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Resumen/Abstract

Resumen

El objetivo de traer al lector una revisión académica simple del importante reciente campo

de investigación de la Termodinámica cuántica es el eje central de este proyecto. Para

conseguirlo nos centramos en las máquinas térmicas cuánticas. Una introducción a este

importante tema es presentado junto al concepto de máquinas térmicas endoreversibles. En

primer lugar, mostramos un estudio de su rendimiento motivado por un modelo cuántico:

Un Maser de tres niveles junto a unos resultados muy interesantes de su comportamiento.

Posteriormente, con la idea de entender como funciona la dinámica de estos dispositivos

nos moveremos a la teoŕıa de sistemas cuánticos abiertos mostrando la derivación de una

herramienta matemática muy importante en el campo de la Termodinámica cuántica: La

ecuación maestra Markoviana. Para finalizar, aplicaremos esta ecuación a un sistema

espećıfico observando como la primera y segunda ley de la termodinámica emergen de su

dinámica.

Abstract

The purpose of bring the reader and academical and modest review of the emerging research

field of Quantum Thermodynamics is the central axis of this project. To do that we focus on

quantum thermal machines. An introduction to this important subject is addressed along with

the notion of endoreversible thermal machines. First, we present a study of thermal devices

performance utilizing a particular quantum model: The Three Level Maser, from which

rather general results can be derived. The idea is to understand in simple terms how the



dynamics of this type of systems works. Later, we will introduce some basic elements of the

theory of open quantum systems showing the derivation of an important mathematical tool

in Quantum Thermodynamics: The Markovian master equation ruling the reduce dynamics

of the system of interest. To finish, we apply this equation to an specific system and see how

the I-law and II-law of thermodynamics emerge in this context.
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Chapter 1

Introduction and motivation

In 1824, the French military engineer Sadi Carnot, in his single work [1], developed a re-

versible ideal thermal machine (the Carnot cycle) that established the maximum efficiency

attainable by heat engines.

This investigation leads, years later, to the origin of thermodynamics: The I and II law.

However, this thermal machine is an idealization. Real devices as cars or generating stations

operates far from the maximum efficiency stablished in Carnot’s studies. What happens if

we optimize the operations of these devices in terms of power delivered? Or if we include

a description of irreversibility in our machines? This type of questions triggered the birth

of finite-time thermodynamics and the origin of endoreversible models of thermal devices

[2–4].

Thermodynamics progressed with many new discoveries, collected in reference [5]. Einstein,

in 1905, inspired by the Planck’s ideas about thermodynamics of black body radiation,

quantized the electromagnetic field [6]. This fact supposed the dawn of one of the most suc-

cessfully and surprising theories in Physics: quantum mechanics. Apart from that, inciden-

tally, the birth of quantum thermodynamics took place. The theory of quantum mechanics

developed separately from thermodynamics, with its own experiments and hypothesis [7].

In 1959, Scovil and Schulz-DuBois, decided to unify this beautiful theories again in a fun-

damental paper on quantum thermodynamics [8]. They create the prime example of a
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quantum thermal machine (QTM), the three level maser and study how thermodynamics

laws emerge from a quantum system. In the next years more models of QTM’s were studied

[9, 10]. Two important keys in quantum thermodynamics are the theory of open quan-

tum systems [11] and the Markovian master equation started by the work of Lindblad and

Gorini-Kossakowski-Sudarshan [12, 13].

However, the term quantum thermodynamics was introduced for the first time in 1989 by

Partovi [14]. That is why we say that quantum thermodynamics is an emerging research

field whose main objective is to find consistency between thermodynamics laws and quantum

physics. Quantum thermodynamics is a multidisciplinary field because it is based in different

research areas such as Statiscal Physics, Many-body theory and quantum information theory.

In reference [15] a complete description about quantum thermodynamics is given and many

of the most important aspects of this field are discussed.

Quantum thermal machines is an important topic within quantum thermodynamics. Ac-

tually, many studies of this field are focused on the performance of continuous thermal

machines [16–21] and internal heat leaks in quantum thermodynamic cycles [22] to reana-

lyze in different ways QTM’s that have been studied in the past [23, 24]. Because of this,

QTM’s are gonna be the central axis of our study.

This work aims to review in simple terms some of the goals in quantum thermodynamics

in the context of thermal devices. We shall also introduce some basic tools in the theory of

open quantum systems. In Chapter 2, we start studying endoreversible thermal machines

giving, in the first place, an introduction to this type of device. Then we move our attention

to the performance of a specific endoreversible QTM: The Three Level Maser. In Chapter

3 we review the theory of open quantum systems and made a detailed derivation of a

mathematical one of the most common tools used in quantum thermodynamics: Markovian

master equations. In Chapter 4, we obtain the heat currents in the steady state of a quantum

Tricycle as an example of the application of our Markovian master equation. Finally, the

main conclusions of our work are drawn in Chapter 5.
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Chapter 2

Endoreversible thermal machines

A Carnot engine is a thermal engine that operates reversibly extracting energy characterized

by an energy current Jh from a heat bath at temperature Th to transform it in useful power

P . In that process, an amount energy with associate current Jc is delivered to a cold bath

at temperature Tc. The principles of Thermodynamics impose that the efficiency η of a

thermal engine has an upper bound given by the Carnot theorem

η =
P

Jh
6 ηC = 1− Tc

Th
. (2.1)

This limit is far away from reality and from a practical point of view because to reach

maximum efficiency, a reversible process with infinitely slow operation its required. This

implies that output power is zero. In real engines many sources of irreversibility has to

be considered. This problem gave rise to endoreversible thermodynamics and finite-time

thermodynamics.

Let us mention that considerations leading to endoreversible thermodynamics are due to

the pionering works of Novikov and Chambdal [2, 3], in the context of atomic power plants

and to Curzon and Ahlborn [4].

First, we will focus on the Curzon-Alhborn (CA) endoreversible thermal machine [4] and

introduce the CA efficiency following a similar procedure to the one introduced in [25].

After we move our attention to the three-level maser machine and its properties [8, 16, 24].
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In this context we will introduce a simple optimization problem i.e., the evaluation of the

efficiency of the machine at maximum power, following the steps of reference [17] and discuss

its universallity properties [26].

2.1 Curzon-Ahlborn efficiency

The Curzon and Ahlborn model depicted in (Figure 2.1) uses an endoreversible approx-

imation that consist in include only irreversibility associated with the imperfect thermal

contact between the working fluid and the heat reservoirs at temperatures Th and Tc. This

working fluid follows an internal Carnot Cycle operating at temperatures TH and TC , that

are understood as the effective temperatures of this fluid at the hot and the cold terminals

of the cycle, respectively [4, 25]. Note that in endoreversible models other sources of irre-

versivibility, as internal friction or heat leaks, are neglected. Curzon and Ahlborn obtained

that the efficiency at maximum power was given by

ηCA = 1−
√
Tc
Th
. (2.2)

This expression can be proven in several ways. Here, we give a simple derivation. The heat

currents are given by the Newton’s law of cooling between the thermal reservoirs and the

effective temperatures of the working fluid, i.e.

Jh = αh(Th − TH) = αhyh

Jc = αc(Tc − TC) = αhyc (2.3)

where αh and αc are constants depending on the thermal conductivity associated to the

heat fluxes. The parameters yh = Th− TH > 1 and yc = Tc− TC 6 1 are introduce for later

convenience.

As previously mentioned, the internal engine follows a Carnot Cycle. Due to this, it obeys
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Figure 2.1: Endoreversible model or CA cycle

the Clausius equality:

Jh
TH

=
Jc
TC
. (2.4)

This last expression establishes a relation between yc and yh. Using equation 2.3, it follows:

yh =
Thyc

Tcαhc + yc(1− αhc)
(2.5)

with αhc = αh
αc

. The output power defined by P ≡ Q̇h − Q̇c = αhyh − αcyc can be rewritten

using 2.5 as:

P =
Thαhcyc

Tcαhc + yc(1− αhc)
− yc, (2.6)

which shows that for fixed values of temperatures Th, Tc and the heat conductivity param-

eters, the power only depends on yc. Precisely, the optimization problem to be considered

is the optimization of power with respect to this variable, i.e., ( dP
dyc

)yc=ycop = 0. Solving this

equation, the optimal parameters yc and yh are given by:

ycop = Tcαhc+αhc
√
TcTh

αhc−1
.

yhop = −Th(Tc+
√
TcTh)√

TcTh(αhc−1)
, (2.7)

5



from which follows the maximum power output and the efficiency η = P
Jh

at maximum

power, i.e.

Pmax = − αhc√
TcTh(αhc − 1)

(2TcTh + Tc
√
TcTh + Th

√
TcTh)

ηmaxP =
Pmax
Jh(yhop)

= 1−
√
Tc
Th

= ηCA. (2.8)

In terms of the Carnot efficiency (2.1) we can write the Curzon-Alhborn efficiency as

ηCA = 1−
√

1− ηC (2.9)

and performing a Taylor expansion in ηC we obtain that

ηCA =
ηC
2

+
η2
C

8
+O(η3

C). (2.10)

This expression has an universal character . At linear response or at linear order in ηC many

models of heat engines, both classical and quantum, show that its efficiency is limited by

the linear term of CA efficiency Taylor expansion (2.10). Moreover, even in strong coupling

models with left right symmetry the universality at quadratic order is achieved. In reference

[26] this universality is discussed and in next section we shall see that for a type of QHE:

”The three level Maser”, the universality of the efficiency at maximum power in linear

response regime.

2.2 The three level Maser

The three level maser, also commonly called as three level amplifier, is an endoreversible

quantum thermal machine that uses population inversion between levels to obtain useful

power and therefore operate as a heat engine, or alternatively, changing its operation mode

it works as a refrigerator. This device was first studied by Scovil and Schulz-Dubois in

[8], a very influential work in the development of quantum thermodynamics and its related

subject quantum thermal machines (QTM). The thermodynamics of the level maser has
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been discussed in many references [16, 17, 24, 27], and some physical implementations have

been introduced, for instance in [23], where the three level system is introduced in a optical

cavity. In this chapter we are going to focus our attention on the optimal operation of a

three level maser, following closely the discussion made in [17].

The device, showed in Figure 2.2, is compose by a three level quantum system that acts

as a ”thermodynamic working fluid”, coupled via a frequency filter to unstructured bosonic

baths with temperatures Tc and Th. Furthermore, we are considering here that the system

is periodically driven by a laser of frequency Ω tuned to the Bohr frequency between hot

and cold levels.

Figure 2.2: Structure of the three level system

The population of each level is given by

pi =
e−βEi

Z
(2.11)

and in natural units (~ = kB = 1), the quotient between populations are

ph
pg

= e−β(Eh−Eg) = e
−ωh
Th and

pc
pg

= e−β(Ec−Eg) = e−
ωc
Tc . (2.12)

We define the gain as G = ph−pc. In terms of its sign we can have a thermal engine (G > 0)
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or a thermal refrigerator (G 6 0). Dividing G by pg and using equations 2.12 it follows the

conditions:

Engine

e
−ωh
Th − e−

ωc
Tc > 0 −→ e

ωc
Tc − e

ωh
Th > 0 −→ ωc

ωh
>
Tc
Th
. (2.13)

Refrigerator

e
−ωh
Th − e−

ωc
Tc 6 0 −→ e

ωc
Tc − e

ωh
Th 6 0 −→ ωc

ωh
6
Tc
Th
. (2.14)

We can obtain this results using the efficiency and the coefficient of performance (COP)

defined in terms of the Bohr frequencies and using the Carnot upper bound.

η =
P

Jh
= 1− ωc

ωh
6 ηC = 1− Tc

Th
(2.15)

ε =
Jc
P

=
ωc

ωh − ωc
6 εC =

Tc
Th − Tc

. (2.16)

2.2.1 The system

This device can be studied in the context of open quantum systems, which will be studied

in detail in chapter 3. To obtain the dynamics of our three level maser, we shall resort to

the theory of periodically driven open quantum systems as described in [28–31].

In the weak coupling limit [17, 32], the stationary heat currents and power are given by:

Jc = ωcI

Jh = −ωhI

P = −Jh − Jc = −(ωc − ωh)I (2.17)

where the flux I is given by

I =
ΓhΓc(e

−ωc/Tc − e−ωh/Th)

Γh(1 + 2e−ωh/Th) + Γc(1 + 2e−ωc/Tc)
. (2.18)
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The relaxation rates for a bosonic bath can be take as Γα = γαω
dα
α [1 +N(ωα)] with α = h, c

[11, 19], with N(ωα) = (eωα/Tα−1)−1 the occupation number for a Bose-Einstein distribution

and dα the physical dimension of the bosonic bath.

Using eqs. 2.13 and 2.14 we can define a maximum cold frequency as ωc,max = ωh
Tc
Th

for

which the output power and cooling rate is zero.

For frequencies less than ωc,max the system works as a refrigerator and has an optimal cooling

rate at some frequency ωRc (ωh). On the other hand, for frequencies greater than ωc,max the

system works as thermal engine and has an optimal cooling rate at some frequency ωEc (ωh).

Instead of using the cold frequency as a control parameter we are going to define the ther-

modynamic forces xc = ωc
Tc

and xh = ωh
Th

. In terms the thermodynamic forces equation 2.17

can be rewritten as

Jc = ωc
Tc
Tc
I = TcxcI

Jc = −ωh
Th
Th
I = −ThxhI

P = −Jh − Jc = (Thxh − Tcxc)I (2.19)

and expressing the cold temperature Tc in terms of the Carnot efficiency and the COP as

ηC = 1− Tc
Th
−→ Tc = (1− ηC)Th (2.20)

εC =
Tc

Th − Tc
−→ Tc = εCTh − εCTc −→ Tc =

ThεC
1 + εC

(2.21)

we can rewrite the cooling rate and power using this equations

Jc =
ThεC

1 + εC
xcI (2.22)

P = Th(xh − (1− ηC)xc)I. (2.23)

To obtain the entropy production of the system we start from the second law of thermody-

namics

dS =
∑
α=h,c

δQα

Tα
+ σ (2.24)
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where σ is entropy due to irreversible processes and σ > 0. Now we derived respect to time

and we obtain

Ṡ =
∑
α=h,c

Jα
Tα

+ σ̇. (2.25)

We are considering endoreversible thermodynamics so, the thermal machines follow a inter-

nal closed cycle and the entropy, being a state function, satisfies that Ṡ = 0 from which we

can obtain the entropy production as

σ̇ = −
∑
α=h,c

Jα
Tα
−→ σ̇ = −Jh

Th
− Jc
Tc

= (xh − xc)I. (2.26)

Using the defined thermodynamic forces and equations 2.20 and 2.21 we can redefine the

expressions 2.15 and 2.16 for the efficiency and COP of both, engines and refrigeratos as

η = 1− ωc
ωh

= 1− xcTc
xhTh

= 1− xc(1− ηC)��Th

xh��Th
→ η = 1− (1− ηC)

xc
xh

(2.27)

ε =
ωc

ωh − ωc
=

xcTc
xhTh − xcTc

=
1

xhTh
xcTc
− 1

=
1

��Thxh
xc��

ThεC
1+εC

− 1
→ ε =

εC
(1 + εC)xh

xc
− εC

.(2.28)

We note that for a thermal engine the power has to be P < 0. Using the definition of power

in terms of the fluxes, it must be satisfy that for engines I < 0 which according to equation

2.13 implies that xc > xh. A similar reasoning and taking into account that Jc > 0, it must

be satisfied for refrigerators that I > 0 and according to equation 2.14 xc < xh. In the case

which xc = xh the flux I is zero. This operations region are shown in Figure 2.3.

Using this conditions, we see the that the second law of thermodynamics is never violated

because always the condition σ̇ > 0 is fulfill.

2.2.2 Optimal Cooling Rate and Power Output

In this section we are going to introduce the optimization of the problem related to the

efficiency at maximun cooling rate in terms of the cold thermodynamic force xc. Here we

reproduce the study done in [17].
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Figure 2.3: Schematic depction of the heat currents and the window’s operation of the
device for Tc = 4, Th = 9 (in arbitrary units),γc = γh and dc = dh = 3 . The optimal
cold thermodynamic force for maximum cooling rate xRc and for maximum power output xEc
are shown for fixed value f hot thermodynamic force xh = 1. In the blue region the device
operates as a refrigerator while in the green region behaves as an engine.

Starting from equation 2.22 for the cooling rate, we obtain the optimal xc for a refrigerator

(
∂Jc
∂xc

)xc=xRc = I + xc(
∂I

∂xc
)xc=xRc = 0 (2.29)

and for the output power in form of 2.23, we obtain the optimal xc for a engine.

(
∂P

∂xc
)xc=xEc = −(1− ηC)I + (xh − (1− ηC)xc)(

∂I

∂xc
)xc=xEc = 0. (2.30)

From both equations we obtain a solution x
(R,E)
c (xh), where R,E refer to a refrigerator and

engines, respectively. These are transcendental equations, so the solution cannot be obtain

analytically, but giving some numerical values we can obtain a graphic representation and

see the form of this solutions in Fig. 2.4

The two function are monotonically increasing but we realize that in the case of refrigerators,

for equals physical dimensionality of the baths dc = dh = d, the optimal cooling force

11



Figure 2.4: Optimal cold thermodynamic force xRc and xEc as a function of hot force xh for
Tc = 4, Th = 9 (in arbitrary units),γc = γh and dc = dh = 1 (blue), 2(green), and 3 (red)

saturates to a fixed value and we gonna prove this in detail. For large xh the flux I (2.18)

in terms of the thermodynamics forces is given by

I(xh −→∞) =
γc
T dc

xdc
1− exc

. (2.31)

We introduce this expression in 2.29 and we obtain

T−dhc γc(dhx
dh
c (−exc + 1) + xdhc (−exc + 1) + xdh+1

c exc)

(−exc + 1)2
= 0

(d+ 1)(1− exc) + xce
xc = 0

d+ 1− (d+ 1)exc + xce
xc = 0 −→ (d+ 1− xc)exc = d+ 1. (2.32)

and doing the next change of variables u = −(d+ 1− xc)

−ued+1+u = d+ 1 −→ ueu = −(d+ 1)e−(d+1).

This is the form of the Lambert function (https://www.wolframalpha.com/input/?i=

lambert+w+function ), so

u = W [−(d+ 1)e−(d+1].

12
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Undoing the change we obtain that the optimal xRc and cooling rate saturate to the fixed

values

xRc (xh −→∞) = d+ 1 +W ((−d− 1)e−d−1)) (2.33)

JRc ((xh −→∞)) =
γc
T d−1
c

xRc (xh −→∞)d+1

1− exRc (xh−→∞)
. (2.34)

For example, in the case of d = 3 and Tc = 4 the optimal cooling force saturates to the

value xRc = 4 (Fig. 2.4)

2.2.3 Performance in the regime of small forces

In this subsection, we are gonna to forget of our three level maser and develop a common

model of endoreversible device with heat currents and power given by 2.19. We are going

to study the machine in the case of small thermodynamic forces. To do that we expand the

optimal value xR,Ec in power series of xh

x(R,E)
c = C

(R,E)
1 xh + C

(R,E)
2 x2

h + · · · . (2.35)

For small xh we can use a linear approximation such that x
(R,E)
c ≈ C

(R,E)
1 xh. However we

have to do different considerations for the coefficient C
(R,E)
1 .

For refrigerators we obtain that xc < xh (2.14) so the coefficient CR
1 , that will be a function

of all the parameters of the problem, will satisfy

CR
1 (Th, εC ,Γc,Γh, · · · ) 6 1. (2.36)

In terms of this coefficient we can rewrite the optimal COP, expression (2.28), at maximum

cooling rate as

εR =
εC

(1 + εC) 1
CR1
− εC

=
CR

1 εC
(1− CR

1 )εC + 1
. (2.37)

For engines we obtain that xc > xh (2.13) so the coefficient CE
1 that will be a function of all

the parameters problem will satisfy

CE
1 (Th, εC ,Γc,Γh, · · · ) > 1. (2.38)

13



In terms of this coefficient we can rewrite the optimal efficiency expression (2.27) as

ηE = 1− (1− ηC)CE
1 . (2.39)

To obtain the coefficients C
(R,E)
1 we perform a Taylor expansion of the current I, with the

form

I(xc, xh) =
∑
i=c,h

Ii(0, 0)xi +
1

2!

∑
i,j=c,h

Iij(0, 0)xixj +
1

3!

∑
i,j,k=c,h

Iijk(0, 0)xixjxk + · · · . (2.40)

2.2.4 Linear term

For small thermodynamic forces we can assume that the first nonzero term in the Taylor

expansion (2.40) is the linear term and because I(xh = xc) = 0 the current can be written

as

I ≈ I0(xh − xc). (2.41)

Introducing this expression in equation 2.29 we can obtain the coefficient CR
1 because

I0(xh − xRc )− I0x
R
c = 0 −→ xh − 2xRc = 0 −→ xRc =

1

2
xh

so

CR
1 =

1

2
. (2.42)

On the other hand, introducing 2.41 in 2.30 we can obtain the coefficient CE
1

−(1− ηC)I0(xh − xEc )− I0(xh − (1− ηC)xEc ) = 0

2(1− ηC)xEc − (2− ηC)xh = 0

xEc =
2− ηc

2(1− ηC)
xh (2.43)

and therefore

CE
1 =

2− ηc
2(1− ηC)

. (2.44)
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Introducing this expressions of the coefficients in equations 2.37 and 2.39 we obtain the

normalized COP, efficiency at maximum cooling rate and output power, respectively as

εR =
1
2
εC

(1− 1
2
)εC + 1

−→ εR

εC
=

1

2 + εC
(2.45)

ηE = 1− (1− ηC)
2− ηc

2(1− ηC)
−→ ηE

ηC
=

1

2
. (2.46)

With expression 2.46 we are showing the universality of efficiency in the case of linear

response.

2.2.5 Higher orders

If the linear terms is zero, we have to go to higher orders in the expansion 2.40, assuming

the particular form

I = I0x
d−1
c (xh − xc) (2.47)

where d is model parameter. We can see that if d = 1 the linear case is recovered. Doing

the same protocol as before we can obtain CR,E
1 .

Introducing 2.47 in equation 2.29 we can obtain the coefficient CR
1

I0x
Rd−1

c (xh − xRc ) + xRc I0[(d− 1)xR
d−2

c xh − dxR
d−1

c ] = 0

I0x
Rd−1

c [(xh − xRc + xRc ((d− 1)xR
−1

c xh − d)] = 0dxh − (1 + d)xRc = 0

xRc =
d

d+ 1
xh

so

CR
1 =

d

d+ 1
. (2.48)
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Introducing 2.47 in equation 2.30 we can obtain the coefficient CE
1

−(1− ηC)I0x
d−1
c (xh − xc) + I0x

d−2
c [(d− 1)xh − dxc][xh − (1− ηC)xc] = 0

Taking out common factor of I0x
d−2
c

−(1−ηC)xhxc+(1−ηC)x2
c+(d−1)x2

h−d(1−ηC)xhxc+(1−ηC)xhxc−dxhxc+d(1−ηC)x2
c = 0

(1− ηC)(d+ 1)(xEc )2 + (ηC − 2)dxhx
E
c + (d− 1)x2

h = 0

Removing equal terms and regrouping terms we obtain the quadratic equation in the variable

xEc

(1− ηC)(d+ 1)(xEc )2 + (ηC − 2)dxhx
E
c + (d− 1)x2

h = 0

xEc =
−(ηC − 2)dxh ±

√
(ηC − 2)2d2x2

h − 4(1− ηC)(d+ 1)(d− 1)x2
h

2(1− ηC)(d+ 1)

xEc =
(2− ηC)d±

√
d2η2

C −����4ηCd
2 +��4d2 −��4d2 + 4 +����4ηCd

2 − 4ηC
2(1− ηC)(d+ 1)

xh

so we obtain two solutions for the coefficient CE
1

CE±

1 =
(2− ηC)d±

√
d2η2

C − 4ηC + 4

2(1− ηC)(d+ 1)
.

Only one solution is valid. To check the correct one we are going to plot both for d = 1, 2

(Fig. 2.5) and see which of them satisfy the condition 2.38

We can see that the one satisfy the condition 2.38 is

CE
1 =

(2− ηC)d+
√
d2η2

C − 4ηC + 4

2(1− ηC)(d+ 1)
. (2.49)
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Figure 2.5: Plot of the two solutions for the coefficients CE
1 . This figure shows that only

the positive solution satisfy condition 2.28

As before, introducing this coefficient in 2.37 and 2.39 we obtain the normalized COP,

efficiency for maximum cooling rate and output power, respectively

εR =
d
d+1

εC

(1− d
d+1

)εC + 1
−→ εR

εC
=

1
d+1

d
1
d+1

[(d+ 1− d)εC ] + d+ 1
−→ εR

εC
=

d

d+ 1 + εC
(2.50)

ηE = 1− (1− ηC)
(2− ηC)d+

√
d2η2

C − 4ηC + 4

2(1− ηC)(d+ 1)
−→ ηE

ηC
=

2 + dηC −
√
d2η2

C − 4ηC + 4

2(d+ 1)ηC
. (2.51)

We are going to check that always, in the limit of vanishing ηC , the optimal efficiency ηE

saturates to the fixed value ηC/2, that is the linear term in the expansion of Curzon-Ahlborn

efficiency ηCA (2.10)

lim
ηC→0

ηE

ηC
=

0

0
= lim

ηC→0

(2 + dηC)2 − (d2η2
C − 4ηC + 4)

2(d+ 1)ηC (2 + dηC +
√
d2η2

C + 4ηC + 4)

lim
ηC→0

ηE

ηC
= lim

ηC→0

2

(2 + dηC +
√
d2η2

C + 4ηC + 4)
=

1

2
. (2.52)
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Figure 2.6: Normalized optimal performance (solid line) for three level maser as a refriger-
ator (left) and as engine (right) vs the results of 2.50 and 2.51 (dashed-line).The parameters
used are xh = 0.2, Th = 9 (in arbitrary units),γc = γh and dc = dh = d = 1 (blue), 2(green),
and 3 (red)

So we can see that for any order in the limit of vanishing carnot efficiency ηE −→ ηC/2.

This interesting result does not occur for COP. We can see in the next equation that the

normalized COP saturates at different values for higher order.

lim
εC→0

εR

εC
=

d

d+ 1
. (2.53)

This results are shown graphically in the next picture (2.6) and we can see also, that they

are good approximation for the normalized efficiencies of our thermal machine.

2.2.6 Example: The Three-Level Maser in the Regime of High
Temperatures

Now we go back to our system of interest: the three level maser. In terms of the thermody-

namic forces the flux I (2.18) is given by

I =
ΓhΓc(e

−xc − e−xh)

Γh(1 + 2e−xh) + Γc(1 + 2e−xc)
. (2.54)

We are going to study what happens with this flux in the regime of high temperatures, i.e,

xc, xh � 1. We know that for x � 1 e−x ≈ 1 − x and ex ≈ 1 + x, so considering this, we

can rewrite the flux I
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I ≈ ΓhΓc(1− xc − 1 + xh)

Γh(3− 2xh) + Γc(3− 2xc)
.

and for x� 1,

I ≈ ΓhΓc(xh − xc)
3(Γh + Γc)

−→ I ≈ Γc(xh − xc)
3(1 + Γc

Γh
)
, (2.55)

where the rates Γα in terms of the thermodynamic forces are given by

Γα = γαx
dα
α T

dα
α (

exα

exα − 1
). (2.56)

If we do a Taylor expansion of the last factor using

exα

exα − 1
=

1

1− e−xα
=

1

xα
+

1

2
+ · · ·+O(x6

α)

it follows that

Γα = γαx
dα−1
α T dαα .

The quotient between the rates for the cold and hot bath results to be

Γc
Γh

=
γcx

dc−1
c T dcc

γhx
dh−1
h T dhh

(2.57)

and using eq. 2.21, eq. 2.57 can be written as

Γc
Γh

=
γcx

dc−1
c

γhx
dh−1
h

T dc−dhh (
εC

1 + εC
)dc . (2.58)

We can neglect this quotient in three ways: (a) in the limit of vanishing Carnot COP,

εC � 1, (b)dh = dc = 1 or (c)γh � γh. Whichever, eq.2.54 can be written as

I ∝ xdc−1
c (xh − xc) (2.59)

which corresponds to eq. 2.47 and hence, to the results 2.50 and 2.51
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Chapter 3

Open quantum systems

In general quantum systems are not isolated but are associated with an environment. We

say in that way that quantum systems are open. An example of this are the atoms that

are coupled to an electromagnetic field (EM). The EM causes spontaneous emission and

absorption of photons.

Figure 3.1: Schematic picture of an open quantum system

We consider a system S coupled to an external environment B and the interaction between

them (Figure 3.1), The dynamics of the whole systems is described in a composite Hilbert

space, i.e, HS ⊗HB. The Hamiltonian of our open quantum system is

HT = HS +HB +HI . (3.1)

The dynamics of the total system is described by the Schrödinger equation (3.3). However,
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as usually in this kind of systems, we are interested only in the properties and dynamics

of the system S. These are described by the reduced density matrix ρs(t), which we obtain

applying the trace over the baths degrees of freedom on the total density matrix of the entire

system ρ(t), therefore

ρs = TrBρ. (3.2)

We are going to study in this chapter the dynamics of the reduce system. To do that we

are going to make several approximations and considerations that will lead us to a so called

master equation of the system. To make the derivation, we will follow the reference par

excellence of theory of open quantum systems [11]. Later, in next chapter, we are going to

apply this master equation to a particular case.

3.1 Review: Closed quantum systems

The time-development of the quantum state |ψ(t)〉 of a system with Hamiltonian H(t) is

,using natural units (~ = 1) governed by the well known Schrödinger equation

i
d

dt
|ψ(t)〉 = H(t) |ψ(t)〉 . (3.3)

So we have a linear system and its evolution is completely determined by the initial state

|ψ(0)〉. In this way, at time t the state of the system is characterized by

|ψ(t)〉 = U(t, t0) |ψ(0)〉 (3.4)

where U(t, t0) is the unitary evolution operator or also called quantum propagator. Intro-

ducing this expression in 3.3 and deriving, we obtain that the general form of this operator

is

U(t, t0) = T exp [−i
∫ t

to

H(τ)], (3.5)

with T the time order operator. If the system is in a mixed state ρ(t), the evolution of the

density matrix is completely determined by the initial density matrix ρ(t0), according to

ρ(t) = U(t, t0)ρ(t0)U †(t, t0). (3.6)
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The evolution of ρ(t) is ruled by the Liouville von Neumann equation:

dρ(t)

dt
= L(t)ρ(t) (3.7)

where the L is the Liouville operator and L(t)ρ(t) = −i
[
H(t), ρ(t)

]
.

In the Heisenberg picture the states does not depend on time but operators do. So we have

the unitary operator to characterize how the operators evolves in time. In this picture, we

use the index H for operator, in such manner that

AH(t) = U †(t, t0)A(t)U(t, t0), (3.8)

and its evolution is determined by the next equation

i
dAH(t)

dt
= [HH , AH(t)] +

∂AH(t)

∂t
. (3.9)

There exist a hybrid picture between the Schrörinder and Heisenberg picture. This repre-

sentation is very useful for the cases where the hamiltonian has the following form

H(t) = H0 + V (t) ; H0 = HS +HB (3.10)

where H0 can be, also, a function of time and V (t) describes the interaction between the

two systems, in our case, between the system and the bath.

The operators evolves through U0(t, t0) according to

AI(t) = U †0(t, t0)A(t)U0(t, t0). (3.11)

The hamiltonian that governs the evolution of the system in this picture is VI(t) and is

defined by

VI(t) = U †0(t, t0)V (t)U0(t, t0). (3.12)

Also, the evolution operator in the interaction picture is UI(t, t0) = U0(t, t0)U(t, t0)

The Von Neumann equation in this representation is given by

d

dt
ρI(t) = −i[VI(t), ρI(t)]. (3.13)
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In integral form we have

ρI(t) = ρI(t0)− i
∫ t

t0

dτ [VI(τ), ρI(τ)]. (3.14)

3.2 Dynamical semigroups

Once we have reviewed how the dynamics of closed quantum system works, we move to our

object of interest, open quantum systems.

Using equation 3.2 and 3.6 we can write for the density matrix of the system

ρs(t) = TrB{U(t, t0)ρS(t0)⊗ ρB(t0)U †(t, t0)}. (3.15)

Where we have assumed the fact that the initial state of the entire system is in an uncor-

related state, i.e, ρ(t0) = ρS(t0) ⊗ ρB(t0). While the evolution of a closed quantum system

is described by an unitary operator (3.4), using the previous condition and for fixed t and

given ρB, for example, a thermal state of the environment, one can described the evolution

of the reduced system as the application of a dynamical map [11] over the initial state.

Therefore,

ρs(t) = Φ(t, t0)ρs(t0). (3.16)

This assumption that we have done, in general, is not always true, and for initially correlated

states several relevant consequences appear [33, 34].

We can obtain formally two exact equations of the reduced system’s dynamics, one is eq.

3.16 and the second one, by taking partial trace over the Liouville von Neumman equation

(3.7), accordingly

dρS(t)

dt
= −iT rB[H(t), ρ(t)]. (3.17)

However, we don’t know the form of the dynamical map, so the problem is still unsolved. It

is possible to obtain a more explicit form of the dynamical semigroup in the so called weak
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coupling regime between the system and the environment (see figure 3.2). In this regime the

enviroment recovers fast from the interaction with the system which evolves slowly. This

condition allow us to neglect memory effects and to treat the evolution of the reduced system

as Markovian [11, 33]. So, under this approximation, the dynamical map has the form of

a contractive dynamical semigruoup [35]. Mathematically, the dynamical map satisfies the

semigroup property

Φ(t+ s) = Φ(t)Φ(s) ; t, s > 0. (3.18)

Let us mention, that this property allows us to give meaning to irreversible dynamics in a

large class of of systems [11].

3.3 Microscopic derivation of Markovian Master Equa-

tion

Under a few conditions [11] it is possible to write the quantum dynamical semigroup in

exponential form

Φ(t) = eLt. (3.19)

where L is a linear map that acts as the generator of the semigroup. This equation leads,

using eq. 3.16, to the Markovian quantum master equation:

d

dt
ρs(t) = Lρs(t). (3.20)

In this section we are going to obtain the superoperator L in the Gorini-Kossakowski-

Lindblad-Sudarshan (GKLS) form [12, 13].

To do that we are going to perform a detailed derivation from a microscopic model [11], in

the case that exist weak coupling between the system and the thermal baths (3.1).

We start by working in the interaction picture and omitting the index I for the density

matrix, we can obtain the following evolution equation inserting 3.14 in 3.13 and assuming
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Figure 3.2: Schematic picture of an open quantum system in the weak coupling limit

that t0 = 0
d

dt
ρ(t) = −i[VI(t), ρ(0)]−

∫ t

0

dτ [VI(t), [VI(τ), ρ(τ)]]. (3.21)

To obtain the reduce density ρs(t), we have to apply the partial trace over the bath’s degrees

of freedom in the previous equation

d

dt
ρs(t) = −iT rB[VI(t), ρ(0)]−

∫ t

0

dτTrB[VI(t), [VI(τ), ρ(τ)]]. (3.22)

We have to assume that

TrB[VI(t), ρ(0)] = 0. (3.23)

Later we will underline that. So

d

dt
ρs(t) = −

∫ t

0

dτTrB[VI(t), [VI(τ), ρ(τ)]]. (3.24)

We have not yet perform any approximation, so this equation contains the same information

than eq. 3.17.

The objective is to eliminate ρ(t) in the previous equation. To achieve that, we apply the

Born aproximation or weak coupling approximation that consist in assume that at time t

the states of the system S and the bath B are still uncorrelated due to the fact that the

environment recovers faster from the interaction while the system evolves slowly. Whereby,

ρ(t) ≈ ρS(t)⊗ ρB. (3.25)
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Hence, inserting this tensor product in equation in eq. 3.24, we obtain

d

dt
ps(t) = −

∫ t

0

dτTrB[VI(t), [VI(τ), ρs(τ)⊗ ρB]]. (3.26)

We have to do more approximations to obtain the quantum master equation. First we realise

that the evolution of the system is not local in time, but depends on its past value due to

the integration over ρs(τ). So we have to do a Markov approximation and replace ρS(τ) by

ρS(t) makin eq. 3.26 time-local.

d

dt
ρs(t) = −

∫ t

0

dτTrB[VI(t), [VI(τ), ρs(t)⊗ ρB]]. (3.27)

The last expression is known as Redlfield equation. This equation is local in time but is not

Markovian because still depends on the initial condition ρ(0). To obtain a fully Markovian

evolution we have to do what is known as Born-Markov approximation.

This consists in replacing τ −→ t − τ considering that the bath’s time correlation, τB is

smaller than the relaxation time of the system τR and the internal dynamics time τ . In

other words, τB � τR and τB � τ . So, this allow us to establish the upper limit in t = ∞

and obtain the Markovian quantum master equation:

d

dt
ρs(t) = −

∫ ∞
0

dτTrB[VI(t), [VI(t− τ), ρs(t)⊗ ρB]]. (3.28)

However, this equation not ensure the definition of the superoperator L of the dynamical

semigroup in the GKLS form. To bring this result we have to do an approximation known

as secular approximation or rotating wave approximation (RWA). Before that, we have to

give some definitions.

In the Schrödinger picture, generally, the interaction hamiltonian between the system and

the bath has the following form

HI =
∑
α

Sα ⊗Bα. (3.29)

To continue with the derivation it should be convenient write the fourier representation of

de system operators S(t), and for this is necessary suppose that HS has a discret spectrum.
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Defining HS in his spectral values, and taking into account that ε are his eigenvalues and

Π(ε) the projections in the eigenspace associated to the eigenvalue ε

HS =
∑
ε

ε |ε〉 〈ε| . (3.30)

Thereby, with the condition that the energy differences of two states ε − ε′ coincide with

with the Bohr frequency of the system (ε− ε′ = ω)

Sα(ω) =
∑
εε′

Π(ε)SαΠ(ε′) =
∑
εε′

|ε〉 〈ε|Sα |ε′〉 〈ε′| . (3.31)

We can prove that Sα(ω) and S†α(ω) are eigenoperators of HS applying the following com-

mutator

[HS, Sα(ω)] =
∑
ε′′

∑
εε′

ε′′ |ε′′〉 〈ε′′|ε〉Sαεε′ 〈ε
′| −

∑
εε′

∑
ε′′

ε′′ |ε〉Sαεε′ 〈ε
′|ε′′〉 〈ε′′|

=
∑
ε′′

∑
εε′

ε′′ |ε′′〉 δε′′εSαεε′ 〈ε
′| −

∑
εε′

∑
ε′′

ε′′ |ε〉Sαεε′δε′ε′′ 〈ε
′′|

=
∑
εε′

ε |ε〉Sαεε′ 〈ε
′| −

∑
εε′

ε′ |ε〉Sαεε′ε′ 〈ε
′′| = (ε− ε′)Sα(ω). (3.32)

Applying the same procedure for S†α(ω) we have the following expressions

[HS, Sα(ω)] = −ωSα(ω) [HS, S
†
α(ω)] = +ωS†α(ω) (3.33)

with the condition

S†α(ω) = Sα(−ω). (3.34)

Defining the corresponding operators in the interaction picture using equation 3.11 and

taking into account that HB only acts on the enviroment’s Hilbert space, we can sum over

all possible energy differences and obtain the wanted representation of the system operator

S

S(t) =
∑
ω

US(t)Sα(ω)U †S(t) =
∑
ω

eiHStSα(ω)e−iHSt =
∑
ω

∑
εε′

eiHSt |ε〉Sαεε′ 〈ε
′| e−iHSt

=
∑
ω

∑
εε′

eiεt |ε〉Sαεε′ 〈ε
′| e−iε′t −→ Sα(t) =

∑
ω

Sα(ω)e−iωt. (3.35)
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The fact that having introduced this spectral form allow us to define the interaction hamil-

tonian in the interaction picture (3.12) as

VI(t) =
∑
α

Sα(t)Bα(t) =
∑
ω,α

Sα(ω)Bα(t)e−iωt =
∑
ω,α

S†α(ω)B†α(t)†eiωt (3.36)

where Bα(t) = eiHBtBαe
iHBt are the bath operators en the interaction picture. This previous

definition and the condition of ρB is a stationary state of HB proves the assumption 3.23

because

〈Bα(t)〉 = 0. (3.37)

Going back to the evolution equation of the reduced system (3.28), we develope the com-

mutator of the integrand as[
VI(t), [VI(t− τ), ρs(t)⊗ ρB]

]
= [VI(t), (VI(t− τ)ρs(t)ρB − ρs(t)ρBVI(t− τ))]

= VI(t)VI(t− τ)ρs(t)ρB − VI(t− τ)ρs(t)ρBVI(t)− VI(t)ρs(t)ρBVI(t− τ)) + ρs(t)ρBVI(t− τ)VI(t)

= −[VI(t− τ)ρs(t)ρBVI(t)− VI(t)VI(t− τ)ρs(t)ρB] + h.c. (3.38)

Introducing this expression in 3.28 we obtain

d

dt
ρs(t) =

∫ ∞
0

dτ TrB{VI(t− τ)ρs(t)ρBVI(t)− VI(t)VI(t− τ)ρs(t)ρB}+ h.c. (3.39)

Then if we introduce the form 3.36 of VI and taking into account the lineal property of the

trace
(
Tr(A+B) = TrA+ TrB

)
d

dt
ρs(t) =

∫ ∞
0

dτTrB{VI(t− τ)ρs(t)ρBVI(t)} −
∫ ∞

0

dτtrB{VI(t)VI(t− τ)ρs(t)ρB}+ h.c

d

dt
ρs(t) =

∫ ∞
0

dτTrB{
∑
ω,β

Sβ(ω)Bβ(t− τ)e−iω(t−τ)ρs(t)ρB
∑
ω′,α

S†α(ω′)B†α(t)†eiω
′t}

−
∫ ∞

0

dτTrB{
∑
ω′,α

S†α(ω′)B†α(t)†eiω
′t
∑
ω,β

Sβ(ω)Bβ(t− τ)e−iω(t−τ)ρs(t)ρB}+ h.c
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d

dt
ρs(t) =

∫ ∞
0

dτ
∑
ω,ω′

∑
α,β

ei(ω−ω
′)tSβ(ω)ρs(t)S

†
α(ω′)eiωτTrB{Bβ(t− τ)ρBB

†
α(t)}

−
∫ ∞

0

dτ
∑
ω,ω′

∑
α,β

ei(ω−ω
′)tS†α(ω′)Sβ(ω)ρs(t)e

iωτ trB{B†α(t)Bβ(t− τ)ρB}+ h.c. (3.40)

The trace has a cycle property
(
TrABC = TrCAB

)
and due to the definition of the

mean value of an operator for a mixed state we can define the bath or reservoir correlation

functions

TrB{B†α(t)Bβ(t− τ)ρB} = 〈B†α(t)Bβ(t− τ)〉. (3.41)

So in this case, we have that

d

dt
ρs(t) =

∑
ω,ω′

∑
αβ

ei(ω−ω
′)tCαβ(ω, t)

(
Sβ(ω)ρs(t)S

†
α(ω′)− S†α(ω′)Sβ(ω)ρs(t)

)
+ h.c (3.42)

where σαβ(ω, t) is the one side Fourier-transform

Cαβ(ω, t) =

∫ ∞
0

dτeiωτ 〈B†α(t)Bβ(t− τ)〉. (3.43)

In principle, this function depends on time but with the supposition that ρB is a stationary

state of HB, it can be proved ([36]) that the reservoir correlation functions are homogeneous

in time, thus it, only depends on the time differences. In this way, the one side Fourier-

transform becomes time-independent

Cαβ(ω) =

∫ ∞
0

dτeiωτ 〈B†α(τ)Bβ(0)〉. (3.44)

Now, we have to do a secular approximation or rotating wave approximation. Defining the

evolution time of the system τS like 1/|ω − ω′| and assuming that this time is much larger

than the relaxation time τR of the system, the terms with ω 6= ω′ are going to oscillate to

fast respect τS,so, it can be neglected. In this way,

d

dt
ρs(t) =

∑
ω

∑
α,β

Cαβ(ω)
(
Sβ(ω)ρs(t)S

†
α(ω)− S†α(ω)Sβ(ω)ρs(t)

)
+ h.c (3.45)
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and including the hermitian conjugate we obtain

d

dt
ρs(t) =

∑
ω

∑
α,β

Cαβ(ω)
(
Sβ(ω)ρs(t)S

†
α(ω)− S†α(ω)Sβ(ω)ρs(t)

)
+

∑
ω

∑
α,β

C∗αβ(ω)
(
Sα(ω)ρs(t)S

†
β(ω)− ρs(t)S†β(ω)Sα(ω)

)
. (3.46)

Defining Cαβ(ω) [36] in a real and imaginary part

Cαβ(ω) =
1

2
Γαβ(ω) + iναβ(ω) (3.47)

where

Γαβ(ω) = Cαβ(ω) + C∗αβ(ω) ναβ(ω) =
1

2i
(Cαβ(ω)− C∗αβ(ω)) (3.48)

we have for eq. 3.46

d

dt
ρs(t) =

∑
ω

∑
α,β

Cαβ(ω)Sβ(ω)ρs(t)S
†
α(ω) +

∑
ω

∑
α,β

C∗αβ(ω)Sα(ω)ρs(t)S
†
β(ω)

−
∑
ω

∑
α,β

Cαβ(ω)S†α(ω)Sβ(ω)ρs(t)−
∑
ω

∑
α,β

C∗αβ(ω)ρs(t)S
†
β(ω)Sα(ω)). (3.49)

If we interchange the indexes α, β in the second and last summands

d

dt
ρs(t) =

∑
ω

∑
α,β

Cαβ(ω)Sβ(ω)ρs(t)S
†
α(ω) +

∑
ω

∑
α,β

C∗βα(ω)Sβ(ω)ρs(t)S
†
α(ω)

−
∑
ω

∑
α,β

Cαβ(ω)S†α(ω)Sβ(ω)ρs(t)−
∑
ω

∑
α,β

C∗βα(ω)ρs(t)S
†
α(ω)Sβ(ω)). (3.50)

Now we use the definitions 3.47 and 3.48

d

dt
ρs(t) =

∑
ω

∑
α,β

(
Cαβ(ω) + C∗βα(ω)

)
Sβ(ω)ρs(t)S

†
α(ω)

−
∑

ω

∑
α,β

(
1
2
Γαβ(ω) + iναβ(ω)

)
S†α(ω)Sβ(ω)ρs(t)

−
∑

ω

∑
α,β

(
1
2
Γ∗βα(ω) + iν∗βα(ω)

)
ρs(t)S

†
α(ω)Sβ(ω)). (3.51)
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It can be proved that Γαβ = Γ∗βα and ναβ = ν∗βα [36], so

d

dt
ρs(t) =

∑
ω

∑
α,β

Γαβ(ω)Sβ(ω)ρs(t)S
†
α(ω)− 1

2

∑
ω

∑
α,β

Γαβ(ω)S†α(ω)Sβ(ω)ρs(t)

− 1

2

∑
ω

∑
α,β

Γαβ(ω)ρs(t)S
†
α(ω)Sβ(ω)− i

∑
ω

∑
α,β

ναβ(ω)S†α(ω)Sβ(ω)ρs(t)

+ i
∑
ω

∑
α,β

ναβ(ω)ρs(t)S
†
α(ω)Sβ(ω). (3.52)

Taking into account the definition of the anticommutator between two operator A and B

(
{
A,B

}
= AB +BA), 3.52 can be written

d

dt
ρs(t) =

∑
ω

∑
α,β

Γαβ(ω)Sβ(ω)ρs(t)S
†
α(ω)− 1

2

∑
ω

∑
α,β

Γαβ(ω)
{
S†α(ω)Sβ(ω), ρs(t)

}
− i

∑
ω

∑
α,β

ναβ(ω)S†α(ω)Sβ(ω)ρs(t) + i
∑
ω

∑
α,β

ναβ(ω)ρs(t)S
†
α(ω)Sβ(ω). (3.53)

and defining HLS =
∑

ω

∑
α,β ναβ(ω)S†α(ω)Sβ(ω), the master equation in interaction picture

can be written as

d

dt
ρs(t) = −i

[
HLS, ρs

]
+
∑
ω

∑
α,β

Γαβ(ω)
(
Sβ(ω)ρs(t)S

†
α(ω)− 1

2

{
S†α(ω)Sβ(ω), ρs(t)

})
. (3.54)

The term associated to HLS takes into account Lamb Shift which produces a correction (or

splitting) in the energies of the system due to the coupling between system and environment.

This term includes oscillation in the dynamics of the system.

This last equation is the master equation in the interaction picture. Its form in the

Schöringer picture is obtained by adding the hamiltonian system HS to HLS, hence

d

dt
ρs(t) = −i

[
HS +HLS, ρs

]
+D

(
ρs(t)

)
= Lρs(t) (3.55)

where D is the dissipator of the system and is defined by

D
(
ρs(t)

)
=
∑
ω

∑
α,β

Γαβ(ω)
(
Sβ(ω)ρs(t)S

†
α(ω)− 1

2

{
S†α(ω)Sβ(ω), ρs(t)

})
. (3.56)
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This is not the GKLS form of the master equation. To obtain it, we have to diagonalize eq.

3.55. The matrix Γαβ is defined as [11]

Γαβ(ω) =

∫ ∞
−∞

dτeiωτ 〈B†α(τ)Bβ(0)〉. (3.57)

which is a positive quantity [11, 36]. This allow us to make a diagonalization and obtain

the GKLS master equation

d

dt
ρs(t) = −i

[
HS +HLS, ρs

]
+
∑
ω

∑
α

Γα(ω)
(
Sα(ω)ρs(t)S

†
α(ω)− 1

2

{
S†α(ω)Sα(ω), ρs(t)

})
. (3.58)

We will use in next chapter this equation to study a particular system, the quantum tricycle.
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Chapter 4

The quantum tricycle

We have studied in chapter 2 the optimization of an open system that acts as a QTM: The

three level maser. Once the theory of open system has been reviewed (ch.3), it seems logical

to proceed with the derivation of the steady heat currents (2.17) and the flux I (2.18) of

this system.

However, the resolution of the quantum master equation for the three level maser is not so

simple because this system is periodically driven by an external field and another consider-

ations has to be taken into account, in particular it is convenient to use the Floquet theory.

We are not going to study this in depth, we refer the reader to [28–30] for a well structured

and detailed discussion of the subject.

However, in order to bring an open quantum system which can be analyze with the theory

expose in previous chapter, we are going to study a similar one to the Three level maser:

The quantum tricycle [16].

4.1 The model

In the quantum tricycle (Fig. 4.1), the transition between the cold and hot levels that is

periodically driven by an external field in the three level maser, is coupled by a frequency

filter to another unstructured bosonic bath at temperature Tw (Tw > Th > Tc) which acts
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as the work bath. If Tw −→∞ no entropy is generated in the work bath, so the current Jw

is pure power P . In such conditions one can think that we are gonna recover the results of

the quantum amplifier but this is not true and we gonna prove that.

Figure 4.1: The quantum tricycle as a QHE. If we reverse the cycle we obtain a quantum
absorption refrigerator.

The total system’s Hamiltonian has the form of 3.1 and HS, HB and HI are respectively:

HS =
∑

i={g,c,h}

εi |i〉 〈i| (4.1)

HB =
∑

α={w,c,h}

∑
λ

ωλb
†
αλbαλ (4.2)

HI =
∑
α

Sα ⊗Bα (4.3)

where the system operators are the following thermal contact operators [32]

Sh = |g〉 〈h|+ |h〉 〈g| Sc = |g〉 〈c|+ |c〉 〈g| Sw = |c〉 〈h|+ |h〉 〈c| (4.4)

and the reservoir operators Bα are [32]

Bα =
∑
λ

√
γαωλ(bαλ + b†αλ) (4.5)

with the condition that the constants
√
γαωλ indicate the strength of the bath’s mode with

the transitions of the three level system to ensure flat spectral density J(ω) [11, 18, 32]
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4.2 Markovian master equation

We have obtained in the previous chapter that the evolution of the system density operator

of an open quantum system satisfy in the Schrödinger picture the next master equation

d

dt
ρs(t) = −i

[
HS +HLS, ρs

]
+
∑
ω

∑
α

Γα(ω)
(
Sα(ω)ρs(t)S

†
α(ω)− 1

2

{
S†α(ω)Sα(ω), ρs(t)

})
. (4.6)

If we neglect the Lamb Shift Hamiltonian as is usually in quantum optics because the oscil-

lations that included in the system are too small, the markovian master equation becomes

d

dt
ρs(t) = −i

[
HS, ρs

]
+
∑
ω

∑
α

Γα(ω)
(
Sα(ω)ρs(t)S

†
α(ω)− 1

2

{
S†α(ω)Sα(ω), ρs(t)

})
(4.7)

where we remember that Γα(ω) was the real part of the one side Fourier transform (eq.

3.57) and it can be prove [11] that for unstructured bosonic baths and flat spectral density

this transition rate is

Γα(ω) = γαω
dα
α [1 +N(ωα)]. (4.8)

Considering the properties of out system the set of possibles frequencies are

Λ = {±ωh,±ωc,±ωw = ±(ωh − ωc)} (4.9)

so we can separate the sum of 4.7 in two terms taking positives frequencies

d

dt
ρs(t) = −i

[
HS, ρs

]
+

∑
ω>0ωεΛ

∑
α=h,c,w

{
Γα(ω)

(
Sα(ω)ρs(t)S

†
α(ω)− 1

2

{
S†α(ω)Sα(ω), ρs(t)

})
+ Γα(−ω)

(
Sα(−ω)ρs(t)S

†
α(−ω)− 1

2

{
S†α(−ω)Sα(−ω), ρs(t)

})}
. (4.10)
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This equation can be rewritten as

d

dt
ρs(t) = −i

[
HS, ρs

]
+
∑

α=h,c,w

Dα
(
ρs(t)

)
(4.11)

where Dα
(
ρs(t)

)
are the dissipators of each bath.

Using equation 3.31 and the condition 3.34 we can obtain the spectral form of the system

operators (4.4). Hence

Sh(ω) = |g〉 〈h| S†h(ω) = |h〉 〈g|

Sc(ω) = |g〉 〈c| S†c(ω) = |c〉 〈g|

Sw(ω) = |c〉 〈h| S†w(ω) = |h〉 〈c| . (4.12)

With these definitions and eq. 4.10 we can obtain the form of the bath dissipators starting

with the dissipator of the hot bath.

Dh(ρs) =
∑

ω>0 Γh(ω)
(
Sh(ω)ρsS

†
h(ω)− 1

2

{
S†h(ω)Sh(ω), ρs

})
+
∑

ω>0 Γh(−ω)
(
Sh(−ω)ρsS

†
h(−ω)− 1

2

{
S†h(−ω)Sh(−ω), ρs

})
(4.13)

Dh(ρs) =
∑
ω>0

Γh(ω)
(
|g〉 〈h| ρs |h〉 〈g| −

1

2
(|h〉 〈g|g〉 〈h| ρs + ρs(|h〉 〈g|g〉 〈h|)

)
+
∑
ω>0

Γh(−ω)
(
|h〉 〈g| ρs |g〉 〈h| −

1

2
(|g〉 〈h|h〉 〈g| ρs + ρs |g〉 〈h|h〉 〈g|)

)
. (4.14)

Following the same procedure for the other dissipators, we obtain

Dh(ρs) = Γh(ωh)
(
ρhhs |g〉 〈g| −

1

2

{
|h〉 〈h| , ρs

})
+ Γh(−ωh)

(
ρggs |h〉 〈h| −

1

2

{
|g〉 〈g| , ρs

})
(4.15)

Dc(ρs) = γc(ωc)
(
ρccs |g〉 〈g| −

1

2

{
|c〉 〈c| , ρs

})
+ Γh(−ωc)

(
ρggs |c〉 〈c| −

1

2

{
|g〉 〈g| , ρs

})
(4.16)

Dw(ρs) = Γw(Ω)
(
ρhhs |c〉 〈c|−

1

2

{
|h〉 〈h| , ρs

})
+γw(−Ω)

(
ρccs |h〉 〈h|−

1

2

{
|c〉 〈c| , ρs

})
. (4.17)

Now, we are going to study the diagonal terms of the evolution master equation. First, for

all diagonal terms we have

〈ε| [Hs, ρs] |ε〉 = 〈ε|Hsρs |ε〉 − 〈ε| ρsHs |ε〉 = (ε− ε) 〈ε| ρs |ε〉 = 0. (4.18)
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Using the notation ρiis = ρis and equations 4.15, 4.16, 4.17 we will compute some relevant

expectation values of the bath dissipators in the three levels energy eigenbasis. First, we

obtain explicit ρ̇gs and then we apply the same procedure for the other terms.

• 〈g| ρ̇s |g〉 term:

We have that

〈g| Dh(ρs) |g〉 = Γh(ωh)
(
ρhs 〈g|g〉 〈g|g〉 −

1

2
(〈g|h〉 〈h| ρs |g〉+ 〈g| ρs |h〉 〈h|g〉)

)
+ Γh(−ωh)

(
ρgs 〈g|h〉 〈h|g〉 −

1

2
(〈g|g〉 〈g| ρs |g〉+ 〈g| ρs |g〉 〈g|g〉)

)
= Γh(ωh)ρ

h
s − Γh(−ωh)ρgs (4.19)

〈g| Dc(ρs) |g〉 = Γc(ωc)
(
ρcs 〈g|g〉 〈g|g〉 −

1

2
(〈g|c〉 〈c| ρs |g〉+ 〈g| ρs |c〉 〈c|g〉)

)
+ Γc(−ωc)

(
ρgs 〈g|c〉 〈c|g〉 −

1

2
(〈g|g〉 〈g| ρs |g〉+ 〈g| ρs |g〉 〈g|g〉)

)
= Γc(ωc)ρ

c
s − Γc(−ωc)ρgs (4.20)

and

〈g| Dw(ρs) |g〉 = 0. (4.21)

Hence, all the diagonal terms of the master equation are

〈g| ρ̇s |g〉 = −
(

Γc(−ωc) + Γh(−ωh)
)
ρgs + Γc(ωc)ρ

c
s + Γh(ωh)ρ

h
s

〈c| ρ̇s |c〉 = (Γc(−ωc)ρgs −
(

Γc(ωc) + Γw(−ωw)
)
ρcs + Γw(ωw)ρhs

〈h| ρ̇s |h〉 = Γh(−ωh)ρgs + Γw(ωw)ρcs −
(

Γh(ωh) + Γw(ωw)
)
ρhs . (4.22)

It’s important to note that in the previous equations the populations and coherences of the

system evolve separately. If we write the dynamics of the populations in matrix form it

follows that ρ̇gsρ̇cs
ρ̇hs

 =

−Γ−c − Γ−h Γ+
c Γ+

h

Γ−c −Γ+
c − Γ−w Γ+

w

Γ−h Γ−w −Γ+
h − Γ+

w

ρgsρcs
ρhs

 . (4.23)

Note that we are using the notation Γα(±ωα) = Γ±α
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4.3 The steady state

Now, we are going to study what happens when the system reaches a stationary state, i.e.

when

ρ̇s = 0 with Trρs = 1. (4.24)

Using the notation ρis = ρiss for the steady state, the heat currents are given by

Jα = Tr(HSDαρss). (4.25)

Another way to obtain this equations is study the quantum thermodynamic version of the

I-law. In general, if the system is coupled to different baths, the evolution of any system

operator can be written in terms of the GKSL Markovian generator, so

d

dt
Os = −i

[
HS, Os

]
+
∑
α

Dα
(
Os

)
+
∂Os

∂t
. (4.26)

If we replace Os by HS and take average of the previous expression

d

dt
〈Hs〉 =

∑
α

〈Dα
(
Hs

)
〉+ 〈∂Hs

∂t
〉. (4.27)

We know from statistical mechanics that 〈HS〉 correspond to the energy ES of the system

so
dES
dt

=
∑
α

〈Dα
(
Hs

)
〉+ 〈∂Hs

∂t
〉. (4.28)

Using the time derivative of the I-law of thermodynamics

dES
dt

=
∑
α

Jα + P (4.29)

We can extrapolate equation 4.29 to 4.28 and we obtain

Jα = 〈Dα
(
Hs

)
〉 and P = 〈∂Hs

∂t
〉. (4.30)
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In the tricycle, the Hamiltonian of the system HS does not depend on time, so P = 0 and

for the steady state the energy of the system is conserved, so there is no heat accumulated

in it. That means,
dES
dt

= 0 =⇒
∑
α

Jα = 0. (4.31)

The next stage is obtain the stationary heat currents as functions of the system populations

ρiss at the steady state. Using equation 4.25 and the equation for the diagonal terms (eq.

4.22) , the hot heat current is

Jh = 〈g|HSDh |g〉+ 〈c|HSDh |c〉+ 〈h|HSDh |h〉 = εg 〈g| Dh |g〉+ εc 〈c| Dh |c〉+ εh 〈h| Dh |h〉

= εg(Γ
+
h ρ

h
ss − Γ−h ρ

g
ss) + εh(−Γ+

h ρ
h
ss + Γ−h ρ

g
ss) = Γ−h ρ

g
ss(εh − εg)− Γ+

h ρ
h
ss(εh − εg) (4.32)

Applying the same method, all the heat currents are given in terms of the stationary state

populations as

Jh = ~ωh(Γ−h ρ
g
ss − Γ+

h ρ
h
ss)

Jc = ~ωc(Γ−c ρgss − Γ+
c ρ

c
ss)

Jh = ~ωw(Γ−wρ
c
ss − Γ+

wρ
h
ss) (4.33)

Now we have to obtain the steady state populations in terms of the rates Γα. Using the

condition 4.24 for the stationary state, equation 4.22 establish the following system

−
(

Γ−c + Γ−h

)
ρgss + Γ+

c ρ
c
ss + Γ+

h ρ
h
ss = 0

Γ−c ρ
g
ss −

(
Γ+
c + Γ−w

)
ρcss + Γ+

wρ
h
ss = 0

Γ−h ρ
g
ss + Γ+

wρ
c
ss −

(
Γ−h + Γ+

w

)
ρhss = 0 (4.34)

with the condition

ρgss + ρcss + ρhss = 1. (4.35)
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Solving this system leads to the next steady state populations

ρgss =
Γ+
h Γ−w + Γ+

c (Γ+
h + Γ+

w)

(Γ−h + Γ+
h )(Γ+

c + Γ−w) + (Γ+
c + Γ−h )Γ+

w + Γ−c (Γ+
h + Γ−w + Γ+

w)

ρcss =
Γ−h Γ+

w + Γ−c (Γ+
h + Γ+

w)

(Γ−h + Γ+
h )(Γ+

c + Γ−w) + (Γ+
c + Γ−h )Γ+

w + Γ−c (Γ+
h + Γ−w + Γ+

w)

ρhss =
Γ+
c Γ−h + (Γ−c + Γ−h )Γ−w

(Γ−h + Γ+
h )(Γ+

c + Γ−w) + (Γ+
c + Γ−h )Γ+

w + Γ−c (Γ+
h + Γ−w + Γ+

w)
. (4.36)

Using the Kubo-Martin-Schwinger(KMS) condition [11] for the transition rates Γα(ωα) =

e−ωα/TαΓα(−ωα) we can incorporate equations 4.36 in 4.33 and obtain that the steady heat

currents in natural units (~ = 1) are given in terms of a flux I by

Jc = ωcI

Jh = −ωhI

Jw = ωwI (4.37)

where the flux I for a quantum tricycle is

I =
ΓcΓhΓw(e−ωw/Twe−ωc/Tc − e−ωh/Th)

ΓhΓc
[
e−ωc/Tc + (1 + e−ωh/Th)(1 + e−ωc/Tc)

]
+ Γw(Γc + Γhe−ωh/Th) + ΓcΓwe−ωc/Tc(1 + e−ωw/Tw)

.(4.38)

Using equations 4.37 and the constrain ωw = ωh−ωc we can prove that the I-law is satisfied

Jc + Jh + Jw = (ωc − ωh + ωw)I = 0. (4.39)

As we can realize, this flux is different from the quantum three level maser. This is because

the maser is periodically driven by an external field and the work reservoir of our tricycle

vanish. To obtain 2.18 we have to apply another Floquet theory which is reviewed according

to our purposes in references[29, 30, 32, 36].

However, this chapter has been useful to apply the markovian master equation and obtain

the heat currents in the steady state for a quantum tricycle. This exercise is useful to gain
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understanding od the basic operation of thermal machines and the objects used to study

them. A more detail analysis of this system, similar to the realized in Chapter 2, has been

done in reference [19].
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Chapter 5

Conclusions

The challenge of obtaining an thermal machine optimized in terms of its output power

instead of its efficiency is one of our aims in this review. We have obtain the CA efficiency

and introduce endoreversible machines by doing a similar derivation to the one followed

in [25]. These result can be criticised [25] but, as discussed in reference [37], it is a good

approximation for the efficiencies of different power plants. Then we have focused on the

performance of one of the simplest model of quantum endoreversible thermal machine: the

Three-Level Maser. We have defined two thermodynamics forces associated with each bath

(hot and cold) and in contrast to other references as [26] , only one of them has been chosen

as our control parameter. In particular, the optimization has been performed on the values

of the cold thermodynamic force. Considering a generic model of endoreversible machine, we

have shown that for the normalized efficiency ηE/ηC , in the case of linear flux, the value 1/2

is reached, illustrating the universality of efficiency at maximum power for linear response

[26]. By comparison, we have showed that normalized COP εR/εC , saturates to 1/2 in

the case of vanishing COP. For higher orders of the flux, we have prove that normalized

efficiency ηE/ηC saturates to the fixed value 1/2 always in the case of vanishing ηC but

normalized COP saturates to different values. Nevertheless, additional assumptions about

irreversibility should be considered to perform more practical machines. These assumptions

and its effect has been studied in references [22, 37].
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The theory of open quantum systems is fundamental and necessary to give an introduc-

tion about quantum thermodynamics. Hence, we have proceed with the derivation of the

Markovian master equation in the weak coupling limit (WCL) following the seminal work

on theory of open quantum system [11]. Doing some approximations, Born-Markov approx-

imation and RWA, we have obtain the Markovian quantum master equation in the GKLS

form. We have follow the WCL but in [11] other limits are considered.

To end our work, we have considered convenient to study the Markovian master equation

for a specific system. There are several exactly solvable models [11, 38] but we have chosen

the three level system as working example [29, 30, 32, 36]. We have analyzed the quan-

tum tricycle with a three level system, also called quantum absorption refrigetator. In this

case we have used this system to illustrate some common methods used in Quantum Ther-

modynamics, in particular, the used of Markovian master equations. In particular, under

the Markovian assumption the GKLS equation is such that the populations and coherences

evolves separately. To finish we have moved to the study of the steady state of the system

and obtained the steady heat currents. In references [16, 19, 32] this and other models of

quantum absorption refrigerators has been extensively studied.

Through this work, we have tried to bring the reader an academic introduction to the

emerging field of Quantum Thermodynamics focusing on one of the subjects of interest, the

operation of quantum thermal machines. To achieve our aim we have made a bibliographic

review of different papers already mentioned. However, other works, see for instance [15],

give a more complete view, including many issues treated in Quantum Thermodynamics

and Quantum Information theory. We have not mentioned the Quantum Thermodynamics

version of the III-law [10] and its implication and we also have not treated the important

subject of the work fluctuation theorems [15].
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