈Si
(φj − φi)ψ̃αj (xi)F

α
i = (1.20)

−
N∑

i=1

∑

j∈Si
Viφiψ̃

α
j (xi)F

α
i +

N∑

i=1

∑

j∈Si
Vjφiψ̃

α
i (xj)F

α
j = (1.21)

−
N∑

i=1

φi
∑

j∈Si

[
ViF

α
i ψ̃

α
j (xi)− VjFα

j ψ̃
α
i (xj)

]
. (1.22)

Now following the general idea of a Godunov scheme (i.e., the fluid variables are
represented as piece-wise functions; see chapter 13 of LeVeque, 1992, for details), we can
set Fi = Fj ≡ Fij, where the latter is the solution of a Riemann problem with left and
right primitive variables, Wi and Wj, respectively. Assuming this, we can define the
“face” vector as Aαij = Viψ̃j(xi)− Vjψ̃i(xj) such that the final form of the scheme reads:

d

dt
(ViUi) +

∑

j∈Si
Fij ·Aij = ViSi. (1.23)

The flux projected onto the face can be computed using a standard 1D Riemann solver.
We have to take into account that the face is moving with velocity vframe = 1

2
(vi + vj), so

the final fluxes must be de-boosted. Following Hopkins (2015),

Fij = F ′ij +




0
vframeF

ρ

1
2
v2frameF

ρ + vframe · F v


 , (1.24)

where F ′ij is the solution of the 1D Riemann problem in the frame of reference of the
moving face.

For being consistent and having a spatial second order scheme we must extrapolate
the particle’s states to the faces where the Riemann problem will be solved. As we
already have an approximation to the derivative (Dαf), we can extrapolate the values in
a straightforward way, as

f(x) ≈ f(xi) + (Dαf)(xα − xα), (1.25)

4This rearrangement can be done because ψi(xj) = 0 if j /∈ Si
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which will be only accurate if (x − xi) ∼ hi. Even in those cases, we can still produce
non-physical states such as negative densities and/or pressures. To avoid this, we use the
Barth and Jespersen (1989) limiter which only allows extrapolated values to be between
the maximum and minimum values of the neighbouring particles.

In order to provide a second order scheme, we discretize the equation (1.23) as (Hopkins,
2015; Springel, 2010b)

Q
(n+1)
i = Q

(n)
i + ∆t

[
ViS

(n+1/2)
i −

∑

j∈Si
F

(n+1/2)
ij ·Aij

]
(1.26)

where Qi ≡ ViUi is the vector of conserved quantities and both the source term and fluxes
have been extrapolated in time for half a time step. This is straightforward for an ideal
gas, as we can easily convert spatial gradients to temporal ones using the Euler equations
(Hopkins, 2015; Springel, 2010b),

∂W

∂t
= −



v ρ 0
0 v ρ−1

0 γp v


∇W , (1.27)

and then extrapolate in time as W (n+1/2) = W (n) + 1
2
∆t(∂W /∂t).

In the same way as with the SPH formulation exposed in section 1.1.1, this scheme
also must conserve energy, mass and angular momentum as long as we are sure that
all the interactions are symmetric. Thus, it is of key importance in this scheme to
guarantee that all interactions are done in pairs. In contrast with SPH, we are solving
the Riemann problem between each particle, thus we are safely taking into account the
possible discontinuities in the solution, and there is no need for a special treatment of
discontinuities, such as artificial viscosity or conduction.

It must be noted that the preceding conservation properties are not expected to be
satisfied to the leading order of the scheme, but to machine accuracy, so they make this
scheme a powerful tool for particle based simulations.

1.2 The code: PKDGRAV3

The framework within which all the development has been carried out is the public
code PKDGRAV3 (Potter et al., 2017). The code is state-of-the-art regarding N-body
simulations, having performed one of the biggest (in number of particles) simulation
up to date (8 trillion particles), and having very low time-to-solution for large scale
structure simulations. It can take full advantage of heterogeneous architectures as it
provides support for pthreads, MPI and CUDA. Due to this versatility, it can efficiently
make the most of the new trend on High Performance Computing (HPC) facilities: hybrid
CPU+GPU nodes. Under the hood, the code is based on PKDGRAV (Stadel, 2001), which
has been extensively used throughout recent years (for example, Diemand et al., 2004;
Power et al., 2003). Furthermore, it is also the base for the hydro-SPH code GASOLINE
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(Wadsley et al., 2004) (and its newer version GASOLINE2, Wadsley et al., 2017), that
does not provide GPU support.

In the following, we will briefly describe the code PKDGRAV3 For more details the reader
is referred to Stadel (2001).

1.2.1 Code structure

PKDGRAV3 is divided in four abstract layers5. This design separates the communication
from the actual computations in such a way that a typical developer (e.g., someone
who implements a physics module) does not need to understand in detail how the
communication is done, but only how to interact with the layer associated with that task.
It also provides high adaptability to system architectures, cluster topologies (i.e., how
many cores are per node, and how the nodes are connected between them) and physical
problems.

We now briefly explain each one of those layers:

1. The base layer, in charge of communication, task managing and scheduling is
the MDL (Machine Dependent Layer). This layer is also in charge of memory
management, and it creates local caches for fast accesses to already fetched remote
data.

2. The master layer, MSR, is executed serially. It represents the workflow of the
program. It starts reading the parameters of the simulation, and then starts to
dispatch computations to the other processors via the next layer.

3. The PST (Processor Set Tree) organize all the processors in a binary tree, being
the master the root node. When some computation is dispatched to the PST, each
node pass the information to its leaves recursively, and then starts its own part of
the computation, calling functions in the next layer.

4. The shallower layer, PKD, is the only one that has actual access to particle data. It
is executed in all nodes and encloses all the physics. It is essentially serial code, and
may have calls to the MDL layer to access data in remote processors.

An example workflow is shown in figure 1.1. The master process calls three different
functions serially, which then call the corresponding PST functions to distribute the
workload to the different available processors. Each one of them calls the PKD functions
that can modify the particles’ data. The naming convention for the functions is also
depicted in this figure. Each function name should have a suffix indicating in which
layer it is defined. For example, a function that computes the time-step would need the
definition of msrComputeTimeStep, pstComputeTimeStep and pkdComputeTimeStep.

In a general case, the definition of the function in the Master layer is not needed, as
the PST layer can be directly invoked from the main function, but it helps to make the
code more readable. Furthermore, as we want the function to be called by all processors,

5Its name comes from using a k-D tree for the Particles.
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all the PST functions will have very similar definitions, only changing the data structure
which is sent (and/or received) to(from) other processes.

msrFunc1 pstFunc1

pstFunct1

pstFunct1

pstFunct1

pstFunct1
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Figure 1.1: Example workflow showing how the different layers of PKDGRAV3 interact. The
master process can invoke PST functions, which then can send work to deeper nodes of the
binary tree (dashed lines). Once the processor has finished sending information, it starts its own
part of the work at the PKD layer. In this layer, information stored in other processors can be
requested via the MDL (dotted gray lines). Although not shown, information can be distributed
in both directions, so gather operations can be easily implemented using this layering scheme.
After all the work has been finished, the master process call the next PST function. This creates
an implicit barrier, marked as a red dashed line.

1.2.2 Gravity solver

PKDGRAV3 relies on the Fast Multipole Method (FMM) for computing the gravitational
interaction among particles. Although gravity has not been yet added to our new solver,
it will be briefly described as it forms the core of PKDGRAV. Rigorous formulations of the
FMM can be found in Greengard (1988) and Greengard and Rokhlin (1997); application to
astrophysical N-body problems in Dehnen (2002), Cheng et al. (1999) and Stadel (2001);
and reviews in Greengard (2013) and Beatson and Greengard (1997).
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The FMM expands the notion of hierarchical tree codes based on the work of Barnes
and Hut (1986), known as BH tree. They recursively decompose the domain in an
oct-tree and add the contribution of far regions using their centre of mass or higher
order multipole expansion. The BH algorithm scales as O(N logN), as for each particle
O(logN) cells-particle6 interactions are computed.

In PKDGRAV3, the domain is decomposed instead in a binary tree where parent cells
are divided along the longest axis into two equal volume child cells. This can be easily
mapped to the PST, improving load-balancing and communication efficiency. Once the
particles are organized in the tree, three types of gravitational interactions can happen,
depending on the distance between particles/cells:

1. Particle-Particle: These interactions take place when particles are close. It uses
the standard force evaluation without any approximation, i.e., the force between
two particles is F = −Gmimjrij/r

3
ij

2. Particle-Cell: These interactions are equivalent to those of Barnes and Hut (1986),
where the contribution of a distant region is added using its multipoles.

3. Cell-Cell: These inherent interactions of FMM are computed for very distant cells,
and consist of adding the contribution of the multipoles of a distant cell directly to
a whole other cell. Then the multipoles are added to its child cells/particles.

Once the tree is built, the multipole expansions are computed (using all the available
mathematical machinery as multipole additions and translations) for each cell, and then
for each particle the interactions are added depending upon how far the source is located.
Given that for very distant cells the contribution is computed as CC interactions, the
total number of interactions of each particle is constant7 and thus the FMM scales simply
as O(N).

Due to this scaling behavior, FMM is effectively a structure free algorithm, as its
performance does not depend directly on the tree structure (the O(logN) term). This
means that, in principle, the gravity computation should scale the same way at the
beginning of a cosmological simulation (when the universe is highly homogeneous) and
at the end, when collapsed regions (halos) have been formed (Potter et al., 2017). In
contrast, codes using the BH oct-tree, generate deep trees in regions of high clustering
of particles. Then, walking the tree becomes more computationally demanding and the
performance can be deteriorated.

1.2.3 Time integration

PKDGRAV uses a standard, second-order Kick-Drift-Kick scheme for the time integration.
This has proven to be very successful for cosmological simulations and orbital dynamics
thanks to its symplectic nature (see Springel, 2005, for details).

6Cell or leaf is one of the nodes of the spatial tree that divides the domain and contains more than
one particle

7Or at least does not directly depend on N .
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The ”Kick” consists of updating the particle’s velocities with the acceleration, whereas
the ”Drift” updates only their positions. This is done with half a time step difference.
Simple visualization of this algorithm is shown in figure 1.2. It is clear that only at times
t = n∆t both velocities and positions are synchronized, so that would be the ideal time
to, for example, save the particle data to a file.

Time 

K K K K K

D D D

1

2

3

Δt/2 Δt/2

Figure 1.2: Visualization of the Kick-Drift-Kick scheme. In red, the order of the operations
for a single time step. Notice that the Kick phase is divided in two just to have synchronized
positions and velocities at t = n∆t. For the Drift step (2), the velocities computed at the Kick
(1) are used.

This scheme can be easily modified in order to allow individual time steps for the
particles. This way, more “active” particles will have their velocities updated more often,
whereas less active particle will be updated less often. The allowed time steps of the
particles must be (∆t)i = (∆t)0/2

ki , with ki a positive integer.8 Then, all particles will
be synchronized Nstep times, at multiples of (∆t)0, given that the latter is defined as
(∆t)0 = (tf − t0)/Nstep.

To obtain ki, different time steps criteria can be used (they will be explained in
section 3.2.5) to obtain a guess (∆t) for the particle. That being known, the smallest ki
that fulfill (∆t)0/2

ki < (∆t) is chosen.
In general, a slight modification to the KDK scheme is done when allowing individual

time steps. The “Kick” is certainly done for the “active” particles, but as the “Drift“ is
computationally inexpensive, it is done for all particles at all time steps. For example,
the least active particle9 instead of doing one drift of (∆t)0, does 2K small drifts adding
always the same displacement, being K = maxi(ki).

1.2.4 Smoothing operator

Key to both SPH and MFV algorithms is the definition of the smoothing length, h.
Traditionally, there have been three approaches to compute its value:

1. The number of neighbours, NNGB, is a fixed parameter of the simulation. Then h
is the distance to the NNGB-th nearest neighbour. This is in disuse in favor of the
next approaches.

8In PKDGRAV jargon, ki is called the rung of the particle
9We thus assume that for this particle ki = 0.
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2. The approximate number of neighbours is a parameter of the simulation, and the
smoothing length is computed iteratively either fixing:

(a) an estimation of the volume, such as Vi = n−1i ≈ ω−1i ,

NNGB =
4π
3
h3i

ω−1i
, (1.28)

(b) or an estimation of the density

NNGB =
4π
3
ρih

3
i∑

j∈Simj

. (1.29)

The first one is used in PKDGRAV, hence in its SPH version, GASOLINE (Wadsley
et al., 2004). It is still implemented in PKDGRAV3, but we have found that although it
correctly returns NNGB neighbours, those are not necessarily the closest ones. We are not
aware if this has been modified for GASOLINE. To avoid using a function that we do not
think it is correctly implemented, we have discarded this approach.

The last two approaches are common in most SPH codes (e.g. Gonnet, 2014; Schaye
et al., 2015; Springel, 2005). Most of those codes also assume constant mass for the
particles, and in those cases (2a) and (2b) are equivalent. The difference arises when the
mass of the particles can change, as in the MFV scheme. In those cases, the last approach
is generally used (Gaburov and Nitadori, 2011; Hopkins, 2015) and we have implemented
it as well(details to be discussed in section 3.2.4).
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Chapter 2

Objectives

In the present work we aim to accomplish the following objectives:

1. To get acquainted with the Meshless Finite Volume (MFV) scheme. Not only about
its mathematical structure, but also from a physical and technical point of view.

2. To get acquainted with the state-of-the-art N-body PKDGRAV3. To understand its
underlying structure and its approach to High Performance Computing. To get used
to the Fast Multipole Method for the future integration of the gravity solver with
the hydrodynamic solver.

3. To implement the MFV scheme within the PKDGRAV3 code. This must be done
taking full advantage of the underlying code structure of PKDGRAV3 and having in
mind future improvements, such as porting part of the code to be executed on
Graphics Processing Units (GPU’s).

4. This implementation must be unique and new. Currently, there are few codes using
the MFV scheme (only Gaburov and Nitadori, 2011; Hopkins, 2015; Hubber et al.,
2018, with their codes named: WPMHD, GIZMO and GANDALF, respectively),1

thus it is of key importance to provide an independent test of the scheme. To that
end, all the implementation must be original, based mostly on the main equations
of the scheme, rather than previously developed code.

5. To test the new implementation with a series of test cases with known solution.
These tests check the correctness of the implementation, and are idealized cases of
more complex configurations found in production runs.

The first and second objectives are partially discussed in the previous chapter, namely
in sections 1.1.2 and 1.2, respectively. More importantly, their accomplishment is the base
for the third and fourth objectives. How these were achieved will be discussed in the next
chapter. The last objective will be described in chapter 4.

1Actually, both GIZMO and GANDALF typically use the Meshless Finite Mass, a variant of MFV
with fixed mass for the particles.
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Chapter 3

Code development

The scheme described in section 1.1.2 has been implemented into the N-body code
PKDGRAV3 (section 1.2). We have maintained the inherent code structure, taking full
advantage of all the already implemented functions, such as the smoothing operator, or the
Kick-Drift-Kick time integration. Doing so, we can deploy our code in desktop computers
or clusters achieving good scaling.

In section 3.1, the overall workflow of the code will be described. Then, in section 3.2,
the implementation of the Meshless Finite Volume method introduced in section 1.1.2
will be laid out. Remarks about performance and other minor modifications to the code
will be done in section 3.3 and section 3.4, respectively.

3.1 Workflow

The workflow of the master process can be summarized in figure 3.1. Although
PKDGRAV3 is able to use individual time steps as described in section 1.2.3, in this diagram
we show a simplified workflow assuming that all particles have the same time step. The
phases labeled in red are those newly implemented in this work, while the green ones were
already at PKDGRAV3 but have been modified. To directly check the densities that have
been computed for the initial conditions, a new call for creating an snapshot have been
included just before the main loop starts, shown in blue. The workflow can be divided in
three phases:

1. Setup of the simulation and the processes involved. In this phase, density, primitive
variables, gradients and fluxes are computed, but the conserved variables of the
particles are not modified. Due to this initialization, we can safely compute the first
time step (details in section 3.2.5). This, together with creating a snapshot just at
the end of the setup phase, has been proven very useful for debugging the initial
conditions, as we can check that the computed density is the same that we expect.1

1As density depends on the geometry and number of neighbours, it can not be set as a normal variable
at the initial conditions (such as, e.g., the velocity).
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Figure 3.1: Example workflow where all the particles have the same time step. In red, those
new functions implemented in this work. In green, those that has been modified with respect to
the base PKDGRAV3.

2. Main loop, which starts with a “Kick” to the particles. In this work it will not be
relevant as this only involves collisionless particles. Next, the hydrodynamic fluxes
will be computed, and their contributions will be added to the conserved quantities.
Then, all the particles are drifted to their new positions, according to their velocity,
which was last updated when “Compute primitive variables” was called.

Knowing the new positions, the tree is built (which is needed for the neighbours
finding algorithm) and the densities are updated. After that, the primitive variables
are computed from the conserved variables, and the gradients are calculated. If
needed, they are limited for stability of the solution. Those gradients and primitive
variables are the ones to be used the next iteration.

3. After the desired time is reached, the results are dumped to a final snapshot, and
all the worker processes (i.e., those invoked by the PST layer) are finalized.

It must be stated that unless specified, all the implementation carried out and explained
throughout this section is new, in other words, there has been no “copy-pasting” from
previous existing works (to accomplish the fourth objective of section 2). We find this
highly relevant as there is little amount of published work regarding this numerical scheme
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(only Gaburov and Nitadori, 2011; Hopkins, 2015; Hubber et al., 2018; Lanson and Vila,
2008a, and other works using the same codes, with minor modifications). Thus it is
interesting to independently check that the scheme works as expected and reported.

3.2 Hydrodynamics solver

In this section a thorough technical overview of the implementation is presented. We
have divided this section in the description of: the particle variables that has been added
to the code (section 3.2.1), the so-called neighbours loops (section 3.2.2), the Riemann
solver (section 3.2.3), the iterative computation of the smoothing length (section 3.2.4)
and the different time step criteria implemented (section 3.2.5).

3.2.1 Memory footprint

PKDGRAV3 save the particle information creating structures on-the-fly, saving the offset
of each variable, and then allocating the hole chunk of memory needed at once. Compared
with using the standard C struct, this increases memory efficiency as no padding bytes
are added.

Furthermore, this approach is very versatile, as for example we can choose not to save
the potential of the particle without modifying the code, by just using the appropriate
run-time flag. Nevertheless, this is more complex than using a C struct, and was not
used for our implementation due to time limitations (it can be changed in the future).

For the hydrodynamics, an old struct of an unfinished SPH implementation was
reused, as well as all the helper functions associated with it. As today, the struct holding
all this information contains: the old SPH variables (which can be removed); the ¯̄B
matrix (equation (1.17)); the time at which the last update of the primitive variables was
performed; the approximated local number density, ω; the primitive variables, p, (both
density and velocity are already in the native PKDGRAV3 particle data); their gradients;
the fluxes of the conserved variables and the conserved variables (mv, me).

Thus this implementation requires to store 33 doubles (i.e., 264 bytes2) per particle.
We have chosen to use double precision, but in the future the use of single precision can
be studied for some of these variables to reduce the memory footprint.

3.2.2 Neighbours loops

The majority of the new code is included in the four phases denoted “Compute Fluxes”,
“Compute density”, “Compute gradients and limiter” and “Compute primitive variables”.
In each one of these, there is a main loop over all the gas particles, and for the first
three, also a nested loop over the neighbours of the i-th particle. Before the start of the
inner loop, the neighbours of the i-th particle are identified. If needed, the information is
fetched from other processors. For the last one, there is no need to look for the neighbours
as all the operations involve only i-th particle’s variables.

2Without accounting for padding bytes.
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We now describe each of the neighbours loops:

• Compute density: this loop is in charge of computing the local number density,
ωi, and assuming that Vi ≈ ω−1i (Gaburov and Nitadori, 2011; Hopkins, 2015), it
computes the density of the particle. In this neighbour loop, the smoothing length
of the particle is also updated (details at section 3.2.4). This must be called after
the particles are drifted.

• Compute gradients and limiter: this loop computes first the gradients using
the partial derivative approximation by Lanson and Vila (2008a), equation (1.15).
Then, it gathers the maximum and minimum values of each variable across its
neighbours. Following the standard limiter of Barth and Jespersen (1989), the
gradients are multiplied by a factor α ∈ [0, 1] such that the extrapolated variables
inside the support space are not above (below) the maximum (minimum) value of
the neighbours.

• Compute Fluxes: this is the core of the implementation. It starts extrapolating
to the faces (Aij in equation (1.23)) the boosted primitive variables using equa-
tion (1.25), and then do a temporal extrapolation following equation (1.27). Once
the states are computed, they are passed to the Riemann solver (section 3.2.3).
Afterward, the fluxes are de-boosted from the face system of reference using equa-
tion (1.24) and added to the conserved variables of the i-th particle using the smallest
of the time steps between the i-th particle and its neighbour.

Additionally, a neighbour loop is done when estimating ∆t, which computes the
maximum signal velocity of a given particle with respect to its neighbours. This will be
discussed in more detail in section 3.2.5.

3.2.3 The Riemann solver

The Riemann solver is the core of almost all Godunov schemes. Because of this, there
are plenty of methods and codes to solve the Riemann problem. To reduce the development
time, we have used the Riemann solver implemented within GIZMO (Hopkins, 2015),
which is heavily based on that of AREPO (Springel, 2010b). Some minor modifications
where required to match the input and output structures, as well as reading parameters
(such as γ) from the core of PKDGRAV3.

From the GIZMO code, we have kept two Riemann solvers:3 an exact, iterative, one;
and an approximate one (HLLC). We will not describe them further in this work, and the
reader is referred to Toro (2009) for more information (the HLLC solver is described in
chapter 10 and the exact solution developed in chapter 4).

3Actually, we kept all of them but the wrapper function now only calls those two.
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3.2.4 Iterative computation of h

The actual value of the smoothing length is not crucial for the convergence of the
MFV scheme as long as it has a continuous first derivative. However, h to some extent
represent the size of each particle, and thus the resolution of the simulation. Because of
this, it is logical to define it in such a way that the “size” of a particle is smaller(bigger)
where the number density of particles is higher (lower). This correspond to the approach
(2a) explained in section 1.2.4.

This implies solving N implicit equations,4

(2hi)
3 =

3NNGB

4πni
, (3.1)

where ni ≈ ωi. For the iterative procedure to work, two parameters have to be defined:
the desired NNGB, and ∆NNGB which is the allowed deviation from this expected value.
The latter is usually set equal to a fraction of unity, which gives accurate results without
expending a lot of time in the iterative solver.

The iterative procedure consist on a hybrid approach between a fixed-point iteration
and a bisection algorithm. This approach have been found consistent for all the cases
studied in this work.

Although iterative methods are avoided due to their impact in performance, in our case
we have found that the h computation always takes less time than the flux computation.
Furthermore, as the smoothing length is only updated for active particles, typically the
neighbour search is only performed for a small set of particles.

3.2.5 Time step

In all explicit schemes (such as equation 1.26), the time step should be limited in such
a way that information can not travel more than one resolution element each iteration.
This simple imposition leads to the condition known as the Courant-Friedrichs-Levy (CFL)
criteria:

∆t <
∆x

c
, (3.2)

where ∆x is the spacing between points and c is the speed at which information moves (in
general, the speed of sound). However this criteria was devised for a static distribution of
particles and thus must be revisited for schemes which have moving particles. We follow
the criteria of Hopkins (2015):

(∆t)CFL,i = 2CCFL
hi

|maxj[cs,i + cs,j −min(0, vij]|
. (3.3)

In this criteria, both sound speeds (cs,i and cs,j) are taken into account, but also the
velocity at which the particles are approximating each other, vij = (vi − vj) · rij/|rij|.

4In our implementation, the radius of the sphere where the neighbour search is carried out is 2h,
because our kernel is zero when h ≥ 2
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Throughout this work we have used CCFL = 0.2 unless otherwise stated.
Besides this criteria, we also have an acceleration criteria (Durier and Dalla Vecchia,

2012) expressed as:

(∆t)acc,i = Cacc

√
2hi
ai
, (3.4)

where Cacc ∼ 10−3. From these criteria, the one that provides a tighter constraint to the
time step is chosen. Furthermore, we have implemented as well a limiter following Saitoh
and Makino (2009). This limiter constraint the time step of a particle to be at most 2p

times that of the most active particle surrounding it. Typically p = 2, 3 is a safe value
to avoid that very active particles can overtake less active ones when energy is suddenly
injected to the system from, for example, supernovae feedback.

When particles with different time steps are interacting, the flux is added to the
conserved quantities using min[(∆t)j, (∆t)i]. This idea was first employed in the AREPO
code Springel (2010b) to have explicit conservation even with particles with individual
time steps.

3.3 Remarks about performance

The code that has been described throughout this chapter is aimed to High Performance
Computing (HPC). It has been thought as the base for a GPU-enabled implementation of
the MFV scheme, where the flux computation would be carried out on GPU. Furthermore,
as it takes advantage of the underlying MDL layer (see section 1.2.1), it is able to run on
laptops or high-end clusters without modifications.

However, due to the limited time to carry out this work, the current CPU version is
not fully optimized. Not only for the optimal time-to-solution, but also memory-wise.
These two points will be addressed in future versions of the code, before porting it to
GPU.

3.4 Other modifications to PKDGRAV3

Together with all the developments introduced in previous sections, there are minor
modifications to the code which are not unique to the MFV scheme, namely:

• Generation of a first snapshot before the first step. This is useful in order to check
whether the initial conditions have been read successfully.

• Implementation of a gather/scatter pair to set the time step of all particles to the
minimum ∆t in the whole domain, even when running in parallel. This was a needed
tool for debugging the implementation, and can be used to check the correctness of
the multiple time stepping scheme (section 1.2.3) when applied to the hydrodynamic
solver.
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Chapter 4

Results

In this section, the results obtained with the newly developed solver will be laid out.
In the first place, the solver will be tested using a set of problems with known solution
(section 4.1). They will ensure the correctness of the code in a wide variety of problems,
some of them with strong astrophysical implications. Secondly, a brief analysis of the
performance will be carried out in section 4.2.

4.1 Test cases

In the following, a set of test cases will be performed. In section 4.1.1 a simple
traveling sound wave will be solved and checked against its analytical solution. This test
can also give an idea about the convergence of the solver under different parameters,
such as NNGB and N . Then, in section 4.1.2, the core of the solver will be tested solving
a typical Riemann problem. Next, more astrophysically relevant cases will be studied.
In section 4.1.3, the ability to conserve the angular momentum will be tested, as well
as to check if the solver artificially transports angular momentum. Afterwards, the
Sedov-Taylor’s explosion will be simulated, where the ability to correctly capture strong
shocks will be tested (section 4.1.4). To finalize, in section 4.1.5 a fluid-mixing test will
be performed, aimed to check the adaptive resolution of the scheme.

4.1.1 Sound waves

One of the most used problems to check the correctness and convergence properties of
a given hydrodynamic solver is the propagation of sound waves in a isothermal medium at
rest. If the amplitude of the wave is small enough, the fluid’s equations can be linearised
and an analytical solution can be obtained. This solution can be expressed, for a periodic
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one dimensional domain of size L, as

ϕ =
2πx

L
Nw − ωt, (4.1)

ρ = ρ0 (1 + A cos(ϕ)) , (4.2)

p = p0 (1 + A γ cos(ϕ)) and (4.3)

v = A cs cos(ϕ), (4.4)

where A� 1 is the amplitude of the perturbation, and Nw the number of wavelengths
that fit into the domain. The whole solution moves as time advances at the speed of
sound, cs, without changing its shape.

This test is ideal for checking the spatial order of a hydrodynamical solver. The MFV
scheme is second order in space, thus we expect the difference between the numerical
solution and the analytical one (measured with the L1 norm) to decrease as N−2, with N
the number of particles in the x-axis

For these tests we initialize a Cartesian grid with N nodes along the x-axis and we
place a particle in each node. The size of the domain along the x-axis is set to unity. For
the y and z axes, we set them in such a way that they contain N2 nodes, and with the
same separation among them than in the x-axis. The number of nodes in these axes is of
no importance if the sound wave travels along the x-axis and thus can be taken small and
constant without affecting the convergence of the method.1

We set for this cases ρ0 = 1, p0 = 1, γ = 1.4, A = 10−3, CCFL = 0.05, NNGB = 32 and
∆NNGB = 0.05. We run a set of simulations with N = 16, 32, 64, 128 with fixed N2 = 4
for one crossing time.2 In figure 4.1 the density perturbation is shown for all N (colored
points), and also the expected analytical solution (black line).

It can be seen that the limiter flattens the peaks because it does not allow values of
density (and other variables) to be higher (lower) than the maximum (minimum) value
among its neighbours. This behavior could degrade the spatial order of the method and
is more evident when using a higher NNGB, because the affected particles will be further
away from the maximum (or minimum).

To check this hypothesis, we also run the same set of simulations, this time turning
the limiter off. As there are no discontinuities, it is not explicitly needed and can be
safely disabled. We also re-run the simulations with different NNGB. Then, for all the
simulations we compute the L1 norm of the density at one crossing time.

The convergence results are shown in figure 4.2. To guide the eye, we also show
the theoretical convergence of a second order scheme (L1 ∝ N2) and for a less accurate
L1 ∝ N−1.5 scheme. When the limiter is turned off, the convergence of the scheme reaches
L1 ∝ N−1.9, very close to the expected second order accuracy. Also, this convergence is
not affected by the effective number of neighbours.

Comparing with convergence properties of GIZMO (figure 2 in Hopkins, 2015), we

1Even in this adapted cases we allow for changes in the variables along the z-direction, as well as
vz 6= 0. If the scheme behaves as expected, those changes will be negligible.

2This is the time that it takes the wave to travel the whole domain, i.e., L/cs.
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Figure 4.1: Density perturbation of the sound wave test case (section 4.1.1) after one crossing
time. Marked as dots, the numerical solution of the problem with different resolution (and
constant NNGB = 32). The expected solution is shown in black lines (equation 4.2). Notice that
although we are solving the problem in a 3D domain, all the points with the same x coordinate
have the same density, thus the symmetry of the problem is well conserved.

found slightly smaller values. They report almost perfect convergence (L1 ∝ N−2),
independently of the choice of NNGB. The difference (albeit small) can be attributed to
the fact they they run the simulation in a strict 1D setup, while in our case we solve a 3D
configuration.

On the other hand, when using the limiter, the convergence ratio is degraded down to
∼ 1.5. Furthermore, we found that when using NNGB = 32 it increases up to 1.6 because
less particles are affected by the limiter.

Not using the limiter is a risky decision, as negatives densities or pressures can appear.
Therefore, in the following all simulations will be carried out with the limiter turned
on. We are aware of the convergence problem, and although it is not critical, the limiter
can be further improved to avoid this behavior.3 In the following we will use, in general,
NNGB = 32 because we have found in this number a good compromise between an accurate
derivative approximation and over limiting.

4.1.2 The Riemann problem

Another extensively used test case consist of solving the Riemann problem, i.e., the
time evolution of two regions with different states (WL, WR) joined by a discontinuity
at t = 0 (Toro, 2009). In general, at t > 0, four different regions can appear, each one
having its own density, pressure and velocity. Between them, either a shock wave, contact

3We are not aware if for GIZMO this was the approach, or if they turned off the limiter in the
convergence test.
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Figure 4.2: Convergence of the MFV scheme implemented in this work for the sound waves
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limiter is active. For the star symbols the limiter was de-activated. To guide the eye, two
theoretical convergence ratios were plotted. The color encodes the number of neighbours in each
run: NNGB = 32, 48, 64 are red, green and blue respectively.

discontinuity or a rarefaction wave can appear. The core of the developed scheme consist
in solving the Riemann problem between particles, hence we expect that the scheme will
successfully pass this test.

The Riemann problem is defined in 1D. Our code, however, can only be run in three
dimensions, thus we have slightly adapted the problem by expanding the one dimensional
formulation maintaining constant values along the y and z axes, as in the previous test
case (section 4.1.1).

We have set for this problem the following states:

WL =



ρL
vL
pL


 =




1
0
1


 ; WR =



ρR
vR
pR


 =




0.25
0

0.1795


 . (4.5)

and the discontinuity is placed at x = 0. This initial configuration will develop producing
the three possible transitions between fluid states. From left to right, a rarefaction wave,
a contact discontinuity and a shock wave will appear.

Due to the nature of the solver described in this work, in which the density is defined
using both the mass of a particle and the local number density, there are multiple ways to
set the particle’s positions and masses resulting in a density obeying equation (4.5). For
this case, we have studied two of them:4

4It is important to remark that regardless of the initial conditions (ICs) used, the mass of each particle
is allowed to change freely during the integration.
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• All particles have constant mass (CM) at t = 0. The distance between particles
determines the density.

• All particles are equally separated. To have a density consistent with equation (4.5),
we use variable masses (VM).

We have set for this case CCFL = 0.2, NNGB = 64, ∆NNGB = 0.05, γ = 1.4, and
N = 200 particles along the x-axis. We have performed tests with smaller number of
neighbours, but we have found that unwanted oscillatory solutions appear. This may
happen because the MFV is supposed to work as long as the smoothing length, h, is a
continuous function. However, in these cases we can have a discontinuity in the local
number density, which is translated into a discontinuity in h. If the number of neighbours
is increased, the changes both in the local number density and h would be smooth enough
that the MFV can successfully converge to the correct solution.

In figure 4.3, the solutions for both initial conditions are shown and compared against
the analytical solution5 at t = 0.13. Although with both IC the expected result is achieved,
there are small differences between both runs.

Namely, the contact discontinuity (located at x = 0) is better resolved with the CM
initial conditions. For the VM, a bump can be seen in the pressure, where it should be
constant. This behavior was also observed in the GIZMO code, and is attributed to the
limiter (Hopkins, 2015). At the shock wave (x ∼ 0.2), the CM presents oscillations, which
are likely caused by the choice of limiter. This is also present in GIZMO.

To better understand these differences, we show in the lower right panel of figure 4.3
the smoothing length of the particles. In this scheme, if h increases, the effective spatial
resolution is lower. This becomes evident, for example, in the rarefaction wave (x < 0),
where the run using the CM initial conditions is clearly closer to the analytical solution
because the smoothing length of the particles is smaller. On the other hand, at the shock
wave, the CM has worse resolution and thus the shock is smoothed over a higher number
of particles.

In summary, both IC successfully converge to the expected solution with minor
discrepancies. Due to its simplicity, we will take the VM approach in the following
problems, but we expect no major difference if the initial conditions were set using equal
masses for all particles.

4.1.3 The Gresho Vortex

For cosmological simulations it is of fundamental importance that the angular mo-
mentum is conserved, and that it is not transported by artificial viscous forces. The
transport of angular momentum towards the inner(outer) parts of a galaxy would re-
sult in a decrease(increase) of the galaxy size, which is something well-constrained by
observations.

One simple 2D test that allow to check whether angular momentum is being conserved
or transported is the set up of triangular vortex embedded in a non-rotating background

5We have used the solution given by https://gitlab.com/fantaz/simple shock tube calculator/tree/master/
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Figure 4.3: Solution of the Riemann problem (section 4.1.2) at t = 0.13, with the analytical
solution shown in red. Two different initial conditions have been used: Blue, all particles started
with the same mass; black, all particles were equally spaced and thus mass was not constant
in the domain. Top left, density profile; top right, velocity along the x direction; bottom left,
pressure profile; and bottom right, the smoothing length. Notice how the latter is substantially
different in both runs. A higher value implicates a lower resolution in the area.

(Gresho and Chan, 1990). The inner region rotates as a rigid body up to a radius R1 = 0.2,
after that point, tangential velocity decreases linearly down to zero, at R2 = 0.4. Assuming
that the fluid has constant density, a pressure profile can be obtained such that this
configuration is stationary. In summary, the initial conditions are:

vϕ =





5r r ≤ 0.2
2− 5r 0.2 ≤ r ≤ 0.4
0 0.4 ≤ r

; p =





5 + 25
2
r2 r ≤ 0.2

9 + 25
2
r2 − 20r + 4 log(5r) 0.2 ≤ r ≤ 0.4

3 + 4 log 2 0.4 ≤ r
(4.6)

The size of the domain is L = 1 and we set 642 particles in the nodes of a Cartesian grid
to provide ρ = 1. We extend the case to 3D using the methodology explained in previous
cases. To test the Galilean invariance (i.e., invariant against rotations and translations)
of the implemented scheme, we add a bulk velocity to all particles, vx = 1. We run this
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simulation with CCFL = 0.2 and NNGB = 32 (∆NNGB = 0.05) until t = 3, when the inner
region has completed ∼ 2.4 orbits.

In figure 4.4 we show the solution at the end of the simulation.6 For comparison, we
plot the expected solution (equation (4.6)) in red. Even when there is a bulk velocity the
cylindrical symmetry is well conserved, as expected due to the Lagrangian nature of the
method. Furthermore, the peak of vϕ is not displaced outwards or inwards, thus there is
no noticeable artificial transport of angular momentum. In the inner region, the particles
correctly rotate as a rigid body with almost no disturbance.

0.0 0.2 0.4 0.6
r

0.00

0.25

0.50

0.75

1.00

v ϕ

−0.50 −0.25 0.00 0.25 0.50
x

−0.4

−0.2

0.0

0.2

0.4

y

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

v ϕ

Figure 4.4: Solution of the Gresho vortex (section 4.1.3) at t = 3, when the inner region has
completed more than two orbits. Left, tangential velocity profile, with the stationary solution
showed as a red line. For clarity, only a small random subset of points is shown. Right, tangential
velocity in the x-y plane. The cylindrical symmetry is well conserved as there are no preferred
axes.

Comparing this results with those obtained with GIZMO (figure 4 in Hopkins, 2015),
the main difference is that in our code the tangential velocity’s peak is at vϕ ≈ 0.75, and in
their simulations it was at vϕ ≈ 0.85. We found this difference not critical, as in our run we
use less favorable initial conditions: whereas they started from a distribution of particles
in concentric circles, we placed the particles in a Cartesian grid. Furthermore, they can
solve this problem strictly in 2D, and that may enhance the convergence properties of the
scheme.

4.1.4 Sedov’s explosion

In cosmological simulations the feedback induced by supernovae is key to the evolution
of galaxies: if too strong, gas is ejected outside of the galaxy and no more stars are formed
until it collapses again; on the other hand, if too weak, too much gas collapses and too

6After subtracting the bulk velocity
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many star forming galaxies are created, compared with observational constraints (Schaye
et al., 2010).

Technically, the feedback is implemented as a sudden increase of thermal (or kinetic)
energy into one (or few) particles. This causes a strong shock that expands radially
outwards, leaving behind a bubble of low density, hot gas.

Hence checking the correctness of the implemented scheme when strong shocks are
present is key if we plan to use it for cosmological simulations with feedback. One of the
standard tests for the hydrodynamic solvers implementing feedback is the Sedov explosion
(Sedov, 1993). This test starts with a homogeneous medium at rest. Then, for one (or a
few) particle(s), the internal energy is suddenly increased by a few orders of magnitude
with respect to the background.

A self-similar solution can be found for this case using dimensional analysis and
assuming that the background energy is negligible compared to the “explosion“ energy.7

The solution gives that the shock position, after the injection of an energy E0, is placed at

rs(t) = β

[
E0t

2

ρ0

]1/5
, (4.7)

and thus the shock expands with a velocity vs ∝ t−3/5. The constant β is of order unity
and depends on the adiabatic index. In our case, γ = 5/3 and β = 1.1527. For the
simulations done in this section, we have set E0 = 1 and ρ0 = 1. To provide a background
with negligible internal energy, we set the particles temperature such that (without taking
into account the exploding particle) ub =

∑
i ui = 10−5.

The expected density contrast between the background and the shock front is

ρs
ρ0

=
γ + 1

γ − 1
, (4.8)

and is equal to 4 if we use γ = 5/3.
We have set a box of L = 1 with 643 particles arranged in a Cartesian grid. After

setting the total energy of the background, we add to the central particle all the energy of
the explosion.

We set CCFL = 0.2, NNGB = 32 and ∆NNGB = 0.05. To directly compare this test
with GIZMO, we set the exact same initial conditions and parameters described above.

We run both simulation until t = 0.1. The solution of both codes at t = 0.07 is shown
in figure 4.5. The self-similar solution is shown as a red line. We have also marked the
maximum density in the shock front for both runs.

With our code, we do not achieve the density contrast of GIZMO (ρs = 3.52 vs.
ρs = 3.15), but is closer to that reported by Hubber et al. (2018) with GANDALF
(although their test is in strict 2D). However, we find substantially less dispersion in the
radial velocity in the inner region. The latter shares the same explanation with the absence
of particles with m ≤ 0.19×10−5 in the GIZMO run: that code can merge/split particles in
certain situations to improve resolution and avoid close gravitational interactions between

7Indeed, the solution was firstly designed for estimating the energy of nuclear explosions from images.
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particles with very different masses. The merging routine is triggered when the mass of a
particle drops below m0 = 0.5 mini[mi(t = 0)], and merges that particle with its lightest
neighbour. This effectively reduce the number of particles in the inner region, lowering
the spatial resolution.
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Figure 4.5: Solution at t = 0.07 of the Sedov explosion (section 4.1.4) for the density (left),
particle mass (middle) and radial velocity (right). Upper row, results obtained with the MFV
scheme developed within this work. Bottom row, results with the same initial conditions but
solved with the MFV scheme in GIZMO. For clarity, only a small random subset of points is
shown. In red, the self-similar solution.

We also show in figure 4.6 the temperature 2D distribution in a thin slice |z| < 1/32
for both runs. We have also marked the particle position as black dots. Our solution
(left), shows better symmetry in the central region because we do not merge particles.
Furthermore, GIZMO’s solution has a temperature dip just before the shock (white
regions), where the particle’s internal energy almost drop to zero. We do not have this
dip and therefore our solution is smooth.

One of the premises of the work presented at Hopkins (2015) was that the method
was fully conservative, up to machine precision, provided that all particle interactions are
done in pairs. We have been careful during the development and testing of our code to
make sure that this condition holds, as the benefits are of great importance. Although we
have checked mass and energy conservation in all our test, we only show for this test the
time evolution of energy and mass, as we think this is the most challenging case. The
time evolution of total mass, kinetic, internal and total energy are shown in figure 4.7.
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of the Sedov explosion at t = 0.7. Right, solution from the solver implemented in this work Left,
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We have added for comparison the evolution of the same variables using GIZMO.
It is clear that GIZMO8 does not conserve energy nor mass. The increase of total

energy is of ∼ 5%, which is a noticeable amount. The mass is better conserved, with
losses ≤ 0.1%. Comparing with GANDALF, their result is between our code and GIZMO,
with a reported relative energy loss of 10−4. They attribute this energy loss to the time
limiter of Saitoh and Makino (2009) (see section 3.2.5), of which we have implemented a
modified version.

On the other hand, our code does conserve mass and energy up to machine accuracy.
This is an improvement of orders of magnitude with respect to GIZMO. We are not
aware if this a bug, or “intentional” up to some extent.9 Most likely the limiter or the
merger/split algorithms are not fully conservatives. But if that is the case, it is not
explicitly stated in Hopkins (2015).

4.1.5 Kelvin-Helmholtz instability

The last test is aimed at studying the adaptive spatial resolution and fluid mixing
properties of the solver.

For cosmological simulations, fluid mixing is needed to correctly capture the interaction
between multiphase flows (Agertz et al., 2007). For example, if fluid mixing is suppressed

8We have used the standard off-the-self code, with the indications given in the IC repository
(http://www.tapir.caltech.edu/ phopkins/Site/GIZMO files/gizmo documentation.html#tests-shocks-
sedov). The code was downloaded the 5th of October, 2018. We have not found any “obvious” parameter
to “turn the conservation on”.

9In some cases non-conservative schemes are less noisy.
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Figure 4.7: Energy and mass evolution for the Sedov explosion test case (section 4.1.4) using
the code developed in this work (blue), and GIZMO (orange). For the total energy and mass a
zoom-in has been added to emphasize the conservation properties down to machine accuracy of
the new solver.

due to numerical effects, the ram pressure inside clusters would be too low, hindering the
stripping of gas of satellite galaxies falling into the cluster.

It is known that standard SPH can not faithfully simulate contact discontinuities, such
as those present in the Kelvin Helmholtz (KH) instability (Agertz et al., 2007; Springel,
2010a). This is caused by spurious pressure forces, which appear in regions of steep density
gradients. Thus standard SPH solvers will suppress fluid mixing and avoid the non-linear
evolution of the instability.

On the other hand, solvers using a grid correctly simulate fluid mixing (Agertz et al.,
2007). But, if they are not Galilean invariant, adding a bulk velocity to the problem
would completely distort the solution (Hopkins, 2015).

In the following, we will simulate the evolution of a Kelvin-Helmholtz instability. This
test will give us an idea about the fluid mixing properties of the code. Also, due to the
non-linear nature of this test, eddies will appear at all scales, so it is a good test for the
adaptive spatial resolution.

We follow Hopkins (2015) for the setup of the initial conditions. The case is 2D, but
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has been adapted to 3D following the same procedure as in previous cases. We set N2

particles in a regular lattice and we set the mass of the particles such that

ρ(y) =





ρ2 −∆ρ exp [(y − 0.25)/∆y] −0.5 ≤ r ≤ −0.25
ρ1 + ∆ρ exp [−(y − 0.25)/∆y] −0.25 ≤ r ≤ 0
ρ1 + ∆ρ exp [(y − 0.75)/∆y] 0 ≤ r ≤ 0.25
ρ2 −∆ρ exp [−(y − 0.25)/∆y] 0.25 ≤ r ≤ 0.5

(4.9)

holds. We have set ∆y = 0.025, ρ2 = 2, ρ1 = 1 and ∆ρ = 0.5(ρ2 − ρ1). The pressure is
constant (p = 5/2) along the domain and γ = 5/3. The KH instability is characterized by
a shear flow along the x direction,

vx(y) =





vx2 −∆vx exp [(y − 0.25)/∆y] −0.5 ≤ r ≤ −0.25
vx1 + ∆vx exp [−(y − 0.25)/∆y] −0.25 ≤ r ≤ 0
vx1 + ∆vx exp [(y − 0.75)/∆y] 0 ≤ r ≤ 0.25
vx2 −∆vx exp [−(y − 0.25)/∆y] 0.25 ≤ r ≤ 0.5

, (4.10)

and vx1 = 0.5, vx2 = −0.5. To allow the growth of the instability, we seed an initial
perturbation to the vertical velocity,

vy(x) = δvy sin (4πx) . (4.11)

We have run this case with N = 128, 256, 512, and up to t = 10. In figure 4.8 a
summary of the results is presented. The results at t = 2.5 are shown at the top row, and,
in the bottom row, at t = 10. The resolution increases from N = 128 to N = 512 from
left to right.

The solver successfully captures both the linear and non-linear growth of the instability
at all resolved scales. However, the evolution is not exactly the same for the three
resolutions. This is expected because as we increase the resolution we can resolve smaller
scales that, due to the non-linearity of the problem, can have an impact in the evolution
at larger scales.

To show a more comprehensive view of the problem, we have produced movies with
the time evolution of the KH instability for the three resolutions shown in figure 4.8:
MOV/N128.avi, MOV/N256.avi and MOV/N512.avi, respectively. It is clearly seen that the
overall evolution is similar for all N , but small scale eddies are more common when the
resolution is increased.

31



−0.4

−0.2

0.0

0.2

0.4

y

N = 128 N = 256 N = 512

−0.4 −0.2 0.0 0.2 0.4
x

−0.4

−0.2

0.0

0.2

0.4

y

−0.4 −0.2 0.0 0.2 0.4
x

−0.4 −0.2 0.0 0.2 0.4
x

1.00 1.25 1.50 1.75 2.00
ρ

Figure 4.8: Solution of the Kelvin Helmholtz instability (section 4.1.5) using the code developed
in this work. The density is shown at t = 2.5 in the top row and at t = 7.5 in the bottom row.
From left to right, the number of particles per axis is N = 128, 256, 512.

4.2 Performance analysis

As stated in previous sections, we take full advantage of the parallelism model of
PKDGRAV3. Doing so, we can expect good scaling in a wide variety of scenarios. However,
it would be easy to degrade the parallel performance of the scheme if, say, we use too
many cache request from other processes. Thus, in order to check that the code still
performs as expected, we have performed a simple strong scaling test.

There are different metrics to check the scalability of a code. The weak scaling, for
example, increases the problem size and number of cores used fixing the theoretical work
load of each process. On the other hand, the strong scaling is obtained solving a fixed-size
problem with an increasing number of cores. Whereas in the first case the expected
solution is a constant time-to-solution, in the second we expect the time-to-solution to
decrease with the number of cores used.

To setup this simple case, we have placed randomly N = 2563 particles in a 3D box of
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size L = 1, and we set the same temperature for all of them. Then, we run 100 iterations
of the Kick-Drift-Kick scheme with global time stepping, storing the time taken for each
iteration. The time is computed as the median of those timing measurements. We have
run this simulation with increasing number of cores, all residing in the same node and
NUMA domain.10 The result of the strong scaling are shown in figure 4.9.

101 102

Ncores

101

102
K

D
K

st
ep

ti
m

e
(s

)

Ideal scaling

Figure 4.9: Strong scaling of the hydrodynamic solver in a single node with 192 cores in the
same NUMA domain. As we use the efficient parallelism strategy of PKDGRAV3 we can achieve
ideal scaling within a node. It must be noted that points above the ideal scaling may have been
caused by other processes using the same CPU, as the whole node was not requested for those
benchmarks.

As expected, we successfully achieve almost perfect scaling up to 192 cores. We suspect
that the points above the ideal scaling are caused by the interference with other processes
running in the node, as we did not request for the whole node for each run. Although
further tests need to be done to check the scalability in different nodes, we expect that no
major difference with the base PKDGRAV3 will be encountered.

10Simplifying, this means that all CPU’s share the same RAM, but each one has its own cache.
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Chapter 5

Conclusions

In the framework of this Trabajo de Fin de Máster, we have developed a state-of-the-art
hydrodynamic solver into the efficient N-body code PKDGRAV3, namely, MFV. This was
done after understanding the underlying mathematical structure of the solver (section 1.1.2)
as well as other extensively used scheme, such as SPH (section 1.1.1). Furthermore, in order
to be able to successfully implement the solver and to take advantage of the parallelism
of PKDGRAV3, the code was studied in depth (section 1.2).

With the previous acquired knowledge, we have implemented the MFV scheme into
PKDGRAV3, explaining in great details the different physical and algorithmic features of the
implementation (section 3). This implementation is based in its majority in original code,
written from scratch. This allows us to independently check that the scheme behaves as
expected.

As no code is free of bugs, we have tested our code with a set of test cases (section 4)
extensively used in the Literature. During that process, plenty of bugs were discovered
and solved. Those cases were used to test different properties of the solver, namely: spatial
second order, individual time stepping, energy and mass conservation up to machine
accuracy and null artificial transport of angular momentum. Furthermore, we checked that
the implementation conserves the inherent scaling properties of PKDGRAV3 in section 4.2.

In summary, we have implemented and extensively tested an hydrodynamic solver
embedded in a N-body code, which in the future can be the base of a cosmological-
hydrodynamic code. That and other future improvements will be laid out next.

5.1 Future Work

All the new code that has been implemented during this Trabajo de Fin de Máster
is intended to perform cosmological hydrodynamical simulations, thus the next lines of
works are aimed to that goal. We can summarize the short term goals:

1. Implement self-gravity in the solver.

2. Add the gravitational interaction between collisionless particles (i.e., dark matter)
and gas particles.
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3. Add physical units to the solver and take into account the evolution of the Universe
via the scale-factor.

4. Add more physics into the code, such as thin radiative cooling.

5. Optimize the memory footprint and fine-tune CPU performance of the hydrody-
namic solver.

They are oriented to have a proper code which can evolve, say, the collapse of a dark
matter halo and the gas in it to form a cluster. The next long term goals are aimed to
provide a code able to faithfully reproduce star formation and feedback, and doing that
in a computationally efficient way:

1. Port the existing solver to Graphics Processing Units (GPU’s) to improve the
time-to-solution.

2. Implement star formation from the collapse of dense, cold gas.

3. Follow the evolution of the formed stars and their impact in the environment, e.g,
with supernovae feedback.

If all the preceding goals are achieved, the result will be a state-of-the-art cosmological
hydrodynamic solver with an efficient implementation of both gravity and hydrodynamics.
We expect the potential of such a code to be huge, as we could perform truly large (box size
L > 100 Mpc) scale structure simulations with consistent stellar formation and evolution,
something difficult to obtain nowadays.
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