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1 Introduction

Global optimization is a field of great interest in many different branches of
science. The objective of global optimization is to find the best global solution
of (possibly non-linear) models, in the presence (possible or known) of multiple
local minima. Some examples can be seen in advanced engineering design,
biotechnology, data analysis, environmental management, financial planning,
process control, risk management, scientific modeling, and others. However,
this work is going to focus on the optimization of a cluster composed by rare
gases atoms.

Following different authors [1][2], one of the simplest models that exhibits
such behavior that one may consider is the problem of finding the ground-state
structure of a cluster of atoms interacting through a classical Lennard-Jones
(LJ) pair potential, given by:

VLJ = 4ε
∑
i<j

[(
σ

rij
)12 − (

σ

rij
)6], (1)

where rij is the distance between the i-th and j-th particle, ε and 21/6σ
are the pair equilibrium well depth and separation, respectively. In a cluster
composed by N atoms, each pair interacting by a potential of the form (1) will
rise to the potential energy surface (PES). One may pose the question ”Why is it
important to locate the global minimum?” as Roy L. Jhonston stated: ”Clusters
corresponding to global minima (or low-lying local minima) are the most likely
candidates for the most probable structure formed in cluster experiment”[3].
As the number of minima rises exponentially with increasing cluster size [2],
finding the global minimum can be very difficult. In Section 4, we will see the
LJ potential in more detail.

Studies have shown that the predominant structure from LJ10 to LJ150 are
based on an icosahedron packing [1]. However, there are exceptions where the
structure formed is nonicosahedral like LJ38, LJ75−77 and LJ102−104. These
structures are much more difficult to find than the rest and are a good method
to see if the optimization technique used is useful or not. Two requirements that
an optimization method must meet are the ability to optimize LJ38 and LJ75.
In Section 5, we will discuss both icosahedral and nonicosahedral structures.

A wide range of studies have tried to answer this problem. Among them,
the simulated annealing (SA) which is based on creating a random walk over
the PES where moves are accepted by a Boltzmann probabilities. Typically, one
starts the SA on sufficiently high temperatures performs several iterations at a
fixed temperature and then decreases that temperature logarithmically. As the
temperature drops the system becomes trapped in quenches which correspond
with low-lying minima or global minimum.

On the other hand, genetic algorithms (GA) use operators based on evo-
lutionary processes such as mating or natural selection. These algorithms are
the most efficient and fastest for global optimization [2]. This method will be
discussed in greater depth later.

1



The method used in the present work is the basin-hopping (BH) algorithm
which is the first to find the global minimum for LJ75 with an unbiased search [1].
This method is similar to the SA method, it also uses a Boltzmann probabilities
to chose between two different energies but it works with fixed temperature.
The three methods will be discussed in greater depth in Section 3 and the BH
algorithm in Section 4.

Finally, global optimization methods are not just about finding the global
minimum, it also gives us a notion about phase transitions or if the potential is
physically reasonable [1].

1.1 Summary in Spanish

La optimización global de sistemas complejos es un campo de gran interés en
distintas ramas de la ciencia. El objetivo de la optimización global es encontrar
el mı́nimo global de enerǵıa de un sistema, en la mayoŕıa de los casos basado
en un modelo no linear, en presencia de muchos mı́nimos locales. Esto es útil
en campos como la economı́a, ciencias naturales o ingenieŕıa. En este trabajo
trabajaremos con agregados de gases nobles para encontrar la estructura más
probable a bajas temperaturas.

Para ello, usaremos un modelo de interacción entre los átomos basado en el
potencial de Lennard-Jones. La interacción entre todos los átomos dará lugar a
una superficie de enerǵıa potencial cuyo mı́nimo global está ı́ntimamente ligado
con la estructura más probable que formará el agregado.

Por otro lado, presentaremos los tres métodos más usados para resolver este
tipo de problemas, mostrando sus puntos fuertes y sus inconvenientes. Estos
algoritmos son: algoritmo genético (GA), enfriamiento simulado (SA) y el algo-
ritmo de basin-hopping (BH). Este trabajo se centrará en éste útlimo, el BH.

Por último, presentaremos los resultados obtenidos y discutiremos la utilidad
del trabajo, además de proponer algunas mejoras para futura continuación del
proyecto.

2 Lennard-Jones potential

First of all, we must choose a potential that matches the experimental data. The
Lennard-Jones potential is a mathematical model for a pair of neutral atoms or
molecules. But first we must ensure that the electronic potential does not affect
the results shown. This is possible thanks to the Born-Oppenheimer approxi-
mation. Furthermore, we must consider whether there are external potentials
or how a third particle affects the potential between two of them. All of these
approaches are necessary to simplify the model.

2.1 Born-Oppenheimer approximation

The Born-Oppenheimer approximation is an essential element in finding the
potential energy surface. It also gives us an example of how different coordinates
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can be treated independently. The approximation involves neglect of terms that
couple together the electronic and nuclear degrees of freedom. [4]

The Schrödinger’s equation for a molecule with n electrons, mass me and N
nuclei with masses Mt is

[−
N∑
t=1

h̄2

2Mt
∇2

t −
n∑

i=1

h̄2

2me
∇2

i + V (x,X)]Ψ(x,X) = ETOTALΨ(x,X), (2)

where x and X are the vectorial positions of the electrons and nuclei respec-
tively.

The potential energy V (x,X) is given by:

V (x,X) =
e2

4πε0
[−

n,N∑
i,t

Zt

rit
+
∑
i<j

1

rij
+

∑
t<s

ZtZs

rts
], (3)

where Zt is the atomic number of nucleus t, e is the charge of the proton.
rit = |xi − Xt| where xi is the vector position of the electron i and Xt, the
vector position of the nucleus t. Thus, the first term gives us the electron-
nucleus interaction. In the same way we can calculate the electron-electron
and nucleus-nucleus interaction. The summatories of the last two terms of the
potential have this form so as not to take into account the same potentials
twice. Furthermore, Born and Oppenheimer took into account that the mass
of the proton is approximately 1836 times greater than that of the electron,
and therefore, their reasoning was that the density of the electron would adjust
almost instantaneously to the positions of the nuclei. From the classical point
of view, electrons are expected to move much faster than nuclei. That will
allow us to get rid of the electron-nucleus interaction. Hence, they brought an
approximation of the wavefunction that is given by:

Ψ(x,X) = Ψe(x;X)Ψn(X), (4)

where Ψe(x;X) is a solution of the electronic Hamiltonian:

[Ĥ − T̂n]Ψe(x;X) = Ve(X)Ψe(x;X), (5)

Ĥ is the total Hamiltonian operator, and T̂n is the nuclear kinetic energy op-
erator (first term of equation (2)). Thus, we write Ψe(x,X) and Ve(X) to show
that different electronic wavefunctions and energies are obtained for different
nuclear configurations.

The potential energy surface defines the variation of the electronic energy,
Ve(X), with the nuclear geometry [4]. We must know that different solutions
of (4) will rise to different PES, so we are going to solve the system for the
ground state electronic configurations, which is the most probable solution at
low temperatures.

Finally, the appropriate Schrödinger equation for the nuclear wavefunction,
Ψn(X), is
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[T̂n + Ve(X)]Ψn(X) = ETOTALΨn(X). (6)

2.2 Inter-atomic interaction

In general, the way we have to express an inter-atomic potential is

U(−→r1 ,−→r2 , ...,−→rN ) =

N∑
i

U1(−→ri )+

N∑
i

N∑
j<i

U2(−→ri ,−→rj )+

N∑
i

N∑
j<i

∑
k<j

U3(−→ri ,−→rj ,−→rk)+...,

(7)
where U1 is the external potential that affects the i-th particle. U2 is the

potential existing between two particles. We impose the condition j < i to
not count the same interaction twice. Lastly, U3 is the potential referred to
a third particle that affects the pair potential. In general, U3 and therefore
the successive terms are smaller than the pair potential. Hence, we are going
to neglect the external potential and the third particle potential in order to
simplify our model. Thus, the inter-atomic interaction in our system is solely
pair potential.

2.3 Description of Lennard-Jones potential

Lennard-Jones potential is a mathematical model which describes the potential
energy of interaction between two non-bonding atoms or molecules based on
their distance of separation. It was proposed by John Edward Lennard-Jones
in 1924. This potential may not be a particularly accurate model for the inter-
action between rare gas atoms, but it has proved its worth in many other ways.
Moreover, LJ clusters provide a useful testing ground for global optimization
algorithms, partly because it is easily programmable.

It is remarkable that many of the global minimum structures have been
observed experimentally for clusters of atoms and molecules covering a wide
range of the periodic table [4].

This potential is given by (1) and consists of two terms: one of short-range
repulsion (k/r12) and the other long-range attraction term (−k/r6). The repul-
sive term is stronger compared to the attractive term, which tends to zero as the
particles move away. The potential has a unique minimum (for two particles),
which in reduced units (ε = σ = 1) is equal to -1 at a distance 21/6. In Figure
1 we can see the two particle Lennard-Jones potential.

Moreover, the repulsive term does not have a physical origin, its origin is
purely mathematical that was adjusted to the experimental data. Instead, the
attractive term has its origin in the quantum mechanics perturbation theory.
To better understand the attractive term as a perturbation we can consider
two atoms or molecules which interact. The electrons of each molecule will
induce a dipole in the other one, this will rise to a dipole-dipole interaction.
Applying perturbation theory to the ground state energy including both atoms
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or molecules the first order correction will be zero and the second order will give
us:

∆(2)
n = −3

2

α1α2

(4πε0)2r6
I1I2
I1 + I2

, (8)

where I is the ionization energy for each atom, and α the polarizability.
Hence, the final result has the form −k/r6 which corresponds to the attractive
term of Lennard-Jones potential [5].

Figure 1: Representation of LJ potential in a two-particle system. Reduced
units used (ε = σ = 1)

.

2.4 Summary in Spanish

En primer lugar, para hacer un modelo que se ajuste a la realidad debemos
escoger un potencial que concuerde con los datos experimentales. Un buen
candidato es el potencial de Lennard-Jones el cual es un modelo matemático
para un par de átomos neutros, gases nobles en nuestro caso. Este potencial
consiste en un término repulsivo a corto alcance que no tiene origen f́ısico, y un
término atractivo a largo alcance cuyo origen está en la teoŕıa de pertubaciones
de la mecánica cuántica.

Además, un factor importante a tener en cuenta es el potencial electrónico
creado por los electrones de cada átomo. Para ello utilizaremos la aproximación
de Born-Oppenheimer de tal forma que podremos despreciar la interacción
electrón-núcleo debido a la gran diferencia de masas entre ellos.

También hablaremos sobre la interacción interatómica, esto es, el potencial
que usaremos vendrá dado únicamente por la interacción entre dos part́ıcula (1)
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sin tener en cuenta un potencial exterior o cómo una tercera part́ıcula afecta al
potencial entre ellas, ya que estas contrubiciones.

3 Global Optimization Methods

In this section, three different global optimization methods will be introduced:
Simulated Annealing (SA), Genetic Algorithm (GA) and Basin-Hopping (BH)
algorithm. The advantages and disadvantages of these methods will be shown.
The latter will be described in greater depth in the next chapter since it is the
one used in this work.

3.1 Simulated Annealing (SA)

Some optimization methods are based on natural processes. This is the case of
Simulated Annealing where the system tries to simulate a dynamic system in
which it can escape from the basins (local minima) in order to get trapped in
ever lower minima. It was originally proposed for spin-glasses and combinatorial
problems, but it was quickly applied to cluster science. This method tries to
generate a random walk on the potential energy surface and uses Boltzmann
probability to choose between two energies, E1 and E2, to check if said energy
or position over the PES is accepted or not. If E1 > E2 the second energy
is accepted, if E2 > E1 is where the Boltzmann probability takes place and
when this occurs it is compared with δ, which is a randomly distributed number
between 0 and 1

e−(E2−E1)/kbT > δ. (9)

This condition will make possible for the algorithm not to get stuck in a
single minimum. The random walk is generated by the Metropolis algorithm.
New states can be generated in various ways, one way is to perturb an atom or
some of them according to some distribution of the step length and directions
[2].

Typically the SA simulation starts at a high enough temperature so that
the system is in a liquid state, and then slowly decreases logarithmically. Thus,
when the temperature decreases and the system ”solidifies” it is easier for it to
be trapped in a local minimum.

The main drawback of SA is that as the temperature decreases and the
system ”solidifies” it is more likely that it will get stuck in a local minimum and
will not find the global solution. One way to avoid this problem is decreasing
the cooling rate.

3.2 Genetic Algorithm (GA)

This type of algorithms, like SA are based on natural processes. In this case,
GAs try to emulate natural selection processes. Genetic algorithms (GA) were
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first theorized in the early 1950s with the work of Nils Aall Barricelli at the In-
stitute for Advanced Study in Princeton, New Jersey. His work went unnoticed
until John Holland’s work gained popularity by publishing articles and finally a
book [6] that laid the foundations for this type of algorithm in the early 1970s.

The GA is a search technique based on the principle of natural evolution.
It uses operators that are analogues of the evolutionary processes of mating,
mutation and natural selection to explore multi-dimensional parameter process
[3].

This type of algorithm can be used when the variables to be optimized can
be put in the form of a string, this string is called a chromosome. Each string
is made up of genes that contain the variables to be optimized (alleles).

The initial population (first string or chromosome) is chosen randomly, some-
times can also be generated with previous knowledge about the system but we
have to be careful not to over-condition so it is possible to obtain the optimized
result correctly.

A very important concept of GA is fitness. It is a way of measuring the qual-
ity of test solutions or the initial population. A high fitness value corresponds
to a high value of the function in the case of maximizing and to a low value of
the function in the case of minimizing. In case of knowing the upper and lower
values of the function, an absolute fitness can be established. Otherwise, we can
use a dynamic fitness scale, where the fitness value of each individual is scaled
according to the fitness of the current population.

Another important concept is selection. The two most commonly used meth-
ods to see which individuals in the population move to the next are the ’tour-
nament selection’ and ’roulette wheel’. The first method chooses some strings
at random, the two with the highest fitness become the parents of the following
population. The second method, a string is chosen randomly and it is com-
pared with a random number between 0 and 1 if the fitness value is greater
than that random number is chosen for the subsequent crossover. Otherwise,
another string is chosen and the process is repeated.

The offspring will be the result of two (in some cases more than two) strings
of greater fitness. There are different ways to produce offspring. Furthermore,
another concept of importance is the mutation that brings genetic diversity to
the population at random.

Thus, GA is a powerful algorithm that reduces computational time and the
number of iterations or minimizations that it would normally take days for a
random search algorithm to find the optimized solution.

3.3 Basin-Hopping Algorithm (BH)

The basin-hopping algorithm was first presented by D.J. Wales and J.P.K. Doye
in 1997. This method is based on the PES transformation which does not
change the global minimum, nor the energies of local minima [1]. It was the
first unbiased search method to find the global minima up to 110 atoms for
Lennard-Jones potential including LJ75 and LJ104 clusters, which are based on
nonicosahedral structures.
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3.4 Summary in Spanish

Los métodos de optimización son de gran importancia en muchas ramas de
la ciencia. En esta sección presentamos los tres algoritmos más usados para
encontrar el mı́nimo de enerǵıa global de un sistema. En estos sistemas el
número de mı́nimos locales de la PES crece exponencialmente.

Uno de los algoritmos más interesantes es el algoritmo genético (GA) el
cual se basa en la selección natural usando parámetros como la mutación, los
parientes mejor preparados, etc. Otro algoritmo basado en un proceso natural
es el simulated annealing (SA) o enfriamiento simulado, dicho método utiliza
un decrecimiento paulatino de la temperatura del sistema estudiado, conforme
la temperatura disminuye el sistema se queda atrapado en los mı́nimos locales
de la superficie de enrǵıa potencial. Además, mientras baja la temperatura es
más probable encontrar la solución global del sistema. El inconveniente de éste
método es que conforme se enfŕıa es fácil que se quede atrapado en un mı́nimo
local y no acabe encontrando la solución global. Por último, el método utilizado
en este trabajo es el basin-hopping (BH) el cual tiene un cierto parecido con
el SA pero trabaja a una temperatura fija. Consiste en una transformación de
la superficie de enerǵıa potencial (PES), que no modifica el mı́nimo global y
suaviza la PES.

4 Basin-hopping algorithm

In the present work, basin-hopping algorithm is used for up to 55 noble gas atoms
(neutral atoms) to obtain global minimum and so the most probable structure
at low temperatures. To simplify the problem, classical Lennard-Jones potential
(1) in reduced units have been used as mentioned above (ε = σ = 1).

4.1 Method followed

First, we generate randomly N particles within a sphere of radius 5, so we have
an unbiased search. After that, a minimization routine is applied to the system

Ṽ (X) = min(V (X)). (10)

In (10), Ṽ is the transformed potential starting from the the 3N - dimensional
vector of the nuclei X. So, (10) is applied to every new configuration.

After each minimization we apply a perturbation to each of the 3N coordi-
nates. We must ensure that this perturbation is not large enough so that no
particles remain outside the sphere, nor small enough that it remains in the
same local minimum. The perturbation used in this work, in reduced units, is
given by

Xi+1 = Xi + 2δ(ran− 0.5), (11)

where δ is the maximum displacement of the particles and ran is a uniformly
distributed random number between 0 and 1. Thus, the new state and the state
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before the perturbation are compared according to Boltzmann probability (9)
similarly done in simulated annealing. This will allow us, as mentioned above,
even though the global minimum has been found to continue traveling the PES
due to its stochastic character.

We repeat the process until the number of steps (n) set at a fixed temperature
(T ) is reached. In each step, a minimization is performed from the perturbation
on each of the coordinates. When the total number of steps is performed we are
left with the minimum energy obtained from all the iterations. To check each
of the results, The Cambridge Energy Data Landscape has been used. [7]

These types of algorithms usually take a long time to complete since they
must make many calls to the same function in order to optimize it. In order
to make the program faster, we must optimize the code as much as possible,
such as eliminating unnecessary loops and conditionals, reserving memory for
the results instead of creating memory as the program progresses, etc. But
there are physical parameters that also influence the speed of execution of the
program such as temperature (T ).

The best way to choose the correct temperature is to run the algorithm for
the same cluster at different temperatures and see how many steps it has taken
to find the global minimum. The temperature was set to 0.8 for all clusters,
which is probably not the most optimal for each cluster.

Another very important point to decrease the computational time is the
minimization routine used. In this work, the routine L-BFGS-B has been used,
which is a quasi-Newton method which approximates Broyden – Fletcher –
Goldfarb – Shanno algorithm using a limited amount of computer memory.
This algorithm is used for constrained systems where upper and lower bounds
are known. Also uses a scalar and differentiable function f . To make this
method even faster, we must provide the analytical derivative of this function,
otherwise it calculates the derivative numerically, considerably increasing the
computational time.

4.2 Energies obtained

The energies for the first clusters (N = 2,3,4) can be found trivially by −N(N−
1)/2 since all the particles can be placed at the minimum equilibrium distance
that is -1 in reduced units [2]. From N = 5 onwards the energies are strictly
greater than the trivial solution.

Our method, based on the basin-hopping algorithm, was able to find the
global minima for all clusters up to N = 55 in the first run with 5000 steps. The
only exception was LJ38 which was found in the second run. In the first run for
LJ38 cluster was done with 10000 steps and with a maximum displacement of
the particles (δ) equal 0.6, which led us to the solution of an icosahedral local
minimum while the second run, with δ equal to 0.4 and 20000 steps led us to
the nonicosahedral global minimum. This structures will be discussed in the
next section.

As mentioned above, what is going to allow us to distinguish between a
useful and an invalid method is the ability to find the global minima for LJ38
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Figure 2: Energy per particle. Red dots correspond to complete Mackay icosa-
hedra.

and LJ75. The first one has been found satisfactorily.
In Figure (2) a representation of the energy per particle up to N = 55 is

shown, where we can see how some points get out of the trend line and which
correspond to especially stable structures compared to neighboring clusters.

4.3 Summary in Spanish

En esta sección se explica el funcionamiento del método usado (BH) y todos los
pasos seguidos durante el proceso. Se explica la generación aleatoria de los N
átomos, la perturbación inducida al sistema tras la minimización, y también,
la rutina de minimización usada en el proceso. Además, se exponen algunas
formas para disminuir el tiempo computacional y ajustar parámetros f́ısicos
como la temperatura (T). Por último, se expone un resumen de las enerǵıas
obtenidas hasta el N = 55.

5 Results and discussions

In this section the most predominant structures and their stability in the range
of N = 10 - 110 will be discussed. Moreover, there are some interesting cases
that do not follow the same pattern as the other clusters. Some examples will
be shown with images of the most interesting results studied in the work.

10



Figure 3: Regular convex icosahedra

5.1 Stability

In order to know the stability of the studied clusters, a well-known parameter
is the second-order energy difference. This is given by

∆2E(N) = E(N + 1) + E(N − 1)− 2E(N). (12)

In the Figure (4) we can see this parameter for N up to 55 atoms. The
maxima of the graph are the clusters that are especially stable. Moreover, the
two red dots in Figure (4) and Figure(2) represent the most stable clusters which
correspond with a complete Mackay icosahedra geometry as we will see in the
next section. They can give us a notion about the ”magic numbers” which are
observed in mass spectrum for neutral atoms like Argon clusters for example.

5.2 Icosahedral structures

As mentioned in the previous section, cases N = 2,3,4 are trivial solutions and
their structure corresponds respectively to a dimer, equilateral triangle, and
regular tetrahedron, with all inter-atomic distances equal to 21/6 [2]. It should
also be noted that in the range of N = 10 - 110 the most predominant structure
is the Mackay icosahedron [1]. Icosahedron is a polyhedron with 20 faces, 30
edges and 12 vertices (Figure 3).

Many different clusters can be described as layers of close-packed atoms
stacked on top of each other. The two most commonly encountered cubic close-
packing schemes are the hexagonal-close-packed (hcp) and face-centered-cubic
(fcc) [4]. In Figure 5 we can see Mackay and anti-Mackay sequences which
correspond to fcc and hcp respectively.

A complete Mackay icosahedron is given by the formula

1

3
(10n3 + 15n2 + 11n+ 3), (13)

where n is a natural number [4]. Hence, complete Mackay icosahedron are
given for the sequence N = 13,55,147,309.... These clusters have greater stability
than the rest of the structures studied as we can see in Figure (4). The most
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Figure 4: Second-order energy difference for up to 55 particles. Red dots corre-
spond to complete Mackay icosahedra. Rest of the dots correspond to especially
stable clusters.

stable clusters studied are those who form a complete Mackay icosahedra and
they do not present big difficulty to find the global minimum.

As an example, the 13 atoms cluster has 1 328 isomers from which the lowest
is the icosahedron with an energy of -44.327 (Figure (6)). The first excited state
has an energy of -41.472 and it is obtained from icosahedron promoting one atom
to the next shell and relaxing the resulting vacancy. Therefore, the density of
states for the 13 atom cluster has a large ”gap” that separates the icosahedron
from the rest of the local minima [2]. This gap gives us the reason of its stability.

Something similar occurs with the N = 55, the global minimum, figure (7),
is at -279.248 and the next local minimum is at an energy of -276.604 . As
we can notice, there is a ”gap” between these minima which will lead to great
stability for said cluster. Both minima correspond to a Mackay icosahedron,
but the second has an excited atom which is promoted to the next shell.

There are some clusters that even if they may not be the most stable struc-
tures their stability is interesting (Figure 4) and their structure will be shown.
These clusters correspond to N = 19, 23, 26, 46 and 49. All figures are exposed
in Appendix A.
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Figure 5: Mackay and anti-Mackay cubic close-packing schemes.[4]

Figure 6: Geometry given by the global minimum for N = 13. Image represented
by the program Avogadro. [8]

5.3 Nonicosahedral structures

There are also structures in which the shape is nonicosahedral. These structures
are the perfect test to see if the optimization method used is effective or not.
The first example is found in LJ38 cluster, where the structure that is formed
in the global minimum is a truncated octahedron (hcp) with a over-layer that
is unstable, as we can see in Figure (8). The second lowest minimum gives rise
to an icosahedra geometry that we can see in Figure (9).

5.4 Summary in Spanish

En esta sección trataremos las distintas estructuras formadas en los mı́nimos
globales de los diferentes agregados. La gran mayoŕıa de estos están basados en
el icosahedro y dichas geometŕıas son mucho más fáciles de encontrar que las
que no lo están.

Los casos en los que la geometŕıa es no icosahedra son casos particulares
muy útiles para poner a prueba el método utilizado, pues dichos estructuras son
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Figure 7: Geometry given by the global minimum for N = 55. Image represented
by the program Avogadro. [8]

Figure 8: Geometry given by the global minimum for N = 38. Image represented
by the program Avogadro. [8]

muy dif́ıciles de encontrar. También trataremos de justificar la estabilidad de
cada agregado con la diferencia de enerǵıa a segundo orden.

6 Conclusion

The method used in the present work based on the basin-hopping algorithm has
been able to find the global minima for each cluster up to N = 55. Thus, we can
say the result obtained were good but there several things that could improve
our method.

Surely the most effective method to improve our program would be to adjust
some parameters like temperature and the maximum displacement of the atoms,
since they are very important for the speed of the program. This could be
carried out by introducing an acceptance parameter that every n (100 steps, for
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Figure 9: Geometry given by the second lowest minimum for N = 38. Image
represented by the program Avogadro. [8]

example) steps multiplies by a factor that lowers or raises the temperature, the
same could be done with the maximum displacement.

We might think that a hybrid method, such as BH combined with SA could
be a valid model, but it has been shown that this method has problems with
some clusters with few atoms.

Another way to improve the algorithm would be to implement it jointly with
the Genetic Algorithm, which is very fast and useful method if implemented cor-
rectly. As proposed by R. Huang et al. recently ”Subsequently, the performance
evaluation shows that the introduction of GA markedly improves the convergent
speed of the BHGA (Basin Hopping Genetic Algorithm) and the possibility for
finding the global minima on the PES in comparison with the standard BH
method” [9]. It is a BH based method where when the minimization routine
at any step is done is where the GA makes the difference choosing between the
fittest ”parents”.

The field of global optimization of complex systems is a field of great interest
and in continuous development, as it allows us to find solutions to problems of
many degrees of freedom. The goal is to create algorithms as fast as natural
processes such as protein folding. Hence, Lennard-Jones clusters are a very
effective way to test these methods due to their simplicity to be programmed
and the complexity of some clusters such as LJ38 or LJ75.

6.1 Summary in Spanish

El método de optimización usado en este trabajo ha sido capaz de encontrar los
mı́nimos globales de todos los agregados hasta el N = 55. Por tanto, podemos
concluir que el trabajo se ha realizado de forma satisfactoria pues ha sido capaz
de reporoducir los datos del Cambridge Energy Landscape Database [7], aunque
hay varios puntos en los que se puede mejorar.

La formas más inmediata seŕıa implementar un paso y una temperatura
variables. Otra forma alternativa, pero probablemente más eficaz, es la de
hacer un programa que mezcle el GA con BH, como se ha propuesto en trabajos
recientes.
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Por último, cabe destacar que este tipo de métodos son muy útiles y son una
rama abierta sobre la que investigar pues son capaces de resolver problemas de
muchos grados de libertad. Por tanto, los agregados de Lennard-Jones son una
primera prueba muy efectiva para ver la utilidad de dichos métodos.
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A Icosahedral structures

Figure 10: Geometry given by the global minimum for N = 19. Image repre-
sented by the program Avogadro. [8]

Figure 11: Geometry given by the global minimum for N = 23. Image repre-
sented by the program Avogadro. [8]
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Figure 12: Geometry given by the global minimum for N = 26. Image repre-
sented by the program Avogadro. [8]

Figure 13: Geometry given by the global minimum for N = 46. Image repre-
sented by the program Avogadro. [8]

Figure 14: Geometry given by the global minimum for N = 49. Image repre-
sented by the program Avogadro. [8]
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