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Abstract

This work serves as an introduction into open quantum systems by means of a system plus
reservoir approach which allows us to obtain analytic results for the covariance matrix at
the steady state. The reservoir model employed will be the Caldeira-Legget bath model,
a popular approach based on an environment composed of a large amount of harmonic
oscillators, and we will limit the study to the steady state of the system in order to obtain
analytical results. The elements of the covariance matrix allows to study properties of
the system through different scenarios where we obtain temperature profiles for a chain of
oscillators under the absence of an intermediate bath or the heat currents under different
regimes. In particular, we observe the effects of a defect in the coupling between oscillators
of the chain and confirm the heat transport through an intermediate bath without the need
of coupling between the oscillators of the same bath.
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Chapter 1

Introduction

When a large and complex quantum system is studied it is convenient to disregard the
many or even infinite constituents of it in order to employ them as a means to obtain
simple and few dynamical variables, achieving a global description. Thus, the study of open
quantum systems becomes highly relevant when we are interested in the physical properties
of the particular components of a larger system. There are multiple methods to obtain
this description, such as the functional integral approach, state vectors in Hilbert space
or system plus reservoir methods [1]. In the following chapters we will delve in the latter
method, specifically in the harmonic oscillator bath approach with linear coupling between
oscillators.

Historically, many different approaches have been taken as employing time dependant
masses to give explicit time dependency to the Hamiltonian [2, 3], complex variable canon-
ical quantisation similar to the Fokker-Plank equation [4] or using stochastic quantisation
procedures [5]. However this proposals usually violated quantum constrains such as the
uncertainty principle or the superposition principle, also being only able to describe a very
restricted amount of cases.

One of the most successful and intuitive approaches has been the use of a large system
composed of constituents that obey the canonical quantisation rules and where friction
emerges from the energy transfer from the system to the environment.

In specific, system and reservoir methods are a popular and useful way to study these
open quantum systems and can be broadly divided into two categories: By use of the
Schrödinger picture one can find the generalised master equation for the density operator
[6, 7, 8] or through the Heisenberg picture a Langevin equation approach is found to give
proper description to the particular operators of the system [9, 10]. Albeit the interaction
picture is also useful under the right circumstances [11].

Quantum master equations can be very useful tools with applications in a wide variety
of cases, taking most quantum phenomena into account. However, they prove to be unsuc-
cessful when the Born approximation is not feasible or the Markov assumption is violated.

In our case, we will focus on the Heisenberg picture approach as our interest is to obtain
an exact result due to the use of harmonic forces [9] as a way of introduction to this field.
This specific approach however is not able to describe unharmonic potentials required for,
for example, quantum tunnelling [12]. Thus, this type of phenomena will be left out of the
scope of this study.

Thus, the formalism employed in this work will consider a system of oscillators connected
through harmonic coupling to their first neighbours in a one dimensional fashion, a chain
of oscillators. The environment will be introduced in the model through the use of baths
connected to the oscillators which will follow the Caldeira-Legget model. The spectral
densities considered will be ohmic (∝ ω, linear with the frequency) and super ohmic (∝
ωs, s > 1).

2



The Caldeira-Legget model is a semi-empirical model where the system of interest is
coupled to a bath or environment which is defined as a infinite collection of non interacting
harmonic oscillators [13, 14]. While conceptually simple, this model requires to know the
properties of the closed system of interest, the quantum oscillator chain in our case, as well
as the form of interaction between the oscillator and the bath. The spectral density of
the bath is introduced as a way to describe this interaction and the bath completely. The
advantage of this model is that it reflects the mechanics of a realistic dissipative system and
can be treated analytically while avoiding usual problems of the canonical quantisation.

As we are going to use the Langevin formalism, it might be practical to introduce it
through the lenses of the classical approach to describe the strengths and difficulties of
said formalism. In a classical Langevin equation the dynamics of the system are primary
determined by the environment through the friction and stochastic forces [15]. One might
also take into account the memory kernel of the system in case the friction force is retarded,
but usually it is applied as a linear force also local in time. Assuming no memory and no
frequency dependence on the stochastic force (white noise), the Langevin equation can be
expressed for a 1D system as

q̈(t) + γq̇(t) +
1

m

dV (q)

dq
=
ξ(t)

m
, (1.0.1)

where m is the particle mass, q(t) is the position, γ is usually regarded as the friction or
damping coefficient, V (q) is a potential and thus it’s derivative acts as an external force and
ξ(t) is the stochastic force. The friction term is usually referred to as an ohmic term due to
the linear dependence with the velocity in analogy to its counterpart in circuit theory, the
resistor. This equation can describe the movement of a Brownian particle immersed in a
fluid of light particles [15]. If we want to study systems with a reservoir with coloured noise
and memory, the dynamics can be portrayed using the following generalised equation

q̈(t) +

∫ t

−∞
dt′γ(t− t′)q̇(t′) +

1

m

dV (q)

dq
=
ξ(t)

m
. (1.0.2)

The term γ(t− t′) is usually regarded as the memory kernel. Its dependence with t− t′ is
useful as we can use the convolution theorem to obtain the stationary memory kernel under
steady state conditions [16]. The stochastic force vanishes on average but it is relevant as
its auto-correlation function is important for the fluctuation dissipation relation through the
Green-Kubo Formula, which will give us a way to determine the nature of the frequency-
dependant damping coefficient γ̃(ω).

One important limitation in the classic regime is the time scale, where we need the
system to evolve to at least a time comparable to that of the memory of the reservoir (that
is, to 1

γ ). That being said, one could expect that at sufficiently low temperatures quantum
effects take over and a different description of the dissipation can be achieved. However,
this step is not without difficulty, as we now need to find a way to use the canonical scheme
of quantisation for the Hamiltonian of the system in order to obtain the proper dissipation
dynamics expected in the classic regime.

Thus, for our case of study we will need to fully understand both the Langevin formalism
and the interaction with the baths. We will only consider a memorials approach and the
influence of the bath over the coordinates of the oscillators will have to be taken into account
as correction for their effective natural frequencies. This will be done under a renormalisation
scheme described in detail in the text. Afterwards, the equations of motion will give us a way
to solve the relation between baths and oscillators and the use of the fluctuation dissipation
relation, central in the Langevin formalism, will give us the key to express all our properties
of interest as analytical terms of the covariance matrix at the steady state.

However, under this approach the analytical description of larger systems than a two
oscillator case requires the use of N ×N matrix operations and the only way to study them
properly is to use numerical calculations. Due to the nature of this calculations large systems
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tend to be quite costly in terms of performance, making the analysis of very long chains an
important compromise.

The aim of this work is to study 1D quantum systems at the steady state under a system
plus reservoir model, specifically using the Caldeira-Legget bath model, from a numerical
point of view. We review the implications of tuning different parameters and constraints of
the system such as the spectral density of the baths, the coupling between the oscillators
or the temperature profile. To do so we will obtain the elements of the covariance matrix
and subsequently the heat currents of the baths. This will allow us to analyse the energy
transport under different circumstances and also to observe the interaction between different
ends of the chain under specific conditions, such as the absence of coupling among oscillators
on the same bath.

In specific, we split the analysis in two main scenarios.

1. A system connected to a single bath. The relevance of this scenario is the characteri-
sation of the equilibrium steady state by means of the covariance matrix.

2. A system with multiple baths, where each element of the chain can be connected to
only one bath. The aim now is to review the properties outside of the equilibrium
of the steady state by means of assigning different temperatures to the baths. We
will study properties such as the temperature profile or the heat currents expressed
through the elements of the covariance matrix. Thus, the parameters of the system
will give characteristic behaviours to this properties. Among this parameters we have
the coupling between oscillators or oscillators with the baths. The spectral density of
the baths will also be of utmost importance, as we will see.

The following text is divided into three chapters and three appendices. The first chapter
studies the general framework required for the rest of this work, a chain of linearly coupled
oscillators connected to Caldeira-Legget model baths. The covariance matrix elements ex-
pressions will be obtained and from there the properties of the system will be formulated.
The following chapter will talk about specific cases of interest of this model under different
constrains with a progressive evolution from simpler to more complicated scenarios. We will
find the classical limit of the system as well as interesting results for a broken chain with no
coupling among the oscillators of the same bath. The last chapter will sum up the findings
in the work and showcase the possibilities of this system for further research.

The appendices will describe auxiliary results needed throughout this work as well as a
description of the numerical procedure used to calculate the integrals of the elements in the
covariance matrix.
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Chapter 2

Chain of linearly coupled
oscillators with Caldeira-Legget
baths

TL TE,i

[. . .]

TR

Figure 2.1: General set up for the chain of linearly coupled oscillators. The circles represent
the oscillators. The springs represent the linear harmonic coupling between first neighbours.
The dashed line boxes represent the baths and their interaction with the oscillators on their
interior. Temperature labels are assigned for each bath.

The model under study is based on a chain of oscillators connected through a pair-
wise harmonic potential, which represent the system, and a certain amount of reservoirs
or baths that represent the environment. A diagram of this model can be seen in figure
2.1 where the springs illustrate the harmonic coupling and the dashed boxes the particular
baths connected to the oscillators. We will consider that all oscillators in the chain can only
be directly influenced by one bath each. Then, if for every bath α there is a Nα number of
oscillators, N =

∑
αNα. The equilibrium distance between neighbours will be considered

to be equal for all of them. Thus we define x̂i as the displacement from the equilibrium
position and p̂i as the corresponding moment for each oscillator. We also decompose the
total Hamiltonian in three terms, ĤS as the Hamiltonian of the closed system, ĤB as the
Hamiltonian of the baths and ĤSB as the interaction between the baths and the system.
Notice that here we define HS,bare as we will find the renormalised Hamiltonian later on.

ĤS,bare =

N∑
i=1

p̂2
i

2mi
+

1

2
miω

2
i x̂

2
i + V̂ (x̂i, x̂i+1), (2.0.1)

with

V̂ (x̂i, x̂i+1) =
1

2
ki,i+1(x̂i − x̂i+1)2. (2.0.2)
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and

ĤB =
∑
α

ĤB,α =
∑
α

∑
µα

p̂2
µα

2mµα

+
1

2
mµαω

2
µα x̂

2
µα , (2.0.3)

ĤSB =

N∑
i=1

x̂i
∑
α

ci,αB̂α =

N∑
i=1

x̂i
∑
α

ci,α
∑
µα

gµα x̂µα , (2.0.4)

where

ci,α = 1; if osc. i is connected to bath α, (2.0.5)
ci,α = 0; if osc. i is not connected to bath α. (2.0.6)

µα is the index for the oscillators that compose the bath α, makingmµα , ωµα the mass and
natural frequency and x̂µα , p̂µα the position and momentum of this oscillators respectively.

In general B̂α is an operator that describes the interaction of the system with the bath
α. In this work we will only consider a linear relation between the spatial coordinate x̂i and
the spatial coordinate of the oscillators in the bath x̂µα . In this case, B̂α =

∑
µα
gµα x̂µα .

This will help us solve the equations of motion as the linear terms are trivial to derive
and operate with. This is important in order to arrive at a simple solution for the covariance
matrix in the steady state.

2.1 Re-normalisation of the Hamiltonian
If we separate the Hamiltonian into potential and kinetic terms, we can define the potential
term as:

Ŵ ({x̂i}, {x̂µα}) =
∑
α

∑
µα

1

2
mµαω

2
µα x̂

2
µα +

N∑
i=1

x̂i
∑
α

ci,α
∑
µα

gµα x̂µα +

N∑
i=1

1

2
miω

2
i x̂

2
i + V̂ (x̂i, x̂i+1).

(2.1.1)

Equation 2.1.1 can be minimised with respect to the positions of the oscillators of the
bath α yielding the following result:

x̂∗µα = − 1

mµαω
2
µα

N∑
i=1

x̂ici,αgµα . (2.1.2)

x̂∗µα minimises the effect of the bath over the oscillators, showcasing the direct influence
of the bath as a potential. Notice that this affects the high temperature limit of the steady
state in comparison with the corresponding thermal state, which is only dependent on the
kinetic term and thus the potential term might become relevant for large values of gµα . Thus,
we remove this contribution from the original Hamiltonian to preserve the high temperature
limit.

ĤS,bare − Ŵ ({x̂i}, {x̂∗µα}) =

N∑
i=1

mi

2
Ω2
i x̂

2
i − ki,i+1x̂ix̂i+1 +

1

2

N∑
i=1

N∑
j=1,j 6=i

Kij x̂ix̂j .

Where we have defined the following terms:
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Kα =
∑
µα

g2
µα

mµαω
2
µα

, (2.1.3)

Kij = Kji =
∑
α

Kαci,αcj,α, (2.1.4)

Ω2
i = ω2

i +
ki,i+1 + ki−1,i

mi
+
∑
α

(ci,α)2Kα

mi
. (2.1.5)

Thus, the Hamiltonian for the oscillators turns into:

ĤS =

N∑
i=1

p̂2
i

2mi
+

N∑
i=1

mi

2
Ω2
i x̂

2
i − ki,i+1x̂ix̂i+1 +

1

2

N∑
i=1

N∑
j=1,j 6=i

Kij x̂ix̂j . (2.1.6)

So that the final Hamiltonian is

Ĥ = ĤS + ĤB + ĤSB . (2.1.7)

2.2 Equations of motion
Now we obtain the equations of motion for the operators of the oscillator, as well as for the
bath coordinates in order to deduce later the covariance matrix. To do so we will assume
that the operators do not depend explicitly on time, so that by means of Heisenberg’s picture
we can use the following result:

dÔ

dt
=
i

~
[Ĥ, Ô]. (2.2.1)

for any operator Ô. We also make use of the following relations:

[x̂i, p̂j ] = i~δij , (2.2.2)

[x̂2
i , p̂j ] = 2i~x̂iδij , (2.2.3)

[x̂i, p̂
2
j ] = 2i~p̂iδij . (2.2.4)

2.2.1 Equations for the oscillators
Particularising 2.2.1 for the operators of the oscillators we obtain:

dx̂i
dt

=
p̂i
mi

, (2.2.5)

dp̂i
dt

=
i

~
[Ĥ, p̂i] =

i

~
[ĤS , p̂i] +

i

~
[ĤSB , p̂i]. (2.2.6)

For the first commutator we have:

i

~
[ĤS , p̂i] = −miΩ

2
i x̂i + (ki,i+1x̂i+1 + ki−1,ix̂i−1)−

N∑
j=1,j 6=i

Kij x̂j . (2.2.7)

As for the second commutator:

7



i

~
[ĤSB , p̂i] = −

∑
α

ci,α
∑
µα

gµα x̂µα . (2.2.8)

Then:

dp̂i
dt

= −miΩ
2
i x̂i + ki,i+1x̂i+1 + ki−1,ix̂i−1 −

N∑
j=1,j 6=i

Kij x̂j −
∑
α

ci,α
∑
µα

gµα x̂µα . (2.2.9)

To solve (2.2.9) we need to get rid of the coordinates of the oscillators of the baths (x̂µα)
so we calculate the equations of motion for said operators.

2.2.2 Equations for the baths
In the same fashion we introduce the bath oscillators operators on 2.2.1 to obtain the fol-
lowing.

dx̂µα
dt

=
p̂µα
mµα

, (2.2.10)

dp̂µα
dt

=
i

~
[Ĥ, p̂µα ] = −mµαω

2
µα x̂µα − gµα

N∑
i=1

ci,αx̂i. (2.2.11)

We combine these two equations to obtain:

mµα
¨̂xµα +mµαω

2
µα x̂µα = −

N∑
i=1

ci,αgµα x̂i. (2.2.12)

Applying a Laplace transform to 2.2.12 and taking into account the known results in
appendix B.1 now we can determine x̂µα(t) assuming that we know the initial state of the
oscillators of the baths.

L(x̂µα) =
s

s2 + ω2
µα

x̂µα(t0) +
1

s2 + ω2
µα

˙̂xµα(t0)−
N∑
i=1

ci,α
gµα
mµα

L(x̂i)

s2 + ω2
µα

. (2.2.13)

Now we apply the inverse Laplace transform to obtain an explicit expression with time

x̂µα(t) = x̂µα(t0) cos(ωµα(t− t0)) +
p̂µα(t0)

mµαωµα
sin(ωµα(t− t0))

−
N∑
i=1

ci,α
gµα

mµαωµα

∫ t

t0

dt′ sin(ωµα(t− t′))x̂i(t′). (2.2.14)

2.2.3 Correspondence between coordinates and bath terms
Now we have the description of the coordinates of the baths in terms of time evolution terms
and the coordinates of the oscillators connected to said baths, as showcased in (2.2.14). To
solve (2.2.9) we first calculate

∑
µα
gµα x̂µα and then replace the result in said equation.
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∑
µα

gµα x̂µα =
∑
µα

(
gµα x̂µα(t0) cos(ωµα(t− t0)) +

gµα p̂µα(t0)

mµαωµα
sin(ωµα(t− t0))

)

−
N∑
i=1

ci,α
∑
µα

g2
µα

mµαωµα

∫ t

t0

dt′ sin(ωµα(t− t′))x̂i(t′). (2.2.15)

We can always include a step function to extend the limit of the integral to infinity, such
that

∫ t
t0
f(t′)dt′ =

∫∞
t0
f(t′)Θ(t− t′)dt′ and we will also assume that t0 → −∞. Also notice

how the first sum is independent of any coordinates and only depends on time,the initial
conditions and the parameters of the bath.

∑
µα

gµα x̂µα =
∑
µα

(
gµα x̂µα(t0) cos(ωµα(t− t0)) +

gµα p̂µα(t0)

mµαωµα
sin(ωµα(t− t0))

)

−
N∑
i=1

ci,α

∫ ∞
−∞

dt′

[∑
µα

g2
µα

mµαωµα

sin(ωµα(t− t′))Θ(t− t′)

]
x̂i(t

′). (2.2.16)

We will rewrite equation 2.2.16 with the following definitions:

fα(t) = −
∑
µα

[
gµα x̂µα(t0) cos(ωµα(t− t0)) +

gµα p̂µα(t0)

mµαωµα
sin(ωµα(t− t0))

]
, (2.2.17)

dα(t) =
∑
µα

g2
µα

mµαωµα
sin(ωµαt)Θ(t). (2.2.18)

So that

∑
µα

gµα x̂µα = −fα(t)−
N∑
i=1

ci,αdα(t) ∗ x̂i. (2.2.19)

Now we use equation 2.2.19 to properly solve 2.2.9.

mi
¨̂xi(t) =−miΩ

2
i x̂i(t) + ki,i+1x̂i+1(t) + ki−1,ix̂i−1(t)

−
N∑

j=1,j 6=i

Kij x̂j(t) +
∑
α

ci,α

(
fα(t) +

N∑
k=1

ck,αdα(t) ∗ x̂k(t)

)
. (2.2.20)

One can compare the terms in equation 2.2.20 to the classic Langevin equation 1.0.2 to
see the correspondence to the classical scenario. The left side of the equation corresponds
to the total force applied to the oscillator i at time t, the first four terms on the right side
come from potential terms and fα(t) is analogous to the stochastic force. The explicit form
of the friction term is hidden under the convolution dα(t) ∗ x̂k(t) since

dα(t) ∗ x̂k(t) =

∫ ∞
−∞

dt′dα(t− t′)x̂i(t′). (2.2.21)

Applying a Fourier transform to equation 2.2.20 and using the properties shown in ap-
pendix B.2, we find a direct relationship between X̂i(ω) = F [x̂i(t)] and Ĝi(ω) = F [

∑
α ci,αf̂α(t)]:

mi

(
Ω2
i − ω2 −

∑
α

(ci,α)2Dα

mi

)
X̂i

+

N∑
j=1,j 6=i

(∑
α

ci,αcj,α (Kα −Dα)− kj,iδj,i−1 − ki,jδj,i+1

)
X̂j =

∑
α

ci,αF̂α = Ĝi. (2.2.22)
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where Dα(ω) = F [dα(t)]. Dα will be properly explored on the following section, for now
we leave it’s discussion for later. If we define a vector such as X̂ = (X̂1, . . . , X̂N )T and
Ĝ = (Ĝ1, . . . , ĜN )T then we can turn (2.2.22) into a matrix operation and inverse said
matrix, let us call it M(ω), so that the inverse matrix A(ω) is multiplying the vector Ĝ.

M(ω)X̂(ω) = Ĝ(ω) =⇒ X̂(ω) = M−1(ω)Ĝ(ω) = A(ω)Ĝ(ω). (2.2.23)

Then

X̂i(ω) =
∑
j

Aij(ω)Ĝj(ω). (2.2.24)

Here we can infer some interesting properties of the matrix A which might prove relevant
for numerical calculations.

Since Dα(ω) = F [dα(t)] =
∫∞
−∞ dteiωtdα(t) and dα(t) is real, we have

Dα(−ω) = D∗α(ω) ⇐⇒ M(−ω) = M∗(ω) ⇐⇒ A(−ω) = A∗(ω) (2.2.25)

Then

Re[Aij(−ω)] = Re[Aij(ω)], (2.2.26)
Im[Aij(−ω)] = −Im[Aij(ω)]. (2.2.27)

2.2.4 Covariance Matrix
We can obtain the covariance matrix making use of the fluctuation dissipation relation

1

2
〈{F̂α(ω), F̂α(ω′)}〉 = 2π~δ(ω + ω′) coth

(
~ω

2KBTα

)
Im[Dα(ω)], (2.2.28)

which resolution can be found on Appendix A.
The covariance matrix σ is defined using the vector of the coordinates of the system,

defined in this case as ~R = (x1, p1, . . . , xi, pi, . . . , xN , pN )T which elements are defined as
σij(t, t

′) = 1
2 〈{Ri(t), Rj(t

′)}〉. In our study we will focus on the asymptotic state of the
system, so we define the steady state at the limit where t0 → −∞. We also particularise
the correlations to the case t′ = t so as to obtain the elements of the covariance matrix.

With this we can easily define the elements of the covariance matrix making use of 2.2.24,
2.2.28. We begin with σxi,xj :

1

2
〈{x̂i(t), x̂j(t′)}〉 =

1

2

1

2π

∫ ∞
−∞

dωe−iωt
1

2π

∫ ∞
−∞

dω′e−iω
′t′〈{X̂i(ω), X̂j(ω

′)}〉

=
1

8π2

∫ ∞
−∞

dωe−iωt
∫ ∞
−∞

dω′e−iω
′t′

N∑
k=1

Aik(ω)

N∑
l=1

Ajl(ω
′)

· 〈{Ĝk(ω), Ĝl(ω
′)}〉

=
~

2π

∫ ∞
−∞

dωe−iω(t−t′)
N∑
k=1

Aik(ω)

N∑
l=1

Ajl(−ω)

·
∑
α

ck,αcl,α coth

(
~ω

2KBTα

)
Im[Dα(ω)]. (2.2.29)

If we now consider t′ = t we obtain σxi,xj :
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σxi,xj =
~

2π

∫ ∞
−∞

dω

N∑
k=1

N∑
l=1

Aik(ω)Ajl(−ω)
∑
α

ck,αcl,α coth

(
~ω

2KBTα

)
Im[Dα(ω)].

(2.2.30)

We can find the rest of the elements with the same procedure, taking into account that
F [p̂i] = −imiωX̂i. The remaining elements of the covariance matrix will follow the patterns:

σxi,pj =
i~
2π
mj

∫ ∞
−∞

dωω

N∑
k=1

N∑
l=1

Aik(ω)Ajl(−ω)
∑
α

ck,αcl,α coth

(
~ω

2KBTα

)
Im[Dα(ω)],

(2.2.31)

σpi,xj = − i~
2π
mi

∫ ∞
−∞

dωω

N∑
k=1

N∑
l=1

Aik(ω)Ajl(−ω)
∑
α

ck,αcl,α coth

(
~ω

2KBTα

)
Im[Dα(ω)],

(2.2.32)

σpi,pj =
~

2π
mimj

∫ ∞
−∞

dωω2
N∑
k=1

N∑
l=1

Aik(ω)Ajl(−ω)
∑
α

ck,αcl,α coth

(
~ω

2KBTα

)
Im[Dα(ω)].

(2.2.33)

We can employ the relations 2.2.26, 2.2.27 to reduce the terms of the sum, as we can get
rid of certain products due to parity.

Aik(ω)Ajl(−ω) =Re[Aik(ω)]Re[Ajl(ω)] + Im[Aik(ω)]Im[Ajl(ω)]

+ i (Im[Aik(ω)]Re[Ajl(ω)]− Re[Aik(ω)]Im[Ajl(ω)]) .

Since the integral has to be real as the covariance matrix elements are real as well,
we can discard half of these terms in the sum depending on the matrix element. Also,
the imaginary part will be zero when all indices are the same or at least paired so that
i = j, k = l. Parity also plays an important part as this product decides the parity of the
integrand in combination with the corresponding ω term (1, ω, ω2). The integrand must
be even for the result to be different from zero, taking into account that Im[Dα(ω)] and
coth

(
~ω

2KBT

)
are both odd and thus their product is even.

Moreover, taking a closer look at equations 2.2.31, 2.2.32 and since by definition σxi,pi =
σpi,xi one obtains

σxi,pi = σpi,xi = 0. (2.2.34)

2.2.5 Oscillator Temperature
In order to define the temperature profile of the chain, which will give us important infor-
mation about the system, we need to define some kind of temperature measurement for each
oscillator. We will rely on the equipartition theorem and the canonical quantisation scheme
to define the local kinetic temperature of each oscillator as

τi =
σpi,pi
kBmi

, (2.2.35)

since we assume 1
2kBτi = 〈 p̂

2
i

2mi
〉 as we only have one degree of freedom in x̂i and σpi,pi =

1
2 (p̂ip̂i + p̂ip̂i) = p̂2

i .
It is important to highlight that this is a kinetic temperature and doesn’t take into

account the potential part of the Hamiltonian. When the interaction terms become more
relevant τi will not be a proper characterisation of the temperature of the oscillator i.
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2.2.6 Heat Currents
We can also define the heat current in order to study the energy exchange between the os-
cillators, which gains interest for bigger systems. Since we are studying the energy exchange
and our system is isolated, due to no external driving inducing work on the system, we can
identify d

dt 〈ĤS〉 =
∑
α Q̇α. One can quickly perceive Q̇α as the energy change in form of

heat induced by the coupling with each bath α. Thus, the global and local heat currents
can be calculated solving d

dt 〈ĤS〉.

d

dt
〈ĤS〉 =

i

~
〈[Ĥ, ĤS ]〉 =

i

~
〈[ĤSB , ĤS ]〉 =

i

~
〈

∑
i

x̂i
∑
α

ci,α
∑
µα

gµα x̂µα ,
∑
j

p̂2
j

2mj

〉
= −

∑
α

∑
i

ci,α
1

mi

∑
µα

gµα〈p̂ix̂µα〉. (2.2.36)

Then

Q̇α = −
∑
i

ci,α
1

mi

∑
µα

gµα〈p̂ix̂µα〉. (2.2.37)

where α represents one of the baths in the system. By using the equation of motion for the
ith oscillator (2.2.9) in order to replace

∑
µα
gµα x̂µα and rewriting the expression in terms

of the covariance matrix, we can get the desired result.

Q̇α =
∑
i

ci,α
1

mi

[
〈p̂i ˙̂pi〉+ 〈p̂ix̂i〉miΩ

2
i − ki,i+1〈p̂ix̂i+1〉 − ki−1,i〈p̂ix̂i−1〉+

N∑
j=1,j 6=i

Kij〈p̂ix̂j〉
]

(2.2.38)

where ci,α
∑
µα
gµα x̂µα has been obtained by multiplying (2.2.9) by ci,α.

We first solve each expected value making use of the following result:

[p̂i, ˙̂pj ] = i~miΩ
2
i δij . (2.2.39)

This is easily obtained through 2.2.9 as well. With this:

〈p̂i ˙̂pi〉 =
1

2
〈p̂i ˙̂pi + p̂i ˙̂pi〉 =

d

dt
σpi,pi +

1

2
i~miΩ

2
i , (2.2.40)

〈p̂ix̂i〉 =
1

2
〈p̂ix̂i + p̂ix̂i〉 =

1

2
σpixi −

1

2
i~, (2.2.41)

〈p̂ix̂j〉|j 6=i =
1

2
〈p̂ix̂j + p̂ix̂j〉 = σpixj . (2.2.42)

Then (2.2.37) turns into

Q̇α =

N∑
i=1

ci,α
1

mi

1

2

d

dt
σpi,pi +miΩ

2
iσpi,xi +

N∑
j=1,j 6=i

Sijσpi,xj

 , (2.2.43)

where
Sij = Sji = −kijδj,i+1 − kjiδj,i−1 +

∑
α

ci,αcj,αKα.

It is trivial to notice that at the steady state d
dtσpi,pi = 0 and taking into account

equation 2.2.34 one obtains the following result for the steady state:

Q̇α =

N∑
i=1

ci,α
1

mi

N∑
j=1,j 6=i

Sijσpi,xj . (2.2.44)
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2.3 Spectral Density

2.3.1 Definition
One interesting object of study is the spectral density, a term that fully describes the required
properties of the bath. We will use this as a tool for our analysis so we will review its
definition and links to other elements present in the study of the bath.

We define the spectral density as

Jα(ω) = π
∑
µα

g2
µα

2mµαωµα
δ(ω − ωµα). (2.3.1)

With this expression it can be seen that Jα describes the interaction with the bath when
the frequency is equal to the frequency of one of the oscillators of the bath. This can be
easily extended for the continuum. We can make a Riemann sum and turn it into an integral.

π

2

∑
µα

g2
µα

mµαω
2
µα

→
∫ ∞

0

Jα(ω)

ω
dω. (2.3.2)

With this, we can rewrite (2.1.3) as

Kα =
2

π

∫ ∞
0

dω
Jα(ω)

ω
. (2.3.3)

2.3.2 Susceptibility
From equation 2.3.2 it follows that a Riemann sum will yield an expression for equation
2.2.18 that explicitly includes the spectral density.

dα(t) =
2

π

∫ ∞
0

dω′Jα(ω′) sin(ω′t)Θ(t). (2.3.4)

This expression is also known as the dissipation kernel and it’s Fourier transform is
known as susceptibility.

As for the susceptibility, knowing the following Fourier transform result:

Im[F [sin(ω′t)Θ(t)]] =
π

2
[δ(ω − ω′)− δ(ω + ω′)] (2.3.5)

we can separate the result in a real part and a imaginary part. For the imaginary part
since ω′ ∈ [0,∞) we need to extend the limits of integration in order to obtain a result for
δ(ω + ω′). To do so we multiply the integrand by Θ(ω′) and extend the integration domain
to ω′ ∈ (−∞,∞). Finally:

Im[Dα(ω)] = Jα(ω)Θ(ω)− Jα(−ω)Θ(−ω). (2.3.6)

As for the real part, the procedure is not so straight forward. Equation 2.3.5 is causal due
to the Heaviside step function. Causal response functions have analytic Fourier transform
in the upper half of the complex plane and therefore, the Kramers-Kronig relations hold [1].
In this case,

Re[Dα(ω)] =
1

π
P

∫ ∞
−∞

dω′
Im[Dα(ω′)]

ω′ − ω
. (2.3.7)
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2.3.3 Spectral density examples
In this work we will focus on ohmic baths, which take their name from Ohm’s Law since
it arises from a damping force produced by a potential on the electrons that pass through
a material. This analogy serves as reference to the behaviour of this baths, since they are
in principle described as directly proportional to a damping constant γ and are linearly
dependant on the frequency. We will use different cases with cut-offs such as the Drude
Lorentz and a step function. We will also study a super-ohmic model, which is similar to an
ohmic model but where the spectral density is proportional to the nth power of ω.

Drude Lorentz Model

This model employs a soft decay where the spectral density is modulated using a Lorentzian
of the form Λ2

ω2+Λ2 . The spectral density is defined as:

JDL(ω) = mγω
Λ2

ω2 + Λ2
. (2.3.8)

First we obtain Kα using 2.3.3 resulting in

KDL =
2

π

∫ ∞
0

dω
JDL(ω)

ω
=

2

π
mγ

∫ ∞
0

1

1 + ω′2
Λdω′ = mγΛ, (2.3.9)

where ω′ = ω
Λ .

To calculate the corresponding susceptibility we use equations (2.3.6, 2.3.7) for the imag-
inary and real parts respectively.

As the imaginary part is just turning the spectral density into an odd function and this
one is already odd, it follows that

Im[Dα(ω)] = mγω
Λ2

ω2 + Λ2
. (2.3.10)

For the real part we calculate the Cauchy principal value of the following integral, sepa-
rate the roots in the denominator and apply the residue theorem to study the poles on the
upper semi-plane of the complex plane of ω′.

Re[Dα(ω)] =
1

π
mγ P

∫ ∞
−∞

dω′
ω′Λ2

(ω′ − ω) (ω′ − iΛ) (ω′ + iΛ)
. (2.3.11)

As the numerator has no poles we only need to care about the roots of the denominator.
In figure 2.2 we can see the path used for the integral.

By virtue of the residue theorem we can split the corresponding path integral in the
following manner:

∫
C

f(ω′)dω′ = lim
ε→0

(∫ ω−ε

−R
f(ω′)dω′ +

∫ R

ω+ε

f(ω′)dω′

)
+ lim
ε→0

∫ ω+ε

ω−ε,C2

f(ω′)dω′ +

∫ −R
R,C4

f(ω′)dω′

=2πi
∑
ai∈C

Res(f(ω′), ai) = 2πi lim
ω′→iΛ

(ω′ − iΛ)f(ω′). (2.3.12)

Where f(ω′) is the integrand in 2.3.11 and we have made use of the residue theorem and
the residue for a simple pole on the last line. Rearranging the terms in the last two lines
and applying the limit R→∞ we can now solve 2.3.11.
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−R Rω

−iΛ

iΛ
C4

C2

C1 C3
Re[ω′]

Im[ω′]

Figure 2.2: Diagram in the complex plane of ω′ with the full path used for the real part
integral of the susceptibility of an ohmic spectral density with a Drude Lorentz cut-off. The
path C2 is a semi circle centred on the pole ω′ = ω and has a radius ε → 0 made to avoid
the singularity on the real axis and to join C1, C3 together. The other poles ω = iΛ,−iΛ
present in the imaginary axis are represented as well.

Re[D(ω)] = 2πi lim
ω′→iΛ

(ω′ − iΛ)f(ω′)− lim
ε→0

∫ ω+ε

ω−ε,C2

f(ω′)dω′ − lim
R→∞

∫ −R
R,C4

f(ω′)dω′.

(2.3.13)

The first term is a direct calculation by applying the imposed limit so that:

2πi lim
ω′→iΛ

(ω′ − iΛ)f(ω′) = mγ
Λ2

ω2 + Λ2
(Λ− iω). (2.3.14)

For the second term in 2.3.13 we again use the residue theorem for a counter clockwise
circle path around the pole in ω′ = ω and taking into account the direction of C3 being the
opposite and half of this path, we can write:

lim
ε→0

∫ ω+ε

ω−ε,C2

f(ω′)dω′ = −πi
∑

Res(f(ω′)) = −mγ Λ2

ω2 + Λ2
iω. (2.3.15)

For the last term we take into account the estimation lemma [17] to show that the upper
bound of the integral vanishes when R→∞.

∣∣∣∣∣ lim
R→∞

∫ −R
R,C4

f(ω′)dω′

∣∣∣∣∣ ≤Ml(C4) = lim
R→∞

R

(R− ω)(R2 − Λ2)
πR = lim

R→∞

2π

6R− 2ω
= 0

(2.3.16)

where we have used the triangle inequality to obtain M and the L’Hopital’s rule to reduce
the limit expression. M is the maximum value of the integrand and l(C4) is the arc length
of the contour C4. Introducing this results in 2.3.13:
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Re[D(ω)] = mγ
Λ2

ω2 + Λ2
Λ. (2.3.17)

Finally, the susceptibility for this spectral density becomes:

Dα(ω) = mγ
Λ2

ω2 + Λ2
(Λ + iω). (2.3.18)

Step function cut-off

We now proceed to employ an ohmic spectral density with a simple step function as the
cut-off, so calculations to obtain the susceptibility are much simpler. In this case we define
the spectral density as

JSF (ω) = mγωΘ(ω)Θ(Λ− ω). (2.3.19)

We repeat the procedure for Kα using 2.3.3 to that

KSF =
2

π

∫ ∞
0

dω
JSF (ω)

ω
=

2

π
mγ

∫ ∞
0

Θ(ω)Θ(Λ− ω)dω =
2

π
mγΛ. (2.3.20)

The imaginary part is again very simple to calculate

Im[Dα(ω)] = mγω [Θ(ω)Θ(Λ− ω) + Θ(−ω)Θ(Λ + ω)] . (2.3.21)

Notice how the first term is not zero when ω ∈ [0,Λ] while on the second is when
ω ∈ [−Λ, 0]. When can then rewrite the expression as

Im[Dα(ω)] = mγωΘ(Λ− ω)Θ(Λ + ω). (2.3.22)

To integrate the real part we have to be aware of the restriction imposed by the principal
value of the Cauchy integral, so that we have to separate in two cases due to the step function
cut off. That is, first we integrate assuming |Λ| > |ω| and then for |Λ| ≤ |ω|.

For |Λ| > |ω|:

Re[Dα(ω)] =
1

π
P

∫ ∞
−∞

dω′mγ
ω′

ω′ − ω
Θ(Λ− ω′)Θ(Λ + ω′)

=
1

π
lim
ε→0

(∫ ω−ε

−Λ

dω′mγ
ω′

ω′ − ω
+

∫ Λ

ω+ε

dω′mγ
ω′

ω′ − ω

)

=
1

π
lim
ε→0

(∫ ω−ε

−Λ

dω′mγ

(
1 +

ω

ω′ − ω

)
+

∫ Λ

ω+ε

dω′mγ

(
1 +

ω

ω′ − ω

))

=
1

π

∫ Λ

−Λ

dω′mγ

(
1 +

ω

ω′ − ω

)
− lim
ε→0

1

π

∫ ω+ε

ω−ε
dω′mγ

(
1 +

ω

ω′ − ω

)
=

1

π
mγ

(
2Λ + ω ln

∣∣∣∣Λ− ωΛ + ω

∣∣∣∣) . (2.3.23)

Notice that in order to simplify the calculation we have used the fact that
∫ b
a
f(x)dx +∫ d

c
f(x)dx =

∫ d
a
f(x)dx−

∫ c
b
f(x)dx ∀f(x), a < b < c < d.

For |Λ| ≤ |ω|:
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Re[Dα(ω)] =
1

π
P

∫ ∞
−∞

dω′mγ
ω′

ω′ − ω
Θ(Λ− ω′)Θ(Λ + ω′)

=
1

π
lim
ε→0

(∫ ω−ε

−∞
dω′mγ

ω′

ω′ − ω
Θ(Λ− ω′)Θ(Λ + ω′)

+

∫ ∞
ω+ε

dω′mγ
ω′

ω′ − ω
Θ(Λ− ω′)Θ(Λ + ω′)

)
. (2.3.24)

If we assume that ε is very small and for example ω ≤ −|Λ| then the first integral vanishes
with the step function and from the second one only the interval [−Λ,Λ] survives, recovering
the previous result for |Λ| > |ω|. The opposite case of ω ≥ |Λ| gives the same result.

Then, the susceptibility in this case is

DSF (ω) =
1

π
mγ

(
2Λ + ω ln

∣∣∣∣Λ− ωΛ + ω

∣∣∣∣)+ imγωΘ(Λ− ω)Θ(Λ + ω). (2.3.25)

Super Ohmic with step function cut-off

Now we explore a similar model to the previous one albeit with the premise that it is super-
ohmic; the spectral density does not depend linearly with ω but with a higher power. In
this case we will study ω2 but the analysis is similar to other values of s in ωs.

The spectral density in this case will be defined as:

JSF (ω) = mγ
ω2

Λ
Θ(ω)Θ(Λ− ω). (2.3.26)

where the Λ as been added in the denominator for dimensional reasons.
Kα is calculated as

KSO =
2

π

∫ ∞
0

dω
JSO(ω)

ω
=

2

πΛ
mγ

∫ ∞
0

ωΘ(ω)Θ(Λ− ω)dω =
mγΛ

π
. (2.3.27)

The imaginary part of the susceptibility is

Im[Dα(ω)] = mγ
ω2

Λ
[Θ(ω)Θ(Λ− ω)−Θ(−ω)Θ(Λ + ω)] . (2.3.28)

While the real part is computed in the same manner as in the last case, where |Λ| ≤ |ω|
will give the same result than |Λ| > |ω| due to the step function limit so we only compute
the integral for the former case.

Re[Dα(ω)] =
1

π
P

∫ ∞
−∞

dω′
mγ

Λ

ω′2

ω′ − ω
[Θ(ω′)Θ(Λ− ω′)−Θ(−ω′)Θ(Λ + ω′)]

=
mγ

πΛ

(∫ Λ

−Λ

dω′
ω′2

ω′ − ω
− lim
ε→0

∫ ω+ε

ω−ε
dω′

ω′2

ω′ − ω

)

=
mγ

πΛ

(∫ Λ+ω

−Λ+ω

dω′′
(
−ω′′ + ω2

ω′′
+ 2ω

)
− lim
ε→0

∫ ω+ε

ω−ε
dω′′

(
ω′′ +

ω2

ω′′
+ 2ω

))

=
mγ

πΛ

(
Λ2 + ω2 ln

∣∣∣∣ω2 − Λ2

ω2

∣∣∣∣) . (2.3.29)
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Then, the susceptibility in this case is

DSO(ω) =
mγ

πΛ

(
ω2 ln

∣∣∣∣ω2 − Λ2

ω2

∣∣∣∣+ Λ2

)
+ imγ

ω2

Λ
[Θ(ω)Θ(Λ− ω)−Θ(−ω)Θ(Λ + ω)] .

(2.3.30)

Figure 2.3: Real (upper) and imaginary (lower) parts of the susceptibilities under study.
DDL is ohmic with Drude Lorentz term, DSF is ohmic with a step function cut off and
DSO is super ohmic with a step function cut off. The vertical dotted line marks the cut off
ω = ±Λ. Λ = 10, γ = 0.1,m = 1.

In figure 2.3 we can see some differences and similarities between the models. For the
susceptibilities controlled by the step function cut off, their behaviour is almost identical
outside ω ∈ [−Λ,Λ] but inside we can see some differences. In the imaginary part of Dα(ω)
the linear profile of the ohmic model is contrasted with the quadratic profile of the super
ohmic one. In the real part, the super ohmic model exhibits two maximum points, whereas
the ohmic models only have one.

Similarly, we can see the differences between the two ohmic models. In both the imagi-
nary and real parts of Dα(ω) the Drude Lorentz model is modulated by the Lorentzian while
the step function model shows a discontinuity at ω = ±Λ. Also notice that Re[Dα(ω)] ≥
0,∀ω for the Drude Lorentz model.
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Chapter 3

Applications of the model

In this chapter we will begin by illustrating the theory with some simple scenarios that
exemplify the properties of this model and we will advance onto larger pictures with an
special interest in the analysis of heat currents and temperature profiles.

3.1 One oscillator on a Caldeira-Legget bath
This simple scheme was one of the first approaches to describe a Brownian particle under
the quantum regime and is relevant in our study as a way to portrait in a simpler way the
influence of the spectral density in the behaviour of the system. It also serves to compare
the model to the thermal state result, which gives us a way to measure the thermalisation of
the system by means of the elements in the covariance matrix. Although this case is easy to
obtain on it’s own, we will simply particularise the equations found previously for the case
of one oscillator and one Caldeira-Legget bath.

The general Hamiltonian described at the beginning of chapter 2 can be specified for this
scenario as

ĤS =
p̂2

2m
+

1

2
mΩ2x̂2, (3.1.1)

ĤB =
∑
µ

p̂2
µ

2mµ
+

1

2
mµω

2
µx̂

2
µ, (3.1.2)

ĤSB = x̂
∑
µ

gµx̂µ. (3.1.3)

The Hamiltonian ĤS defines the kinetic and potential energy of the oscillator, ĤB ac-
counts for all the oscillators in the bath and ĤSB describes the interaction between the
oscillator and the bath. The renormalised frequency is obtained by Ω2 = ω2

0 + K
m and the

temperature of the bath will be T .

3.1.1 Covariance Matrix
Specifying (2.2.22) for only one oscillator yields:

X̂(ω) = A(ω)F̂ (ω) =
1

m(Ω2 − ω2)−D(ω)
F̂ (ω). (3.1.4)

Particularising (2.2.30-2.2.33) will result in the following terms
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σxx =
~

2π

∫ ∞
−∞

dωA(ω)A(−ω) coth

(
~ω

2KBT

)
Im[D(ω)], (3.1.5)

σpp =
~

2π
m2

∫ ∞
−∞

dωω2A(ω)A(−ω) coth

(
~ω

2KBT

)
Im[D(ω)], (3.1.6)

and σxp = σpx = 0 as seen in equation 2.2.34. For the numerical calculations the script used
is written in Python and relies on scipy.integrate.quad method to obtain the desired
integral. This method is specially designed to compute improper integrals by adjusting
the integration step whenever needed up to a certain imposed limit in order to make a
more efficient integration. For more information on the method please refer to the Fortran
QUADPACK library.

We now compare the evolution of this system for different spectral densities at different
temperatures as well as different values of γ. We will also introduce an harmonic oscillator
in a thermal state with covariance matrix:

σxx =
~

2mω0
coth

(
ω0~

2KBT

)
, (3.1.7)

σpp =
~mω0

2
coth

(
ω0~

2KBT

)
, (3.1.8)

σxp = σpx = 0. (3.1.9)

In the following analysis as well as in the rest of this work we will assumemi = kB = ~ = 1
for the sake of simplicity.

Figure 3.1: Evolution of σxx in a system of one oscillator with temperature of the bath T
in Log-Log scale. This is done for different models of spectral density: DL stands for ohmic
spectral density with a Drude Lorentz cut off, SF for ohmic with step function cut off and
SO for super ohmic with step function cut off. They are also compared with the thermal
state. Different values of ω0 are used to compare its relative value with Λ: ω0 = 1 (upper),
ω0 = 9 (middle) and ω0 = 11 (lower). The middle graph y-axis is scaled by a ×100 factor
for readability. Λ = 10, γ = 0.1.

As one can see in figures 3.1, 3.2 the super ohmic bath seems to follow the thermal
equilibrium of a harmonic oscillator better than the ohmic ones, although at greater tem-
peratures the profiles converge. However, when the natural frequency ω0 is outside of the
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Figure 3.2: Evolution of τ in a system of one oscillator with temperature of the bath T in
Log-Log scale. Same parameters and conditions as in figure 3.1.

cut off Λ, the ohmic model with a Drude Lorentz cut off is in a better agreement than
the ones based on a step function. This makes sense as the Drude Lorentz term allows for
exploration of higher frequency values than Λ. Thus a non linear model with a continuous
decay seems to be the most accurate model to work with, albeit it might not be as simple
as the ones showcased.

It is also interesting to see that the point where the kinetic temperature of the oscillator
starts to agree with the temperature of the bath shifts with ω0 in figure 3.2. At low temper-
atures the harmonic potential is stronger than the kinetic energy provided by the bath so
the oscillator stays on it’s natural frequency. When the temperature increases with respect
to ω0, the interaction with the bath starts to gain importance in the energy balance and the
temperature of the oscillator begins to get closer to that of the bath.

3.2 Chain of two oscillators and two baths
This simple case is useful to study first and foremost the interaction between two oscillators
connected through a coupling, which can be a sufficiently interesting system to study for
example the effects of thermal probing at very low temperatures [18].

We start by considering the Hamiltonian of a system of two oscillators connected to
each other by a harmonic coupling of strength k and each of them connected to a different
Caldeira-Legget bath at temperatures TL, TR.

ĤS =
∑
i=1,2

p̂2
i

2mi
+

1

2
(miω

2
0,i +

∑
α=L,R

c2i,αKα + k)x̂2
i − kx̂1x̂2, (3.2.1)

ĤB =
∑

α=L,R

∑
µα

p̂2
µα

2mµα

+
1

2mµα

ω2
µα x̂

2
µα , (3.2.2)

ĤSB =
∑
i=1,2

x̂i
∑

α=L,R

ci,α
∑
µα

gµα x̂µα , (3.2.3)

with c1,L = 1, c1,R = 0, c2,L = 0, c2,R = 1.
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3.2.1 Covariance Matrix
The full covariance matrix at the steady state for N=2 takes the form:

σ =


σx1,x1 σx1,p1 σx1,x2 σx1,p2

σp1,x1 σp1,p1 σp1,x2 σp1,p2
σx2,x1

σx2,p1 σx2,x2
σx2,p2

σp2,x1
σp2,p1 σp2,x2

σp2,p2

 . (3.2.4)

As an illustration, we show the result for the elements σxi,pj which are a specific case of
2.2.31.

σxi,pj =
i~
2π
mj

∫ ∞
−∞

dωω
[
Ai1(ω)Aj1(−ω) coth

(
~ω

2KBTL

)
Im[DL(ω)]

+Ai2(ω)Aj2(−ω) coth

(
~ω

2KBTR

)
Im[DR(ω)]

]
. (3.2.5)

3.2.2 Heat Current
For this scenario we specify (2.2.44) for 2 oscillators, Thus in the steady state:

Q̇α = −
∑
i

ci,α
1

mi
kσpi,xj |j 6=i. (3.2.6)

For low values of the coupling between oscillators and high bath temperatures one would
expect the oscillators to behave as isolated systems, which is precisely what we see in figure
3.3. It can be argued that the influence of the baths is more relevant than the coupling
in such a scenario. Of course, when we increase the coupling the oscillators tend to find
a group temperature. The same argument can be used for the case of lower temperatures,
since the coupling influence is more comparable with the interaction with the baths. Notice
how the heat currents stay balanced across all values of k, since the energy is transmitted
from one oscillator onto the other and there are no sources that could perturb this balance.

It can be perceived that, as seen previously in figure 3.2, the temperature of the oscil-
lators slightly differ from the temperature of the baths for small k in figure 3.3, where this
discrepancy can be modulated with γ. At slightly higher values of k the kinetic temperature
of the oscillators start to go to an average as the coupling is intense enough to allow for
heat transfer, as can be seen in the evolution of Q̇ with k. At even higher values of k the
definition of kinetic temperature doesn’t hold the same meaning as the harmonic coupling
now dominates the heat transfer process.

In figure 3.4 we see how the currents for this model might be affected by different spectral
density models. Two different regimes are shown, low temperatures and high temperatures.
For this particular combination of parameters the heat current of the super ohmic model
is smaller than the ohmic one for low temperatures but the opposite happens at high tem-
peratures. This is not always the case, as the parameters play an important role in this
relative growth. At low temperatures the heat current in all models evolve in a non linear
profile which is heavily dependent on the combination of spectral density, k and γ as seen in
appendix C. At high temperatures the current in all models grows linearly with ∆T . Please
notice that we are talking about the logarithmic scale as the growth is actually exponential.

3.3 Comparison with Classical Scenario
One relevant way to test this calculations is to also deduce the expressions for a classical chain
of oscillators with the same constrains. The Hamiltonian is basically identical except for the
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Figure 3.3: Evolution of a two oscillator system with the linear coupling k, each oscillator
connected to one bath of temperatures TL = 2, TR = 1, red and green dashed lines respec-
tively. Both baths have the same spectral density and coupling factor γ to the oscillators.
Left graph represents the heat currents associated with each bath and the right graph indi-
cates the oscillator temperature τi. The heat current has being increased by a factor of 104

for readability. Λ = 10, γ1 = 10−2, γ2 = 10−1,mi = 1.

Figure 3.4: Evolution of the heat current of the left bath with the difference in temperature
between baths for a two oscillator model. Three spectral density cases have been employed.
Ohmic spectral density with step function cut off (blue), super ohmic spectral density with
step function cut off (green) and a mix with the left bath as ohmic and the right as super-
ohmic, both with step function cut off (orange). The red line represents Q̇ = ∆T in order
to reflect the asymptotic behaviour of the currents in the double logarithmic scale. For the
left graph: TR = 0.01. For the right graph TR = 1. Λ = 10, γ = 10,mi = 1, k = 10−2.
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use of coordinates instead of operators. We follow the same procedure of renormalisation as
well.

HS =

N∑
i=1

p2
i

2mi
+

1

2
miΩ

2
ix

2
i +−ki,i+1xixi+1 +

1

2

N∑
i=1

N∑
j=1,j 6=i

Kijxixj , (3.3.1)

HB =
∑
α

HB,α =
∑
α

∑
µα

p2
µα

2mµα

+
1

2
mµαω

2
µαx

2
µα , (3.3.2)

HSB =

N∑
i=1

xi
∑
α

ci,αBα =

N∑
i=1

xi
∑
α

ci,α
∑
µα

gµαxµα . (3.3.3)

We can obtain the results of Hamilton’s equations (q̇ = dH
dp ; ṗ = −dHdq ) which are the

equivalent to the equations of motion obtained through dÔ
dt = i

~ [Ĥ, Ô]. It is of no surprise
that this yield the same results as previous calculations with the commutators.

miẍi(t) =−miΩ
2
ixi(t) + ki,i+1xi+1(t) + ki−1,ixi−1(t),

−
N∑

j=1,j 6=i

Kijxj(t) +
∑
α

ci,α

(
fα(t) +

N∑
k=1

ck,αdα(t) ∗ xk(t)

)
. (3.3.4)

Thus we can follow the same procedures as before in order to simplify the equations and
the only difference left is the classical fluctuation dissipation relation (see Appendix A).

1

2
〈{Fα(ω), Fα(ω′)}〉 = δ(ω + ω′)

(
4πKBT

ω

)
Im[Dα(ω)]. (3.3.5)

One can quickly notice that the expression resulting from this is a first order approxi-
mation of the quantum relation 2.2.28, except for the absence of the Plank constant, since
performing a Taylor expansion yields coth(x) = 1

x + x
3 −

x3

45 +[. . .]. Notice that the argument
in the coth is inversely proportional to the temperature of the bath, so the terms of second
order decrease with T. It is safe to assume then that the classical representation will yield
the same result as the quantum counterpart when the temperature increases. The friction
parameter γ defines the spectral density and affects the convergence rate with temperature,
albeit modestly. The influence of this parameter is difficult to study analytically due to the
inverse matrix calculation but assuming γ is sufficiently large in comparison to mi, ki,i+1

it will dominate 2.2.22, as one can see in figure 3.5. Thus, the product Aik(ω)Ajl(−ω)
present in the covariance matrix elements will be dominated by 1

γ2 . On the other hand,
Im[Dα(ω)] ∝ γ so at the end the factor 1

γ will influence the result. This matches the classi-
cal result were a T/γ ratio defines the behaviour of the system, but in the quantum picture
is also influenced by higher order terms: 1

γT ,
1
γT 3 , . . .. Since T is low at the quantum regime,

this terms are more relevant than T
γ and thus the behaviour is not so intuitive.

However, if we fix the temperatures on two baths and increase one of them, an interesting
phenomena arises from the difference between the classic and quantum pictures. As we can
see in figure 3.6 the difference between the models is heavily dependant on γ as it saturates
to a fixed difference for a particular value of this parameter for the oscillator in the bath
which increases in temperature. Here the dependence with γ is more interesting as the
difference in the models reaches an asymptotic value, dependant on γ, sooner for small γ
and later for bigger values of this parameter. When the difference in temperature of the
oscillators becomes too big, the quantum model fails to replicate the results of the classic
one, but for small differences in temperature the evolution is very similar to figure 3.5.
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Figure 3.5: Convergence of the classic and quantum results for the covariance matrix element
σx1,x1

for a 2 bath model of 1 oscillator each, where the temperature is increased for all
baths. TL = T, TR = T

2 . The upper graph represents this three evaluations at different
T with γ = 0.1, The lower graph indicates the difference between the quantum model
(denoted with upper index Q) and the classical model (denoted with upper index C) for
different values of γ. The spectral density used was ohmic with Drude Lorentz cut off.
m = 1, ω0 = 1,Λ = 10, γ0 = 0.1

Figure 3.6: Comparison of the classic and quantum results for the covariance matrix element
σx2,x2 for a 2 bath model of 1 oscillator each, where the temperature is increased for only
one bath. TL = 10−1, TR = T

2 . The graph indicates the difference between the quantum
model (denoted with upper index Q) and the classical model (denoted with upper index C)
for different values of γ. The spectral density used was ohmic with Drude Lorentz cut off.
m = 1, ω0 = 1,Λ = 10, γ0 = 0.1
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3.4 Chain of four oscillators and three baths

TL, γL TE , γE TR, γR

k1,2 k2,3 k3,4

1 2 3 4

Figure 3.7: Schematic for a chain of four linearly coupled oscillators. The circles represent
the oscillators. The springs represent the linear harmonic coupling between first neighbours.
The dashed line boxes represent the baths and their interaction with the oscillators on their
interior. Temperature and coupling labels are assigned for each bath as well as to each pair
of coupled oscillators.

As portrayed in figure 3.7 we now study a chain of four oscillators distributed in three
baths: left (L), intermediate or environment (E) and right (R). The left and right baths
contain one oscillator each while the intermediate bath contains two. The aim of this section
is to study the temperature profile of a chain where the bath E is not present and to measure
the heat transfer though a system where the oscillators of bath E are not coupled. This will
allow us to predict results for larger chains of similar characteristics.

3.4.1 Temperature profile
In this case the described model of four oscillators has the bath E removed, which can be done
by assuming γE = 0. This can be understood as if the oscillators in the intermediate bath
stand in a very low interactive environment, being only influenced by the other oscillators
in the chain. All the oscillators will be connected to their first neighbours. We want to
compare such a scenario with the already explained two oscillator system, and to review the
temperature profile of both models under similar conditions. In principle one would expect
to see the oscillators in between baths to act as an effective coupling, but the interactions
might prove to be no so trivial.

In figure 3.8 we can observe a slight difference in the temperature profiles between the
two models proposed. The ohmic case shows a higher kinetic temperature in τ1 than the
one provided by TL, τ2, τ3 are balanced and τ4 is slightly higher than TR. This is expected
from the findings in figure 3.3 but the super ohmic model shows a more linear profile, where
τ1 is lower than TL, τ2, τ3 have different values and τ4 is even higher than in the case of
the ohmic baths. One could assume this is due to the definition of kinetic temperature
used. However, as seen in the two oscillator scheme, the bath model affects the evolution of
the heat current with temperature so it is more reasonable to assume the bath models are
entirely responsible for this difference between the profiles.

3.4.2 Broken chain
In this case we study the chain of four oscillators with three baths present where the chain
has a broken link in its middle, so that k2,3 = 0. We use the coupling of the oscillators with
the middle bath, γE , as our parameter.

This proposal seeks to observe how the heat currents of the baths are affected by a
broken link between intermediate oscillators in the bath, as breaking the coupling between
oscillators of different baths would give the trivial result of the absence of energy transfer

26



Figure 3.8: Temperature profile of the oscillators in a model of N = 4 oscillators where
NL = NR = 1. Each column represents one spectral density model combination. From left
to right: ohmic-ohmic, super ohmic-super ohmic. Each row uses a different temperature for
the left bath. The temperature of the left bath (red dotted line) and the right bath (green
dotted line) are shown for each case. TR = 1, k = 10−3, γL = γR = 10−2,Λ = 10. ωi = 1.

between them. However, this case is not so simple since even if the coupling is non existent
the oscillators might be able to communicate energy through the bath itself.

We can observe that in the case of TE = TR we have a non-zero value for Q̇R in the
ohmic case when γE is small as seen in figure 3.9. Notice how the value becomes small very
fast with γE . This implies an exchange of heat from baths L to R through the bath E and
not from the coupling, since it has been severed at the middle of the chain. But only at
γE � 1, for large values of this parameter the chain behaves as if the bath E contributes
less and less to the heat transfer and the heat passes from bath L to bath R.
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Figure 3.9: Heat current of each bath in an oscillator chain with respect to the coupling
parameter γE . The chain has three baths (L,E,R) and a length of N = 4. The link between
the second and third oscillator is broken (k2,3 = 0). The system exhibits a temperature
profile of TL = 2, TE = 1, TR = 1. The left graph shows the obtained values at a short
range of γE while the right graph shows a longer range. The spectral density used is ohmic
with a step function cut off. A horizontal red dashed line at Q̇ = 0 is draw as reference.
γL = γR = 0.1, k = 10−2,Λ = 10.
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Chapter 4

Conclusions

In this work we have studied open quantum systems by means of a system plus reservoir
method using the Caldeira-Legget model in order to obtain analytical solutions for a har-
monic chain of oscillators at the steady state. From there on valuable tools such as the heat
current and the kinetic temperature of the oscillators were established and reviewed. A brief
look into spectral densities gave an insight into the importance of the form of interaction
between the bath and the chain oscillators.

Different scenarios were explored, starting from the simplest case of one oscillator and one
bath up until removing specific pair couplings in a small chain of oscillators. A comparison
with the classical result was explored as well to see if the quantum model is effectively
coherent with temperatures associated with the nanoscopic scale. We also validated the
classical result as a first order approximation of the presented result for the quantum regime.

Relevant results such as the energy transfer through the terms of the bath where obtained,
opening possibilities for further work on interesting topological defects in order to modulate
the interactions along larger chains of oscillators.

Possible extensions of this work range from increasing the size of the system under study
to the use of non harmonic coupling or the analysis of the system outside of the steady
state. This last proposal would require a different framework as the solutions in such a
case are not analytical.Another interesting topic that would not require further theoretical
development for the framework would be the use of more varied topological defects on larger
chains, as discussed before, which might show interesting results in the heat currents of the
system. However, this extension proves difficult until a proper integration method for the
model under study is implemented. The integration of the terms of the covariance matrix is
not trivial and the code used needs to be properly examined , as discussed in appendix C .
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Chapter 5

Resumen en Español

Cuando se trata de estudiar un sistema cuántico grande y complejo resulta útil buscar
variables dinámicas del sistema que lo describan por completo, ignorando sus constituyentes
individuales. Sin embargo, cuando el interés recae en ciertos componentes particulares del
mismo se hace necesario el análisis desde el estudio de sistemas cuánticos abiertos.

Históricamente han existido múltiples propuestas para resolver este problema, recayendo
usualmente en dos categorías generales: cuantización canónica del sistema mediante condi-
ciones de contorno específicas y el uso de modelos de sistema cerrado más sistemas abiertos
en forma de baños. Los primeros tienen la ventaja de funcionar de forma muy eficiente den-
tro de sus condiciones de contorno, pero suelen violar principios cuánticos elementales como
el principio de superposición. Por otra parte, los métodos de sistema más baño proporcionan
una mirada mucho más intuitiva, con una canonización cuántica más directa pero que fallan
en reproducir algunos fenómenos cuánticos particulares como el tuneleado cuántico.

Este trabajo se centrará en el método de sistema más baño. Específicamente en, a través
de imagen de Heisenberg, obtener la ecuación de Langevin cuántica para dar un resultado
exacto bajo régimen de estado estacionario, de forma que se podrá analizar el sistema de
forma analítica. Para ello son necesarias algunas condiciones como el uso de osciladores
armónicos en el sistema, acoples lineales entre elementos del sistema y también se asumirá
un modelo unidimensional de cadena abierta.

Para los baños será utilizado el modelo de Caldeira-Legget, el cual es un modelo semi
empírico donde el baño queda definido por un número infinito de osciladores armónicos
independientes entre sí. Este es un modelo que posee la ventaja de representar mecanismos
realistas a la par de ser analíticamente resoluble. El baño queda totalmente definido a través
de la densidad espectral, cuya forma será atribuida en los modelos óhmicos y super óhmicos
empleados.

Para obtener los resultados pertinentes, primeramente se buscará la ecuación cuántica
de Langevin para un sistema general de cadena de osciladores armónicos. A partir del
Hamiltoniano del sistema, previa renormalización necesaria debido a la influencia del baño en
las posiciones de equilibrio de los osciladores, se desarrollarán las ecuaciones de movimiento
y se identificarán los términos correspondientes en comparación con la ecuación clásica de
Langevin. He ahí se obtiene la matriz de covarianza en el estado estacionario, que permite
definir propiedades termodinámicas como la temperatura de los osciladores o las corrientes
de calor en función de sus elementos de matriz.

Llegados a este punto, se hace necesario definir con mayor claridad la densidad espectral
y a partir de ella la susceptibilidad. Se ejemplificarán y tratará el desarrollo de los modelos
empleados en este trabajo: el modelo óhmico de Drude Lorentz, el modelo óhmico con fun-
ción paso y el modelo super óhmico cuando s = 2 con función paso. Los resultados obtenidos
con estos modelos serán comparados a lo largo del trabajo bajo distintas aplicaciones.

Con estas herramientas se comienza a trabajar en casos específicos para poner en valor
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la teoría desarrollada así como para obtener resultados y conclusiones relevantes.
Primeramente se particularizan las ecuaciones obtenidas para el caso simple de un os-

cilador y un baño. En este punto se estudiará en detalle el límite de bajas temperaturas y
la importancia de la elección del modelo de densidad espectral al comparar los resultados
obtenidos con el estado térmico de un oscilador armónico. Se obtendrá una discrepancia
entre la temperatura del baño y la temperatura cinética del oscilador en el régimen de bajas
temperaturas, cuyo límite vendrá dado por la frecuencia natural del oscilador.

Se continuará con el caso de dos osciladores y dos baños, en el que se observará la
evolución de la temperatura de los osciladores con el acoplamiento entre los osciladores
de la cadena, así como con el acoplamiento con los baños. Seguidamente se comparará la
corriente de calor con la temperatura. Se diferenciará entre distintas densidades espectrales
y distintos acoplamientos entre baños y osciladores. A partir de los resultados obtenidos se
podrá observar como la definición de temperatura cinética empleada no resulta fiable para
el régimen de altas temperaturas. Para concluir el estudio de este caso, se compararán los
valores obtenidos bajo la ecuación cuántica de Langevin con su análogo clásico y se analizará
el comportamiento de los mismos con la temperatura. Se tratará de ver así la diferencia
entre ambos modelos a altas temperaturas y revelar bajo qué condiciones están de acuerdo.

Se finalizará este trabajo resolviendo el caso de una cadena de cuatro osciladores con
tres baños, donde los osciladores en los extremos de la cadena estarán conectados a un baño
cada uno y los dos osciladores intermedios conectados a un tercer baño. De esta forma se
hace posible observar comportamientos del modelo general propuesto bajo condiciones más
complejas: la ausencia de un baño intermedio o la transferencia de calor a través de un
baño en el que sus osciladores están desacoplados entre sí. Para el primer caso de ausencia
de baño intermedio se procederá a observar el comportamiento del perfil de temperatura
de los osciladores dependiendo del modelo de baño aplicado y a recabar conclusiones al
respecto. Por otra parte, se estudiarán las corrientes de calor para el caso en el que el
baño intermedio está efectivamente conectado a sus correspondientes osciladores pero estos
se hayan desacoplados entre sí. Para poder interpretar correctamente el valor hallado de las
corrientes se fijará la temperatura del baño intermedio como la de uno de los baños en los
extremos y se observará la evolución de las corrientes con el acoplamiento al baño intermedio.
Se obtendrá que además de haber corriente de calor, existe un valor no nulo en la corriente
del baño intermedio, por lo que el baño también es responsable de la transferencia de calor,
no solo lo es el acople entre osciladores.

Los resultados obtenidos abren pie a extensiones de este trabajo tales como el estudio de
cadenas de osciladores de mayor tamaño, el uso de acoples no armónicos entre osciladores o
el estudio del sistema fuera del régimen estacionario.

En los apéndices del trabajo se añaden algunos resultados necesarios para el desarrollo
de la teoría, así como un corto análisis del procedimiento numérico utilizado.
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Appendix A

Fluctuation-Dissipation Relation

The Fluctuation-Dissipation relation is classically defined as [19, 20]:

SF (ω) =
1

2
〈{Fα(ω), Fα(ω′)}〉 = δ(ω + ω′)

4πKBT

ω
Im[Dα(ω)]. (A.0.1)

Although the Fluctuation-Dissipation Relation is well known for classical systems, this
relation can also be established for particular quantum scenarios such as the one we are
studying [20, 21]. Let us begin with 1

2 〈{fα(t), fα(t′)}〉. First we need to reduce the anti
commutator, so

1

2
〈{fα(t), fα(t′)}〉 =

1

2
〈fα(t)fα(t′) + fα(t′)fα(t)〉 = 〈fα(t)fα(t′)〉. (A.0.2)

since (2.2.17) commutes.
The bosonic thermal occupation number is defined from 2nµα(T ) + 1 = coth

(
~ω

2KBT

)
so

that

nµα(T ) =
1

e
~ω
KBT − 1

. (A.0.3)

Taking into account nµα(T ) we can calculate the expected value for different products
of the canonical coordinates at the initial state of the system.

〈xµα(t0)xµ′
α

(t0)〉 = δµαµ′
α
~

1 + 2nµα(T )

2mµαωµα
, (A.0.4)

〈pµα(t0)pµ′
α

(t0)〉 = δµαµ′
α

~
2
mµαωµα [1 + 2nµα(T )], (A.0.5)

〈xµα(t0)pµ′
α

(t0)〉 = 〈pµα(t0)xµ′
α

(t0)〉∗ = δµαµ′
α

i~
2
. (A.0.6)

Then from 2.2.17 and 2.3.3:

1

2
〈{fα(t′), fα(t′′)}〉 =

~
π

∑
µα

πg2
µα

2mµαωµα
[1 + 2nµα(T )]

· [cosωµα(t′ − t0) cosωµα(t′′ − t0) + sinωµα(t′ − t0) sinωµα(t′′ − t0)]

=
~
π

∫ ∞
0

dωJα(ω) coth

(
~ω

2KBT

)
cosω(t′ − t′′). (A.0.7)

Applying the Fourier transform we find
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1

2
〈{Fα(ω′), Fα(ω′′)}〉 =

~
π

∫ ∞
−∞

dt′eiω
′t′
∫ ∞
−∞

dt′′eiω
′′t′′
∫ ∞

0

dωJα(ω)

· coth

(
~ω

2KBT

)
eiω(t′−t′′) + e−iω(t′−t′′)

2

=
~

2π

∫ ∞
−∞

dt′
∫ ∞
−∞

dt′′
∫ ∞

0

dωJα(ω)

· coth

(
~ω

2KBT

)(
eit

′(ω+ω′)eit
′′(ω′′−ω) + eit

′(ω′−ω)eit
′′(ω′′+ω)

)
= 2π~

∫ ∞
0

dωJα(ω)

· coth

(
~ω

2KBT

)
[δ (ω + ω′) δ(ω′′ − ω) + δ(ω′ − ω)δ(ω′′ + ω)]

= 2π~δ(ω′ + ω′′) coth

(
~ω′

2KBT

)
[Jα(ω′)Θ(ω′)− Jα(−ω′)Θ(−ω′)] .

(A.0.8)

where we have used
∫∞
−∞ dteiωt = 2πδ(ω). Combined with 2.3.6 we find the Fluctuation-

Dissipation relation:

1

2
〈{F (ω), F (ω′)}〉 = 2π~δ(ω + ω′) coth

(
~ω

2KBT

)
Im[Dα(ω)]. (A.0.9)
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Appendix B

Integral results

B.1 Laplace transforms
Here are included some Laplace transform results as well as its definition, used previously
in the text. The definition used in text is:

L[x̂(t)] =

∫ ∞
0

x̂(t)e−stdt. (B.1.1)

Results:

L[¨̂x] = s2L[x̂]− sx̂(t0)− ˙̂x(t0), (B.1.2)

L−1

[
s

s2 + ω2

]
= cos (ω(t− t0)) , (B.1.3)

L−1

[
ω

s2 + ω2

]
= sin (ω(t− t0)) , (B.1.4)

L−1 [F (s)G(s)] = f(t) ∗ g(t) =

∫ t

t0

f(t′)g(t− t′)dt′. (B.1.5)

B.2 Fourier transforms
In the same manner, we include different useful Fourier transform results applied previously.

The definition of the Fourier transform and its inverse are:

F [x̂(t)] = X̂(ω) =

∫ ∞
−∞

dteiωtx̂(t), (B.2.1)

F−1[X̂(ω)] = x̂(t) =
1

2π

∫ ∞
−∞

dte−iωtX̂(ω). (B.2.2)

Some useful results:

F [ ˙̂x] = −iωX̂(ω), (B.2.3)

F [¨̂x] = −ω2X̂(ω), (B.2.4)
F [f(t) ∗ g(t)] = F (ω)G(ω). (B.2.5)
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Appendix C

Details on integration method and
numerical calculation difficulties

The integration method employed in this work has been scipy.integrate.quad since it
has the advantage of integrating with improper limits (−∞,∞) by means of a scale scheme.
However, the integration method gives some problems due to the slow convergence of some
terms of the covariance matrix at low temperatures. A study on the integrands and integra-
tion method needs to be taken before continuing with this method forward for large chains.
This numerical errors arise even in small chains, we will use the case of a two oscillator
model as an example (see figure C.1). It is important to highlight that the results obtained
throughout the rest of this work didn’t yield any errors, as proper combination of parameters
where chosen to avoid this problem.

Figure C.1: Evolution of Q̇ with ∆T for a two oscillator system with two baths at different
temperatures where γ = 10−2, k = 1.

While the asymptotic behaviour at high temperature differences is correct, the integrator
has problems at low temperatures. This is not an isolated phenomena as can be seen in figure
C.2 and the super ohmic spectral density seems more sensitive than the ohmic one. What
happened in figure C.1 is attributed to an increase of tolerance in the integrator. This has
to do with how sicpy.integrate.quad divides the scaled space in order to optimise the
integration. Since the features on this domain are too complicated for the division limit
imposed initially, it requires a higher tolerance in order to perform the calculation and
ignores certain segments in the critical domain of integration, raising an error. Thus, the
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Figure C.2: Evolution of Q̇L with respect to ∆T of a two oscillator and two bath scheme
for different combinations of γ, k and spectral density. For low values of γ the integration
method flags an error and computes the values imprecisely in a certain domain. TR =
10−3,Λ = 10,mi = 1.

integration method shows clearly defective values for certain combinations of γ, k when ∆T
is small.

Figure C.3: Evolution of Q̇L with γ for different values of k with ∆T = 10. Same parameters
as in figure C.2

One can also see the values of γ and k compete in defining this shift in figure C.3, which
represents the current in figure C.2 at a fixed value of ∆T . This values are in principle
unaffected by the numerical error since they are taken at high ∆T . The values seem to
converge when γ is small for each model but with larger values the split for different values
of k is bigger. Thus, the spectral density is not the only responsible for the difference in
heat currents when comparing two spectral densities, the values of γ and k need to be taken
into account as well.

The code used on this work can be found on https://gitlab.com/tanahy/qlangevin
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