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Abstract  

The degradation characteristics of hydroxyapatite-zirconia-silver films (HA-ZrO2-Ag) coatings 

on three ZrTi alloys were investigated in Ringer’s solution containing 10% human albumin protein at 37 

°C. Samples were immersed for 7 days while monitored by electrochemical impedance spectroscopy 

(EIS) and linear potentiodynamic polarization (LPP). The electrochemical analysis in combination with 

surface analytical characterization by scanning electron microscopy (SEM/EDX) reveals the stability 

and corrosion resistance of the HA–ZrO2-Ag coated ZrTi alloys. The characteristic feature that describes 

the electrochemical behaviour of the coated alloys is the coexistence of large areas of the coating 

presenting pores in which the ZrTi alloy substrate is exposed to the simulated physiological 

environment. The EIS interpretation of results was thus performed using a two-layer model of the 

surface film. The blocking effect in the presence the human albumin protein produces an enhancement 

of the corrosion resistance. The results disclose that the Zr45Ti alloy is a promising material for 

biomedical devices, since electrochemical stability is directly associated to biocompatibility.   
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1. Introduction 
 

Titanium and its alloys are widely used in biomedical applications due to their characteristic low 

density, and high mechanical and corrosion resistances [1-3]. In fact, corrosion, and the subsequent ion 

release into the physiological environment, is an important characteristic affecting the biocompatibility 

of implant alloys [4]. Despite the outstanding passivity of titanium and its alloys conferred by the 

compact and stable oxide films spontaneously formed on their surface [5,6], the observation of localized 

electrochemical activity in saline environments [7-9] may account for reports of ion release and 

metallosis in vivo [10-13]. As result, there is growing concern on the long-range effects of hazardous 

metal ions such as Al and V [14,15], which are often present in titanium-based orthopedic implants. This 

concern has promoted the search for alternative alloys suitable for bone replacement and fixation as well 

as for dentistry with greater corrosion resistance while exhibiting high biocompatibility characteristics 

[3]. Among them, binary Zr-Ti alloys have shown good mechanical characteristics [16] while high 

corrosion resistance was conferred by the combined effect of TiO2 and ZrO2 jointly forming the 

protective passive layers [17-20]. Even higher corrosion resistance of the passive films was achieved by 

prior thermal oxidation of the cast materials in air [20,21].  

Enhanced osseointegration of titanium-based implant materials is achieved by coating them with 

a thin layer of hydroxyapatite (HA, Ca10(PO4)6(OH)2) [22]. This coating must be porous in order to 

assure good osteointegration [23], but it may affect the corrosion behavior of the substrate. HA has a 

similar mineral constitution to bone, and thus shows bioactive properties favoring tissue response that 

enhances fixation to hard bone [24]. Though several techniques can be employed to apply HA layers on 

metal substrates (namely i plasma spray [25,26], electron beam evaporation, radio frequency sputtering 

[27], electrophoretic deposition [27,28], sol-gel deposition [29], and pulsed laser deposition [30]), some 

of these methods present drawbacks. In plasma spraying, the particles are melted at high temperature 

and produce crystalline areas within an amorphous calcium phosphate matrix. An amorphous and 

phosphorous deficient material is obtained by radio frequency sputtering, whereas ion beam sputtering 

cannot coat odd shaped objects. Electrophoretic techniques produce layers with poor adhesion 

characteritics.  

Other coatings have been investigated for biocompatibility enhancement. Zirconia demonstrated 

superior characteristics for in vitro bioactivity, because this ceramic material possesses the ability to 

induce bone formation in biological environment [31-35]. Recent coating strategies also involve the use 



of antimicrobial and antibacterial agents in order to reduce the eventuality of infections resulting from 

surgical procedures [36,37], such as silver or silver ions [38-41]. It was found that TiAg alloys present a 

high corrosion resistance [42]. Alternately, antimicrobial activity by silver can be gained by using metal 

nanoparticles in coatings [43,44]. 

The aim of this paper is the improvement of the biocompatibility characteristics of ZrTi alloys by 

PLD coating with composite hydroxiapatite-zirconia layers containing silver nanoparticles as 

antimicrobial agent whereas no significantly deteriorating the corrosion resistance of the material. 

Pulsed laser deposition (PLD), also called laser ablation, is a reliable and inexpensive method for the 

obtention of thin films of simple or complex compounds. The PLD method involves the interaction of a 

laser beam with a target material [45]. Since the deposition chamber is a "clean" reactor, the transfer of 

the target to the substrate is stoichiometric, and the thickness of the film can be controlled by the number 

of pulses deposition process. The formed plasma plume rapidly condenses onto the substrate and grows 

a thin film [46]. The corrosion resistance of the coated ZrTi alloys was characterized using 

electrochemical techniques during their exposure to Ringer’ solution modified with 10% human albumin 

protein, because implants materials inserted into a human body are usually surrounded by blood-rich 

tissue, and serum proteins in the blood are known to influence metal corrosion [47–54]. 

 

 

2. Experimental  

2.1. Materials and sample preparation 

Binary Zr-Ti alloys, of compositions Zr5Ti, Zr25Ti, and Zr45Ti, were fabricated by a multiple 

electron beam drip melting method as described elsewhere [20]. Cylindrical ingots of 40 mm diameter 

and about 100 mm length were obtained.  

The composite HA–ZrO2 coating containing Ag nanoparticles was deposited on the Zr-Ti alloy 

samples as described next. The ultrasonic irradiation (US) method has been used to generate Ag 

nanoparticles [55-57]. In the first stage, a Sonopuls HD 3200 horn-type reactor (Bandelin, Berlin, 

Germany) was used to prepare the samples, where the following US conditions were maintained: 20 kHz 

frequency and 81 µm amplitude of the acoustic wave. The equipment also displays the amount of energy 

delivered to the sample by the ultrasonic waves.  A schematic representation of the preparation stage is 

indicated in Figure 1. Firstly, 1 L 0.1 M AgNO3 solution was irradiated for 20 minutes with a total 

amount of energy dissipated in this sample of 170,043 kJ. The second solution treated under the same 



ultrasonic conditions was a 21.1 g L-1 CaCl2 (volume 200 mL) for 5 min and 38,910 kJ dissipated in the 

solution. The 17 mL 0.1 M AgNO3 and 200 mL 21.1 g L-1 CaCl2 sonicated solutions were mixed with 

200 mL solution 38.8 g L-1 Na3PO4·12H2O and irradiated for another 5 minutes. In the 3-components 

mixture (Mix 1, Figure 1), 4.09 g ZrO2 was added and ultrasonic irradiation continued for another 5 

minutes. The mean diameter of the particles and size distribution were analyzed by laser light diffraction 

with a Shimadzu SALD-7001 (Kyoto, Japan). 

For PLD coating, the HA–ZrO2-Ag solution was calcinated at 675 oC to get crystalline target 

surface. The depositions were done in a stainless steel vacuum chamber, equipped with a dry pump 

(Bluffton Motor Works, Bluffon, IN, USA) which ensured 10-2 torr pressure during film growth (details 

of the experimental set-up are given in [57]). The HA (Zr, Ag doped) target was placed on a micrometric 

precision 3D translation stage and moved constantly during deposition. The second harmonic of an Nd-

YAG laser (Quantel Brilliant, Orléans, France) was focused on the bulk source material by a 35 cm 

focal point lens at a 45º angle with respect to the target surface. The estimated impact area was 0.8 mm2 

while the laser energy was set at 40 mJ; this led to a fluence of ~5 J cm-2. The ZrTi substrate alloys were 

placed at a distance of 3 cm from the HA–ZrO2-Ag target surface. The deposition time was 30 min. 

The morphological analysis has been performed by scanning electron microscopy (SEM). A 

VEGA II LMH SEM (Tescan, Brno, Czech Republic) provided with energy dispersive X-ray 

spectroscopy (EDX) analysis (model XFlash, Bruker, Billerica, MA, USA) was employed. 

Compositional characterization of the as-prepared samples was performed using a TENSOR 27 micro-

Fourier transform infrared (FTIR) spectrometer (Bruker Optics, Brno, Czech Republic) coupled with 

HYPERION 1000 FTIR microscope (Bruker, Billerica, MA, USA). The FTIR spectra of the calcinated 

samples were registered with a Bomem MB-104 spectrophotometer (Quebec, Canada). The spectral 

resolution used was 4 cm-1. Fifty scans were added per sample spectrum, and Fourier transformation of 

the spectra was done using the Win Bomem Easy 3.5 software package. 
 

2.2. Electrochemical techniques 

The electrochemical tests were run in a glass corrosion flow cell kit (C145/170, Radiometer, 

Copenhagen, Denmark) containing 200 ml of Ringer’s solution with 10% human albumin protein 

(Kedrion S.p.A. Barga, Italy). The temperature and pH were 37 ± 1 ºC and 7.2, respectively. The test 

specimens were placed in a glass corrosion cell, which was filled with freshly prepared electrolyte. A 

saturated calomel electrode (SCE) was used as the reference electrode and a platinum coil as the counter 



electrode. All potential values given in this article are referred to SCE. The measurement was managed 

by a PAR 4000 potentiostat controlled by a personal computer with dedicate software (PowerCorr, 

Princeton Applied Research, Princeton, NJ, USA). 

EIS measurements were performed after the samples were immersed in electrolyte at open circuit 

potential, for different periods of time, namely 1 hour, 1 day, and 7 days. The alternating current (AC) 

impedance spectra were obtained with a scan frequency ranging from 100 kHz to 10 mHz, using a 

potential amplitude of 10 mV. In order to supply quantitative support for discussions of the experimental 

EIS results, an appropriate model (ZSimpWin, Princeton Applied Research, Princeton, NJ, USA) for 

equivalent circuit (EC) quantification was employed. The usual guidelines for the selection of the best-

fit EC were followed: a minimum number of circuit elements are employed and the χ2 error was suitably 

low (χ2 < 10-4), and the error associated with each element was up to 5%. Instead of pure capacitors, 

constant phase elements (CPE) were introduced in the fitting procedure to obtain good agreement 

between simulated and experimental data [58]. 

Measurement of linear potentiodynamic polarization curves was initiated after 7 days exposure 

to the test environment. These tests were conducted by stepping the potential using a scanning rate of 1 

mV s-1 from -1.0 VSCE to +1.0 VSCE. The potentiodynamic polarization curves were plotted, and the 

corresponding values for the zero current potential (EZCP), and the corrosion current density (jcorr), were 

determined. Electrochemical measurements were made in triplicate, and the analysis of variance 

(ANOVA) was performed using a Tukey post hoc test (p < 0.05). 

 

 

3. Results and discussion 

 

The average diameter of the HA–ZrO2-Ag particles used to coat ZrTi alloys was 70 nm, as 

deduced from the size distribution profile presented in Figure 2. After the coating was applied on the 

alloys, the formation of round nanoparticles on the surface of the HA–ZrO2-Ag coated thin films is 

observed in the scanning electron micrographs of Figure 3. EDX analysis performed on the HA–ZrO2-

Ag coated ZrTi alloys delivered Ca/P ratios = 1.66 in the HA–ZrO2-Ag coated thin films, a value close 

to the theoretical value 1.67 in HA. The occurrence of HA in the coating was further evidenced using 

Fourier transform infrared spectroscopy (FTIR). The basic bands characteristic for apatite compounds, 

reflecting the vibrations  of the PO4 group (contained in apatite) in the range 960 -1100 cm-1 and around 



600 cm-1 are also found in the coated ZrTi materials as shown in Figure 4. For the sake of comparison, 

the HA–ZrO2-Ag spectrum taken from OPUS software library was also included in the graph.  

Electrochemical impedance spectroscopy (EIS) experiments were performed on the samples left 

at the open circuit potential spontaneously developed in the test environment. Typical impedance spectra 

of the HA–ZrO2-Ag coated ZrTi alloys measured at different exposure times during their immersion in 

Ringer’s solution containing albumin protein are shown in Figures 5-7. They are displayed in both 

complex impedance (Nyquist diagram) and amplitude/phase angle (Bode diagram) plots. Changes in the 

impedance characteristics as a result of the exposure of the HA–ZrO2-Ag coated ZrTi alloys to the 

Ringer’s solution could be performed by comparing the spectra. However, Bode plots are more indicated 

for the investigation of changes in the electrochemical characteristics of the system. It was observed that 

upon immersion of the various HA–ZrO2-Ag coated ZrTi alloys in the test solution, variations in the 

impedance spectra occurred already during the first day. The impedance spectra exhibit two time 

constant at all exposure times. In the high frequency part the impedance characteristics result from the 

penetration of the test solution through a porous thin film, whereas the low frequency part accounts for 

the processes taking place at the substrate/test solution interface. Within the intermediate frequency part, 

the Bode diagrams show straight lines with slopes smaller than the value -1 and a phase angle smaller 

than 90°. These features are evidences of frequency dispersion and can be attributed to the occurrence of 

inhomogeneities of the solid surface. That is, the HA–ZrO2-Ag thin film formed on the ZrTi alloys is 

porous. Low impedance modulus values in the order of 104 Ω cm2 were measured even at the earliest 

exposures, whereas the general response of the system can be described as resistive over most of the 

frequency range (as characterized by phase angles smaller than 45 degrees).  

For the interpretation of the electrochemical behavior of a system from EIS spectra, an 

appropriate physical model is required. An equivalent circuit (EC) provides the most relevant corrosion 

parameters applicable to the substrate/electrolyte system. Based on the inspection of the Bode-phase 

plots, the EC with two times constants shown in Figure 8 was adopted. The EC consists of the following 

elements: a solution resistance (Rsol) of the test electrolyte, the constant phase element (Q1) of the intact 

coating layer, the charge transfer resistance associated with the penetration of the electrolyte trough the 

pores existing in the coating (R1), and the (R2) as well as the electrical double layer constant phase 

element (Q2) at the substrate/electrolyte interface. Nevertheless, as the polarization resistance of the 

substrate (R2) is one order of magnitude greater than the resistance of the coating layer (R1), R2 can be 

regarded to yield quantitative estimates of the corrosion rates.  



From the impedance data listed in Table 1 it is evidenced that deposition of the HA–ZrO2-Ag 

thin film modifies the corrosion resistance of the ZrTi alloys compared to the uncoated materials as 

reported in ref. [18]. Resistance values are decreased by a factor of ca. 25, whereas there is a three-fold 

increase in the capacitance values. These are indications that the layers formed on the surface of the 

coated samples are less compact and must present pores, and the thin very compact inner oxide film 

observed in the non-coated metals cannot be formed at the buried metal/coating interface. This implies 

that the formation of the oxide passivating film is greatly hindered by the presence of the deposited film, 

and only a very thin inner oxide layer can be formed.  

R2 values increase with the elapse of time for the HA–ZrO2-Ag coated alloys. In general, 

proteins can affect corrosion reactions in several ways, and thus shift the position of equilibrium. Thus, 

proteins can accelerate the dissolution of metals through their chelation effects [59-61]. But it is also 

possible that protein molecules adsorbed on the metal surface may hinder metal dissolution. The 

adsorption of organic species may cause the blocking of terminal oxygen atoms at the interface passive 

film/electrolyte [52]. This latter hypothesis would be confirmed by the increasing time of the capacitive 

arcs in the Nyquist diagrams observed in Figures 5-7 for the three coated ZrTi alloys under 

investigation. Furthermore, on the basis of EIS analysis, the corrosion resistance of ZrTi alloys 

immersed in Ringer’s solution with added albumin protein is improved with increasing Ti content in the 

binary alloy. 

Figure 9 displays the linear polarization curves of the coated samples in Ringer’s solution with 

albumin protein at 37 oC. They are plotted in semi-logarithmic scale of current densities versus potential 

scanned from -1.0 to +1.0 VSCE with 1 mV s-1 sweep rate. The HA–ZrO2-Ag coated ZrTi alloys present a 

similar anodic behaviour, where the anodic current density first described a plateau and subsequently 

increased steadily. Such effect has been associated to the diffusion of Cl- ions smaller than oxygen, 

which makes difficult for the surface to be homogeneously passivated. Table 2 gives the average values 

determined for both the zero corrosion potential (EZCP) and the corrosion current density (jcorr) 

determined from the polarization curves. The linear polarization curves of HA–ZrO2-Ag coated Zr45Ti 

showed a shift of ZCP to more positive value (-0.481 VSCE) compared with HA–ZrO2-Ag coated Zr5Ti 

(-0.840 VSCE). The corrosion current density for HA–ZrO2-Ag coated Zr5Ti is approximately five times 

bigger than for HA–ZrO2-Ag coated Zr45Ti. Thus, the results indicated that HA–ZrO2-Ag coated Zr5Ti 

is most easily corroded. 



Finally, Figure 10 displays the SEM images of the coated surface samples retrieved from the 

electrolyte after the linear potentiodynamic polarization test in Ringer’s solution with albumin protein. 

In this way, the samples were effectively removed after the samples reached a polarization of +1.0 VSCE. 

No significant morphological change could be observed with the polarized samples compared to their 

condition prior to testing in the case of the alloys with higher Ti contents, whereas as pores and cracks 

on HA–ZrO2-Ag coated Zr5Ti surfaces could be clearly observed. 

 

 

4. Conclusions 

The electrochemical behavior of PLD HA–ZrO2-Ag coated ZrTi in Ringer’s solution with 

albumin protein, at 37 °C is characteristic of a metal coated by surface film with dielectric 

characteristics that act as a barrier for metal dissolution. The formation of a compact oxide film on the 

surface of the buried metal is less efficient, thus the materials with enhanced compatibility are less 

resistant to corrosion. Yet the coated alloys behave similarly to a passive metal in presenting a region of 

approximately constant passivation currents in a potential region positive to their corresponding zero 

current potential value in the simulated physiological solution. Better passivation characteristics are 

shown by the Zr45Ti alloy, and the electrochemical behaviour is greatly affected by the composition of 

the buried binary ZrTi alloy.  

The zero corrosion potential (EZCP) of the coated Zr45Ti alloy is nobler than for the other two 

binary alloys, and the corrosion current density (jcorr) of HA–ZrO2-Ag coated Zr5Ti is more than five 

times larger than that of HA–ZrO2-Ag coated Zr45Ti. For all coated samples, the polarization resistance 

(Rp) values obtained from EIS spectra, increase slowly with the time of electrode immersion indicating 

thicker passive layers.  

Despite the decreased corrosion resistance of the HA–ZrO2-Ag coated ZrTi alloys, it is believed 

that at the rate of corrosion of the Zr45Ti alloy will be adequate as not to promote adverse reactions at 

the bone-implant interface. 
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Figure 1 

Schematic representation of the preparation stage and the US parameters employed for the fabrication of 

HA–ZrO2-Ag coatings: time and delivered energy. 

 
Figure 2 

Dimensional distribution of HA–ZrO2-Ag particles. 



 
Figure 3 

SEM micrographs of HA–ZrO2-Ag coated ZrTi samples: (A) Zr5Ti, (B) Zr25Ti, and (C) Zr45Ti. 

 
Figure 4 

Representative micro-FTIR spectra for HA–ZrO2-Ag coated Zr45Ti alloy. For the sake of comparison, 

the HA–ZrO2-Ag spectrum according to OPUS software library has been included in the graph. 



  
Figure 5 

EIS spectra obtained during immersion in Ringer’s solution with albumin protein on Zr5Ti alloy coated 

with the HA–ZrO2-Ag coating. (A) Nyquist, and (B) Bode diagrams. 

 
Figure 6 

EIS spectra obtained during immersion in Ringer’s solution with albumin protein on Zr25Ti alloy coated 

with the HA–ZrO2-Ag coating. (A) Nyquist, and (B) Bode diagrams. 



 
Figure 7 

EIS spectra obtained during immersion in Ringer’s solution with albumin protein on Zr45Ti alloy coated 

with the HA–ZrO2-Ag coating. (A) Nyquist, and (B) Bode diagrams. 

 
Figure 8 

Equivalent circuit (EC) used for analysis of EIS spectra.  



 
Figure 9 

Representative potentiodynamic polarization curves obtained for HA–ZrO2-Ag coated ZrTi alloys after 

7 days immersion in Ringer’s solution with albumin protein at 37 ºC. 

 
Figure 10 



SEM micrographs of HA–ZrO2-Ag coated ZrTi samples retrieved at +1.0 VSCE alloys after recording the 

potentiodynamic polarization curves given in Figure 9. Alloy substrate: (A) Zr5Ti, (B) Zr25Ti, and (C) 

Zr45Ti. 

 

 

 

 

 

Tables captions 

 

Table 1 

Impedance parameters of HA–ZrO2-Ag coated ZrTi alloys immersed in naturally-aerated Ringer’s 

solution containing albumin protein at 37 °C after different immersion periods. 

 

Table 2 

Corrosion parameters (and standard deviation values) determined from the potentiodynamic polarization 

curves for HA–ZrO2-Ag coated ZrTi alloys in naturally-aerated Ringer’s solution containing albumin 

protein at 37 °C. 
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