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Abstract

The formulation of quantum work statistics as a dynamical problem through the

Loschmidt echo is at the heart of this work. An introduction to each of these

concepts is presented together with the notion of information scrambling, which

extends the scope of this work to areas such as quantum chaos or even black hole

physics. Using the paper of A. Chenu et al. [1] as the guidelines, we first show

that the work statistics associated with an arbitrary driving protocol of an iso-

lated quantum system in a generic initial state is equivalent to the Loschmidt echo

dynamics of a purified density matrix in an enlarged Hilbert space. When the ini-

tial state is thermal, the purification leads to a thermofield double state, which is

used to describe eternal black holes through the AdS/CFT correspondence, often

argued to be the fastest information scramblers. The field of quantum chaotic

systems is shown to emerge naturally from the previous content, and a full de-

scription of it in terms of Random Matrix Theory is also presented. Numerical and

analytical results are finally obtained for the quantities introduced after imposing

time-reversal symmetry in our problem, hence selecting the Gaussian Orthogonal

Ensemble as the framework within we shall take our averages.
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1. Introduction

Abstract

El art́ıculo que se analiza en este proyecto [1] es altamente interdisciplinar: conecta

áreas de la f́ısica desde la termodinámica cuántica hasta el f́ısica de agujeros negros.

Esta introducción sirve como manual de cómo leer el trabajo, explicando el contenido de

las secciones, objetivos y estructura interna del mismo. La contextualización del trabajo

se realiza de manera continua en los siguientes caṕıtulos para facilitar la lectura.

The attempt to unify the different theories that currently describe our world has

lead to a very interdisciplinary scenario in modern physics. The extension of

standard thermodynamics and non-equilibrium statistical physics to ensembles of

sizes well below the thermodynamic limit, in non-equilibrium situations and with

the full inclusion of quantum effects [2] resulted in the emerging research field of

quantum thermodynamics. The increasing interest in time reversibility, a classical

thermodynamic problem, and the description of chaotic systems in the quantum

domain has motivated the development of quantum chaos, giving rise to new tools

to assess the sensibility of quantum evolution to perturbations as the Loschmidt

echo or the out-of-time order correlators (OTOCs). The latter are widely used

as a way to measure the scrambling of information in quantum systems, a con-

cept that originates within the quantum information framework but whose late

interest makes it a necessary background for quantum chaos analysis and, most

surprisingly, black hole physics. In somewhat the same direction, the AdS/CFT

correspondence is possibly the latest and most ambitiously interdisciplinary pro-

posal, which theorises that a direct connection exists between quantum gravity

theories (that uses Anti-de-Sitter spaces) and quantum field theories (or its exten-

sion, Conformal Field Theories). All the previous areas of physics are condensed in

the reviewed paper [1], which establishes, in particular, firm connections between

quantum work statistics, Loschmidt echo and information scrambling.

Quantum work statistics arises from the definition of quantum work as a stochastic

variable, making it necessary a description in terms of a work probability density

1



Introduction 2

function. In section §2.1 it is applied to the case of an isolated quantum system

that is driven out of equilibrium, allowing a discussion on the possibility of finding

quantum analogs to the well-established fluctuation relations by the end of the

section. The main result concerning quantum work statistics is equation (2.11),

which expresses the work characteristic function as a two-time quantum correlation

function. It is also the starting point to establish the first important relation of

the work. Note that we take the Boltzmann and reduced Planck constants to be

equal to unity (~ = 1, kB = 1) throughout the text.

Time reversibility is closely tied to thermodynamics, and when studied in the

quantum domain, the Loschmidt echo arises as a natural tool to assess it. More

specifically, it measures the extent to which quantum evolution can be reversed

upon an imperfect time-reversal operation [1]. Section §2.2 introduces both his-

torically and mathematically this quantity, which can be identified after some

calculations with the work characteristic function of the dynamics of the previous

part as expressed in equation (2.23). It is the major result of the section.

Information scrambling is a concept that appears in the context of thermalisa-

tion of quantum many body systems, and accounts for the process of hiding and

spreading the initial local information of these systems. As stated in section §2.3,

a rigorous mathematical formalism of this quantity is deprecated in favour of a

more intuitive, heuristic presentation. Still, its relation with the Loschmidt echo

is summarised in equation (2.27). The end of the section introduces the ther-

mofield double state, which connects the work to black hole physics through the

AdS/CFT correspondence. Relation (2.30) can be seen as the main connection

between quantum work statistics, Loschmidt echo and information scrambling.

Quantum chaos is finally put into play in chapter §3 after being implicitly around

throughout the whole text. In section §3.1 it is first generally defined from a

quantum system whose underlying equations of motion are so complicated that

it is meaningless to treat it in any other way than statistically. A more precise

definition in terms of random matrix theory is then given, presenting the analytical

framework for the specific case of a system with time-reversal symmetry: the

Gaussian Orthogonal Ensemble. Bringing quantum chaotic systems is in fact a way

of particularising the system that is employed in the first chapter: Hamiltonians

can be extracted from the previous ensemble, and results can be finally obtained in

section §3.2. The main results of this section are summarised in the figures and the

discussions that surround them. Particularly of relevance is the behaviour of the
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Loschmidt echo evolution, that exhibits features common to scrambling dynamics

and hence ratifies its ability to diagnose chaos.

1.1 Motivation and objectives

Approaching chaos was the original motivation of this work, which combined with

a profound interest in the quantum world lead us to the reading and revision of

the work of A. Chenu et al. [1]. The level of the concepts that are employed in it

are, however, quite high for an undergraduate student to understand it in a first

read. The main objective of this work is then to present an educated review of

the reference paper [1], to make its reading possible for a student in our situation.

This necessarily requires the following steps:

• To introduce and contextualise the main concepts of the paper, quantum

work statistics, Loschmidt echo and information scrambling, together with

the notion of chaos and random matrix theory.

• Derive the relations that allow us to connect the previous concepts, writing

out the full mathematical derivations to bring transparency in the results.

• Reproduce the numerical results that are found for chaotic systems in the

paper. As a way of contributing to the referenced work and to broaden

up the analysis, another objective is to include an analytical framework to

the discussion. This is in fact innovative: analytical results using Gaussian

Unitary Ensemble have been obtained for comparison with numerical results,

but no reference on using the Gaussian Orthogonal Ensemble has been found.

It should be noted that the procedure we use for assessing the paper is to read and

analyse it in equal measure and in a very progressive way, breaking it apart and

focusing on the material that appears along the way. A deep read is then carried

out so that every concept or even word that is read sounds meaningful, precise and

well-defined and can be put in context for a complete understanding. This in fact

defines the inner structure of our work: an extensive introduction that condenses

all the theoretical material is substituted by an effort in continuously presenting

historical and critical contextualisation on each chapter, defining new tools on the

fly and including brief explanatory sections and proofs when needed. This way

we try to prioritise a light, self-consistent read over an excessively fragmented

presentation of the work.



2. Paper review and analysis

Abstract

Comenzamos presentando el sistema hamiltoniano que se va a tratar y el proceso

que se quiere estudiar en él. A continuación, se introduce la definición de trabajo

cuántico y se describe el proceso de dos medidas proyectivas de enerǵıa en el que se

apoya, sustituyendo seguidamente la descripción del mismo en términos de la función

de densidad de probabilidad por la de su función caracteŕıstica. Las expresiones que se

derivan a partir de aqúı son empleadas en las siguientes secciones para establecer las

relaciones buscadas con el Loschmidt echo y el information scrambling, conceptos que

son presentados igualmente.

We start out by giving a description of the problem, characterising the system that

is studied and the process it is subjected to. Some of the formalism that is used

throughout the work is also summarised; note that we mostly use the notation of

the reference paper [1], although external concepts and definitions are brought in

order to explain the derivations that are omitted in it.

Let us consider a quantum system in a Hilbert spaceH whose dynamics is governed

by a time-dependent Hamiltonian Ĥs. Otherwise isolated, assume that we are

able to evolve it or drive it according to a prescribed protocol in the time s by

switching a parameter of the Hamiltonian at a finite rate from s = 0 to s = τ ,

leading to the evolution Ĥ0 → Ĥτ . It is convenient for our purposes to decompose

the Hamiltonian using its eigenstates and eigenvalues —that we assume are non-

degenerate— as Ĥs =
∑

nE
s
n |ns〉〈ns|, so that

• H0 =
∑

nE
0
n |n0〉〈n0|, where (E0

n, |n0〉) is the nth eigenvalue-eigenstate pair

of the initial Hamiltonian

• Hτ =
∑

mE
τ
m |mτ 〉〈mτ |, where (Eτ

m, |mτ 〉) is the mth eigenvalue-eigenstate

pair of the final Hamiltonian

4



Paper review and analysis 5

Consider that the system is prepared in the initial state1 given by the density

matrix ρ̂ (right before the parameter is switched at s=0), and that the operator

that dictates its time-evolution from s = 0 to s = τ obeys the Schrödinger equation

and can thus be written via a Dyson series expansion [3] [4] by

Û(τ) = T exp

{
−i
∫ τ

0

Ĥsds

}
, (2.1)

where T is the time-ordering operator, which protects the exponential function

from the possible non-commutativity between the final and initial Hamiltonians.

This expression also includes the case of instantaneous processes or quenches 2,

for which τ → 0+ and hence Û(τ) = 1; even in this case, the Hamiltonian changes

and so we will maintain the notation Hτ for the final Hamiltonian in order to

distinguish it from the initial one H0.

A very natural observation to do within the context of quantum thermodynamics

(as noticed in [7]) is that the prescribed protocol resembles a standard thermo-

dynamic transformation: a classical external force that acts on the parameters or

variables of an isolated system and makes it evolve from an initial configuration to

a final, different one. It is clear that we are not dealing with quasistatic processes

and our protocol takes the system away from equilibrium, being the sudden quench

the extreme case, but some questions arise: how can we define a quantum work for

this process? How does it relate to its classical counterpart? Do the fluctuation

relations (to be introduced) hold in this quantum regime? These questions are

solved in the following sections.

2.1 Quantum work statistics

Since the system under study is isolated (there is no ”heat” transfer during the

process, even though the initial ρ̂ may be previously prepared in a thermal state by

using a heat bath), it is natural for us to define the difference in energy between

the final and the initial states as the work performed on the system during the

1We may be using interchangeably the word state for a vector of the form |Ψ〉 ∈ H and for
the density operator/matrix that describes the system itself, as widely used in the bibliography.

2The concept of quench already refers to a unitary evolution in time following ”the sudden
change of the parameters” [5], although it is sometimes written as sudden quench or instantaneous
quench as there are authors that prefer to extend its definition to account for slow changes in
the system parameters [6]. Quench dynamics is indeed a very active and broad field.
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prescribed protocol. Quantum mechanically, two projective energy measurements

need to be carried out, one at the initial time s = 0− using H0, before the external

driving starts, and another one at the final time s = τ with Hτ , so that the energy

outcomes give the work done as W = Eτ
m − E0

n.

This measuring protocol is typically known as the two-point measurement scheme

(TPM) [8] [9] and inherently defines work as a stochastic quantity due to the

probabilistic nature of quantum measures (pointing out an important difference

with respect to work and fluctuations in the classical regime, whose randomness

comes only from the statistical description of the initial ensemble). This statement

forces us to express work as a probability density function (PDF); to show the

construction of this distribution via this scheme we essentially follow the arguments

given by Kurchan [9] and Tasaki [10]:

1. Perform an energy measurement at time s = 0−, obtaining the outcome E0
n

with the probability p0
n =

〈
P̂ 0
n

〉
= Tr

{
P̂ 0
n ρ̂
}

= 〈n0|ρ̂|n0〉, where 〈...〉 denotes

the expected value in the correspondent state and Tr{...} the trace over the

Hilbert space H. The state after the measurement is then the eigenstate |n0〉
of the initial Hamiltonian H0.

2. Evolve the post-measurement state using the time-evolution operator of the

equation (2.1) so that at time s = τ the state becomes Û(τ) |n0〉.

3. Perform an energy measurement with Hτ at time s = τ that yields the result

Eτ
m. The probability of measuring this eigenvalue for the final Hamiltonian is

the transition probability pτm|n = | 〈mτ | Û(τ) |n0〉 |2. It is in fact a conditional

probability and can be read as the probability of measuring Eτ
m at time s = τ

given that we measured E0
n at time s = 0.

4. The energy difference or work W = Eτ
m − E0

n for this process is then ob-

tained with probability pm,n = p0
np

τ
m|n. If we average over all the possible

initial conditions and outcomes, we can write the discrete work probability

distribution by means of the Dirac delta function as

p(W ) :=
∑
n,m

p0
np

τ
m|nδ[W − (Eτ

m − E0
n)] . (2.2)
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2.1.1 Work characteristic function

The first connection that is pursued in the reference paper between quantum work

statistics and Loschmidt echo is established through the characteristic function of

work. It is defined as

χ(t, τ) ≡
〈
eitW

〉
(2.3)

=

∫ ∞
−∞

dWp(W )eitW (2.4)

which can be seen both as the classical average in probability theory or as a

Fourier transform of the distribution p(W ). Note that it contains full information

regarding the statistics of the random variable W , since the work probability

density can be easily recovered by undoing the transformation

p(W ) =
1

2π

∫ ∞
−∞

dtχ(t, τ)e−itW . (2.5)

Before introducing the Loschmidt echo in §2.2, we need to do some algebraic ma-

nipulation to the characteristic function: by expressing it as a quantum correlation

function, some fundamental properties of quantum work emerge and allow us to

connect it with other thermodynamic quantities, giving rise to the (quantum) fluc-

tuation theorems (although we do not go into the details of this relations). We

start by applying the definition of the δ-Dirac from p(W ) to the equation (2.4),

followed by using the explicit form of the probabilities p0
n and pτm|n:

χ(t, τ) =
∑
n,m

p0
np

τ
m|ne

it(Eτm−E0
n)

=
∑
n,m

p0
n 〈mτ | Û(τ) |n0〉〈n0| Û †(τ) |mτ 〉 eit(E

τ
m−E0

n)

=
∑
m

〈mτ | Û(τ)e−itĤ0

(∑
n

p0
n |n0〉〈n0|

)
Û †(τ)eitĤτ |mτ 〉

= Tr
{
Û(τ)e−itĤ0 ρ̂mixÛ

†(τ)eitĤτ
}

= Tr
{
Û †(τ)eitĤτ Û(τ)e−itĤ0 ρ̂mix

}
where the cyclic invariance of the trace has been used in the last equality. In the

derivation, we have also defined the quantity ρ̂mix =
∑

n p
0
n |n0〉〈n0| =

∑
n P̂

0
n ρ̂P̂

0
n ,
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as in the reference paper3; it represents the diagonal part of ρ̂ in the eigenbasis

of the initial Hamiltonian Ĥ0. This result allows us to express the characteristic

function as an average taken with respect to this new mixed state ρ̂mix

χ(t, τ) = Tr
{
Û †(τ)eitĤτ Û(τ)e−itĤ0 ρ̂mix

}
(2.6)

=
〈
Û †(τ)eitĤτ Û(τ)e−itĤ0

〉
mix

. (2.7)

Further manipulation can be carried out with the intent of simplifying the expres-

sion and putting together both Hamiltonians under the same exponential function,

so that there exists the possibility of expressing work as a Hermitian operator; the

latter will prove an impossible task under the definition of work given (see the

next subchapter for a full discussion on this topic). We proceed by defining an

effective Hamiltonian Ĥeff
τ = Û †(τ)Ĥτ Û(τ), which is the Hamiltonian Ĥτ in the

Heisenberg picture; since Ĥτ and Ĥeff
τ are related by a unitary transformation, we

can easily show that their spectrum is the same:

Ĥτ |mτ 〉 = Eτ
m |mτ 〉 ⇒ Û †(τ)Ĥτ Û(τ)Û †(τ) |mτ 〉 = Û †(τ)Eτ

m |mτ 〉 (2.8)

⇒ Ĥeff
τ

(
Û †(τ) |mτ 〉

)
= Eτ

m

(
Û †(τ) |mτ 〉

)
. (2.9)

Not only their spectrum is the same, but the time backward-evolved eigenstates{
Û †(τ) |mτ 〉

}
form a complete basis for H, so that we can use them for tracing

since the completeness relation 1 =
∑

m Û
†(τ) |mτ 〉〈mτ | Û(τ) holds. Applying it

to the equation (2.6), we have

χ(t, τ) =
∑
m

〈mτ | Û(τ)Û †(τ)eitĤτ Û(τ)e−itĤ0 ρ̂mixÛ
†(τ) |mτ 〉

=
∑
m

〈mτ | eitE
τ
mÛ(τ)e−itĤ0 ρ̂mixÛ

†(τ) |mτ 〉

=
∑
m

〈mτ | Û(τ)eitĤ
eff
τ e−itĤ0 ρ̂mixÛ

†(τ) |mτ 〉 .

3It is said [1] that the first projective energy measurement in the initial eigenbasis generally
leads to the (post-measurement) mixed state ρ̂mix, although this cannot be seen in a single real-
isation of the process (where the projector P̂ 0

n yields the intermediate pure state ρ̂n = |n0〉〈n0|).
If we wanted to view it as a post-measurement mixed state, it would be if we perform a mea-
surement but we do not record the results, the post-measurement state is given by ρ̂mix [11], but
it does not correspond to the measuring scheme of the process; ρ̂mix does appear though due to
the invasive nature of the first measurement, that actually alters the measured work itself (see
next section for further discussion)
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Analogously to the expressions (2.6) and (2.7), we can write the prior expression

in the simple form

χ(t, τ) = Tr
{
eitĤ

eff
τ e−itĤ0 ρ̂mix

}
(2.10)

=
〈
eitĤ

eff
τ e−itĤ0

〉
mix

. (2.11)

The fact that the expressions that we have found so far for the characteristic

function are given in terms of two-time quantum correlation functions and not

by the expectation value of a (single time) operator gives us hints to start the

following section.

2.1.2 Why not a work operator? A critical review

The apparent freedom of choice at the time of defining a quantum analog for work

has motivated controversy around which requirements it should meet and which

basic features it should be built upon. Some authors as Allahverdyan [12] [13]

have tried to define work as the average of a Hermitian operator, while most of

the latest research has advanced by using the TPM scheme, achieving results that

serve as strong arguments for this definition of work. The late debate seems to be

guided by the possibility of finding quantum analogs to the classical (work) fluc-

tuation theorems, although sometimes the lack of a clear differentiation between

the inclusive and exclusive perspectives in the definition of work has hindered the

progress in this sense. Revising these concepts seems hence a good starting point

for giving a consistent answer to the proposed question.

Let us consider that the time-dependent Hamiltonian of our process has the explicit

form Ĥs = Ĥ0 + X̂s, where X̂s is the external time-dependent perturbation that

we switch in order to perform the evolution Ĥ0 → Ĥτ . We define the exclusive

viewpoint as that which does not count the coupling to the external work-source

X̂s as internal energy; in the measuring scheme described, this means that the

second measurement is made with Ĥ0, so that the exclusive work is defined as4

W0 = E0
m − E0

n . (2.12)

4Notice that the time evolution of the system, Û(τ), remains unchanged since the process has
not been altered, only our definition of work.
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It is not hard to prove that the same relations found for W hold for W0 if we

change Ĥτ by Ĥ0 where needed. In the contrary, the inclusive viewpoint is the

one that does count the interaction term X̂(t) as part of the work. This is the

perspective adopted throughout this text and the most used in the bibliography.

These concepts do not only apply to the quantum regime: the classical definitions

of work are also formulated taking this into account [14]. In fact, it allows us

to split the main (classical) fluctuation theorems in two: the Bochkov-Kuzovlev

(BK) equality and BK work fluctuation relation, that use an exclusive approach

to work; and the Jarzynski equality and Crooks fluctuation theorem, that adopt

the inclusive viewpoint. With this in mind, we claim that the only definition of

quantum work that is able to reproduce so far the fluctuation theorems in the

quantum regime is the one that employs the two projective energy measurement

(TPM) scheme (following the work of Campisi [15], who carries out a complete

revision of the evolution of the concept and definition of quantum work, and also

in-depth derivations of the formulae that are shown in the table 2.1, which are

beyond the scope of this work).

Exclusive perspective (W0) Inclusive perspective (W )〈
e−βW0

〉
= 1

〈
e−βW

〉
= e−β∆F

p0F (W0)
p0R(−W0)

= eβW0 pF (W )
pR(−W ) = eβ(W−∆F )

Table 2.1: Work fluctuation theorems presented symmetrically from the exclusive
and inclusive perspectives. The exclusive perspective column shows the BK equality and
the BK fluctuation relation in comparison to the inclusive pespective one, showing the
Jarzkynski equality and Crooks fluctuation theorem. These formulae can be understood
both in classical and quantum regimes, with the correct definition and interpretation of
each term. The subscripts F and R and superscript 0 on the probability densities p0F , p

0
R

denote the forward and reverse processes and the exclusive perspective, respectively;
∆F is the free-energy difference and β = 1/kBT . Further conditions are required for
proving them as microreversibility and assuming an initial canonical distribution [15].

With this strong back-up for our definition of work, we can now bring back the

discussion over whether work can be expressed as a Hermitian operator or not.

The alternative definition that is usually proposed [12][13] is (we write here its

analogous definition to the problem described in our case, maintaining hence the

notation)

W̃ = Tr
{

(Ĥeff
τ − Ĥ0)ρ̂

}
=
〈
Ĥeff
τ − Ĥ0

〉
(2.13)

which seems consistent with the classical definition of work as the average energy

acquired by the system from its interaction with the work source. Can we relate
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this definition to the one we have? Are they equivalent? First thing to notice

is that W = Eτ
m − E0

n gives the work for a single realisation (repetition) of the

process; if we average in the classical sense5, we find that

〈W 〉 =
∑
n,m

p0
np

τ
m|n(Eτ

m − E0
n)

=
∑
n,m

p0
n 〈mτ | Û(τ) |n0〉〈n0| Û †(τ) |mτ 〉 (Eτ

m − E0
n)

=
∑
m

〈mτ | Ĥτ Û(τ)ρ̂mixÛ
†(τ)− Û(τ)ρ̂mixĤ0Û

†(τ) |mτ 〉

= Tr
{
Ĥτ Û(τ)ρ̂mixÛ

†(τ)
}
− Tr

{
ρ̂mixĤ0

}
= Tr

{
(Ĥeff

τ − Ĥ0)ρ̂mix

}
=
〈
Ĥeff
τ − Ĥ0

〉
mix

(2.14)

where similar arguments employed in the previous derivations have been used. As

we can see, Eqs. (2.13) and (2.14) differ from one another only by the state with

respect to which they are averaged. The latter only reduces to the former if the

condition
[
ρ̂, Ĥ0

]
= 0 holds, so that ρ̂mix = ρ̂; from a physical perspective, this

condition implies that the first measurement is not invasive in the sense that it does

not alter the initial state, i.e., it leaves the system and work untouched. In classical

mechanics, work is always untouched (the interaction between the system and the

measurement device can be made arbitrarily weak without limiting the precision

of the outcome), which could be seen as supporting eq. (2.13). Nevertheless, this

definition of work as an already averaged quantity of a Hermitian operator does

not allow one to determine fluctuations in a meaningful way and disregards the

inherent process dependence of work [16]; indeed, it fails to reproduce the classic

fluctuation theorems, leading to the erroneous conclusion that there is no direct

analog of the classical BK (and Jarzynski) equality in the quantum domain [12].

We can conclude hence that:

1. Work is not an observable [17]. If we had a Hermitian operator Ω̂ rep-

resenting work, then its eigenvalue spectrum should be composed of the

possible values that work can take, with orthogonal eigenstates that spawn

the Hilbert space H; from the definition of work as the random variable

W = Eτ
m − E0

n, it follows that the number of possible values is typically

5Special caution must be taken at the time of viewing the first and the last angular brackets
〈...〉 that appear in the derivation: the first is to be understood as the classical average of the
random variable W, whereas the last one is a quantum expectation value. In any way W can be
viewed as a work operator.
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larger than the dimension of H and hence Ω̂ cannot exist. Consequently,

work cannot be determined in a single projective measurement (although

it can be understood in terms of a generalised measurement scheme using

POVMs [18] at a single time) except for the odd case of commuting Hamil-

tonians
[
Ĥs, Ĥs′

]
= 0 for all s, s′ ∈ [0, τ ] [16]. This does not imply in any

way that work is not measurable; it does implies that:

2. Work characterises a process, not a state. The fact that the measurement

scheme alters its average (see discussion on eq. (2.14)) should not be taken

as a negative critic, but rather point us that work, as in thermodynamics

(where it is not a state function), is not an instantaneous state of the system

but rather a quantity characterising a process. Indeed, the TPM changes the

configuration of the system, so when we first described the protocol (prior

to §2.1) and asked ourselves about the work performed on the system, we

maybe should have implemented the measuring scheme in the description

itself. Even though work and free-energy differences are process dependent

and are altered by the measurements [19], a strong result shows that the

(quantum) fluctuation theorems are not affected by them [20].
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2.2 Loschmidt echo

As it was briefly stated in the previous section, together with the initial canoni-

cal distribution, reversibility of the microscopic equations of motion is one of the

fundamental principles from which the fluctuation theorems can be derived (see

reference [15]). Nevertheless, these relations reveal a clear asymmetry between

the forward and reverse processes, showing that time direction chooses energy

consuming processes over energy releasing ones with an exponential ratio; this

time-reversal symmetry breaking or arrow of time, which is ultimately a conse-

quence of the principle of causality [21], is the responsible of the existence of

irreversible macroscopic behaviour. How to reconcile these two opposite premises

has actually been one of the central issues in statistical mechanics for more than

a century, when Josef Loschmidt questioned Boltzmann’s approach to his H the-

orem, apparently just based on collisions and (time-reversal) dynamics: “if one

were to reverse all the velocities of the particles, then it should be equally likely to

see a process in which entropy decreases”6. Although the arguments of Boltzmann

based on the probabilistic interpretation of the second law and the importance of

the initial conditions were undeniably valid, the controversy acquired a historical

transcendence with the name of Loschmidt paradox and still motivates works and

discussions nowadays.

Indeed, the profound objection posed by Loschmidt still reverbs any time we speak

about the possibility of reversing a process. In a classical system it is for all

practical purposes impossible to accomplish such a motion reversal experiment

due to the large amount of particles it contains and its high sensitivity to possible

variations in the initial conditions. However, the few degrees of freedom and

manifest linearity in quantum systems make it meaningful to address time-reversal

experiments and study how they are affected by a perturbation or echo in the

reversed process. The quantity that measures this sensitivity to an imperfect

time-reversal procedure is known as the Loschmidt echo, and the derivation of its

relation to the quantum work previously defined is the objective of this section.

In order to properly define this quantity, consider a quantum system described by

the state |ψ0〉 that evolves during a time t under the time-independent Hamiltonian

Ĥ1 and, after a sudden quench, a second time-independent Hamiltonian −Ĥ2 is

6The story goes that Boltzmann’s reply to Loschmidt’s question regarding velocity reversal
of the particles was: “Then try to do it!” [22]
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applied to the system for the same time t with the aim of recovering the initial

state |ψ0〉. The Loschmidt echo is then defined as [23]

L(t) = |A(t)|2 =
∣∣∣ 〈ψ0|eiĤ2te−iĤ1t|ψ0〉

∣∣∣2 (2.15)

where A(t) is then the Loschmidt amplitude. A perfect recovery of the initial

state requires a sudden negation of the initial Hamiltonian Ĥ2 = Ĥ1, which leads

to L(t) = 1, but this is an impossible task in realistic problems and L(t) is usually a

decreasing function in t. Besides, a time-evolution according to −Ĥ2 is equivalent

to a reversed evolution (in −t) with H2, which connects with the concept of time-

reversibility. Note that this quantity can be seen from two perspectives:

(a) As a survival probability |〈ψ0|ψt〉|2 in which |ψt〉 = eiĤ2te−iĤ1tΨ0, which

coincides with the setup described above. From this viewpoint, Loschmidt

echo measures the degree of irreversibility of the process.

(b) As the overlap between two copies of the initial state after evolving separately

under Ĥ1 and Ĥ2 during a time t, a perspective that quantifies the sensitivity

of the evolution to perturbations. In this case, Loschmidt echo is usually

called fidelity.

Figure 2.1: Time evolution in Loschmidt echo seen as (a) a survival amplitude
and (b) the fidelity. Figure taken from reference [23]



Paper review and analysis 15

2.2.1 Connection to work statistics

In what follows we look back to our original system (§2.1) and the general ex-

pression derived for its work characteristic function (2.11), particularising it for

different setups in order to establish a relation with the Loschmidt echo just intro-

duced. We will call s the physical time from now on in order to distinguish it from

the second time of evolution t that appears in this context (and will be simply

called t throughout). Besides, we will describe the echo protocols by making use

of the Heaviside function Θ(t) in the following fashion:

Ĥ(t) = Ĥ1Θ(−t)− Ĥ2Θ(t) =

{
Ĥ1 t 6 0

−Ĥ2 t > 0

which consider that the system is initialised at negative t with Ĥ1, is subjected to

the instantaneous quench at t = 0 and then evolves with −Ĥ2 up to the time t.

This is the notation also employed in the reference paper [1].

First case

Consider that the initial state is the eigenstate |j0〉 of the initial Hamiltonian Ĥ0,

so that ρ̂mix = ρ̂ = |j0〉〈j0|, i.e., we have an initial pure state. Besides, assume that

we have a sudden quench τ → 0+ so that the time evolution operator becomes

U(0+) = 1. The characteristic function then simplifies to

χ(t, 0+) = Tr
{
eitĤτ e−itĤ0 |j0〉〈j0|

}
(2.16)

= 〈j0|eitĤτ e−itĤ0|j0〉 (2.17)

which is easily recognisable as a Loschmidt amplitude A(t). Hence, the variable t

that emerged in §2.1.1 as the transform variable in the Fourier transform of p(W )

can be identified with a second time of evolution, different from the physical time

s; the Hamiltonian that drives this (hypothetical) echo process is

Ĥ(t) = Ĥ0Θ(−t)− ĤτΘ(t) . (2.18)

We stress the fact that the system under study is not experiencing a Loschmidt

echo protocol: remember that the physical evolution (in s) of the system under this

quench dynamics is Ĥ0 → Ĥτ , not Ĥ0 → −Ĥτ . What the equivalence established
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does imply is that work statistics for the previous process can be in principle

measured by making use of the Loschmidt echo in a system evolved under the

Hamiltonian in (2.18). In this case, both systems are initialised in the same state

|j0〉, but this will not happen in the following case.

General case

In this case, no conditions over the initial state nor over the protocol are imposed:

ρ̂ can be any mixed state and Û(τ) can refer to any generic (unitary) evolution.

The procedure that is used in order to show that such a universal relation between

quantum work statistics and Loschmidt echo exists requires the introduction of the

concepts of partial tracing and purification.

The partial trace is an operation that is used in the context of composite systems;

for simplicity, let us restrict ourselves to a bipartite system HL⊗HR, where L and

R refer to ”left” and ”right”. If a measurement of an observable whose projector

is P̂x wants to be performed solely on —say— the left system, the postulates of

quantum mechanics force us to upgrade the operator to P̂x⊗ 1R and calculate the

probability of the outcome px through Born’s rule: px = Tr
{
ρ̂P̂x ⊗ 1R

}
, where ρ̂

is the density operator of the composite system and Tr{...} denotes the usual trace

—overHL⊗HR here—. The partial trace is the operation that allows us to extract

a density operator ρ̂L from the total ρ̂ such that Born’s rule can be computed in

HL alone via px = Tr
{
ρ̂LP̂x

}
, individuating the subsystem L and ignoring the

rest. In fact, it is the unique mapping that guarantees this correspondence [11]

and is defined such that, for any |a1〉 , |a2〉 ∈ HL and any |b1〉 , |b2〉 ∈ HR,

TrR {|a1〉〈a2| ⊗ |b1〉〈b2|} = |a1〉〈a2|Tr{|b1〉〈b2|} (2.19)

up to the linearity condition. The definition of the reduced density operator ρ̂L in

HL follows directly as ρ̂L = TrR {ρ̂}.

In fact, the converse operation is also possible, and it is what we are interested in:

if we start from a general density operator ρ̂L acting on HL, and expand it in its

diagonal basis ρ̂L =
∑

k λk |ϕk〉〈ϕk|, it is possible to embed it in a bipartite system

HL ⊗HR
7 and express it as the partial trace of a density operator built from the

7The right system does not necessarily have to be a copy of the left system, just to have a
dimension at least equal to the number of nonzero eigenvalues of ρ̂.
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state vector |ψ〉 ∈ HL ⊗ HR given by |ψ〉 =
∑

k

√
λk |ϕk〉 ⊗ |ϕk〉. Indeed, if we

perform partial trace over HR we recover ρ̂L:

TrR {|ψ〉〈ψ|} = TrR

{∑
k,k′

√
λkλk′ |ϕk〉〈ϕk′ | ⊗ |ϕk〉〈ϕk′ |

}
=
∑
k,k′

√
λkλk′ TrR {|ϕk〉〈ϕk′ | ⊗ |ϕk〉〈ϕk′ |}

=
∑
k,k′

√
λkλk′ |ϕk〉〈ϕk′ |Tr{|ϕk〉〈ϕk′ |}

=
∑
k

λk |ϕk〉〈ϕk| = ρ̂L (2.20)

where linearity has been used in going from the first line to the second, and the fact

that Tr{|ϕk〉〈ϕk′|} = δkk′ in the last two lines. This process is called purification

for it allows us to write a general mixed-state (with a purity Tr{ρ̂2} < 1) in a pure

form (with maximum purity Tr
{
|ψ〉〈ψ|2

}
= 1, since 〈ψ|ψ〉 = 1). The auxiliary

system that is created in this process (HR) is usually called the reference system

and it is a fictitious one, without an a priori direct physical significance [24].

Going back to the problem of interest, we perform a purification of the state ρ̂mix,

which is already diagonal in the basis of H0, by embedding it in the composite

system HL⊗HR, with HL = HR = H: the resulting double-copy, purified state is

|Ψ0〉 =
∑
n

√
p0
n |n0〉L ⊗ |n0〉R (2.21)

which reduces to ρ̂mix by taking the partial trace over HR in an analogous deriva-

tion as that performed in equation (2.20). Let us now introduce the echo matrix

M̂(t, τ) = eitĤ
eff
τ e−itĤ0 , which contains the time evolution described for an echo

protocol, and upgrade it to the operator M̂(t, τ)⊗1R so that it can be used in the

composite system HL⊗HR. If we now apply it to the “initial” |Ψ0〉, we obtain the

state |Ψt〉 = M̂(t, τ)⊗ 1R |Ψ0〉 in which the left copy is evolved in time following

a quench of the form

Ĥ(t) = Ĥ0Θ(−t)− Ĥeff
τ Θ(t) (2.22)

while the right copy is left unchanged. As already stated in the theoretical ex-

planation, the left copy is the one that represents our system while the right one

is just a mathematical tool: purification allows us to express this Loschmidt echo

operation on ρ̂mix, but no actual change is made to the system. By performing
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the overlap between the two states we end up with the survival amplitude

〈Ψ0|Ψt〉 = 〈Ψ0|M̂(t, τ)⊗ 1R|Ψ0〉

which is recognisable as the Loschmidt amplitude A(t, τ). Its connection with the

characteristic function is established using the Born’s rule correspondence between

the composite system HL ⊗HR and the original one HL:

A(t, τ) = Tr
{
M̂(t, τ)⊗ 1R |Ψ0〉〈Ψ0|

}
= Tr

{
M̂(t, τ)ρ̂mix

}
=
〈
eitĤ

eff
τ e−itĤ0

〉
mix

= χ(t, τ) (2.23)

where the partial trace ρ̂mix = TrR {|Ψ0〉〈Ψ0|} is the operation that allows this

equivalence (two first lines), and the last identification follows from equation (2.11).

We have hence a proof that the relation between Loschmidt echo and work statis-

tics L(t) = |A(t, τ)|2 = |χ(t, τ)|2 holds for a universal setting in the original system,

extending the relation proved for the first case (which was first found by Silva [7]).

Note aside, we remark that the protocols from which this equality is built are not

symmetrical with respect to the initial state in this case: while the TPM scheme

is initialised at a general mixed state ρ̂, the echo protocol starts from its diagonal

part in the Ĥ0 eigenbasis, ρ̂mix.

Some observations can be made at this point:

• The work characteristic function verifies χ(t, τ)∗ = χ(−t, τ), which directly

follows from its definition (and note that p(W ) is a real-valued distribution).

This property entails that the Loschmidt echo L(t) is an even function:

L(−t) = χ(−t, τ)∗χ(−t, τ) = χ(t, τ)χ(−t, τ) = χ(t, τ)χ(t, τ)∗ = L(t).

• The link between work statistics and Loschmidt echo can be also seen through

the quantum work fluctuations ∆W . If we assume that the cumulant gener-

ating function of the work probability density K(t) = lnχ(t, τ) = ln
〈
eitW

〉
is an analytic function, then we can expand it as K(t) =

∑∞
n=1(it)nκn/n!
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and use it as follows

lnL(t) = lnχ(t, τ) + lnχ(−t, τ)

=
∞∑
n=1

(it)n

n!
κn +

∞∑
n=1

(−1)n(it)n

n!
κn

= 2
∞∑
n=1

(it)2n

2n!
κ2n = 2

∞∑
n=1

(−1)n(t)2n

2n!
κ2n

= −κ2t
2 +O(t4) (2.24)

where the second order cumulant is κ2 = 〈W 2〉−〈W 〉2 = ∆W 2, i.e., the vari-

ance of the work. Hence, the short time dynamics (t� 1) of the Loschmidt

echo (in the system following the echo protocol) is of a Gaussian form where

the width is given by the work fluctuations due to the original evolution.

What is the physical interpretation of this (sensitivity of the system to per-

turbations vs work fluctuations)?
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2.3 Information scrambling

The concept that is about to be put into play is at the heart of recent investigation

on the fields of quantum information, quantum chaotic systems, condensed matter

physics and even black hole physics. A complete understanding of the scope of

information scrambling and its relations would require us to deepen into intricate

concepts such as quantum channels or holography and use a formalism that is well

beyond the intention of this work; mathematical formalism will then be reduced to

the least possible and replaced by a heuristic, intuitive presentation of the physics

behind it. In fact, research on this matter do not seem to handle a universal

definition for this concept but rather work on the basis of a general understanding

of it while proposing different theoretical and experimental tools to study it. This

approach seems then reasonable both in the context of this work and because of

the nature of the concept itself.

Information scrambling is a recent terminology used to describe the propagation

of quantum information in the process of thermalisation. The latter arises in the

context of quantum many body systems and (quantum) statistical mechanics and

encodes two simple questions: will an isolated quantum system reach thermal

equilibrium after a long-time evolution? Can the unitarity of quantum mechanics

evolution account for this behaviour? In order to explain this, let us consider a

generic Hamiltonian quantum system with a macroscopic number of degrees of

freedom —say, for example, we have a large number of spins localised in a lattice,

with different positions in space—, that is initialised in the state ρ̂(0). We say

that the system thermalises if in its long-time evolution, any subsystem SA can be

described by a density operator ρ̂A(t) = TrB {ρ̂(t)} with the form of the canonical

distribution, where ρ̂(t) = Û(t)ρ̂(0)Û †(t) is the evolved density operator of the

whole system and the complementary subsystem SB that we are tracing out can

be understood as a heat bath for SA. In such process, it is natural to assume that

the system has lost its identity or information: if in the beginning the system

had any localised excitation that could be accessed via local measurements, at

late times such a measurement would not yield any valuable information about

the initial state; the system is then effectively described by macroscopic, averaged

quantities such as the temperature [25]. Nevertheless, under unitary dynamics it

is clear that a system cannot erase or forget its initial state, since the evolution

can be in principle reversed. A sharpened perspective on this lose of memory issue
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is that the information is hidden, spread, scrambled along the system degrees of

freedom, not lost; the initial information becomes inaccessible without carrying

out a large amount of local measurements.

The special cases of systems that do not thermalise (see Anderson-localized sys-

tems and the process of Many-Body Localisation —MBL—[25]) and can locally

remember information about their local initial conditions are of great interest in

the field of quantum information and computation; however, in this work we focus

on those systems that do scramble information. There are many recent tools that

have proven useful in order to give account of this process and even quantify and

parametrise it in many different systems and setups. The one that we find the most

consistent with the concept introduced and from which a direct correspondence

can be established with the previous content of this work is the decay of out-of-

time ordered correlators (OTOCs). These are defined as four-point correlators of

the form

Fβ(t) =
〈
Â†(t)B̂†Â(t)B̂

〉
β

(2.25)

where Â and B̂ are two local, unitary and commuting operators that are supported

on the subsystems SA and SB of the complete system under study, 〈...〉β is the

thermal ensemble average at inverse temperature β = 1/T (note that kB = 1, as

already stated in §1) and Â(t) = Û †(t)ÂÛ(t) is the time-evolved operator Â in

the Heisenberg picture. As time advances, the operator Â(t) will become non-

local and overlap with B̂, an effect that can be diagnosed by the growth of the

commutator
[
Â(t), B̂

]
. This is a clear sign that the initial localised information

is spreading throughout the entire system; its relation with the introduced OTOC

can be derived in the following way〈[
Â(t), B̂

]†[
Â(t), B̂

]〉
= (B̂†Â†(t)− Â†(t)B̂†)(Â(t)B̂ − B̂Â(t))

= 2−
〈
Â†(t)B̂†Â(t)B̂

〉
β
−
〈

(Â†(t)B̂†Â(t)B̂)†
〉
β

= 2− 2 Re

{〈
Â†(t)B̂†Â(t)B̂

〉
β

}
and hence

Re{Fβ(t)} = 1− 1

2

〈[
Â(t), B̂

]†[
Â(t), B̂

]〉
. (2.26)

This equation implies that information scrambling can be indeed measured by

the decay of the real part of the OTOC Fβ(t). The next step we take is towards
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establishing a relation between this tool to characterise information scrambling and

Loschmidt echo: such task has already been accomplished in reference [26]. We

are not going into the details, but the derivation basically consists on averaging

Fβ(t) over all unitary operators Â and B̂ supported on the subsystems SA and

SB (denoted by an overbar to point out a specific Haar average) to account for a

general delocalisation of the information. This quantity can then be coarse-grained

equalled to a Loschmidt echo of the form

Fβ=0(t) ≈
∣∣∣∣〈eiĤB1te−iĤB2t

〉
β=0

∣∣∣∣2 (2.27)

where ĤB1 and ĤB2 contain both the part of the total system Hamiltonian acting

on the subsystem SB and the averaged effect of possible noises in the time-evolution

of the system. Note that this result can also be generalised to finite temperatures

[26]. However, restricting ourselves to the intention of this section, the importance

of this formula for us is not the quantitative relation between these two quantities,

but rather the assertion that information scrambling in a system can be assessed

by Loschmidt echo measurements. Tracing back this concept in our work, we have

also established a relation between the information scrambling and quantum work

statistics.

This result should be of no surprise: an a priori natural reasoning would be to

relate the sensitivity to perturbations in the system to quantum chaos, and through

it an intuitive approach to the mixture of information in the system would emerge.

We have now arrived at a stronger argument supporting this naive perspective.

2.3.1 Thermofield double state

In what follows, we go back to the system described in the beginning of the chapter.

So far, we have not specified the form of the initial state ρ̂. The connection just

established with information scrambling makes it appropriate to particularise it

to an initial thermal state

ρ̂ = ρ̂th =
e−βĤ0

Tr
{
e−βĤ0

} (2.28)

with β = 1/T the inverse of temperature. In this case, ρ̂ is diagonal in the

eigenbasis of Ĥ0, so ρ̂ = ρ̂mix. The proposed way of treating this mixed state
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according to the tools described in §2.2 is by introducing the purified state

|Ψ0〉 =
1√
Z(β)

∑
n

e−
β
2
E0
n |n0〉L ⊗ |n0〉R (2.29)

where Z(β) = Tr
{
e−βĤ0

}
denotes the partition function at inverse temperature

β. This entangled state is called the thermofield double state (TFD) and con-

nects us directly with black hole physics: through the AdS/CFT correspondence8,

the TFD state represents both an entangled state of two conformal field theories

(CFT) and an eternal black hole from the AdS perspective [27]. In order words,

conjectures about black holes can be in principle rephrased in terms of unitary

quantum dynamics (studying black holes in the laboratory!). In particular, it has

been claimed that black holes are the physical systems that scramble information

at the highest rate in the universe, also calling them fast scramblers [28], with sev-

eral recent works proposing a bound on this exponential information scrambling

rate [29].

Leaving aside such pioneering considerations, we can use the expression (2.23)

with the initial state ρ̂th to arrive at the formula

L(t) = |χ(t, τ)|2 = |〈Ψ0|Ψt〉|2

=
1

|Z(β)|2
∣∣∣Tr
{
eitĤ

eff
τ e−(β+it)Ĥ0

}∣∣∣2 (2.30)

which is the main result with respect to the connection between quantum work

statistics, Loschmidt echo and information scrambling. Since the quantity that

is more accessible is p(W ), it is reasonable to invert χ(t, τ) through its Fourier

transform as in equation (2.5) to express the Loschmidt echo as

L(t) =

∫∫
dWdW ′p(W )p(W ′) cos[(W −W ′)t] (2.31)

where we have used the fact that L(t) is real to cancel out the i sin[(W −W ′)t]

contribution from the complex exponential.

8It is well beyond the scope of this work, but it is a recent approach to connect a quantum
gravitational theories (which employ Anti-de-Sitter spaces) and quantum field theories (extended
to conformal field theories or CFT).



3. Reproduction of the results

Abstract

Reunimos todas las relaciones que hemos obtenido en la sección anterior y las anal-

izamos en profundidad particularizando el sistema inicial. Introducimos para ello la

noción de caos y los sistemas cuánticos caóticos, presentando con ellos la teoŕıa de matri-

ces aleatorias en la que se apoya su definición. Asumiendo una simetŕıa de inversión tem-

poral de nuestro sistema, explotamos las propiedades del Gaussian Orthogonal Ensemble

para obtener resultados anaĺıticos en el caso de un protocolo con una inversión temporal

perfecta (Ĥτ = −Ĥ0), resultados que comparamos con las medias numéricas obtenidas

de promediar con 10000 matrices aleatorias de esta misma distribución. Para el caso

de una operación de inversión temporal imperfecta, los resultados son sólo numéricos.

Ambos casos son acompañados de gráficas y discusiones.

There is something we have not been worrying about yet: what is the form of the

work probability density p(W ), its characteristic function χ(t, τ) or the Loschmidt

echo L(t)? How does the latter evolve in time and what does this evolution say

about information scrambling? What is their dependence on the temperature or

on the spectra of the initial and the final Hamiltonians? The closest we have been

to these points is when we proved at the end of section §2.2 that the short time

behaviour of L(t) has the form of a Gaussian decay, which does not seem to be

affected by the chosen Hamiltonians further than through the width κ = ∆W 2.

In this section, we want to fully characterise the system under study and the

protocol we subject it to in order to obtain results for the expressions derived and

give them some physical interpretation. Hence, this chapter is arranged in the

following fashion: in section §3.1 we introduce chaotic systems and explain why it

is a natural choice to make for the system of this work. The Hamiltonians of our

problem are then extracted from matrix ensembles of the general Random Matrix

Theory (RMT), a usual way of defining quantum chaotic systems; therefore, a

brief description of this field and its achievements is presented in subsection §3.1.1.

By stating the time-reversal symmetry of our system, the Gaussian Orthogonal

Ensemble (GOE) is selected and we explain in subsection §3.1.2 how we will use it

24
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for obtaining expectation values both analytically —exploiting its RMT properties

through the correlation functions— and numerically in the next section. Having

specified where the Hamiltonians come from, section §3.2 contains the two different

protocols we study and the results we obtain for them. On the one hand, we treat

the perfect time-reversal operation with Ĥτ = −Ĥ0; analytical expressions are

derived and then compared with the numerical results in different figures. On

the other hand, numerical results for an imperfect time-reversal operation —with

Ĥτ obtained independently from Ĥ0— are also obtained and analysed. Note that

we depart from the specifications made to the system until now: we maintain the

initial thermal state ρ̂th, and add the condition of instantaneous quench Û(0+) = 1.

3.1 Quantum chaotic systems

The notion of chaos has already been introduced in this work: in the hypothetical

motion-reversal procedure proposed by Loschmidt, we claimed that such operation

was impossible for all practical purposes due to the high sensitivity of a many-

particle system to possible variations in the initial conditions. That is in fact

a direct link to the most widely used definition of chaos [30]: when the forces

and interactions are so complicated that either we cannot write the corresponding

differential equation, or when we can1, the whole situation is unstable in the sense

that a small change in the initial conditions produces a large difference in the final

outcome, we call the system chaotic. The systems that have differential equations

simple enough to be solved and are stable in the previous sense are called integrable;

although they are the most ubiquitous in contemporary textbooks on classical or

quantum mechanics, systems in nature are not integrable, so chaos is indeed of

great interest for us.

Nevertheless, the linearity and unitarity of quantum mechanics prevents the defi-

nition of a (quantum) chaotic system in terms of sensitivity to initial conditions:

two slightly different states evolving with an identical Hamiltonian will continue

to be at equal distance (measured by the fidelity or Loschmidt echo) at any time of

their evolution. The concept of quantum chaos is then somewhat diffuse and can

1The concept of deterministic chaos is used to account for this phenomenon of knowing the
equations of motion with no random elements involved and still observing chaotic behaviour:
the entire past and future of such systems may be deduced from a knowledge of their present
state, “but the approximate present does not approximately determine the future”, as stated by
Edward Lorenz.
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accommodate both the study of how classical chaotic systems can be described in

the quantum regime and also the analysis of quantum systems with very compli-

cated underlying equations of motion (or even unknown!) that, despite this, show

some distinctive behaviour that can be described with the correct mathematical

construction. The latter is to some extent closer to the perspective we adopt in

this work and it is a direct link to the next subject: Random Matrix Theory.

Note that the choice of this type of system for our work is then clearly not arbitrary,

as we have already used natural tools to assess quantum chaos as the Loschmidt

echo and information scrambling, and we expect to observe some characteristic

features of chaos in these quantities.

3.1.1 Random Matrix Theory

The theory of random matrices was first developed in mathematical statistics in the

1930s, but an intensive study of their properties in connection with nuclear physics

came with the work of Wigner in the 1950s. He proposed that the characteristic

energies of chaotic systems behave locally as if they were the eigenvalues of a matrix

with randomly distributed elements [30]; the vast amounts of experimental data on

the excitation spectra of various nuclei helped at the time of proving the validity

of this hypothesis. This is quite a remarkable result: instead of trying to calculate

the exact solutions of a system with a high complexity, one should rather try to

determine the statistical properties of such systems.

For us, the approach to study a nucleus would naturally follow the standard quan-

tum mechanics procedure: find the Hamiltonian that best describes its interactions

and solve its eigenvalue equation to obtain its eigenvalue spectrum and eigenstates.

Any physical information should be then deduced from this knowledge. However,

the nucleus adjusts to a quite good extent to the definition we have given of a

quantum chaotic system: we do not usually know the Hamiltonian and, even if we

did, it would be too complicated to attempt to solve the corresponding equation.

Therefore, we follow Wigner’s spirit: focus on what is known about the system

and then simply roll a dice. First, we reduce the problem to the discrete part of

the spectrum so that we can work on a finite dimensional Hilbert space. Second,

we represent the Hamiltonian operators Ĥ as matrices compatible with the general

symmetry properties of our original system: each element is taken to be random

—say, from a Gaussian distribution—, but the overall matrix symmetry must meet
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(a) Case of nuclear (energy) levels: 1407
resonance levels belonging to 30 sequences
(no missing levels and same JP ) of 27 dif-
ferent nuclei. Taken from ref. [30].

(b) Case of a hydrogen atom in a strong
magnetic field, with energy levels sampled
near the (scaled) binding energy. Taken
from ref. [31].

Figure 3.1: Probability density for the nearest neighbor spacings P (s) versus
the scaled level spacing s = S/D, where D is the mean level spacing, in two
complex experimental settings. The histograms represent the experimental data
in both cases, while the solid lines indicate: the Poisson distribution (no corre-
lation between eigenvalues) and that for the eigenvalues of a matrix extracted
from the Gaussian Ortogonal Ensemble (GOE).

the one of the system under study. Finally, the quantities that are to be calculated

are obtained as averages over an ensemble of these matrices, where each particu-

lar matrix can be thought of as a different nucleus with similar properties. “The

statistical theory will not predict the detailed level sequence of any one nucleus,

but it will describe the general appearance and the degree of irregularity of the

level structure that is expected to occur in any nucleus which is too complicated

to be understood in detail” [32]. In figure 3.1 we can see how this statement be-

comes real: the (averaged) level spacing of the eigenvalues of the random matrix

reproduces quite reliably the level spacing from the experimental nuclear data.

From a group theoretical analysis, Dyson found that the number of matrix en-

sembles to characterise the different symmetries that a system can have were only

three, naming them orthogonal, unitary and symplectic ensembles. In this work

we assume that the system under study has time-reversal symmetry2, an inter-

esting assumption with all the background given in the previous sections. In the

even-spin case (also rotationally invariant) [30], it can be proved without difficulty

that the ensemble from which we should extract the matrices for our Hamiltonians

is the Gaussian Orthogonal Ensemble.

2The time-reversal operator T̂ transforms the states of a system as
∣∣ψR

〉
= T̂ |ψ(t)〉 = |ψ(−t)〉

and its observables as ÂR = T̂ ÂT̂−1. A physical system is invariant under time reversal if its
Hamiltonian verifies that ĤR = T̂ ĤT̂−1 = Ĥ.
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3.1.2 Gaussian Orthogonal Ensemble

The Gaussian Orthogonal Ensemble is defined as those real symmetric matrices

H that meet the following two conditions [30]:

1. The ensemble is invariant under every transformation

H → W THW (3.1)

where W is any real orthogonal matrix.

2. The elements of the matrix Hmn, m ≤ n, are statistically independent.

There are two ways for working within the GOE and capture all its statistics in our

results. On the one hand, we can propose a numerical method for sampling matri-

ces of the ensemble and work with many of them so that the averaged quantities

contain the statistics associated with the ensemble. On the other hand, although

more mathematically involving, we can deepen into the theory of random matri-

ces and work with its joint probability density function, correlation functions and

heavy statistical material to calculate analytical averages. Both approaches are

used in this work and are summarised below.

Numerical

Let the dimension of our system be N. We can sample a matrix from the GOE by

taking an N×N matrix A with all its elements being standard normals (〈Aij〉 = 0,〈
A2
ij

〉
= σ2 = 1) and constructing the matrix H = (A + AT )/2. The matrix H is

real symmetric and meets the requirements of the above definition. We can then

use a large number of matrices constructed as H to condense GOE statistics in

our results: we calculate quantities using Hamiltonians sampled in this manner,

and we perform a simple, standard average by adding them up and dividing the

sum by the number of matrices employed.

Analytical

The analytical frame is somewhat mathematically involving and we restrict our-

selves to the strictly necessary material. It uses the typical machinery of statistical

mechanics: consider the probability density function P (H) which is defined such
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that the quantity P (H)dH is the probability that a randomly chosen matrix of

the GOE belongs to the volume element dH = Πi≤jdHij. We would then be able

to calculate analytical GOE averages of a quantity Q with any dependence on the

Hamiltonian by computing the integral

〈Q〉GOE =

∫
QP (H)dH (3.2)

for which an explicit form of P (H) would be necessary. This task would be facil-

itated by expressing the various components of H in terms of its N eigenvalues

and other mutually independent variables pµ, ending up with the joint probability

density function of the eigenvalues PN(E1, ..., EN) after integrating over pµ. How-

ever, we will not work with this formalism so we do not need any explicit form

for them; instead, we will make use of the correlation functions of the ensemble.

The k -point correlation function is defined as the probability density of finding

a level (regardless of labelling) around each of the eigenvalues E1, E2, ..., Ek with

the positions of the remaining levels being unobserved [30]. It is given by the

expression

Rk(E1, ..., Ek) =
N !

(N − k)!

∞∫
∞

...

∞∫
∞

PN(E1, ..., EN)dEk+1...dEN (3.3)

where one can trivially see, in particular, that the first order correlation function

R1(E) corresponds to the overall level density. In order to connect the ensemble

averages of the quantities of interest to this theoretical tools we will make use of

the density of states ρ(E) =
∑

n δ(E−E0
n), which verifies 〈ρ(E)〉GOE = R1(E). In

this work we only require R1(E) and R2(E1, E2); its explicit forms can be derived

following [30] and assuming N = 2m (even) for simplicity:

R1(E) = SN(E,E) (3.4)

= KN(E,E) +
1

2

√
N

2
ϕN−1(E)

∫ ∞
∞

dz sgn(E − z)ϕN(z) (3.5)

= 〈ρ(E)〉GUE +

√
N

2
ϕN−1(E)

∫ E

0

dzϕN(z) (3.6)

where KN(Ep, Eq) =
∑N−1

n=0 ϕn(Ep)ϕn(Eq) is called the kernel of the Gaussian

Unitary Ensemble (GUE), 〈ρ(E)〉GUE is the overall level density in the GUE,

sgn(z) is the signuum function and the ϕj(E)’s are the “oscillator wave functions”
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defined in terms of the Hermite polynomials Hj(x) as

ϕj(x) = (2jj!
√
π)−1/2 exp

(
−x2/2

)
Hj(x) . (3.7)

Instead of computing the two-point correlation function, we employ the definition

of the two-level cluster function T2(E1, E2) = −R2(E1, E2) + R1(E1)R1(E2) [30],

which can be obtained as T2(E1, E2) = Tr{σN(E1, E2)σN(E2, E1)}/2 [33], with

σN(E1, E2) =

(
SN(E1, E2) DSN(E1, E2)

JSN(E1, E2) SN(E2, E1)

)
(3.8)

where SN(x, y) is usually called the kernel of the GOE as it generates the rest of

the functions [30]:

SN(x, y) = KN(x, y) +

√
N

2
ϕN−1(x)

∫ y

0

dzϕN(z) (3.9)

DSN(x, y) = − d

dy
SN(x, y) =

m−1∑
i=0

−ϕ2i(x)ϕ′2i(y) + ϕ′2i(x)ϕ2i(y) (3.10)

ISN(x, y) =
1

2

∞∫
−∞

dt sgn(x− t)SN(t, y) (3.11)

=
m−1∑
i=0

x∫
0

dtϕ2i(t)ϕ2i(y)− ϕ2i(x)

y∫
0

dtϕ2i(t) (3.12)

JSN(x, y) = ISN(x, y)− 1

2
sgn(x− y) . (3.13)

A simple calculation of the previous trace gives us

T2(E1, E2) = SN(E1, E2)SN(E2, E1) +DSN(E1, E2)JSN(E2, E1) . (3.14)

Note that we do not have simpler expressions for the correlation functions in GOE

(except for the integral of 〈ρ(E)〉GUE, as will be stated in the next section), so

even for the analytical case we will use raw “numerical” computation. We are now

in any case in the right position to go back to our system and obtain results.
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3.2 Results and discussion

In what follows we return to the system we had in section §2.3.1, where we specified

an initial thermal density operator ρ̂th in order to arrive to equation (2.30). To

this condition we now add the instantaneous quench protocol, Û(0+) = 1, in order

to facilitate the computation of results, which are mainly condensed in the figures

of the chapter and its discussions. The derivations and physical remarks that

precede them in the first subsection are still necessary for the analytical description

that follows. Note that we do not restrict ourselves to a simple reproduction of

the results of the reference paper (which can be seen in fig. 3.5), but we bring

analytical derivations and discussions so that a more in-depth analysis can be

carried out in the same fashion as in reference [34].

3.2.1 First case: perfect time-reversal operation

When the system Hamiltonian is symmetrical under time-reversal, the implemen-

tation of the time-reversal operation is equivalent to the sudden negation of the

Hamiltonian in the original protocol [1] such that Ĥτ = −Ĥ0. If we do so, the

characteristic function becomes

χ(t, 0+) =
1

Z(β)
Tr
{
e−(β+2it)Ĥ0

}
=
Z(β + 2it)

Z(β)
(3.15)

and the Loschmidt echo in equation (2.30) transforms into

L(t) =
∣∣χ(t, 0+)

∣∣2 =

∣∣∣∣ 1

Z(β)
Tr
{
e−(β+2it)Ĥ0

}∣∣∣∣2
=

∣∣∣∣Z(β + 2it)

Z(β)

∣∣∣∣2 (3.16)

where Z(β + 2it) is to be identified as the analytic continuation of the partition

function. Bringing back momentarily the discussion on the connection between

the Loschmidt echo and the characteristic function for the purified state |Ψ0〉 of

section §2.2, we can look at this result as

∣∣∣ 〈Ψ0|eit(−Ĥ0⊗1R)e−it(Ĥ0⊗1R)|Ψ0〉
∣∣∣2 =

∣∣∣∣Z(β + 2it)

Z(β)

∣∣∣∣2
= L(t)
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the LHS being a very clear version of Loschmidt echo for the left copy of the

purified state since the full evolution is now under the exponential sign. It is also

easy to see that any independent unquenched protocol for the right copy would

leave the result untouched.

Finally and before proceeding to the analytical derivations and main results, we

can trivially calculate the mean work done in order to reverse the dynamics of the

system by particularising the expression 2.14 for the present conditions:

〈W 〉 = −2
〈
Ĥ0

〉
β

(3.17)

which seems consistent with the time-reversal protocol studied.

Characteristic function

From the very beginning we will be making an approximation called annealing [34]

at the time of calculating analytical GOE averages of the quantities of interest: we

will take the expectation value of a quotient as the quotient of expectation values.

In the case of the characteristic function of equation 3.15, it reads

〈
χ(t, 0+)

〉
GOE

=

〈
Z(β + 2it)

Z(β)

〉
≈ 〈Z(β + 2it)〉GOE

〈Z(β)〉GOE
. (3.18)

Hence, we will take the numerical averages as the more physically accurate of our

results, and explain the differences between curves as consequences of deviations

in the analytical part.

As a means to calculate the GOE average of the (analytically continued) partition

function, we perform the following manipulation [35]:

Z(σ) =
∑
n

e−σE
0
n =

∫ ∞
−∞

dEe−σE
∑
n

δ(E − E0
n) (3.19)

=

∫ ∞
−∞

dEρ(E)e−σE (3.20)

where σ can be any complex number. Its GOE average can then be expressed in

terms of a (known, see equation (3.4)) correlation function,

〈Z(σ)〉GOE =

∫ ∞
−∞

dE 〈ρ(E)〉GOE e
−σE =

∫ ∞
−∞

dER1(E)e−σE . (3.21)
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It can be further simplified by doing

〈Z(σ)〉GOE =

∫ ∞
−∞

dEe−σE 〈ρ(E)〉GUE +

∫ ∞
−∞

dEe−σEf(E) (3.22)

= eσ
2/4L1

N−1

(
−σ

2

2

)
+

∫ ∞
−∞

dEe−σEf(E) (3.23)

where the first integral has been expressed in terms of the generalised Laguerre

polynomial L1
N−1(x), a result extracted from a GUE analysis in reference [34].

Using this expression we can find the GOE average by computing the division in

equation (3.18).

The numerical and analytical results are in great accordance as can be seen in the

left of figure 3.2. The oscillations observed in the numerical solutions for the two

temperature cases considered are not a problem: they converge very slowly and

tend to zero for large times. The short time coincidences of the curves, both in

the multiple peaks of the β = 0 case and in the smooth decay for β = 1, are good

indicators of the validity of our results: the next quantities will indeed reproduce

correctly the short time dynamics.

0.01 0.1 1 10 100
t

0.0001

0.001

0.01

0.1

1

|
(t,

0+
) G

O
E|

Numerical = 0
Numerical = 1
Analytical = 0
Analytical = 1

30 20 10 0 10 20 30
W

0.00

0.05

0.10

0.15

0.20

0.25

0.30

p(
W

) G
O

E

Numerical = 0
Numerical = 1
Analytical = 0
Analytical = 1

Figure 3.2: Analytical and numerical results for the time evolution of the
norm of the work characteristic function (left) and the work probability density
function (right) for two different temperatures. The case of infinite temperature
(β = 0) is coloured in solid red lines for the numerical average and in dashed
black for the analytical case. In the finite temperature regime (β = 1), the solid
blue lines represents the numerical average and the dashed yellow the analytical
result. Numerical calculations use 10000 matrices extracted from the GOE.
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Probability density function

The fastest computation of the work probability density function after calculating

the work characteristic function is to perform its Fourier transform. In fact, that

is what we do for obtaining the numerical solution, which we simplify as

〈p(W )〉GOE =
1

2π

∫ ∞
−∞

dt
〈
χ(t, 0+)

〉
GOE

e−itW (3.24)

=
1

π
Re

{∫ ∞
0

dt
〈
χ(t, 0+)

〉
GOE

e−itW
}

(3.25)

where we have used the property χ(t, 0+)∗ = χ(−t, 0+) for splitting the integral

and reassuring that p(W ) is real.

Nevertheless, we also want to exploit the tools of random matrix theory and be

able to find an expression of p(W ) independently from the characteristic function.

If we use the definition of χ(t, 0+) combined with equation 3.20 we have that

〈p(W )〉GOE =
1

2π 〈Z(β)〉GOE

∫ ∞
−∞

∫ ∞
−∞

dtdEe−βE 〈ρ(E)〉GOE e
−it(W+2E) (3.26)

=
1

〈Z(β)〉GOE

∫ ∞
−∞

dEe−βE 〈ρ(E)〉GOE δ(W + 2E) (3.27)

=
1

2 〈Z(β)〉GOE
eβW/2

〈
ρ

(
−W

2

)〉
GOE

(3.28)

=
eβW/2

2 〈Z(β)〉GOE

[〈
ρ

(
−W

2

)〉
GUE

+ f

(
−W

2

)]
(3.29)

=
eβW/2

2 〈Z(β)〉GOE

[
N−1∑
j=0

ϕ2
j

(
W

2

)
+ f

(
W

2

)]
(3.30)

where we have used, in order, the definition of the Dirac delta function in terms of

the Fourier transform, the property δ(cx) = δ(x)/|c|, the definition of 〈ρ(E)〉GOE
as given by equation (3.4), and we have denoted by f(E) the second term of

the same equation. In going to the last line, we have also made use of the even

property of both ϕj(x) and f(E) (remember that N is even). In fact, note that the

only term that prevents 〈p(W )〉GOE from being an even function is the exponential

eβW/2; in figure 3.2 we can corroborate that for the infinite temperature case the

distribution is symmetrical with respect to the W = 0 axis for both numerical and

analytical results, which perfectly overlap. This is also expected from the fact that

the initial and final Hamiltonians are drawn from the same ensemble: the mean

work after many repetitions should be zero. On the contrary, in the case of finite
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temperature (β = 1), the first measurement is more likely to fall on the low-energy

spectrum due to the initial thermal state, increasing the probability of obtaining

a positive work after the second measurement as manifested in the figure.

Loschmidt echo

Taking into consideration the annealing approximation, we want to calculate

〈L(t)〉GOE ≈
〈|Z(β + 2it)|〉2GOE〈
|Z(β)|2

〉
GOE

=
〈Z(β + 2it)Z(β − 2it)〉GOE

〈Z(β)2〉GOE
(3.31)

where we note that the denominator is just the numerator with t = 0, which

acts as a normalisation factor. We can hence focus on the GOE average of the

numerator alone, that we will call spectral form factor and denote g(β, t):

〈
|Z(β + 2it)|2

〉
GOE

= (3.32)

=

∞∫
−∞

∞∫
−∞

dE1dE2 〈ρ(E1)ρ(E2)〉GOE e
−(β+2it)E1e−(β−2it)E2 (3.33)

= 〈Z(2β)〉GOE +

∞∫
−∞

∞∫
−∞

dE1dE2R2(E1, E2)e−(β+2it)E1e−(β−2it)E2 (3.34)

= 〈Z(2β)〉GOE + |〈Z(β + 2it)〉GOE|
2 + gc(β, t) = g(β, t) (3.35)

where the following steps have been made:

• In going from the second line to the third one, we have separated the diagonal

part E1 = E2 from the off-diagonal terms E1 6= E2; the discussion on the

different definitions of the k-point correlation function Rk(E1, ..., Ek) is well

explained on reference [33]; we will take

〈ρ(E1)ρ(E2)〉GOE = δ(E1 − E2) 〈ρ(E1)〉GOE +R2(E1, E2) (3.36)

which is consistent with the two-point correlation function R2 given in [30].

• We have split R2(E1, E2) using the definition of the two-level cluster function

T2(E1, E2) given in section §3.1.2, and we have defined the connected spectral
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form factor gc(β, t) as

gc(β, t) = −
∞∫

−∞

∞∫
−∞

dE1dE2T2(E1, E2)e−(β+2it)E1e−(β−2it)E2 . (3.37)
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Figure 3.3: Time evolution of Loschmidt echo for β = 0 and different matrix
dimensions N (left) and different contributions to the Loschmidt echo for β = 0
and N = 20 (right). The left plot shows numerical solutions in solid lines and
analytical results in dotted lines (overlapped). The dashed horizontal lines are
the contribution from the first term 〈Z(2β)〉GOE , while the dashed Gaussian
curves come from the second term |〈Z(β + 2it)〉GOE |

2. A clearest perspective
on the contribution from each term is seen in the figure on the right. Note that
the y-scale is not logarithmic to represent the negative values of gc(β, t).

The relevance of this separation into three terms is that it serves us to analyse the

features of the Loschmidt echo evolution studying each term on its own [35]. We

can distinguish three stages (common to scrambling dynamics [1]):

• Gaussian decay. The short time dynamics is dominated by the discon-

nected contribution |〈Z(β + 2it)〉|2, which behaves as a Gaussian whose

width is approximately the second moment of the work PDF or work fluc-

tuations ∆W 2. From figure 3.3 on the right, we can see that the other two

terms compensate to give a zero net contribution.

• Power law and dip. The disconnected part dips below the plateau value

(dashed horizontal lines in figure 3.3), reaching its first minimum followed

by some oscillations near zero from the Laguerre polynomial. The increasing

contribution from the connected term gc(β, t) starts to be noticed. The be-

haviour of the curve below the asymptotic value is usually called correlation
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hole [36] as it is a consequence of the level of correlation between eigenvalues

and, hence, of chaos.

• Ramp and plateau. The only nonzero terms that remain after the pre-

vious stage are the constant plateau value 〈Z(2β)〉GOE and the connected

contribution, which approaches zero from below in an almost linear growth

and vanishes completely at large times. The fact that the Loschmidt echo

does not vanish for infinite times is a sign of the finiteness of the system [36],

which does not allow for an absolute scrambling of the information in the

system as could be expected for systems with a continuum spectrum and

infinite dimension.

Note that the numerical and analytical results shown in figure 3.3 are almost

perfectly overlapped. This is not the case for the finite temperature case (see

3.4), where the annealing approximation shows higher deviations the lower the

temperature. That is why we have ommited an analogous plot to that of figure

3.3 for β = 1, although its general features can be seen in figures 3.4 and 3.5.
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Figure 3.4: Time evolution of Loschmidt echo for different temperature sce-
narios. The numerical solutions are drawn in solid lines, and the analytical ones
use dotted lines. The figure is shown to compare the dependence on β of the
deviation caused by the annealing approximation.



Reproduction of the results 38

3.2.2 Second case: imperfect time-reversal operation

By choosing the second Hamiltonian Ĥτ from an independent Gaussian Orthogonal

Ensemble, we can give account of an imperfect time-reversal operation. If we

wanted to obtain analytical results for this case in order to compare them with

the numerical averages, we would need to perform a double GOE average, which

is a very involving task in which we are not deepening in this work. Instead,

we restrict ourselves to the numerical calculations as in the reference paper. The

employed expression for the GOE average of the work characteristic function is

〈
χ(t, 0+)

〉
GOE

=

〈
1

Z(β)
Tr
{
eitĤτ e−(β+it)Ĥ0

}〉
GOE

(3.38)

whose Fourier transformation for numerical computation of p(W ) is already given

in equation (3.25). The GOE average of the Loschmidt echo is simply

〈L(t)〉GOE =
〈∣∣χ(t, 0+)

∣∣2〉
GOE

. (3.39)

The results of quantum work statistics and Loschmidt echo dynamics are con-

densed in figure 3.5, which contains a reproduction of the results of the reference

paper and is presented in an analogous way. The left column contains the treated

case of a perfect time reversal operation and repeats some of the curves displayed

previously, while the right column show the pertinent solutions for this section.

With this disposition of the results, it is easier to point some remarks:

1. The work characteristic function and work probability density functions for

the sudden quench ((b) case) exhibit the same features as those commented

in the previous case: p(W ) is symmetrical for β = 0 and shifted to the

positive values for β = 1, and χ(t, 0+) presents rapid oscillations at large t.

2. Since the initial Gaussian decay of the Loschmidt echo depends on the width

of the work PDF through ∆W 2, looking at the graphs it is clear that the

β = 0 case has to decrease faster than the finite temperature case.

3. The correlation hole is greatly smoothed out in the Loschmidt echo dynamics

for the (b) case, pointing out the lack of correlation between the initial and

final Hamiltonians. The decay is accentuated, leading to lower asymptotic

values after a broadened dip region with an almost nonexistent ramp.
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Figure 3.5: Quantum work statistics of time reversal and Loschmidt echo dy-
namics, reproducing the results of the reference paper. The left column shows
the case of a perfect time reversal operation in the system, and the right column
an arbitrary sudden quench with Ĥτ being independent of the initial Ĥ0. Re-
sults are numerical averages computed with respect to a set of 10000 matrices
extracted from the Gaussian Orthogonal Ensemble.



4. Conclusions

Through the text it has been necessary to progressively obtain many minor results

before reaching the main findings of the reference paper [1]. Concerning quantum

work statistics, we showed that quantum work is not an observable and that the

TPM scheme is the one that accounts for its stochastic and process-dependence

nature. By using a description of work in terms of its characteristic function, it

was found that quantum thermodynamics can be recast into a dynamical problem.

In fact, this can be seen as the major result [1]: a universal relation exists between

quantum work statistics and Loschmidt echo, in particular, the characteristic func-

tion of an arbitrary protocol of an isolated system starting at any initial mixed

state can be identified with the Loschmidt echo amplitude of a purified density

operator in an enlarged Hilbert space, for a quench acting on one of the copies.

The connection is then extended to information scrambling, which becomes clear-

est when specifying the initial mixed state to be thermal; the thermofield double

state that appears describes an eternal black hole through the AdS/CFT corre-

spondence [1], and black holes have been theorised to be the fastest information

scramblers in nature. From here we conclude that black hole physics can be, in

principle, studied in quantum mechanical terms. A direct link to the notion of

chaos is also evident, and the results we obtain in the last section allows us to claim

that random matrices are an appropriate scenario for studying quantum chaotic

systems. Loschmidt echo also shows up to be a good quantum chaos diagnostic

tool, as it is manifest in its behaviour shown in the figures.

This work could also be improved and extended in many ways. Black hole physics

and information scrambling has been somewhat deprecated, so a finer study could

be carried out for a better understanding and presentation. Also, we omitted the

GOE analytical results for the second case to avoid excessive mathematics, but it

would have allowed a broader analysis. And yet, this work should be understood

as an introductory work to the field, and the minimum objective of reproducing

and studying the paper results and derivations has been accomplished.
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