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Abstract

The acute respiratory distress syndrome (ARDS) is an acute lung inflammatory process that
commonly develops as a consequence of severe infections, being sepsis its main cause of
development. Despite the fatality of the syndrome, there is a lack of specific therapeutic options and
effective prognostic methods for patients. Since many studies support the influence of genetic factors
and microbiome shifts in the origin and evolution of ARDS, here we have aimed to address its
pathophysiology using different genomic approaches. We have performed a genome-wide association
study in European patients with sepsis, revealing a novel gene associated with ARDS susceptibility.
Additionally, we have sequenced the bacterial DNA extracted from lung aspirates from a subset of the
individuals with sepsis, reporting the association of the reduction of bacterial diversity with intensive
care unit mortality during the first 8 h of sepsis diagnosis. Finally, the exploration of the genomic
variation of a recently admixed population has pointed out genomic regions related to the ethnicity
and harboring novel genes associated with response to infections and with the severe acute
respiratory syndrome, among many other traits. All these findings have allowed us to further
understand the pathogenesis of the syndrome and of main risk factors, as well as i) to propose VEGFR-
1 as a potential therapeutic target, ii) to suggest the bacterial diversity as an early prognostic biomarker
in critical patients, and iii) to lay the foundations for designing fine and admixture mapping studies in

Canary Islanders to identify novel risk genes for complex traits such as sepsis and ARDS.
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1. Introduction

1.1 Acute respiratory distress syndrome (ARDS)

The acute respiratory distress syndrome (ARDS) is an acute pulmonary inflammatory process that
commonly manifests as a response to severe infections, trauma, and several other factors. This
heterogeneous syndrome is caused by a direct or indirect insult to the alveolar-capillary barrier that
leads to an increased vascular permeability and the consequent formation of pulmonary edema
(Bernard et al. 1994). Clinically, patients with ARDS present severe hypoxemia, which is assessed by
means of the ratio of the partial pressure of oxygen in arterial blood (Pa0O;) and the fraction of inspired

oxygen (FiO,), as well as bilateral pulmonary infiltrates and decreased lung compliance (Villar 2011).

Since 1967, when ARDS was first described (Ashbaugh et al. 1967), numerous studies have
addressed the characteristics of the syndrome to identify a global diagnostic criterion for patients.
According to the most recent definition of ARDS, the Berlin definition (ARDS Definition Task Force et
al. 2012), ARDS is defined as an acute onset characterized by a Pa0O,/FiO; ratio of less than or equal to
300 mmHg, bilateral pulmonary opacities on chest radiograph, non-cardiogenic edema, and by the use
of a minimum positive end-expiratory pressure (PEEP) or a continuous positive airway pressure (CPAP)
of 5 cm H,0 during mechanical ventilation (MV) (ARDS Definition Task Force et al. 2012). Additionally,
based on the degree of hypoxemia, the syndrome can be classified as mild (200 mm Hg < PaO,/FiO, <
300 mm Hg), moderate (100 mm Hg < Pa0,/Fi0, < 200 mm Hg), or severe (Pa0,/FiO; < 100 mm Hg)
(ARDS Definition Task Force et al. 2012). The mild form of ARDS was previously known as acute lung
injury (ALI) (ARDS Definition Task Force et al. 2012). However, this definition is being questioning and

a clear diagnostic consensus has not been reached yet (Barbas et al. 2014; Villar et al. 2016).

The most common risk factor of ARDS development is sepsis, a severe systemic inflammatory
response to infections of both pulmonary (pneumonia) and non-pulmonary origin (Cohen 2002;
Rubenfeld et al. 2005). Additional risk factors for ARDS include severe trauma, aspiration, acute
pancreatitis, and transfusion, among others (Stapleton et al. 2005; Gajic et al. 2011). Furthermore, age,
gender, alcoholism, obesity, and diabetes also modify the predisposition to the syndrome (Gajic et al.

2011).
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Introduction

1.2 Epidemiology of ARDS

The incidence of ARDS is a matter of debate. It broadly varies among countries and even between
studies, detecting the highest values in the USA (up to 82 cases per 100,000 person-years) (Li et al.
2011). The annual incidence of ARDS estimated in Europe is approximately ten times lower, mostly
ranging between five and eight cases per 100,000 persons (Villar et al. 2014), although it can reach
higher values in other population-based studies from Europe (Hughes et al. 2003). The fluctuations in
the estimate of incidence between USA and Europe may be due to the fact that European intensive
care units (ICUs) admit much less patients that those from USA (Cavallazzi et al. 2010). In Spain, the
annual incidence of ARDS was estimated in seven cases per 100,000 persons (Villar et al. 2011), which

is similar to the rate found in other European studies (Villar et al. 2014).

ARDS is also an important cause of morbidity and mortality in the ICUs worldwide, although
mortality rates also differ between studies. The estimate of overall hospital mortality by ARDS is 40%
on average (Pham and Rubenfeld 2017), reaching the highest values in patients with the most severe
forms of the syndrome (ARDS Definition Task Force et al. 2012). This rate is also influenced by the
ethnicity, with higher values among African-Americans, and by the gender of patients (Moss and
Mannino 2002; Kangelaris et al. 2012). Furthermore, those patients who survive suffer from different
ailments as a result of the syndrome, including muscle weakness and cognitive impairment (Mikkelsen

et al. 2009; Fan et al. 2014).

1.3 Pathophysiology of ARDS

The progression to ARDS is a complex process marked by a severe inflammation that affects to the
alveolar-capillary barrier. This barrier plays a key role in the proper gas exchange between the lung
alveoli and the blood in the capillaries, and it is constituted by alveolar epithelial cells, capillary
endothelial cells, and the extracellular matrix (Han and Mallampalli 2015; Herrero et al. 2018) (Figure
1). The pulmonary epithelium is a mechanical barrier where alveolar type | (ATI) and alveolar type I
(ATH) pneumocytes protect from lung insults and contribute to the maintenance of the alveolar
integrity (Guillot et al. 2013). Meanwhile, the pulmonary endothelium is a dynamic layer with
metabolic properties that regulates the vascular homeostasis and plays an important role in
inflammatory events (Block 1992). Furthermore, the alveoli contain resident macrophages that
participate in the regulation of the immune response and inflammation in the lungs (Divangahi et al.

2015).
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The pathogenesis of ARDS has been simplified in two phases: exudative and fibroproliferative. The
exudative phase is characterized by alveolar inflammation mediated by different inflammatory
markers, including tumor necrosis factor-alpha (TNF-a), interleukin (IL)-1, and IL-6 (Ware and Matthay
2000; Blondonnet et al. 2016) (Figure 1). In this acute stage, epithelial and endothelial damage occurs
in the lungs, followed by the accumulation of protein-rich fluid in the interstitial and in the alveolar
spaces that results in gas exchange impairment (Herrero et al. 2018). These changes are also
accompanied by necrosis of ATI epithelial cells, the formation of hyaline membranes, and by an
increase in the number of neutrophils in the lungs mediating the inflammatory response (Bellingan
2002). Together with neutrophils, monocytes and macrophages have also been found to have a key

role in inflammation during ARDS (Aggarwal et al. 2014).
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Figure 1. Schematic representation of a healthy alveolus (left) and the alveolus after the lung injury
(right). Reproduced with permission from Ware and Matthay, N Engl J Med 2000 (Ware and Matthay
2000), Copyright Massachusetts Medical Society.
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The fibroproliferative phase is characterized by a fibrotic process and the reduction of alveolar
edema (Bellingan 2002). During this phase, ATII cells proliferate and cover the damaged epithelial
surface, where they differentiate into ATl pneumocytes to reconstitute the alveolar epithelium
(Bellingan 2002). ATII cells also secrete pulmonary surfactant lipids and proteins to contribute to the
maintenance of lung homeostasis (Fujino et al. 2012). Additionally, fibroblasts proliferate and
differentiate into myofibroblasts, driving the deposition of collagen and other extracellular matrix
components in the lung (Quesnel et al. 2010) (Figure 2). The fibroproliferative phase can be followed
by a resolution stage where the normal alveolar structure is restored (Hendrickson et al. 2015). This is
facilitated by the decrease of the alveolar edema and a clearance of apoptotic cells, including
neutrophils (Bellingan 2002). Nevertheless, a dysregulation of the fibrotic process can also occur,
resulting in an excessive accumulation of collagen that is commonly associated with disease

aggravation (Hendrickson et al. 2015) (Figure 2).
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Figure 2. Fibroproliferative phase of ARDS and development. Reproduced with
permission from Hendrickson and colleagues, Intensive Care Medicine 2015

(Hendrickson et al. 2015), Springer Nature License.
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Despite the advances leading to an overall improvement of the incidence rates and mortality by
ARDS, the mechanisms underlying this heterogeneous syndrome remain elusive, complicating the
development of specific therapies (Bellingan 2002; Shaver and Bastarache 2014). The only therapeutic
option currently available for ARDS patients is the use of MV under a regime of low tidal volume and
a high level of PEEP (Acute Respiratory Distress Syndrome Network et al. 2000; Guo et al. 2018).
Additionally, prone positioning of patients with ARDS can also improve their oxygenation and survival
(Guérin et al. 2013). For this reason, numerous studies focus their efforts on the identification of novel
therapeutic targets and biomarkers, necessary to develop more effective therapeutic strategies for

ARDS patients.

1.4 Genetics and genomics of ARDS

As for other complex diseases, ARDS susceptibility and survival are expected to be conditioned by
genetic factors, in addition to the environment. This is supported by twin studies and by genetic
association studies (Sg@rensen et al. 1988; Acosta-Herrera et al. 2014). Accordingly, it has been reported
that clinical factors alone do not predict the ARDS development or severity (Reilly et al. 2017). Thus,
the identification of genes associated with the syndrome is crucial to further understanding the
physiopathology of the disease, and to develop novel therapeutic, predictive, and prognostic options,
with the aim of implementing precision medicine strategies. The genetic association studies are the
most common genetic studies in ARDS. These are based in the comparison of allele frequencies for
specific loci, typically single nucleotide polymorphisms (SNPs), between cases with ARDS and controls

that do not develop the syndrome (Flores et al. 2008; Acosta-Herrera et al. 2014).

1.4.1 Candidate gene association studies of ARDS

Historically, candidate gene association studies are the most common approaches applied to
unravel the genetics of ARDS, while an assessment at genomic levels remains practically unexplored
(Hernandez-Beeftink et al. 2019). These studies focus on particular genes selected based on a previous
biological hypothesis of their implication in the disease, constituting a very narrow strategy with low
replicability rates and difficulty of interpretation (Marigorta et al. 2018). Candidate gene studies in
ARDS have involved genes linked to immune response, chemotaxis, response to the oxidative stress,
cell proliferation, and cell signal transduction (Flores et al. 2008; Acosta-Herrera et al. 2014). Despite
the limitations of these studies, a few associations with ARDS have been validated in different
independent studies (Meyer et al. 2012). Some of these genes are IL6, IL10, vascular endothelial

growth factor A (VEGFA), and angiotensin-converting enzyme (ACE) (Acosta-Herrera et al. 2014). IL-6,
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a cytokine encoded by /L6, is an important pro-inflammatory mediator of the exudative phase of ARDS
(Blondonnet et al. 2016) and has been associated with ARDS development and with bad prognosis in
patients with sepsis or ARDS (Meduri et al. 1995; Remick et al. 2005; Aisiku et al. 2016). Likewise, the
serum levels of IL-10, encoded by /L10, have also been linked to ARDS development (Aisiku et al. 2016;
Chen et al. 2018).

On the other hand, ACE and VEGFA are centrally involved in vascular permeability. The protein
encoded by ACE catalyzes the conversion of angiotensin | into angiotensin I, which is a key mediator
of arterial blood pressure (Patel et al. 2016). The renin-angiotensin system has been implicated in ARDS
pathogenesis (Vrigkou et al. 2017) and reduced serum ACE levels have been correlated with severity
of lunginjury during ARDS (Fourrier et al. 1985). More interestingly, the role of VEGFA has been broadly
related to ARDS development and progression (Barratt et al. 2014). The protein encoded by this gene
(known as VEGF or VEGF-A) is highly expressed in healthy lungs (Figure 3) (Medford and Millar 2006;
Voelkel et al. 2006).
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Figure 3. Expression of VEGF in the healthy lung. Reproduced and edited with permission
from Medford, Thorax 2006 (Medford and Millar 2006), BMJ Publishing Group Ltd.

In the context of ARDS, VEGF-A has been related to increased vascular permeability in lungs, as well
as to the fibrosis process during the fibroproliferative phase of the syndrome (Barratt et al. 2014;

Murray et al. 2017). However, despite the VEGF family seems to be a key element in ARDS
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physiopathology (Barratt et al. 2014), several studies report contradictory findings about the
underlying mechanisms (Medford and Millar 2006), which makes difficult the development of

therapeutic strategies targeting this pathway in critical patients.

1.4.2 Genomic studies of ARDS

Although candidate gene association studies have allowed to outline a catalogue of genes
associated with ARDS, there is still a long way to unravel the genetics of ARDS. In this sense, those
studies at genome-wide level have a greater potential to identify novel genes associated with the
syndrome (Reilly et al. 2017). Genome-wide association studies (GWAS) represent a good alternative
because a previous biological hypothesis is not required, analysis protocols are more standardized, and
the chances of replicability are higher (Marigorta et al. 2018). Under the “common disease-common
variant” hypothesis, which proposes that frequent genetic variants underlie common diseases in a
population, GWAS allow to test the genetic association of a high proportion of frequent variants with
a complex disease (Dehghan 2018). These studies are based in the use of commercial SNP arrays that
allow genotyping hundreds of thousands of selected SNPs located along the genome (Dehghan 2018).
Additionally, to improve the statistical power of the analyses, many other million variants that are
known to correlate with the genotyped variants (i.e. that are in high linkage disequilibrium (LD)) can
be imputed using reference datasets from different studies, including the Haplotype Reference
Consortium (HRC) (McCarthy et al. 2016) and the 1000 Genomes Project (1KGP) (1000 Genomes

Project Consortium et al. 2015).

Despite their evident potential, there are only two GWAS of ARDS published to date. Christie and
colleagues performed a GWAS of trauma-associated ARDS on 2,866 individuals of European ancestry
(600 cases and 2,266 controls) and replicated the association of SNPs with p<0.01 in an independent
dataset (Christie et al. 2012). Results were followed up by a functional evaluation phase based on
expression quantitative trait loci (eQTL) analyses, which allowed them to identify a variant associated
with the mRNA expression of the PTPRF interacting protein alpha 1 (PPFIA1) gene. On the other hand,
Bime and colleagues performed a GWAS on 232 African-American ARDS patients and 162 at-risk
controls followed by a biological pathway analysis to prioritize variants (Bime et al. 2018). They
identified coding variants in the selectin p ligand (SELPLG) gene that were associated with ARDS risk.
However, there was no evidence of replication for any of the assessed SNPs in the independent sample.
The authors also conducted solid functional analyses using animal models that reinforced the role of

SELPLG in ARDS susceptibility, likely involving an increase in SELPLG gene expression.
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In addition to the GWAS, next-generation DNA sequencing (NGS)-based approaches are
increasingly used to reveal novel genes related to complex diseases (Petersen et al. 2017). These
studies allow to determine the sequence of nucleotides in DNA extracted from different biological
samples. As a result, the whole spectrum of risk allele frequencies can be assessed, including rare
genetic variants that cannot be determined by GWAS because they are not catalogued in the reference
datasets, which provides a better understanding of the genetics of a disease (Petersen et al. 2017).
Nowadays, and because of the cost-efficiency and the insight into the interpretable genome, whole-
exome sequencing (WES) is the NGS approach that is most frequently used for the study of genetic risk
factors associated with human diseases. WES allows to obtain the nucleotide sequence of the exons
from most of the protein-coding genes, which are estimated to harbor about 85% of mutations related

to human diseases (Majewski et al. 2011).

Two small WES studies have been performed so far in ARDS patients. On the one hand, Lee and
colleagues sequenced the exome of 88 individuals with sepsis-associated ARDS and reported that the
myosin light chain kinase (MYLK) gene was the top-ranked when correlated with ARDS severity,
measured by ventilator-free days (VFD) (Lee et al. 2012). This gene had already been associated with
ARDS in previous candidate gene association studies (Gao et al. 2006; Christie et al. 2008), being
related to the inflammatory response during ARDS. On the other hand, Shortt and colleagues
performed WES in DNA samples from 96 patients with ARDS and compared it with data from 1KGP
(Shortt et al. 2014). As a result, they identified three novel genes related to ARDS susceptibility,
severity and outcomes, including the arylsulfatase D gene (ARSD), the XK, Kell blood group complex
subunit-related family, member 3 gene (XKR3), and the zinc-finger protein 335 (ZNF335). Whole-
genome sequencing (WGS) studies of ARDS are still lacking from the literature (Hernandez-Beeftink et

al. 2019), likely due to the high associated costs.

1.5 The microbiome and disease

1.5.1 The human microbiome

It has been estimated that the human body is colonized by up to 100 trillion symbiotic microbial
cells (Qin et al. 2010), including bacteria, viruses, archaea, fungi, and other eukaryotes (Lloyd-Price et
al. 2016). This collection of microorganisms is referred to as the human microbiota, which is organized
in complex communities that can adapt to environmental changes and is involved in human processes

such as metabolic functions, epithelial development, and the immune response (Wang et al. 2017). To
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conduct these functions, the human microbiota carries more than 100-fold more genes that the human
genome (Qin et al. 2010). The catalog of genes these microbial cells harbor is known as human

microbiome (Ursell et al. 2012).

In 2009, an initiative called the Human Microbiome Project (HMP) emerged to characterize the
human microbiome by studying samples from different human tissues of healthy individuals using
high-throughput technologies (Peterson et al. 2009). Additionally, the HMP seeks to determine the
correlation between changes in microbiomes and health or disease, as well as to provide a standard
database of microbial genomes and of new technologies and tools to enable the data analyses
(Peterson et al. 2009). Most of research studies performed so far have been focused on the
gastrointestinal tract, where most of the human microbiota resides (Lloyd-Price et al. 2016). Besides,
other body sites such as the skin, oral cavity, placenta, urogenital system, and lung also have their
specific microbiomes, which are also being studied because of their implication in disease (Lloyd-Price

et al. 2016).

1.5.2 Metagenomics

Historically, the study of the human microbiota has focused on traditional culture-based methods
of single microorganisms from complex biological samples. These cultures require prior knowledge of
the metabolic necessities of the bacteria to be grown, which implies that a huge proportion of the
bacteria is yet uncultivable. Specifically, only 1% of the total microbial population can be cultured
(Pham and Kim 2012). Furthermore, microbial cultures require restricted media and cultivation
conditions to grow each microorganism, limiting the study of their complex natural environments
(Pham and Kim 2012). As an alternative, a culture-independent approach based on the study of
microbial DNA has emerged to overcome the deficiencies of conventional microbiological methods
based on isolated microorganisms. This approach is known as metagenomics and consists in the
genomic study of the collective microorganisms present in environmental samples, such as biological
tissues and fluids (Handelsman 2004; Tringe and Rubin 2005). Metagenomics is now based in the use
of NGS technologies that allow to obtain the DNA sequence of microorganisms, including uncultured
microbials, with the aim of revealing the microbial composition of complex systems and studying
microbial changes between groups of samples (Pflughoeft and Versalovic 2012). Metagenomic studies
have frequently utilized random DNA sequencing (shotgun) or targeted gene sequencing (Ursell et al.
2012), both mainly focused on the bacterial DNA assessment. Shotgun consists in the untargeted
sequencing of microbial DNA extracted from an environmental sample and subsequently sheared into
small fragments (Quince et al. 2017). This results in overlapping sequence segments (i.e. reads) that

are preprocessed and classified to obtain the microbiome profile. Finally, statistical analyses are
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performed to evidence differences between the different samples (Quince et al. 2017). This approach
is independent of DNA amplification and allows to examine thousands of organisms in parallel, as well

as a taxonomic classification at (sub)species level (Nayfach and Pollard 2016; Ranjan et al. 2016).

Historically, metagenomic studies have been performed using targeted gene sequencing
technologies, although, strictly speaking, these do not involve the analysis of the whole genome (Ursell
et al. 2012). The 16S ribosomal RNA bacterial gene (16S rRNA) (~1,500 bp) is the most commonly used
marker in these studies because of its utility to differentiate among bacterial taxa (Janda and Abbott
2007). The RNA encoded by this gene is a component of the 30S small subunit of the prokaryotic
ribosome, involved in protein synthesis (Mizrahi-Man et al. 2013). The 16S rRNA contains many
conserved regions and nine hypervariable regions (V1-V9) that allow to distinguish among different
bacteria (Chakravorty et al. 2007). The 16S rRNA sequencing is based on the amplification by
polymerase chain reaction (PCR) of one or few of these hypervariable regions of 16S rRNA using
flanking primers, with V3 and V4 being the most frequently evaluated regions, as these have proven
to be the most informative (Mizrahi-Man et al. 2013). Once the amplified products (amplicons) are
sequenced, a bioinformatic analysis must be performed. Among others, sequence reads must be pre-
processed, filtered, and grouped into operational taxonomic units (OTUs) (Mizrahi-Man et al. 2013).
Finally, the taxa assignment is conducted based on reference data and diversity analyses are
performed using specific software to compare samples (Caporaso et al. 2010). A schematic
representation of a typical 16S rRNA sequencing procedure is shown in Figure 4. For the study of fungi,
a specific region of the 18S rRNA of these organisms is sequenced instead, although it fails to

adequately fully cover fungal diversity (Soeta et al. 2009; Wang et al. 2014; Budden et al. 2019).
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environmental samples through 16S rRNA V4 sequencing. OTUs, operational

taxonomic units.

1.5.3 The microbiome and critical illness

In the last decades, the study of the implication of the human microbiome in health and disease

has been rapidly increased thanks to the use of high-throughput sequencing technologies and the
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possibilities of bioinformatics analyses (Cox et al. 2013). The importance of these studies is based in
the need to identify novel prognostic methods and more efficient therapies. In this sense,
perturbations in human microbial populations (microbial dysbiosis) have been broadly related to the
development of complex diseases and to immune dysregulation (Pflughoeft and Versalovic 2012).
Diseases such as Crohn’s disease, diabetes, obesity, inflammatory bowel disease, atopic dermatitis,
and metabolic syndrome have been associated with changes of the normal microbiome (Pflughoeft
and Versalovic 2012; Althani et al. 2016). Furthermore, numerous studies have linked this microbial
dysbiosis to infectious diseases and critical illness (Caverly et al. 2015; McDonald et al. 2016; Jacobs et
al. 2017), and a reduced microbial diversity has been related to patient severity in the ICU (Lamarche

et al. 2018).

Among critical diseases, a large part of the studies conducted to date have focused on the
implications of the microbiome in patients with sepsis, by mainly assessing the gut microbiome (Haak
and Wiersinga 2017). Accordingly, the gut flora has been linked to sepsis complications and mortality
by systemic inflammatory response syndrome (SIRS) (Shimizu et al. 2011). Additionally, recent studies
support that microbial dysbiosis processes in blood, nasal cavity, and the lungs are related to sepsis
susceptibility and/or severity (Dickson 2016; Gosiewski et al. 2017; Tan et al. 2019). Furthermore,
Dickson and colleagues reported that the lung microbiome of critical patients is significantly altered
and enriched in bacteria commonly found in the gastrointestinal tract, probably because the
translocation of microorganisms from the gut to the patient’s lungs (Dickson et al. 2016). Given the
relevance of these results, further studies must be performed to explore their potential translation

into clinical practice.

1.6 Implication of the genetic ancestry in disease

1.6.1 Genetic ancestry and critical illness

The prevalence of numerous diseases has been shown to be different across ethnic groups
(National Research Council 2004). Particularly, several studies highlight the relationship between the
ancestry of an individual and the risk to develop critical illnesses, including sepsis and ARDS (Moss and
Mannino 2002; Soto et al. 2013; Sandoval and Chang 2016). In this context, it was reported that African
Americans were more likely to be admitted to the ICU than individuals of European ancestry
(Dombrovskiy et al. 2005). African Americans also had the highest risk for sepsis development (Martin

et al. 2003; Barnato et al. 2008; Mayr et al. 2010). Furthermore, higher rates of hospital mortality by
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sepsis have been evidenced for African-American and Latin-Americans compared to European patients
(Martin et al. 2003; Jones et al. 2017). Accordingly, the mortality rates of African-American patients
with ARDS are higher than those of individuals of European ancestry (Moss and Mannino 2002;
Erickson et al. 2009).

These disparities cannot be explained solely by socioeconomic factors (Moss and Mannino 2002;
Esper et al. 2006; Soto et al. 2013). Recent studies have shown that genetic ancestry can influence the
development and outcomes of complex diseases (National Research Council 2004), including
respiratory diseases (Kumar et al. 2010; Flores et al. 2012; Rumpel et al. 2012; Vergara et al. 2013;
Hernandez-Pacheco et al. 2016) and critical illnesses (Soto et al. 2013). In this sense, genetic variants
linked to the ancestry could be affecting the response to infection and inflammatory processes in
critical care patients (Soto et al. 2013). For example, genetic variants known to increase the expression
of proinflammatory cytokines (such as IL-1A, IL-1B, IL-6, and IL-18) and to reduce the expression of the
anti-inflammatory cytokine IL-10 were more frequent in African-American women compared to
women of European ancestry (Ness et al. 2004). Additionally, polymorphisms in MYLK that were
related with a higher risk of sepsis and ARDS have shown distinct allele frequencies between
populations of different ethnicities (Gao et al. 2006; Christie et al. 2008), and a genetic variant in the
Duffy antigen/receptor for chemokines (DARC) gene was associated with worse clinical outcomes in

African American patients with mild ARDS (Kangelaris et al. 2012).

Furthermore, polymorphisms in the human Toll-like receptor (TLR) 2 gene (TLR2), which is involved
in pathogen recognition and inflammatory responses, have been revealed to confer differences
between racial groups (Yim et al. 2004). Accordingly, a study assessing TLR4 polymorphism haplotypes
revealed higher allele frequencies in sub-Saharan African populations, suggesting that it was related
to protection against mortality from malaria as a consequence of an evolutionary pressure in this
population (Ferwerda et al. 2007). Interestingly, this gene had been correlated with susceptibility to
infectious diseases (Agnese et al. 2002) and increased mortality to septic shock (Lorenz et al. 2002). A
similar scenario, where polymorphism frequencies have shifted because of natural selection processes,
has been found in other studies (Stephens et al. 1998; Taylor et al. 2012; Meyer et al. 2018).
Remarkably, it is well known that signatures of natural selection are found in the human leukocyte
antigen (HLA) system, involving both positive and balancing selection (Meyer et al. 2018). As is the case
of TLR4, alleles within HLA-B have been related to malaria protection in African populations (Sanchez-

Mazas et al. 2017).
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Based on the evidence, it has become apparent that the genetic makeup of a population has
important consequences in the predisposition to complex diseases and for drug response (Wilson et
al. 2001; Botigué et al. 2013). In fact, the ethnicity of an individual is starting to be considered in clinical
practice for precision medicine (Li et al. 2009; Dean 2012). For example, polymorphisms in vitamin k
epoxide reductase complex subunit 1 (VKORC1) and in the cytochrome P450 family 1 subfamily c
member 9 (CYP2C9), which influence the metabolism of warfarin, a widely used anticoagulant, have
been found at distinct frequencies across populations (Li et al. 2009). As a result, the warfarin dose can
be adjusted in patients based on their ethnicity and genotypes (Li et al. 2009). A similar situation is

found for the clopidogrel therapy, an antiplatelet agent, and the CYP2C19 genotype (Dean 2012).

1.6.2 Estimation of the genetic ancestry in a recently admixed population

The stratification of the genetic variation among populations across the world is mainly explained
by genetic drift and migration, but also by the existence of selective pressures that are related to past
or ongoing local adaptations (Seldin et al. 2011). Therefore, genetic studies in recently admixed
populations have a huge potential to evaluate the influence of the genetic ancestry in diseases, with
the final objective of identifying novel candidates to be evaluated as genetic risk factors of diseases,
including critical illnesses (Seldin et al. 2011). In this sense, a profound characterization of the genetic

structure of the assessed population is needed (Figure 5) (Thornton and Bermejo 2014).

Genetic ancestry estimators involve the use of genetic data from the putative ancestral populations
that were mixed in the past recent history. Thus, prior knowledge of the historical admixture of the
population is required (Alexander et al. 2009). There are two main types of ancestry estimators of the
genome: global and local. The global ancestry is the overall genetic ancestry of an individual (Figure
5A) (Thornton and Bermejo 2014) and can be estimated by means of programs such as ADMIXTURE,
one of the most commonly used algorithms, which uses a maximum likelihood model to obtain
individual ancestry proportions based on multiple unlinked SNPs (Alexander et al. 2009). The local
ancestry refers to the genetic ancestry of an individual at a given chromosomal locus (Thornton and
Bermejo 2014). As a result of the admixture of different populations, the genome of recently admixed
individuals becomes a mosaic composed by different chromosomal fragments or ancestry blocks, each
derived from an ancestral population (Figure 5B) (Tang et al. 2006). The longer the time since the
admixture, the shorter the size of the ancestry blocks. Therefore, the local ancestry can be estimated
analyzing this mosaic comparing it with genomes from reference populations. Three of the algorithms
that are commonly used to estimate the local ancestry are LAMP-LD (Baran et al. 2012), RFMIX (Maples
et al. 2013), and ELAI (Guan 2014). LAMP-LD and RFMIX are based on haplotype transitions from the
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parental population; hence they depend on a previous step for haplotype reconstruction. These
software tools have been broadly used to estimate the local ancestry in Latino populations
(Padhukasahasram 2014; Eyheramendy et al. 2015; Sofer et al. 2017; Spear et al. 2019). Contrarily,
ELAI is a more recent method that directly uses genotype data, without needing a phasing step. This
software can detect small ancestry tracts and has been used to characterize the complex admixture of

South African populations (Pierron et al. 2018; Williams et al. 2018).
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Figure 5. Schematic representation of the genetic ancestry of a recently admixed population with three
ancestral populations (plotted in pink, blue, and green colors). A) Global ancestry proportions for six
admixed individuals. B) Recombination events between haplotypes of different ancestries (left) and

local ancestry estimations for an individual genome (right).

In case a disease risk variant has distinct allele frequencies across ancestral populations and confers
a different disease susceptibility, a deviation in local ancestry can be found at that locus in a recently
admixed population (Mani 2017; Shriner 2017). Consequently, local ancestry estimates can be used to
identify genomic regions where ancestry tends to be coinherited with a specific disease. This analysis
is known as admixture mapping, which allows to reveal novel disease genes that show differential risk
by ancestry (Patterson et al. 2004; Shriner 2017). This kind of studies can be performed only in recently

admixed populations. However, it has the advantage over general association studies in that, as local
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ancestry blocks are larger than haplotype blocks, the correction by multiple tests is less restrictive and
the statistical power to detect disease signals is increased, allowing to use more reduced sample sizes
to attain a given power (Shriner et al. 2011). Conversely, large regions are identified by means of this

method, and additional studies are required to identify the underlying risk variants (Shriner 2017).

1.6.3 The Canary Islands population in genetic ancestry studies

The current inhabitants of the Canary Islands have a unique genetic admixture that makes it suitable
to be considered in genetic ancestry studies. The previous evidence supports that the aboriginal
population from the Canarian archipelago (collectively known as Guanches) had a North African (NAF)
origin (Hooton 1970; Onrubia Pintado 1987). The Spanish conquest took place during the XVth century
(de Abreu Galindo and Cioranescu 1977), which resulted in an admixture of the aborigines with the
European population (EUR) (de Abreu Galindo and Cioranescu 1977), as well as with sub-Saharan
Africans (SSA), due to the flourishing slave trade occurring at that historical moment (Lobo-Cabrera
1993). This admixture has been shown by classical molecular studies focused on blood groups, red
blood cell enzymes, or with a few of polymorphic Alu insertions (Flores et al. 2001; Maca-Meyer et al.
2004). These estimated that ancestry proportions of the Canary Islanders were 62-78% EUR, 20-38%
NAF, and 3-10% SSA. Accordingly, other studies analysing a reduced number of SNPs or a limited
sample size (Pino-Yanes et al. 2011; Botigué et al. 2013) revealed comparable proportions of ancestry,
finding 75-83% EUR, 17-23% NAF, and less than 2% SSA. However, none of these studies have

evaluated the disease implications of such admixture scenario in the Canary Islanders.

The Canary Islands population have an increased prevalence of different chronic diseases, including
cardiovascular diseases, such as diabetes, obesity, and hypertension (Cabrera de Ledn et al. 2006;
Bueno et al. 2008; Marcelino-Rodriguez et al. 2016), and respiratory diseases, such as asthma
(Sanchez-Lerma et al. 2009; Julia-Serda et al. 2011), when compared to other mainland Spanish
populations. This disease burden could be affected, in addition to environmental factors, by the
distinctive genetic admixture of this population. Furthermore, due to the historical isolation of the
Canary Islands, one would expect that the genomes of the current inhabitants have an enrichment in
low-frequency functional variants (Xue et al. 2017), resulting in an increased number of recessive
variants that could confer risk to specific complex diseases (Campbell et al. 2007; Moltke et al. 2014;
Ghani et al. 2015). Additionally, mutations underlying monogenic disorders would be expected in the
Canary Islanders. For example, a founder mutation in the alanine-glyoxylate and serine-pyruvate
aminotransferase (AGXT) gene has been associated with a high prevalence of type 1 primary

hyperoxaluria in La Gomera (Santana et al. 2003; Lorenzo et al. 2006; Lorenzo et al. 2014). Additionally,
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a high percentage of patients from La Palma carry the most frequent mutation in the Fanconi anemia
complementation group A (FANCA) gene, which perhaps explains the high incidence of sickle-cell
anemia in this population (Castella et al. 2011). Finally, an increased prevalence of Wilson disease has
been related to a variant of the ATPase copper transporting beta (ATP7B) gene in individuals from Gran
Canaria, and other variants have been associated with cardiovascular traits in the same population,
pinpointing again the singular genetic characteristics of Canary Islanders (Garcia-Villarreal et al. 2000;
Rodriguez-Esparragdn et al. 2017). Therefore, the characterization of the genome of the Canary
Islanders would be important for revealing gene regions that are distinctive of this population and that
may be linked to particular disease risks, including critical illnesses, as well as for designing subsequent

admixture mapping studies in this population.
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2. Hypothesis and objectives

Despite numerous studies have tried to disentangle the biological complexity of ARDS, there is still
a lack of specific treatments and effective prognostic methods for critical care patients. Given that this
syndrome is influenced by both environmental and genetic factors, the hypothesis of this work is that
the use of different genomic approaches will provide complementary information to better
understand the pathophysiology of ARDS and of main risk factors, revealing novel therapeutic and

prognostic options.

The specific objectives of this work are:

1. To perform a systematic review of all published studies reporting associations of genetic variants

with ARDS susceptibility and outcomes.

2. To identify novel common genetic variants associated with ARDS susceptibility by means of the first

GWAS in patients with sepsis-associated ARDS.

3. To identify if there are lung microbiome shifts in patients with sepsis associated with aggravation

and to evaluate its prognostic utility.

4. To characterize the recent evolutionary history of current inhabitants of the Canary Islands based
on genome-wide data to identify links between genetic ancestry and risks of sepsis and ARDS, and to

lay the foundation for designing admixture mapping studies in this particular population.
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3. Chapters

The methods of Chapter 1 are detailed on the introductory page to the chapter. Chapters 2, 3, and 4 include their
specific introduction, methods, results, discussion and conclusions. All chapters also include a section of
references.



Chapter 1.

Systematic review of the genetics of ARDS

A bibliographic review of all the genetic association studies in ARDS published from September 2012
to December 2015 is reported in this chapter. The quality assessment of these studies was based on
diverse criteria considered in previous works performed by this research group, where the quality of
genetic association studies from 1996 to 2012 had been previously evaluated in two different articles
(Flores et al. 2008; Acosta-Herrera et al. 2014). The final objective of this work was to complete a
systematic search of all genes reported to be significantly associated with ARDS susceptibility or

outcomes.

We conducted a search in PubMed using the following combinations of terms: “acute respiratory
distress syndrome” AND “polymorphism”, “acute respiratory distress syndrome” AND “genetic
variant”, “ARDS” AND “polymorphism”, “ARDS” AND “genetic variant”, “acute lung injury” AND
“polymorphism”, and “acute lung injury” AND “genetic variant”. All references were manually revised,
and those genes harboring genetic variants nominally associated with ALI/ARDS susceptibility or
outcomes (significance of p<0.05) were considered. As a result, we found a total of 81 candidate genes
that had been associated with ARDS until December 2015, most of them involved in immune response
and vascular permeability. The association of only seven of these genes was validated in at least four
independent samples. This assessment supports the low replicability of this type of studies and the
difficulties in the interpretation of results, as well as the need of implementing genomic approaches
to identify novel ARDS risk genes, accompanying the results with functional studies. In this sense, as
reported in this chapter, only one GWAS and two WES studies in ARDS patients had been published
until 2015.

This chapter was published in 2016 in eLS with the title "Genetics of Acute Respiratory Distress
Syndrome" (doi: 10.1002/9780470015902.a0026533). It is reproduced under the terms of John Wiley

and Sons License.
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Introduction

Definition

The acute respiratory distress syndrome (ARDS), a severe form
of acute lung injury (ALI), is a clinical disease process charac-
terised by an acute onset of diffuse lung inflammation caused
by an insult to the alveolar—capillary membrane that results in
increased permeability of pulmonary capillaries and alveoli, and
subsequent formation of interstitial and alveolar oedema (Bernard
etal., 1994). ARDS usually develops in adult patients with predis-
posing conditions that induce a systemic inflammatory response.
Sepsis, both of pulmonary and nonpulmonary origin, is the most
common cause of ARDS. ARDS is induced in 46% of the cases by
pulmonary entities, but there are other clinical conditions, includ-
ing severe trauma or acute pancreatitis, and some secondary fac-
tors such as alcoholism and obesity, which also increase its risk
(Moss et al., 1996; Gajic ef al., 2011). The mechanisms by which
a wide variety of insults can lead to this syndrome are not clear.
Independent of the clinical disorders associated with ARDS, its
pathogenesis can be a result of both direct and indirect insults (i.e.
by an acute systemic inflammatory response) to the lungs.
There is no typical ARDS patient. Diagnosis of ARDS is
based on a combination of clinical, oxygenation, hemodynamic
and radiographic criteria. ARDS is now defined, based on the
Berlin definition, as an acute hypoxemia and the presence of
bilateral pulmonary infiltrates on chest radiographs not fully
explained by cardiac failure or fluid overload. Acute hypox-
emia is defined by a PaO,/FiO, ratio <300 mmHg, where PaO,
is the partial pressure of oxygen in arterial blood, and FiO, is
the fractional concentration of inspired oxygen. Thereby, ARDS
can be classified as mild (200 <PaO,/FiO, £300), moderate
(100 < PaO,/FiO, <200) or severe (PaO,/FiO, < 100). Until the

Berlin definition was established, the group of patients with mild
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ARDS was termed ALI. However, there is no consensus in the
scientific literature and both terms continue to be used in clinical
(Ranieri et al., 2012) and animal model studies.

Epidemiology

Despite recent advances in the study of ARDS, its incidence
and mortality remain without consensus. This may be due to
the presence of several definitions of the syndrome, differences
in demographics and variations in study designs. Estimates of
ARDS incidence in diverse recent clinical observational studies
vary, by country and year, from 4.9 to 82.4 cases per 100,000
person-years, roughly being seven times higher in the United
States than in remaining assessed countries (Villar et al., 2011a;
Buregeya er al., 2014) (Table 1).

ARDS is a common cause of death in adult intensive care units
(ICU) causing an overall hospital mortality of 44% on average.
Mortality varies depending on factors such as age, aetiology
of the lung injury and by the presence of nonpulmonary organ
dysfunction (Suchyta et al., 1997; Erickson er al., 2009; Villar
etal.,2011a). Besides, the ethnicity might influence the mortality
risk, which may be attributable to underlying genetic differences
among populations and/or to distinct environmental factors. It
has been reported that African-American ARDS patients have a
higher mortality risk than European descent patients (Moss and
Mannino, 2002; Kangelaris et al., 2012).

While ARDS has been classically considered an acute com-
plication, recent studies have shown that patients surviving the
acute process develop long-term complications, frequently expe-
riencing a reduction in their quality of life. They usually suffer
long-term cognitive impairment, as well as physical impairment
or psychiatric disorders. However, there are currently no strate-
gies to improve quality-of-life outcomes after ARDS (Spragg
et al., 2010).

Pathophysiology

Although the molecular mechanisms leading to ARDS are com-
plex and remain unclear, the syndrome develops owing to an
aggressive inflammatory process, resulting in increased vascular

permeability, oedema formation, surfactant depletion and pul-
monary fibrosis (Ware, 2006). Similar to any form of inflam-
mation, ARDS represents a complex process in which multiple
pathways can propagate or inhibit lung injury.

The pathophysiologic process of ARDS can be divided into
three phases: exudative, fibroproliferative and chronic/resolution.
In the exudative phase, there is evidence of a rapid interstitial and
alveolar oedema, which reflects the injury of the lung capillary
endothelium and the alveolar epithelium. It leads to increased per-
meability of the alveolar-capillary barrier and alveolar flooding
by a protein-rich fluid as well as decreased surfactant production,
so that normal gas exchange is impaired. In this phase, there is an
acute inflammatory response accompanied by a marked accumu-
lation of active neutrophils in the lungs. Some patients recover in
this acute phase with gradual resolution of the oedema and the
acute parenchymal inflammation without fibrosis (Ware, 2006;
Carlucci et al., 2014).

In the fibroproliferative phase, the alveolar oedema decreases,
the alveolar space becomes filled with neutrophils and
macrophages that intensify the release of inflammatory
mediators, and the alveolar epithelium is repopulated by the
proliferation and differentiation of alveolar epithelial type II
cells. Finally, it takes place chronic inflammation, neovasculari-
sation and fibrosis, as recognised by the deposition of collagen
and other material from the extracellular matrix. Epithelium
is repaired by type II alveolar epithelial cells that proliferate
to cover the injured basement membrane and differentiate into
type I cells. Furthermore, there is a resolution phase of the
neutrophil-mediated inflammation through the clearance of
neutrophils from the injured lung (Ware, 2006; Carlucci et al.,
2014). However, clinical studies have established that alveolar
fluid clearance is impaired in most patients with ARDS (Ware
and Matthay, 2001), which may have long-term consequences in
patients surviving ARDS. It is unknown why some patients can
rapidly resolve the acute inflammation while others progress to
the chronic phase or why fibroproliferative changes are rapidly
developed in some cases and not in others.

Molecular mechanisms involved in ARDS

There is currently no specific treatment for ARDS. Once it devel-
ops, lung protective mechanical ventilation (MV) is the only

Table 1 Estimates of incidence and hospital mortality in acute respiratory distress syndrome in clinical observational studies”

Country Study sample Incidence Hospital Reference

(per 100.000/year) mortality (%)
Finland 59 4.9 42.0 Valta et al. (1999)
Sweden, Denmark and Iceland 1.515 13.5 41.2 Luhr er al. (1999)
Australia 1.977 28.0 34.0 Bersten et al. (2002)
United Kingdom 38.116 16.0 60.9 Hughes er al. (2003)
United States 4.251 58.7 41.1 Rubenfeld er al. (2005)
Spain 3.462 7.2 47.8 Villar et al. (2011a)
United States 8.034 82.4 (2001)-38.9 (2008)" 34.8 Lietal. (2011)
Brazil 7133 6.3 55.5 Caser et al. (2014)

“Data referred to studies utilising the definition based on The American-European Consensus Conference on ARDS (Bernard er al.. 1994).

PData corresponding to estimates obtained in 2001 and 2008.
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lung-directed intervention known to affect patient survival at the
moment.

In the past years, animal models have provided a way to expose
the optimal mode to ventilate critically ill patients. A commonly
studied model is the ventilator-induced lung injury (VILI), which
reproduces most physiological and pathological hallmarks of
ARDS, recognising that the ventilator can cause also ALI that
is undistinguishable from ARDS. These studies suggested very
early that MV with high tidal volume (HVT) was able to induce
lung injury and initiate or augment the inflammatory response
(Villar er al., 2011b). Currently, with the use of low tidal vol-
ume (LVT) MV in the range of 4-8 mL/kg predicted body weight
and moderate to high levels of positive end-expiratory pressure
(PEEP) in the range of 8-14 ¢mH, 0O, injured lungs can be par-
tially protected, resulting in the reduction of ventilator-associated
complications and better hospital survival rate of patients with
ARDS (The Acute Respiratory Distress Syndrome Network,
2000).

Functional genomics had an essential role in our current under-
standing of the molecular changes occurring in the setting of
ARDS and the identification of key genes potentially contribut-
ing to its predisposition. One of the most commonly used tools
for functional genomics studies of ARDS has been the assessment
of gene expression in tissue samples (from clinical, animal or in
vitro studies) in DNA microarrays. This technique aims to anal-
yse simultaneously the mRNA expression levels of thousands of
genes to identify molecular mechanisms and pathways involved
in this complex discase. See also: DNA Chip Revolution

To date, numerous microarray studies have been performed to
unravel the molecular processes involved in ARDS development
(Wurfel, 2007). Copland er al. (2003) studied the overall lung
tissue gene expression profiling in a rat model of VILI comparing
HVT (20 mL/kg) with LVT ventilation (6 mL/kg). The authors
found a series of genes that were upregulated by HVT, including
the nuclear receptor subfamily 4, group A, member | (Nur77),
early growth response 1 (Egrl), BTG family, member 2 (Brg2)
and jun proto-oncogene (c-Jun). The upregulation of Egrl was
related to the activation of protein kinase C (PKC)-mediated path-
ways, while Nur77, Btg2 and c-Jun were implicated in the innate
immunity and inflammation. apoptosis and the activation of sev-
eral growth factor signalling pathways. The authors also observed
upregulation of the gene encoding the heat shock protein fam-
ily A member 4 (Hsp70), a cytoprotector, and the interleukin |
beta (Z11b), an important mediator of the inflammatory response
during lung injury and fibrosis when proverexpressed in the lung
(Copland et al., 2003).

Different studies have induced VILI by a double-hit model,
applying both an HVT MV and the injection of bacterial
lipopolysaccharide (LPS). revealing a synergistic effect of
both harmful elements in increasing lung injury (Martin er al.,
1997), and suggesting that the presence of microbial products
that induce inflammatory responses may aggravate the patho-
physiology of VILI and the molecular response. Altemeier
et al. (2004, 2005) compared the lung tissue gene expression
profiling of four groups of rodents: control, suboptimal MV
(tidal volume = 10mL/Kg), intratracheal LPS and suboptimal
MV +LPS. They found many differentially regulated genes in
the MV +LPS group in comparison with the LPS-only group

and 10 times more of differentially regulated genes compared
with the MV-only group. Several genes identified by these inves-
tigators were involved in immunity (e.g. Ccl3, Cxcl2, 116, 111 ),
in the response to stress (e.g. Gadd45g), or were transcription
factors (e.g. Irf7, Aif3). These results suggested that inappro-
priate MV contributes to the inflammatory response leading to
the development of ARDS. Further studies identified distinct
deregulated transcription factors in the MV-only and LPS-only
groups, while the resulting list of deregulated transcription
factors in the MV + LPS group was a combination of the results
from either condition alone (Gharib et al., 2006).

Moreover, Grigoryev ef al. (2004) conducted a computer anal-
ysis to simultaneously evaluate the orthologous lung tissue gene
expression profiles of multispecies animal models of VILI and
human lung vascular endothelial cells exposed to high-level
cyclic stretch, with the assumption that overlapping responses
to mechanical stretch among the models would enable to iden-
tify the genes that were deregulated identically in all species,
therefore providing robust links with ARDS development. They
identified a list of 69 genes that were differentially regulated and
shared among models, of which only 12 were already related to
lung injury in other previous studies (e.g. ILIB, IL6, SERPINE]
and AQPI). In addition, they indicated that the most recognis-
able upregulated biological processes during VILI were those
involved in the immune response, blood coagulation and cell
cycle arrest.

Dolinay et al. (2006) compared the gene expression patterns of
isolated lungs in mice subjected to overventilation (25 emH,0),
LPS-treatment and low-pressure ventilation (10cmH,0). The
isolated lungs. within a negative pressure chamber, were perfused
ex vivo with cell-free culture media, eliminating peripheral leuko-
cyles from the pulmonary system and allowing the determination
of lung-specific changes (from lung structural cells) in gene
expression. The authors found several genes that were regulated
in an additive manner by overventilation and LPS (e.g. I11, 1i6,
Csf2, Mif and Ccl2), being mainly involved in immunity and
stress responses. In addition, they identified novel genes that were
upregulated by overventilation including Areg, Akapi2, Cyr6l
and /171, as well as others that were previously evidenced in inde-
pendent studies such as Nur77.

Ye et al. (2005a,b) also contributed with a few other signifi-
cant studies. They studied microarray-based lung gene expression
profiling in canine and murine models of VILI and identified
an increased expression of pre-B-cell colony-enhancing factor
(Phbef), also known as nicotinamide phosphoribosyltransferase
(Nampt) (Ye et al., 2005a). Subsequent studies performed by the
same investigators suggested that Pbef is involved in the regu-
lation of inflammatory cytokines, playing a role in endothelial
permeability (Ye er al., 2005b).

The above-mentioned studies have focused on the physiologic
and molecular mechanisms that occur in the lungs after the appli-
cation of an injurious MV strategy. However, few studies have
explored the molecular mechanisms involved in the lung protec-
tion associated with the use of LVT and PEEP. Acosta-Herrera
et al. (2015) analysed the molecular mechanisms and pathways
in lung tissues using microarray and microRNA sequencing in
an animal model of sepsis-induced ARDS. They compared three
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groups of septic animals under different ventilator strategies: non-
ventilated spontancous breathing animals, LVT (6 mL/kg) plus
10emH,0 PEEP and HVT (20mL/kg) plus 2cmH,O PEEP.
They found that the most significantly upregulated biological
process in nonventilated and HVT animals was the ‘response
to microorganisms’, whereas the ‘neuron projection morphogen-
esis’ process was one of the most significantly deregulated in
LVT. Further studies led the authors to suggest that a codereg-
ulation of *VEGF signalling” together with ‘neuron projection
morphogenesis” participate in the protective mechanism. Besides,
given that small noncoding RNA sequences that bind to target
mRNAs (i.e. microRNAs) play a central role in the regulation
of gene expression, including the regulation of susceptibility
genes involved in ARDS as well as in other complex diseases
(Zhou et al., 2011), the authors also did complementary exper-
iments to show key microRNA species underlying the biologi-
cal responses. See also: MicroRNAs and Human Disease. A
microRNA analysis further supported by small RNA-seq studies,
allowed detecting four deregulated species (mir-27a, Mir-103,
mir-17-5p and mir-130a) that targeted a total of 159 genes
overlapping the biological processes evidenced by microarray
studies.

‘While more studies are required to elucidate gene interaction
networks involved in the pathogenesis of the syndrome, owing to
their significant role in gene regulation and because no invasive
methods are required for routine clinical testing (i.e. as from
serum), microRNA studies constitute a truly promising option
to evidence ARDS biomarkers with diagnostic or prognostic
utility.

Genetics of ARDS

In Hippocrates’ words, ‘it is far more important to know what
person the disease has than what disease the person has’. Given
that clinical factors alone do not allow predicting which patients
will develop ARDS or which patients will die as a result of the
syndrome, and the fact that genetic factors are known to play
an important role in infection disease outcomes (Petersen et al.,
2010), including ARDS development (Leikauf ez al., 2002; Villar
et al., 2003), there is a huge interest in the study of genetic
factors as predictors of risk and prognosis. Identifying the ARDS
predisposing genes will potentially: (1) offer new perspectives of
disease pathogenesis and increase our capacity to identify other
risk factors: (2) improve risk stratification models and patient
care and (3) define individual patterns of disease, leading to the
development of novel therapies and better individual treatment.
ARDS is a complex syndrome, which includes multiple genetic
risk factors, and constitutes a largely heterogeneous clinical
entity. In this scenario. it is the aggregation of several risk fac-
tors (genetic and environmental) that could probably explain the
susceptibility to the syndrome (Risch and Merikangas, 1996).
See also: Disease-related Genes: Identification. Therefore, con-
ventional genomic approaches as the linkage analysis and the
positional cloning studies have limited potential to detect the loci
of interest (Risch and Merikangas, 1996). This is because such
analyses require the recruitment of large numbers of families
with affected members for effective detection of risk loci, and

ARDS develops most commonly at older age, limiting the access
to DNA and clinical data from relatives. As for many other com-
plex diseases, genetic risk effects on ARDS susceptibility and
outcomes have been historically identified through case—control
association studies, as these do not necessitate the collection of
family samples. Briefly, these studies compare the allele frequen-
cies at known polymorphic loci. usually single nucleotide poly-
morphisms (SNPs), between unrelated ARDS cases and controls
without the syndrome (Leikauf er al., 2002; Villar ef al., 2003).
The hypothesis underlying this design is that the closer the variant
analysed is to a causally related unknown risk variant, the more
likely is that they are coinherited among subjects in the popula-
tion, and the larger the difference in frequency between cases and
controls.

Candidate gene association studies

While current technologies allow to study simultaneously a large
number variants from virtually all genes of our genome for their
association with a disease or trait, most studies completed to
date in ARDS susceptibility and outcomes have been performed
focusing on the analysis of variation at specific genes, with a
biological plausibility, or at putative functional loci. Such can-
didate genes have been usually identified as key elements in the
molecular mechanisms or pathways related to the pathogenesis
unravelled in animal models or clinical observations. However,
candidate gene association studies in other complex traits have
demonstrated a large number of questionable allele—trait associ-
ations because of nonreproducibility of findings in independent
studies that are likely due to a combination of methodological
and analytical problems (Clark and Baudouin, 2006). As a result,
given that such studies will continue to be important in the field,
among the best practices suggested, emphasis is made on the
replication of findings in independent study samples (Chanock
et al., 2007).

So far, a total of 81 distinct genes in 68 independent studies
have been completed in ARDS (Figure 1), most of them being
performed in samples from populations of European descent
according to a recent study (Acosta-Herrera et al., 2014). These
genes are mainly involved in response to external stimulus and
cell signal transduction, although there are also genes implicated
in cell proliferation, immune response and chemotaxis (Flores
et al., 2008, 2010). The genes that have the largest number
of independent study findings supporting a significant associ-
ation (in at least four study samples) encode the interleukin
6 (IL6), interleukin 10 (IL10), vascular endothelial growth fac-
tor A (VEGFA; also known as VEGF), angiotensin-converting
enzyme (ACE), mannose-binding lectin (protein C) 2, soluble
(MBL2), interleukin 1 receptor antagonist (/LI/RN) and NAMPT.
These studies can be found in recent assessments (Flores er al.,
2008; Acosta-Herrera et al., 2014) and in subsequent reports
(Meyer et al., 2013).

The gene encoding IL-6, a cytokine that takes part in inflamma-
tion and in the maturation of B cells, is an excellent candidate as
Cross-species gene expression pattern comparisons in experimen-
tal models of ARDS have shown that /L6 is highly upregulated
(Grigoryev et al., 2004). Furthermore, high circulating concen-
tration of IL-6 in ARDS patients has been found in independent
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epicting the potential links between the ARDS susceptibility genes and key

biological processes involved in the pathogenesis. In bold, genes with evidence of association in at least four study samples. Gene symbols correspond to

the acronyms provided by the NCBI website.

clinical studies (Meduri er al., 1995). Other variants in ILI0,
encoding another cytokine involved in immunoregulation and
inflammation, have been related to development and outcome of
ARDS. Similarly, variants in /L/RN, which encodes a protein that
inhibits the activities of IL-1, have been associated with a reduced
susceptibility to ARDS and with higher ILIRN levels in plasma
among patients with severe trauma or septic shock.

Another broadly studied gene that has been associated with
ARDS is VEGFA. This gene encodes a protein with differ-
ent effects, including a role in increasing vascular permeability,
inducing angiogenesis and regulating vasculogenesis. Frequent
variants downstream from VEGFA gene constitute major deter-
minants of inter-individual variation in the circulating levels of
VEGFA (Debette er al., 2011). To date, diverse studies of lung
injury in humans show that VEGFA polymorphisms are associ-
ated with an increased mortality in patients with ARDS and a
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reduction in plasma levels of VEGFA at early stages (Zhai et al.,
2007; Yang et al., 2011). However, VEGFA is highly expressed
in the lung tissue of recovering ARDS patients, suggesting that
it may have a protective role in the resolution of the syndrome
(Medford et al., 2009).

The gene encoding ACE, which catalyses the conversion of
angiotensin I into a physiologically active peptide angiotensin I, is
known to harbour frequent variants that influence the circulating
ACE activity (Chung et al., 2011). Variants of this gene have
also been associated with ARDS mortality in several studies.
Nevertheless, the enzyme ACE2 has an opposite function to ACE
protecting against lung damage caused by ARDS (Nicholls and
Peiris, 2005).

Finally, variants in NAMPT, previously mentioned in the stud-
ies of Ye et al. (2005a), have been associated with susceptibility to
ARDS. This gene encodes a protein involved in the biosynthesis
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of nicotinamide adenine dinucleotide that has been found at
higher concentrations in serum from patients with ARDS. In addi-
tion, MBL2 polymorphisms were related with severity in ARDS.
MBL2 plays an important role in the innate immune system as it
is responsible for recognising mannose and N-acetylglucosamine
of many microorganisms.

Genomic studies

Genome-wide association studies (GWAS) constitute a powerful
option to find different susceptibility genes with no dependence
on pre-existing knowledge of disease pathogenesis. GWAS have
used commercially designed microarrays with probes that are
specific for an SNP content genotyping in the order of 0.5-2.5
million, allowing to infer (by means of imputation methods) many
other millions of variants that were not genotyped but that are
known to correlate with them based on data from reference stud-
ies such as The 1000 Genomes Project. See also: Genome-Wide
Association Studies. Because of the reference data that sustained
the selection of the SNPs contained is well recognised that GWAS
are well powered to identify risk variants that are relatively com-
mon in the population (i.e. usually for those with a minor allele
frequency above 1-5%).

To date, only one GWAS on ARDS has been published
(Christie er al., 2012). Tt consists on a cost-effective two-stage
design with a third stage that aimed to assist in the identifica-
tion of susceptibility genes based on the correlation of SNPs
with gene expression values (i.e. eQTL analysis) obtained from
B-lymphoblastoid cell lines. In the first stage, Christie and
colleagues obtained data from roughly 2.5 million SNPs across
the genome in 600 trauma-induced ARDS patients and 2266
population-based controls of European descent. For the second
stage, the authors followed up the top 1% most significant SNPs
in another case—control sample consisting of 212 trauma-induced
ARDS patients and 283 at-risk controls. Frequent variants from
the protein tyrosine phosphatase, receptor type, f polypeptide,
interacting protein (liprin) and alpha 1 (PPFIAI) gene were
finally identified with the assistance of the eQTL analysis, there-
fore providing support for an unanticipated ARDS susceptibility
gene. PPFIAT encodes the liprin alpha, a protein involved in cell
adhesion and cell-matrix interactions as well as other functions.
Furthermore, variants in other genes including /L/0, myosin
light chain kinase (MYLK), angiopoietin 2 (ANGPT2) and Fas
cell surface death receptor (FAS) were also replicated in the study
(Christie ef al., 2012).

It is anticipated that more GWAS on ARDS will be completed
in the near future. However, both the actual definition and the
complex genetic architecture of ARDS will continue to compli-
cate the task of identifying genetic risk factors. Therefore, it will
be unsurprising to find GWAS of intermediate traits, such as the
clinical responses taking place during ARDS development (e.g.
circulating biomarker levels). Given that these traits are closer
expressions of the effects of genetic variants, which are less sub-
ject to clinical interpretations, these studies will be needed to
assist in the identification of novel susceptibility genes.

Although GWAS have been key to find new susceptibility genes
for many distinct complex diseases, these studies have the limi-
tation of analysing only a fraction of the actual variants in our

genome (i.e. those that are more frequent in the population).
not allowing to study the whole spectrum of risk allele fre-
quency. Therefore, many other variants with frequencies below
1%, which are more likely to be deleterious, remain unanalysed
in these studies. In order to fill this gap, new technologies such as
next-generation DNA sequencing (NGS) are required to improve
the power to detect disease-associated loci and to improve our
knowledge of the genetic determinants of ARDS susceptibility
and severity. While the road ahead allows envisioning that, in a
couple of years, whole-genome sequencing (WGS) will be the
approach of choice for such studies, the demanding costs that are
currently associated with the complete characterisation of genetic
variation in a large study sample makes this a challenging endeav-
our for now. Whole-exome sequencing (WES) studies constitute
for now a cost-effective alternative. In fact, WES has already been
established as a powerful and robust tool to elucidate genetic vari-
ants underlying human diseases (Goh and Choi, 2012), and two
studies have been completed to date in the context of ARDS.

Lee et al. (2012) performed a WES study using a design of
extreme phenotypes in 88 individuals with sepsis-induced ARDS.
The selection of patients was based on ‘ventilator-free days’
(VFD), which is correlated with the severity of the syndrome.
The authors selected roughly half and half of patients from the
extremes of the distribution of VFD (i.e. compared subjects
with very high VFD against those with very low VFD) and
identified 130,000 SNP variants. Because of sample limitations,
they analysed those infrequent variants present in 6488 genes,
allowing the identification of the MYLK gene as one of the most
significantly associated with VFD in ARDS patients. This result
provided a strong support for the association of MYLK with the
syndrome, as it was previously linked with ARDS susceptibility
based on distinct independent genetic studies (Flores ef al., 2008;
Acosta-Herrera et al., 2014). This gene encodes a key element of
the inflammatory response, critically involved in the lung vascular
permeability and the leukocyte diapedesis, promoting oedema
formation when is activated by pro-inflammatory stimuli.

Besides, Shortt er al. (2014) also performed WES in 96
sepsis-induced ARDS samples that were compared against the
data deposited in The 1000 Genomes Project. While this study
did not found either a strong support for a novel susceptibil-
ity gene for ARDS or provide evidence of replication, their
results were remarkable as they supported the association of
variants in genes encoding class I (HLA-B) and II molecules of
the major histocompatibility complex (HLA-DRBI, HLA-DQAI.
HLA-DQBI and HLA-DRBS), critically involved in the immune
system. In addition, they highlighted three other genes, includ-
ing the arylsulfatase D gene (ARSD), the XK, Kell blood group
complex subunit-related family, member 3 gene (XKR3) and the
zinc-finger protein 335 (ZNF335), whose variants may be associ-
ated with the susceptibility, severity and outcome of ARDS and
that had not been previously associated with the syndrome.

Conclusions

Several studies highlight the implication of genetic component in
ARDS susceptibility and outcome. However, although they have
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provided relevant insights into ARDS pathogenesis, new techno-
logical advances will offer the opportunity to reinterpret genomic
information on ARDS. In this sense, new high-throughput tech-
nologies including GWAS, WES and WGS are potent tools to
assay DNA on a genomic scale and to improve our understand-
ing of ARDS pathophysiology and treatment options. Besides,
given that ARDS is a complex and heterogeneous syndrome and
that the disease precipitates or aggravates because of the inter-
action among many genetic and nongenetic factors, it will also
be important to improve diagnosis, prognosis and the knowledge
of risk factors by using alternative ‘omics’ approaches such as
proteomics, metabolomics and metagenomics. In summary, the
knowledge of the genetic factors involved in ARDS suscepti-
bility is in its infancy. Further studies in larger patient popu-
lations of different ethnicities are necessary to identify genetic
factors associated with ARDS to develop a personalised medicine
approach.
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Web links NCBI: This website provides the official full names of all described
genes as well as additional information related to each of them.

The 1000 Genomes Project: This website provides detailed infor- http:/fwrww.nchinim.nih.gov/gene.

mation of the project, sampled populations and methods, as
well as tools to browse the genetic variation across ethnicities,
http://www.1000genomes.org.
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Chapter 2.

Genome-wide association study of sepsis-associated ARDS in individuals of
European ancestry

This second chapter reports the results of the first GWAS of susceptibility to sepsis-associated ARDS,
performed in 1,935 individuals with sepsis of European ancestry. Given that the genetic catalog of
ARDS remains largely unknown, the aim of this case-control study was to identify novel genes
associated with ARDS and to propose new therapeutic options. The GWAS design consisted in a
discovery stage to identify suggestive signals of association, a replication stage to validate the results,
and a meta-analysis of both stages together. The discovery stage included 672 patients admitted into
a network of Spanish ICUs, while the replication stage included 1,345 individuals from two
independent datasets of American and German cohorts. Finally, functional analyses of significant
signals were performed, involving RNA-sequencing from lung biopsies, in silico analyses, and luciferase

reporter assays.

Our analyses revealed common genetic variants associated with susceptibility to sepsis-associated
ARDS. These variants were located within the Fms Related Tyrosine Kinase 1 (FLT1) gene, which
encodes the VEGF receptor 1 (VEGFR-1), broadly involved in vascular permeability and immunity,
among other processes. The functional assessment revealed a higher expression of FLT1 in peripheral
blood from ARDS patients compared to other critical care patient groups and supported the role of
these variants in the regulation of the FLT1 promoter. Particularly, protective alleles reduced the
promoter activity in a monocyte cell line. These results corroborated the implication of the VEGF
signaling pathway in ARDS pathophysiology and suggested VEGFR-1 as a potential therapeutic target.
Based on the evidence, we suggest that the repurpose of marketed drugs targeting VEGFR-1 should be

considered as novel potential treatments for ARDS patients.

This study has been published in The Lancet Respiratory Medicine with the title "Sepsis-associated
acute respiratory distress syndrome in individuals of European ancestry: a genome-wide association

study" (doi: 10.1016/52213-2600(19)30368-6).
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Abstract

Background. The acute respiratory distress syndrome (ARDS) is a lung inflammatory process mainly
caused by sepsis. Most previous studies that identified genetic risks for ARDS were focused on
biological candidates. We aimed to identify novel genetic variants associated with ARDS susceptibility

and to provide complementary functional evidence.

Methods. We conducted a case-control genome-wide association study (GWAS) in 1,935 European
subjects, using sepsis-associated ARDS patients as cases and sepsis patients without ARDS as controls.
The discovery stage included 672 patients admitted into a network of Spanish intensive care units. The
replication stage comprised 1,345 individuals from two independent datasets involving the MESSI
cohort study (U.S.A.) and the VISEP/MAXSEP trials of the SepNet study (Germany). We used RNAseq-
based gene expression data from lung biopsies, in silico analyses, and luciferase reporter assays to

assess functionality.

Findings. We identified a novel genome-wide significant association with sepsis-associated ARDS
susceptibility (rs9508032, odds ratio [OR]=0-61 [95% CI=0-41-0-91], p-value=5-18x10¥) located within
the Fms Related Tyrosine Kinase 1 (FLT1) gene encoding the vascular endothelial growth factor (VEGF)
receptor 1 (VEGFR-1). The region containing the sentinel variant and its best proxies acted as a silencer
for FLT1 promoter, and alleles with protective effects in ARDS further reduced promoter activity
(p=4-66x1073). A literature mining of all previously described ARDS genes validated the association of

VEGFA (p=4-69x107°; OR=0-55 [95%Cl = 0-41-0-73]).

Interpretation. A common variant within FLT1 gene is associated with sepsis-associated ARDS. Our
findings support the central role of VEGF signaling pathway in ARDS pathogenesis and provides a

potential therapeutic target.

Funding. Instituto de Salud Carlos lll, European Regional Development Funds, Instituto Tecnoldgico y
de Energias Renovables, Agencia Canaria de Investigacion, Innovacién y Sociedad de la Informacién,
European Social Fund, Thuringian Ministry of Education, Science and Culture, the public funded
Thuringian Foundation for Technology, Innovation and Research, the German Sepsis Society, German

Ministry of Education and Research, NIH, and the American Thoracic Society Foundation.

Word Count: Abstract (250), Main text (3,873)

2 Tables, 4 Figures, 40 References, 1 Supplementary document
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Research in context

Evidence before this study: We conducted a literature search on PubMed for all studies reporting
genes which were significantly associated with ARDS up to November 2018. Most previous genetic
studies in ARDS have focused on biological candidate genes mainly involved in the immune response,
vascular permeability, and metabolism. Two small whole-exome sequencing studies and two genome-
wide association studies (GWAS) of ARDS have been published to date, although none of them focused

exclusively on sepsis-associated ARDS.

Added value of this study: To our knowledge, we report the results of the first GWAS of sepsis-
associated ARDS susceptibility conducted on 1,935 European patients with sepsis. We reveal a novel
protective genome-wide significant association with sepsis-associated ARDS within the Fms Related
Tyrosine Kinase 1 (FLT1) gene, encoding the vascular endothelial growth factor receptor 1 (VEGFR-1).
We also report that SNP alleles with protective effects in ARDS reduce FLT1 promoter activity. These
findings reinforce the need to target VEGF signaling in ARDS pathogenesis, a pathway linked to vascular

permeability and immune and inflammatory responses.

Implications of all the available evidence: Our results support the central role of VEGF signaling in
ARDS pathogenesis and suggest VEGFR-1 as a potential therapeutic target. There are effective drugs
targeting this protein that are being used in other diseases and they could be potentially repurposed

for ARDS.
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Introduction

Acute respiratory distress syndrome (ARDS) is a serious complication of sepsis of pulmonary or non-
pulmonary origin.! This syndrome is defined as an acute inflammatory process of the lung caused by
injury to the alveolar-capillary barrier, resulting in increased alveolar-capillary permeability and
protein-rich pulmonary edema. This leads to severe hypoxemia (assessed by PaO,/FiO, ratio), bilateral

pulmonary infiltrates, and decreased lung compliance.

The annual incidence of ARDS ranges from five to 80 cases per 100,000 individuals,?* with an overall
hospital mortality of approximately 40%.% In fact, ARDS is a cause of morbidity and mortality in adult
intensive care units (ICUs) worldwide. Survivors often develop physical and cognitive impairments,
including neuropsychiatric disorders, that diminish their quality of life.>® At present, there are no
available methods to treat or rapidly rehabilitate lungs of affected patients. Effective therapeutic
options remain elusive, likely due to the heterogeneity of the syndrome. Currently, the only available
interventions that impact patient survival involve specific strategies for mechanical ventilation (MV)

and patient position to minimize ventilator-induced lung injury.”®

Given the limited therapeutic options, there is a strong interest in identifying genetic factors that
modify ARDS risks and which may serve as potential therapeutic targets. Several studies have reviewed
the implication of genetic factors in ARDS susceptibility and outcomes.® Overall, most genetic studies
have focused on biologically motivated candidate genes mainly involved in the immune response,
vascular permeability and metabolism.® In addition, two small whole-exome sequencing studies in
ARDS patients revealed that the MYLK gene was associated with ARDS severity as measured by
ventilator-free days,'® and that three other genes (ARSD, XKR3, and ZNF335) were associated with

ARDS susceptibility, severity and mortality outcomes.!

Two genome-wide association studies (GWAS) of ARDS have been published to date, one used
trauma-associated ARDS cases of European ancestry!? and the other used all-cause ARDS African-
American cases.'® These studies revealed two potential ARDS genes, PPFIA1 and SELPLG, although the
reported variants both failed to reach genome-wide significance. Despite the marginal associations,
prior GWAS results were paired with functional analyses either based on expression quantitative trait

loci (eQTL) or on animal models to reinforce the role of prioritized genes in ARDS susceptibility.

Nonetheless, the genetics of ARDS susceptibility remains largely elusive. Thus, further studies on a

genomic scale and larger sample sizes are needed. To our knowledge, here we performed the first
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GWHAS of susceptibility to ARDS in 1,935 individuals of European ancestry, using sepsis-associated ARDS
patients as cases and sepsis patients without ARDS as controls. With the hypothesis that frequent
genetic variants in the population associate with disease risk, we aimed to identify genetic variants
associated with ARDS susceptibility and provide complementary functional evidence using in silico

analyses, gene expression data, and luciferase reporter assays.

Methods

Study design and sample description

We performed a case-control GWAS of ARDS in sepsis patients of European ancestry. A discovery
stage was designed to prioritize variants based on their suggestive association. At the conclusion of
this stage (during November of 2017), investigators from two independent cohorts were contacted
and their data were used to validate the associations in the replication stage. Finally, a meta-analysis
combining the discovery and replication association results was performed during September of 2018

to identify variants significantly associated with ARDS.

The GEN-SEP cohort was used in the discovery stage (Figure 1 and Appendix). It consisted of 672
unrelated adult patients with sepsis'* who were followed for the development of ARDS according to
the Berlin definition criteria.'® Controls constituted patients with all-cause sepsis who did not develop

ARDS during their ICU stay. DNA was extracted from peripheral blood of all patients (Appendix).

The replication stage was conducted on two independent datasets from European-ancestry ICU
patients, where sepsis-associated ARDS were used as cases and sepsis without ARDS were considered
as at-risk controls (Figure 1). The first dataset was derived from 605 patients (268 cases and 337
controls) out of 1,263 patients of multiple ancestries from the “Molecular Epidemiology of Sepsis in
the ICU” (MESSI) cohort study (U.S.A.). The second dataset was obtained from 740 patients (91 cases
and 649 controls) out of 880 patients from the VISEP and MAXSEP trials of the SepNet study group
(Germany). Patients in both studies meet the Berlin definition criteria for ARDS.? These datasets,

thereafter referred to as MESSI and SepNet datasets, have been previously described.'®%’

Genotyping and statistical analyses

For the discovery stage, a total of 587,352 SNPs were genotyped using the Axiom Genome-Wide
Human CEU 1 Array (Affymetrix). Additionally, a principal component (PC) analysis (PCA) was
conducted to reduce the effects of population stratification in the analysis (Appendix and

Supplementary Figure 1). SNPs were genotyped using the Affymetrix Axiom TxArray v.1 (Affymetrix) in
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the MESSI study, while HumanOmniExpressExome arrays (lllumina, Inc.) were used in the SepNet

study. Genotyping procedures are detailed in the Appendix.

After variant imputation in GEN-SEP data, logistic regression models assumed an additive
inheritance. Sex, age, and the Acute Physiology and Chronic Health Evaluation Il (APACHE Il) score were
included as covariates to address potential bias. Variants with low allele frequency (MAF<1%) or with
a low imputation quality (Rsg<0-3) were excluded from the analysis. Details of imputation and
association procedures are described in Appendix. Independent variants showing a p<5-0x10° were

followed up in the replication stage.

In the MESSI study, logistic regression models were performed assuming additive inheritance
considering the first two PCs, age, and sex as covariates. For the SepNet study, logistic regressions
were performed including the first three PCs, sex, age, and APACHE Il as covariates. Meta-analysis was
performed on the results of these two studies. For variants that showed a nominal association (p<0-05)
with ARDS susceptibility in the replication stage, a meta-analysis including discovery and replication
stages was also performed. Genome-wide significance was declared with a meta-analysed significance

of p<9-26x10® according to the most recent empirical estimations in European populations.'®

FLT1 and VEGFA gene expression and functional annotation of genetic variants

In silico and in vitro approaches were used to investigate potential biological consequences of
variants associated with ARDS. First, FLT1 and VEGFA expressions were assessed in nine lung biopsies
from healthy individuals by means of RNA-sequencing (Appendix). In parallel, we accessed public gene
expression data (GSE32707) from 88 critically-ill adult patients that were evaluated for sepsis and ARDS
(Appendix). Next, to highlight the functional role of the associated variant and of SNPs that were LD
proxies in Europeans (r’=1-0), we applied several in silico tools for variant prioritization [DeepSea,
DSNetwork, Open Targets Genetics] and to predict potential regulatory genomic regions including
epigenetic modifications [DeepSea, HaploReg, RegulomeDB], long-distance physical interactions
[Capture Hi-C Plotter (CHICP)], and tissue specific local expression quantitative trait loci (cis eQTLs)
[GTEx, TIVAN]. Additional tools [VEP, SNPdelScore] were used to predict the likelihood of

deleteriousness of each SNP. See Appendix for further details.
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Dual-luciferase reporter assays

The potential regulatory effect of the ARDS-associated variant on promoter activity was
investigated using a Dual-Luciferase Reporter Assay System® (Promega, Madison, WI). Experiments
were performed using human lung epithelial (A549) and peripheral blood monocyte (THP-1) cell lines,
both known to have an active FLT1 promoter activity and expressing VEGFR-1.2° Two types of
constructs were generated: 1) a reporter construct including a fragment of the FLT1 promoter inserted
into a promoterless pGL4.10 [luc2] luciferase reporter vector, and 2) two regulatory constructs
including a region of intron 10 containing either the reference or alternative alleles of the most
significantly associated variant within FLT1 and its perfect LD proxies, which were inserted into the
reporter construct. Promoter activities were expressed as a relative response ratio of Firefly

luciferase/Renilla luciferase signals. See Appendix for further details.

Literature mining of previously reported ARDS-associated genes

A literature search for all studies reporting genes which were significantly associated with ARDS
was conducted. Association results in the discovery stage were extracted and an effective number of
independent signals per gene was measured in order to adjust for multiple testing. See Appendix for

further details.

Role of the funding source

The funders had no role in the study design, data collection, analysis, interpretation of data,
decision to publish, or preparation of the manuscript. CF was involved in all stages of study
development and delivery, had full access to all data in the study, and had final responsibility for the

decision to submit for publication.

Results

GWAS of sepsis-associated ARDS

After filtering steps and the quality control, a total of 515,657 SNPs from 590 patients (274 sepsis-
associated ARDS cases and 316 controls with sepsis) were used for the discovery stage (Figure 1).
Demographic and clinical features of these patients are shown in Table 1. Genotype imputation on the
HRC r.1.1 allowed us to perform the association testing of this stage on 7-98 million variants with

MAF21%. The genomic inflation factor (A=0-98) did not show signs of inflation of the results
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(Supplementary Figure 2). Suggestive associations (p<5-0x107°) were detected for 229 variants residing

in 53 independent loci (lowest p=2-6x107) (Figure 2, Supplementary Table 1).

The replication stage in a total of 359 patients with sepsis-associated ARDS and 986 controls with
sepsis focused on the sentinel variants (variants with the smallest p-values) of 52 autosomal loci (Figure
1, Supplementary Table 2). Because of the difficulties in accessing data, we did not follow up the X
chromosome variants in the replication stage. Association testing in the replication stage revealed four
SNPs that were nominally significant (uncorrected p<0-05; Table 2), although none of them were
significantly associated with ARDS susceptibility after a Bonferroni correction (threshold p=9-62x104).
The first signal is an intronic variant (rs9508032) of the FLT1 gene (Figure 3), encoding the
transmembrane receptor known as the VEGFR-1. The other three SNPs were located intergenic
(rs11195238) to the genes encoding the structural maintenance of chromosomes 3 (SMC3) and the
RNA binding motif protein 20 (RBM20); intergenic (rs8001184) to the genes encoding slit and
neurotrophic tyrosine kinase (NTRK) like family member 5 (SLITRK5) and glypican 5 (GPC5); and in
intron one (rs2734600) of the gene encoding serine protease 3 (PRSS3). Meta-analysis of results from
the discovery and replication stages for these four SNPs revealed that the sentinel variant rs9508032,
located intronic to the FLT1 gene, was the only SNP that reached genome-wide significance (Table 2).
The FLT1 variant showed consistent direction of effects, with an odds ratio (OR) for the T allele of 0-61
(95% confidence interval (CI) = 0-41-0-91), and a p-value of 5-18x10%. A sensitivity analysis of the
association of rs9508032 at FLT1 supported that the association was robust to adjustment for
comorbidities, isolated pathogen, and the disease severity (Supplementary Table 3), though clinical
data was missing for a significant proportion of subjects for some variables (up to 55%). The rs9508032-
ARDS association demonstrated similar effect sizes and directions even when the sample size was
significantly reduced due to missing clinical data. Furthermore, there were 16 additional variants
residing in FLT1 among the 226 SNPs with suggestive associations in the discovery stage
(Supplementary Table 4). All but one was nominally significant in the replication stage, and five
achieved genome-wide significance after meta-analysis of discovery and replication stages. In ad hoc
analyses, we evaluated if the association of the sentinel variant persisted when unselected population
controls were used instead of the at-risk controls. Based on the genotypes from 927 unrelated Spanish

individuals that were genotyped with the same array in previous studies,?%%!

results also supported a
significant association of rs9508032 with ARDS (OR= 0-73, 95% Cl= 0-58-0-90, p-value=3-86x1073). We
also evaluated if the sentinel variant predicted ICU mortality. However, our results indicated that it did
not predict ICU survival among sepsis or ARDS patients from the GEN-SEP cohort (Supplementary Table
5). This evidence further supports that the FLT1 association with sepsis-associated ARDS was genuine.

Finally, at this stage, we assessed if the sentinel variant (and perfect LD proxies) of the FLT1 also
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associated with ARDS after trauma, but none of them was present in the GWAS of Christie and

colleagues (Appendix).2

Gene expression and functional impact predictions at variant sites

Transcriptomic data from lung biopsies obtained from non-ARDS control subjects revealed a high
expression of FLT1 (9,977 counts per million on average + 5,228) and VEGFA (19,221 counts per million
on average * 16,165) in lung tissues, which is in agreement with GTEx information supporting a
prominent expression of these genes in the lung. Among the eight FLT1 isoforms that were evaluated
on the RNAseq dataset, the canonical isoform encoding a membrane-spanning protein (FLT1-201,
ENST00000282397) and the next one in size (FLT1-207, ENST00000615840), which encodes a secreted
VEGF-binding protein of 687 amino acids,? accumulated more than 10 times more reads in average
than the rest of the gene isoforms (Supplementary Table 6). Among the 29 VEGFA isoforms we
assessed, those that had higher expression in the lungs were VEGFA-205 (ENST00000372067), VEGFA-
229 (ENST00000621747), VEGFA-227 (ENST00000615393), VEGFA-222 (ENST00000520948), VEGFA-
206 (ENST00000372077), VEGFA-212 (ENST00000480614), and VEGFA-215 (ENST00000497139)
(Supplementary Table 6). We also accessed array expression data from peripheral blood obtained from
a cohort of critically-ill patients that included donors with sepsis, with and without ARDS, as well as
non-sepsis patients. These data strongly supported that the mean FLT1 expression level in peripheral
blood varied significantly among patient groups (ANOVA, p=0-002), with a higher average FLT1 gene
expression among ARDS patients than in ICU controls without sepsis or SIRS (t-test, p=0-001)
(Supplementary Figure 3). On the contrary, the expression levels for the three available probes of
VEGFA did not vary significantly among ICU patient groups (ANOVA; ILMN_2375879, p=0-638;
ILMN_1693060, p=0-435; and ILMN_1803882, p=0-214) (Supplementary Figure 3). Next, we performed
an in silico bioinformatic approach to explore the functional features of rs9508032 and the other five
variants of FLT1 that reached genome-wide significance after meta-analysis (Supplementary Table 4).
Relevant functional information was found for rs9508032 and two of its proxies (rs722503 and
rs8002446), all of them from intron 10, as these three SNPs were located in enhancer and promoter
histone marks, in DNase | hypersensitive sites (DHS) of many cell types, and were related to the
alteration of regulatory motifs (Supplementary Table 7). Additionally, rs722503 and rs8002446 have
predicted effects on transcription factor binding. The algorithmic framework of DeepSEA predicted a
significant functional effect for rs722503 (p=0-045). DSNetwork predicted similar results where
rs722503 was prioritized as the best candidate variant for further functional analysis in this region. In
contrast, Open Targets Genetics prioritized rs8002446 as potentially functional based on information

of DHS and enhancer- transcription start sites data. Using GTEx, no significant eQTLs were identified
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for rs9508032 or its proxies, although we did observe that both rs9508032 and rs722503 had high
CellulAr dePendent dEactivating (CAPE) scores for eQTL and DNase | QTLs in human umbilical vein
endothelial cells, fibroblasts, epithelial and immune (monocyte) cells (Supplementary Table 7). Using
the CHICP to visualize capture Hi-C experiments conducted by Mifsud and colleagues,?® we observed
the existence of physical interactions between the region containing the three variants and the FLT1

promoter region in a lymphoblastoid cell line (GM12878).

In vitro luciferase assays

Based on the above evidence, we then performed luciferase promoter assays to assess the effect
of the intron 10 region containing the genome-wide significance SNPs on FLT1 promoter activity
(Figure 4A). Our results showed that the FLT1 intron 10 region containing these variants repressed
gene promoter activity with a consistent effect on both peripheral blood monocytes (65-1 + 10:7%
reduction) and human lung epithelial cells (48-7 + 4-1% reduction) (Wilcoxon test, p=4-10x10* and
p=0-02, respectively) (Figure 4B). When we compared the constructs with reference vs. alternative
alleles for all positions within intron 10 of FLT1, we found that the presence of alternative alleles
(protective for ARDS) were associated with a further decrease (48-6 + 7-2% reduction) of the FLT1
promoter activity in peripheral blood monocytes (Wilcoxon test, p=4-66x103) (Figure 4C). No

significant reduction of the FLT1 promoter activity was found for pneumocytes (Wilcoxon test, p=0-89).

Association of previously reported ARDS genes

Finally, we performed a thorough literature mining on genes previously associated with ARDS in
our discovery stage. Results of our search merged with previous reviews identified 96 genes with prior
reported association with ARDS susceptibility or outcome (Supplementary Table 8). Although none of
the 96 genes surpassed a study-wise Bonferroni-corrected threshold in the discovery (p=2-18x10),
the VEGFA gene reached a gene-wise significance after Bonferroni correction in the discovery study
(top signal: OR= 0-55, 95% Cl = 0-41-0-73; p=4-69x10°) (Supplementary Table 8). Not surprisingly,
VEGF-A is one of the main ligands of VEGFR-1.%°

Discussion

To our knowledge, here we reported the results of the first GWAS of sepsis-associated ARDS
completed to date, where we identified a locus located in FLT1 associated with ARDS that reached
genome-wide significance in a combined meta-analysis of all cohorts. Of note, the sentinel SNP of FLT1
(rs9508032) and the perfect LD proxies were all located in close proximity within intron 10, a region

which we observed acting as a silencer of the FLT1 promoter activity in monocyte and human lung
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epithelial cell lines. In conjunction with human transcriptomics data, we also determined that different
FLT1 isoforms are expressed in lung tissues, and that its expression in peripheral blood is positively
correlated with the severity of iliness, with the highest levels detected in ARDS patients. Evidence from
our studies suggested a possible functional role of the sentinel SNP (rs9508032) and two of its perfect
LD proxies in Europeans. Findings also revealed allelic effects of intron 10 on the FLT1 promoter
activity, which was particularly significant on monocytes. Interestingly, FLT1 and other nearby genes
(FLT3 and PAN3) were strongly associated with monocyte counts in the UK Biobank.?* All these findings
reinforce the concept that monocytes are also crucial in the VEGF-mediated lung response.’® Variants
from FLT1 had never been associated with ARDS susceptibility or outcomes in previous independent
studies, although Kim and colleagues® have reported the association of FLT1 with all-cause pulmonary
complications. Additionally, there is evidence of association of FLTI with other complex diseases, such
as coronary arterial disease?® and preeclampsia,?”’?® where the endothelium plays an important

pathophysiological role.

FLT1 encodes VEGFR-1, a tyrosine-protein kinase that acts as a transmembrane receptor of VEGF-
A, other VEGF family members, and the placental growth factor (PLGF). VEGF was originally identified

¥ although it has diverse and pleiotropic activities beyond the

as a vascular permeability factor,!
regulation of the alveolar-capillary barrier.?® VEGF has been involved in the fibroproliferative phase of
ARDS?, as well as in resolution of ventilator-associated pneumonia.?! However, Ware and colleagues
found that levels of VEGF were similar in undiluted edema fluid from hydrostatic and ARDS patients.3?
Although its role remains unclear, abundant evidence supports a negative regulatory role of an
alternatively spliced soluble form of VEGFR-1 (sFLT-1) sequestering part of VEGF bioactivity.?? High
levels of sFLT-1 in the alveolar space are associated in humans with the occurrence of late ARDS in
trauma, as well as with sepsis severity, organ dysfunction, and ICU survival 3#353¢ |n parallel, we have
found that FLT1 expression varied between ARDS and other ICU patients in peripheral blood, while
VEGFA expression did not show differences. Taken together, this suggests that disease-related VEGF
bioavailability could be dependent on the receptor isoforms. Interestingly, the array-based
transcriptomics experiment specifically targeted exon 30 of FLT1 (Supplementary Figure 3), which
critically involves the canonical receptor (FLT1-201), one of the few highly expressed isoforms. These
observations offer a potential mechanistic link between the GWAS results and ARDS pathophysiology,
suggesting that the FLT1 SNPs could be linked to the expression of the VEGFR-1 transmembrane
isoform. The decrease of FLT1 promoter activity in vitro in the presence of intron 10 alleles associated
with ARDS protection may translate in a reduction of the canonical VEGFR-1 expression and, thus, in a
decrease of VEGF signalling. This hypothesis reconciles with the attenuation of many of the VEGF-

mediated pathophysiologic effects in ARDS, including the formation of pulmonary edema. However,
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given the limitations to distinguish expression levels from gene isoforms in array-based transcriptomics
experiments and that the cell type(s) that mechanistically link FLTI SNPs with the ARDS

pathophysiology remains unknown, this scenario is purely speculative.

Despite the central role of VEGF in ARDS and the availability of VEGF-targeting drugs, clinical trials
using drugs directed towards VEGF pathways for ARDS patients are scarce. There is one entry of clinical
trial of the efficacy of bevacizumab (anti-VEGF antibody) to prevent sepsis-associated ARDS
(ClinicalTrials.gov identifier: NCT01314066). However, it was withdrawn without a single patient
enrolled due to a lack of funding. A search in DrugBank® and additional in silico explorations in
Gene2drug®® allowed us to systematically identify available drugs targeting this pathway. Although
most of them are currently in use for cancer treatment (none of them under evaluation in ARDS
patients), nintedanib constitutes one of the few effective antifibrotic therapies as it targets VEGFR-1
and slows the rate of forced vital capacity decline of idiopathic pulmonary fibrosis.?® In addition, the
antifungal drug itraconazole is known to inhibit the glycosylation of VEGFR-1 and VEGFR-2, affecting
their migration pattern and signaling activity.*® Based on this and our findings, nintedanib and

itraconazole potentially might be repurposed as ARDS drugs and warrant further investigation.

We acknowledge there are strengths and limitations of our study. The main strength is that, to our
knowledge, our study is the first GWAS of sepsis-associated ARDS, a complex acute syndrome with a
high morbidity and mortality in ICUs worldwide. We contrast our ARDS cases with similarly well-
characterized critically ill sepsis patients that did not develop ARDS to address the heterogeneity of
the syndrome. This approach allowed us to identify reproducible associations at one locus. We provide
strong evidence (transcriptomics data, functional annotations and in vitro experiments) to sustain a
functional implication of FLT1 variants in ARDS physiopathology. However, this study also has some
limitations. The main weakness is the small sample size overall, limiting the power for detecting
variants of smaller effects or of lower frequency. The limited sample size can be attributed to the low
incidence and high heterogeneity of the syndrome, which makes sample collection difficult and slow.
In this respect, it is plausible that rare variants in or near the identified regions remain undetected
because of technological limitations. Whole-exome and genome sequencing analyses would offer
better resolution to achieve that aim. Therefore, more ARDS loci are to be expected as the genomic
studies of ARDS increase in size and marker resolution. Additionally, this study focused only on
European ancestry patients. Further studies are needed to identify whether FLT1 variation also impacts
ARDS risk in non-European populations. We used the A549 cell line as a model for human alveolar
epithelial cell, which inherently entails experimental limitations because of its cancerous nature.

Further experiments should evaluate primary human alveolar type 2 cells to assess the impact of this
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choice in our observations. Finally, because the X chromosome is usually filtered out from most GWAS
because it adds a level of difficulty to the analyses, we were unable to follow-up a variant in OPHN1

gene (encoding a Rho-GTPase-activating protein) in the replication stage.

In summary, we describe the results of a GWAS of sepsis-associated ARDS. We report one novel
locus located in FLT1 involved in ARDS susceptibility. Based on these results and the accumulated
evidence, this study provides an orthogonal demonstration of the genuine central role of VEGF
signalling pathway in ARDS susceptibility and strongly favours that VEGFR-1 is a therapeutic target for
preventing ARDS. Independent studies should aim to validate our findings, including independent

association studies in non-sepsis ARDS patients.
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Figure 1. Flow chart of quality control steps for the samples and genotyped SNPs in the discovery
and replication stages. CR, Call rate; DQC, Affymetrix dish quality control; FLD, Fisher’s Linear
Discriminant; HetSO, Heterozygous Cluster Strength Offset; HWE, Hardy-Weinberg Equilibrium; MAF,

minor allele frequency; mtDNA, mitochondrial DNA; Y-chr, Y chromosome.
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Figure 2. Manhattan plot of GWAS results for the discovery stage. Axes display the -logio transformed
p-values by position in each chromosome. The horizontal line indicates the threshold considered for
prioritizing variants for the replication stage (p=5-0x107).
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Figure 3. Regional plot of association results for the genome-wide significant locus. The -logio
transformed p-values for association tests are plotted by position. The SNP rs number indicated on the
plot denotes the sentinel SNP. The remaining SNPs are color coded to reflect their degree of linkage
disequilibrium with the indicated SNP based on pairwise r? values from the European population from
The 1000 Genomes Project. Estimated recombination rates (light blue line) are plotted on the right y-
axis.
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Figure 4. Luciferase reporter assay to assess the role of intron 10 and of rs9508032 and its perfect LD
proxies on FLT1 promoter activity. A) Scheme of vector constructs. B) Experimental data showing that
the intron 10 fragment harboring the reference alleles suppresses the FLT1 promoter activity in A549
and THP-1 cells. C) Experimental data showing that the intron 10 fragment harboring the alternative
alleles further decreased the FLT1 promoter activity, showing a significant difference in THP-1 cells.
Significance was assessed by Wilcoxon signed-rank tests (*p<0-05, #p<0-005, ®p<0-0005). Ref and Alt
indicate risk and protective alleles, respectively.
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Table 1. Demographic and clinical features of the GEN-SEP study.

Controls (n=316)

Cases (n=274)

p-valuet

Sex (n males/N)

Mean age (years)*

Hypertension (n/N)

Smokers (n/N)

Previous surgery (%)

Ischemic cardiac disease (n/N)

Pulmonary sepsis (n/N)

APACHE Il (median) (P25—P7s)*

ICU mortality (n/N)

Pathogen (n/N)
Gram-positive
Gram-negative
Gram-positive and Gram-negative
Fungi
Virus
Polymicrobial

Organ dysfunction (n/N)
Circulatory
Coagulation
Hepatic
Neurologic

Renal

197/316 (62-3%)
630 + 15-0
60/144 (41-7%)
61/188 (32-4%)
32/127 (25-2%)
31/285 (10-9%)
83/267 (31-1%)
20 (15-24)
79/310 (25-5%)

48/178 (27-0%)
74/178 (41-6%)
26/178 (14-6%)
5/178 (2-8%)
2/178 (1-1%)
16/178 (9-0%)

232/270 (85-9%)
62/270 (23-0%)
48/269 (17-8%)
54/270 (20-0%)
124/316 (39-2%)

194/274 (70-8%)
62:5 £ 14-1
73/160 (45-6%)
59/175 (33-7%)
35/137 (25:5%)
19/210 (9-0%)
128/252 (50-8%)
22 (18-27)
115/268 (42:9%)

58/162 (35-8%)
59/162 (36-4%)
17/162 (10-5%)
3/162 (1-9%)
9/162 (5-6%)
11/162 (6-8%)

238/255 (93-3%)
68/255 (26:7%)
41/255 (16:1%)
59/254 (23-2%)
108/274 (39-4%)

0-04
0-47
0-56
0-88
1-00
0-61
7-5x10°
2:2x10°
1-5x10°

0-09
0-41
0-34
0-83
0-04
0-45

0-01
0-38
0-67
0-43
1-00

n=number of individuals with data available, N=group size. *All individuals have age and APACHE Il data.
Percentages refer only to the individuals with available data for each clinical feature. tMean age and
APACHE Il comparisons were conducted by the Wilcoxon signed-rank test; the other variables were
compared by a chi-square test. APACHE I, Acute Physiology and Chronic Health Evaluation Il; ARDS, acute

respiratory distress syndrome; ICU, intensive care unit; P25, percentile 25; P75, percentile 75.
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Appendix

The GEN-SEP cohort

GEN-SEP is a national, multicenter, observational study conducted in a Spanish network of 11
intensive care units (ICUs) between 2,002 and 2,017. The list of Spanish hospitals involved in this study
are: Hospital Universitario de Canarias, Tenerife; Hospital Universitario NS de Candelaria, Tenerife;
Hospital Universitario Rio Hortega, Valladolid; Hospital Universitario Dr. Negrin, Gran Canaria; Hospital
General de Ciudad Real, Ciudad Real; Complejo Hospitalario Universitario de Ledn, Ledn; Hospital
Virgen de la Luz, Cuenca; Complejo Hospitalario Universitario de Santiago de Compostela, Santiago de
Compostela; Fundacio Althaia-Manresa, Barcelona; Hospital Clinic, Barcelona; and Hospital Clinico de

Valladolid, Valladolid.

A total of 672 patients with sepsis® were included in this stage and diagnosed with ARDS based on
Berlin definition criteria:? 1) acute onset with PaO2/Fi02 <300 mmHg, 2) bilateral pulmonary infiltrates
on frontal chest radiograph, 3) use of invasive mechanical ventilation, and 4) no evidence of cardiac

failure. Controls were those sepsis patients that did not develop ARDS during their ICU stay.

Four ml of peripheral blood were withdrawn at the time of inclusion into the study and stored at -
20°C until use. DNA was extracted using the lllustra™ blood genomicPrep Mini Spin Kit (GE Healthcare),
quantified with a Qubit 3.0 fluorometer (Thermo Fisher Scientific), and stored at -20°C until use.
Samples with a low concentration of DNA (<10 ng/ul) were cleaned and concentrated using the

RealClean & concentrator microspin kit (Real Laboratory).
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Genotyping and quality control in discovery and replication stages

For the discovery stage, a total of 587,352 SNPs were genotyped in the National Genotyping Centre
(CeGen) using the Axiom Genome-Wide Human CEU 1 Array (Affymetrix). Variant calling was
performed in a single batch for all samples using AffyPipe® following the authors’ recommendations to
fine tune the filtering of low quality SNPs and samples. PLINK v1.90* and R 3.3.2° tools were used to
conduct quality controls. Samples with missing clinical information, genotype call rates < 95%, sex
mismatches between genotypes and the clinical data, samples with high degree of kinship (PIHAT>0-2),
and heterozygosity outliers were removed. Variants with low minor allele frequency (MAF<0-01),
genotype call rates (CR) < 95%, or deviated from Hardy Weinberg equilibrium expectations (HWE,
p<1-0x107%) were excluded. Additionally, a Principal Component (PC) analysis (PCA) was conducted to
reduce the effects of population stratification in the analysis. For this purpose, we removed SNPs
located at known regions that are in long-distance linkage disequilibrium (LD). We then pruned SNPs
in high LD using the function “indep-pairwise” of PLINK, setting a r? of 0-15 to keep approximately
100,000 independent variants. After excluding eight ancestry outliers, the two first PCs for the
discovery sample were plotted overlaid with the HapMap3 populations.® The PCA evidenced the
similarity between the GEN-SEP samples included in the discovery stage and the European population

from HapMap (Supplementary Figure 1).

In the MESSI study, SNPs were genotyped using the Affymetrix Axiom TxArray v.1 (Affymetrix). As
described elsewhere,” variants were filtered if they were located on sex chromosomes, had a MAF<5%,
had a missing genotype rate of >10%, or if deviated from HWE (p<1:0x103). In the SepNet study,
HumanOmniExpressExome arrays (lllumina, Inc.) were used for variant genotyping. As described
elsewhere,® individuals with sex mismatches, missing sex records, CR<98%, implausible heterozygosity
(<20% and >26%), and ancestry outliers based on the PCA were removed. Variants with CR<95%,

MAF<1%, or deviated from HWE (p<1-0x10°®) were also excluded.

Statistical analyses for discovery stage

For variant imputation, phasing was conducted with SHAPEIT v2.r790° and the Haplotype Reference
Consortium (HRC) version r.1.1 data were used as the reference panel* on the Michigan Imputation
Server!!, Logistic regression models assuming an additive inheritance were carried out using EPACTS
v3.2.6'? based on the Wald test. We included sex, age, and the Acute Physiology and Chronic Health
Evaluation Il (APACHE 1) score as covariates. For the variants in the X chromosome, variant imputation

and association tests were conducted separately in males and females, and results were subsequently
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meta-analysed with METASOFT v2.0.1%3. Fixed-effects or Han and Eskin's Random Effects models were
used depending on the significance of the Cochran's Q statistic. Variants with low allele frequency
(MAF<1%) or with a low imputation quality (Rsq<0-3) were excluded from the analysis. The genomic

inflation factor (M) of the results was calculated with the GenABEL package v1.8-0.4

GCTA-C0JO 1.26.0% was used for conditional regression analyses to identify independent loci taking
into account the underlying LD structure in the study sample. Independent variants showing a
p<5-0x10° were followed up in the replication stage. Regional association plots were generated using
LocusZoom?® based on LD information of European populations from the 1000 Genomes Project

(1KGP)Y and gene information from the UCSC browser data.

Statistical analyses for replication stage

Pre-phasing and variant imputation in MESS|I were conducted with MACH v1.0,%® using the
European population from 1KGP Phase 1 v2 as the reference panel. Logistic regression models were
performed assuming additive inheritance using R 3.3.2 stats package (glm function, binomial
distribution),® considering the first two PCs, age, and sex as covariates. All the investigated variants in
MESSI had a MAF >1% and Rsq >0-3. As described elsewhere,? for the SepNet study SHAPEIT v2.r790°
was utilized for pre-phasing, and IMPUTE2 v2.3.1%° was used for variant imputation considering the
1KGP Phase 1 v3 data as the reference panel. Logistic regressions were performed with SNPTEST v2.5,°
which included the first three PCs, sex, age, and APACHE Il as covariates. All the assessed variants in
SepNet had MAF >1%, no evidence for deviations from HWE (p>1-0x107°) and an INFO Score >0-8. To

combine the results from MESSI and SepNet, a meta-analysis was assessed using METASOFT v2.0.1.%3

Meta-analysis of discovery and replication stages

A meta-analysis across discovery and replication stages was performed with METASOFT v2.0.13 to
estimate the overall effect size of the SNPs reaching nominal significance in replication stage. Fixed-
effects or Han and Eskin's Random-effects models were used based on the Cochran's Q test
significance. Genome-wide significance was declared with a meta-analysed significance of p<9-26x10
8

according to the most recent empirical estimations in European populations.?® The same

approximation was used for the sensitivity analysis of the association of the sentinel variant.
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Statistical power

Statistical power was estimated using the Genetic Association Study (GAS) Power Calculator.?! We
assumed a multiplicative model, a GWAS with a sample size of 630 cases and 1,302 controls, a relative
risk of 1-5 and a prevalence of 0-1, the study had 80-4% statistical power for detecting associated

variants with MAF of 0-30 or greater at significance level of p<9-26x10°%.

FLT1 and VEGFA gene expression and functional annotation of genetic variants

Total RNAs from nine lung biopsies of healthy individuals obtained from the Gift of Hope Network
Regional Organ Bank of Il (GOH/ROBI) were isolated and subjected to RNA-sequencing. Expression
levels of FLT1 and VEGFA were expressed in counts per million (Shwu-Fan Ma and Imre Noth, personal
communication). Additionally, the ExAtlas tool?? was used to explore public gene expression data
available (GSE32707) from a peripheral blood transcriptomics analysis in 88 critically-ill adult patients
that were evaluated for sepsis and ARDS.? For this analysis we used ANOVA followed by pairwise
Student’s t-tests to assess the differences in average intensities of the array probe targeting FLT1
(ILMN_1752307, which targets exon 30, that is found in the canonical isoform FLT1-201) and VEGFA
(ILMN_2375879, ILMN_1693060, and ILMN_1803882) between ICU controls (n=34), systemic
inflammatory response syndrome (SIRS, n=21), sepsis (n=30), and sepsis-associated ARDS patients

(n=18) at study inclusion. We report uncorrected two-sided p-values.

Next, we used a combination of tools and datasets to evaluate the regulatory potential of the
associated variants in gene expression (through epigenetic mechanisms, long-distance physical
interactions, and tissue-specific cis- expression quantitative trait loci (eQTLs)), and the likelihood of
deleteriousness. These included Capture Hi-C Plotter (CHiCP),?* DeepSea,?® DSNetwork,2® GTEx Analysis
Release V7,% HaploReg v4.1,% Open Targets Genetics,?® RegulomeDB,*° SNPdelScore,® TIVAN,* and
Variant Effect Predictor (VEP).?

CHICP allows for the determination of empirically-observed physical interactions between distal
DNA regulatory elements and gene promoters in multiple tissues. DeepSea predicts the epigenetics
state of a sequence and prioritize regulatory variants by calculating functional significance scores,
while DSNetwork allows for the selection of the most probable functional SNP from a list of variants
according to nearly sixty prediction approaches. The GTEx Portal allows for the study of Single-Tissue
eQTL and tissue-specific gene expression and regulation. HaploReg, Open Targets Genetics, and

RegulomeDB explore annotations of coding and non-coding variants integrating data from chromatin
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states, regulatory motifs, eQTLs, pQTLs, DNase | hypersensitive sites, enhancer-transcription start
sites, and promoter capture Hi-C experiments from different cell lines. Open Targets Genetics puts
functional information in the context of the UK Biobank association evidence, allowing one to link each
variant to its proximal and distal target gene(s), using a single evidence score. SNPdelScore combines
different methods to address deleterious effects of noncoding variants, including the CellulAr
dePendent dEactivating (CAPE) mutations predictor. Finally, TIVAN allows for the prediction of tissue-
specific cis-eQTL single nucleotide variants, and VEP determines the effect of the variants analysed on

genes, transcripts, protein sequence, and regulatory regions.

Constructs, transient transfections, and dual-luciferase reporter assays

A Dual-Luciferase Reporter Assay System® (Promega, Madison, WI) was used to evaluate the
potential regulatory effect of the ARDS-associated variant on promoter activity. The reporter construct
was generated by synthesizing (GenScript Inc, Piscataway, NJ) a fragment of 1,032 bp of the FLT1
promoter (Ensembl ID: ENSRO0000060438) plus 284 bp of the 5’ UTR of exon one and 784 bp of the
upstream sequence (chr13: 29,068,982-29,070,013; GRCh37/hg19 coordinates), and inserting it into a
promoterless pGL4.10 [luc2] luciferase reporter vector (Promega). This FLT1 promoter region was
chosen for having the highest activity in vitro in a previous characterization of the gene promoter.3* In
addition, two regulatory constructs were generated by synthesizing (GenScript Inc, Piscataway, NJ) a
1-9 kb intron 10 fragment containing either the reference or alternative alleles of the most significantly
associated variant within FLT1 and its perfect LD proxies (i.e. rs9508032, rs9508034, rs722503,
rs8002446, rs9513111, r?=1-0) in Europeans (chrl3: 28,995,800-28,997,700; GRCh37/hgl9

coordinates) and inserting them into the reporter construct.

The constructed plasmids (50 ng DNA each) and the control plasmid pGL4.74 [hRluc/TK] (10 ng DNA)
were transiently co-transfected into human lung epithelial (A549) or peripheral blood monocyte (THP-
1) cell lines using the TransIT®-LT1 Transfection Reagent (Mirus Bio LLC, Madison, WI) following
manufacturer’s protocol. A549 and THP-1 cells were separately grown in 10% DMEM or 10% RPM 1640
media, respectively, and were plated into white 96-well plates until confluency. Twenty-four hours
after transfection, cells were collected and luminescence was measured by Dual-Luciferase Reporter
Assay System according to manufacturer’s instructions using a Cytation5 plate reader (BioTek,
Winooski, VT). Luminescence experiments were performed four to eight times, with each transfection
in triplicate. Following manufacturer's instructions,? to reduce variability, simplify comparisons and
improve significance, promoter activities were expressed as the relative response ratio of Firefly

luciferase/Renilla luciferase luminescence according to the formula:
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(experimental sample ratio) — (negative control ratio)

Relative response ratio = — - - -
(positive control ratio) — (negative control ratio)

We considered the construct including only the FLT1 promoter as the positive control and the
promoterless construct as the negative control (see figure 4A). Mean differences among the
independent experimental groups were assessed by non-parametric Wilcoxon signed-rank test. Again,

we report uncorrected two-sided p-values.

Literature mining of previously reported ARDS-associated genes

In order to evaluate genes that were previously associated with ARDS, we conducted a bibliographic
search on PubMed for all studies reporting genes which were significantly associated with ARDS from
December 2015 to November 2018. This updated result was merged with a list of all published studies
we collected up to December 2015 available elsewhere.3¢738 For that search, we used combinations of
the terms “acute respiratory distress syndrome”, “ARDS” OR “acute lung injury” with “polymorphism”
OR “genetic variant” and retrieved seven publications reporting five additional candidate ARDS genes
in adults. Association results in the discovery stage were extracted and an effective number of
independent signals per gene was measured using the Genetic Type | Error Calculator® in order to
adjust for multiple testing. Significant association was declared if any of the individual variants
surpassed one of two Bonferroni-corrected significant levels. We considered a study-wise adjustment
accounting for all the independent tests across all genes, and a gene-wise adjustment just accounting

- i.e. adjusting for the independent variants mapping at individual genes.

Evaluation of FLT1 variants in a trauma-associated ARDS cohort

We evaluated if the FLT1 sentinel variant and perfect proxies also associated with non-sepsis ARDS.
For that, we accessed the table S2 of the only GWAS of trauma-associated ARDS published to date,*
containing publicly available (but incomplete) summary data. We found that none of the FLT1 variants
that achieved genome-wide significance in sepsis-associated ARDS were present in that study because
of the reference panel used for variant imputation. Despite this, it was reassuring to find that out of
13 FLT1 SNPs listed (all within a region of 31 kb and showing nominally significant associations with
ARDS after trauma), six were also located in intron 10 (p-values in the range of 9-15x10* to 2-44x1073).

However, their LD with the sentinel variant of our study was weak in Europeans (r?=0-13).
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Supplementary Figures

Supplementary Figure 1. Principal component analysis. Plot of the first two principal components (PC)
of individuals analyzed in the discovery stage were projected on the HapMap3 reference dataset.
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Supplementary Figure 2. Quantile-Quantile (Q-Q) plot. Observed versus expected -logio p-values for
the GWAS results of the discovery stage.
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Supplementary Figure 3. FLT1 and VEGFA gene expression in critical care patients. Probe intensities
of expression arrays obtained from peripheral blood samples from ICU controls (n=34), systemic
inflammatory response syndrome (SIRS, n=21), sepsis (n=30) and sepsis-associated ARDS patients
(n=18) at study inclusion. Note that the probe ILMN_1752307 targets FLT1 exon 30, which is found in
the canonical isoform (FLT1-201), one of the most highly expressed isoforms of the gene. Differences
in average intensities were assessed using ANOVA followed by t-tests. GEO accession: GSE32707.%
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Supplementary Tables

Supplementary Table 1. Top 53 independent SNPs associated with ARDS in the discovery stage (p<5-0x10®).

Variant Chr Position (hg19) Gene Al1/A2 MAF OR [95% CI] p-value
rs598782 1 202572596 SYT2 T/C 0-173 0-49 [0-35, 0:69] 3-16x10°
rs10917581 1 162624504 DDR2 G/A 0-262 0-:56 [0:42, 0-74] 4-37x10°
rs56865040 2 30907832 LCLAT1-CAPN13 G/A 0-066 3-35[1:95,5:77] 1:24x10°
rs58982889 3 85080936 CADM2 C/G 0-483 0-57 [0-44, 0-73] 1-37x10°
rs12494792 3 54631523 CACNA2D3 A/G 0-251 1-82 [1-38, 2:40] 2:52x10°
rs71331755 3 134040335 RYK-AMOTL2 C/G 0-237 1-83 [1:37, 2:43] 3-20x10°
rs76763432 4 20933002 KCNIP4 T/C 0-114 2-36 [1-60, 3-48] 1-38x10°
rs12513121 4 126763999 FAT4-INTU A/C 0-302 0-55[0:43,0:72] 1-48x10°
rs11097547 4 77763070 SHROOM3-SOWAHB G/A 0-200 1-95 [1-44, 2-64] 1-51x10°
rs78119818 4 78068598 CCNI-CCNG2 A/T 0-048 3-79 [2:03, 7-06] 2-81x10°
rs10518480 4 126898260 FAT4-INTU G/A 0-202 193 [1-41, 2-64] 3-46x10°
rs66691935 4 184540486 ING2-RWDD4 T/C 0-175 197 [1-43, 2:71] 3-67x10°
rs62300402 4 66422737 EPHAS G/A 0-276 0-56 [0-42, 0-74] 4-46x10°
rs66486976 5 177602232 NHP2-GMCL2 T/C 0-313 0-55[042,0-71] 1-00x10°
rs58681704 5 133268913 FSTL4-C50rf15 A/G 0-202 0-51[0-37,0:70] 3-18x10°
rs62390494 5 177493565 FAM153C-N4BP3 T/C 0-199 1-90 [1-40, 2-60] 4-53x10°
rs9453845 6 67330152 EYS-ADGRB3 T/G 0-107 0-41[0-27,0-62] 2-81x10°
rs3003179 6 74677167 CD109-COL12A1 A/G 0-279 1-76 [1-35, 2:30] 3-20x10°
rs58277258 6 129194762 LAMAZ2 Cc/T 0-084 269 [1-68, 4-30] 3-88x10°
rs12197618 6 85969855 TBX18-NT5E A/G 0-053 3-58 [1:95, 6:57] 4-01x10°
rs9367172 6 43709993 MRPS18A-VEGFA A/G 0-237 0-55[0-41, 0-73] 4-69x10°
rs72611587 7 146905995 CNTNAP2 T/C 0-140 2:16 [1-51, 3-09] 2:78x10°
rs7777943 7 150483237 GIMAP5-TMEM176B G/A 0-277 0-57 [0-44, 0-74] 3-18x10°
rs12678166 8 8520530 PRAG1-CLDN23 T/C 0-152 2-05 [1-46, 2-89] 3-80x10°
rs796455145 9 5487547 PLGRKT Cc/T 0-411 174 [1-37, 2:22] 7-49x10°
rs4740791 9 4611901 SPATA6L T/C 0-087 2:62 [1:66, 4-12] 3-14x10°
rs2734600 9 33753355 PRSS3 T/C 0-152 0-48 [0-33, 0-68] 3.76x10°
rs1751276 10 4477665 KLF6-AKR1E2 A/G 0-123 2:53[1-70, 3-77] 4-85x10°°
rs1867966 10 71187839 TACR2-TSPAN15 G/A 0-430 0-58 [0-45, 0:74] 1-32x10°
rs11195238 10 112388857 SMC3-RBM20 T/C 0-151 0-47 [0-33, 0:67] 2:97x10°
rs10795549 10 7582855 SFMBT2-ITIH5 C/A 0-478 0-60 [0-47, 0-76] 3-02x10°
rs10736526 11 122589092 UBASH3B c/T 0-207 0-50 [0-37, 0-67] 3-73x10°
rs61710829 11 126566557 KIRREL3 G/C 0-378 1-71[1-33, 2:20] 3-07x10°
rs602124 11 69388853 MYEOV-CCND1 C/G 0-297 1-77 [1-35, 2:31] 3-15x10°
rs76921243 12 26606699 ITPR2 A/G 0-056 0-25[0:13, 0:47] 1-81x10°
rs1861180 12 12958559 DDX47 T/C 0-088 0-40 [0-25, 0:62] 4-07x10°
rs1904566 12 68125847 DYRK2-IFNG C/A 0-420 1-69 [1-31, 2:17] 4-49x10°
rs9508032 13 28995940 FLT1 T/C 0-288 0-49 [0-38, 0:65] 2:62x107
rs8001184 13 90603540 SLITRK5-GPC5 A/C 0-483 1-65 [1-30, 2:10] 4-48x10°
rs946626 14 49140883 MDGAZ2-RPS29 A/G 0-428 1-73[1-36, 2-20] 8-59x10°
rs7161717 14 26389695 STXBP6-NOVA1 c/T 0-132 0-44 [0-30, 0-64] 2:54x10°
rs4887263 15 86626153 AGBL1 A/C 0-096 2:73 (174, 4-28] 1-19x10°
rs12902176 15 65518664 CILP-PARP16 G/A 0-268 1-78 [1-35, 2-35] 4-04x10°
rs11647343 16 84454267 ATP2C2 C/A 0-384 1-75 [1-36, 2-24] 1-05x10°S
rs244783 16 84360055 WEDC1 T/G 0-212 197 [1-45, 2-69] 1.77x10°5
rs4791367 17 9724374 GLP2R G/A 0-092 0-35[0-22, 0-:56] 1-25x10°
rs9675656 18 2947220 LPIN2 C/G 0-109 2:44 [1-63, 3:66] 1-65x10°
rs397195 19 6619504 CD70-TNFSF14 G/C 0-354 1-71[1-32, 2-20] 3-44x10°
rs285251 19 16415993 APIM1-KLF2 c/T 0-286 0-56 [0:42, 0-74] 4-00x10°
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rs6040856
rs2831537
rs4817154
rs1155955

20
21
21
X

11702045
29516376
28477085
67297091

JAG1-BTBD3

ADAMTS5-N6AMT1
ADAMTS5-N6AMT1

OPHN1

G/C
T/C
A/G
G/A

0-354
0-462
0-082
0-120

1-68[1-32, 2:15]
0-57 [0-45, 0-73]
2-59 [1-64, 4-10]
3-12[1-83,5-31]

3-16x10°
7-65x10°
4.57x10°
2-87x10°

Al, Effect allele; A2, Non-effect allele; Cl, Confidence Interval; MAF, Minor Allele Frequency; OR, Odd Ratio.
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Supplementary Table 3. Sensitivity analysis for the rs9508032 in the three cohorts together.

OR [95% CI] p-value
Unadjusted” 0-62 [0-43, 0-90] 1-07x107
Sex 0-62 [0-43, 0-90] 1-11x107
Age 0-62 [0-43, 0-90] 1-30x107
APACHE" 0-61 [0-40, 0-93] 1-81x108
Smokers* 0-58 [0-42, 0-80] 9-72x10™
Previous surgery® 0-64 [0-50, 0-83] 7-35x104"*
Ischemic cardiac disease® 0-56 [0-45, 0-70] 3-05x107#
Pulmonary sepsis 0-61[0-41, 0-91] 9-12x10°%*
Mortality" 0-62 [0-41, 0-94] 2:51x107
Pathogen* 0-48 [0-34, 0-68] 2-34x10°>"™
Multi organ dysfunction!! 0-61 [0-41, 0-91] 1-03x107
Comorbidities™ 0-62 [0-40, 0-94] 1-56x10°7#

"Unadjusted data for GEN-SEP, adjustment for 2 PC for MESSI, and adjustment for 3 PC for
SepNet; "APACHE Il was measured for the MESSI Cohort and APACHE |l for GEN-SEP and
SepNet Cohorts; *There was only information available for GEN-SEP study; SThere was not
information available for MESSI study; "ICU mortality was considered for the GENSEP cohort,
30-day mortality was considered for the MESSI Cohort, and 28-day mortality for the SepNet
cohort; !'Two or more affected organs; ““For the GEN-SEP and SepNet studies, comorbidities
considered are autoimmune diseases, cancer, chronic diseases, diabetes, hepatopathies,
immunosuppression, kidney diseases, morbid obesity, pregnancy, severe infections, severe
brain damage, and valvulopathies. For MESSI, comorbidities are defined as
immunocompromise (cancer receiving treatment, hematologic malignancy, AIDS, metastatic
cancer, or receiving immunosuppressive medication), cirrhosis, congestive heart failure, or
chronic renal insufficiency including dialysis; "'Missing data for more than 35% of individuals
from the GEN-SEP study; *Missing data for the 15-20% of individuals from the GEN-SEP study.
APACHE, Acute Physiology and Chronic Health Evaluation; ICU, intensive care unit; OR, Odd
Ratio; ClI, Confidence Interval.
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Supplementary Table 5. Prediction of ICU survival for the sentinel variant at FLT1 in GEN-SEP

OR [95% CI] p-value
Sepsis 1-00 [0-81, 1-24] 0974
ARDS 1-16 [0-87, 1-54] 0-307

Data were obtained using Cox regression models adjusted for age, sex, and APACHE Il scores.
APACHE I, Acute Physiology and Chronic Health Evaluation Il; ICU, intensive care unit; OR, Odd
Ratio; Cl, Confidence Interval.
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Supplementary Table 6. Expression of FLT1 and VEGFA isoforms in lung tissue.

Name Average SD
FLT1-201 5,928 2,803
FLT1-202 5 5
FLT1-203 6 4
FLT1-204 20 12
FLT1-205 6 7
FLT1-206 12 12
FLT1-207 3,998 2,492
FLT1-208 2 2

VEGFA-203 0 0
VEGFA-226 11 28
VEGFA-209 0 0
VEGFA-207 12 14
VEGFA-205 3,804 3,543
VEGFA-213 0 0
VEGFA-228 5 12
VEGFA-229 2,748 2,824
VEGFA-208 0 0
VEGFA-204 0 0
VEGFA-227 1,804 3,203
VEGFA-220 5 7
VEGFA-202 0 0
VEGFA-224 0 0
VEGFA-222 1,536 1,704
VEGFA-218 94 81
VEGFA-225 9 27
VEGFA-219 0 1
VEGFA-223 1 4
VEGFA-201 69 75
VEGFA-206 1,232 1,325
VEGFA-210 1 4
VEGFA-221 1 1
VEGFA-212 3,393 2,676
VEGFA-215 4,193 3,631
VEGFA-211 52 41
VEGFA-214 83 105
VEGFA-217 8 15
VEGFA-216 161 158

No data was available for the isoforms FLT1-209, VEGFA-230, VEGFA-231, or
VEGFA-232. SD, standard deviation. Values are given in counts per million.
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Supplementary Table 7. Functional annotation of the FLT1 top hit (rs9508032) and the most promising two
proxies.

rs9508032 rs722503 rs8002446
Functional significance
score predicted with 0-13 <0-05 0-10
DeepSEA
ding + 4
regulomedB Score (5) TF binding or Dnase peak (3a) TF binding peaanky motif + Dnase (4) TF binding + Dnase peak
Enhancer histone marks H3K4mel", H3K27ac" H3K4me1*, H3K27ac? H3K4me1", H3K27ac!!
Promoter histone marks H3K4me3™, H3K9ac™ H3K4me3*, H3K9ac% H3K4me3", H3K9ac%
IMR90, iPSC, Blood & T-cell, HSC &
B-cell, Epithelial, Thymus, Muscle,
HSC & B-cell, Monocytes- . Fetal Kidney, Fetal Lung, Ovary,
DNAse CD14+ RO01746 Primary Cells HSC & B-cell, ES-deriv Placenta, GM12878
Lymphoblastoid Cells, Monocytes-
CD14+ RO01746 Primary Cells
Altered regulatory motifs Cdc5, Gfi-1, HNF1, Mef2 CCNT2, MAZR, NF-kappaB, Spzl None

BCL11A, EBF1, EBF1, ELF1,
Proteins bound None POL2, NFKB PAX5C20, PAXSN19, PU1, SP1, PU1,
POL2, CMYC, MAX

CD34: POMP (11-36); GM12878: POMP (9-71), FLT1 (10-97), SLC46A3/RNU6-53P (9-91), PAN3 (9-13),

CHicP SLC46A3/CYP51A1P2 (8-63)
Open Targets Genetics None None FLT3 (top ranked), POMP, PAN3
eQTLs None None None
Score CAPE dsQTL 505 HUVEC, A5f19 EtOH 0.0?pct None None
Lung Carcinoma Cell Line
HUVEC, NHLF Lung Fibroflast Primary
Cells, NHDF-Adult Dermal Fibroflast
Primary Cells, Monocytes-CD14+
Score CAPE eQTL 505 None RO01746 Primary Cells, A549 EtOH A549 EtOH 0-02pct Lung Carcinoma

0:02pct Lung Carcinoma Cell Line, Cell Line
Foreskin Fibroblast Primary Cells
skin01, IMR9I0 fetal lung fibroblasts
Cell Line

CAPE, Cellular dependent deactivating mutations; CD34, human hematopoietic progenitor cell line; GM12878, lymphoblastoid
cell line; HUVEC, Human umbilical vein endothelial cell; IMR90, Human foetal lung cells; NHDF, Normal Human Dermal
Fibroblasts; NHLF, Normal human lung fibroblasts. *IMR90, ESC, iPSC, ES-deriv, Blood & T-cell, HSC & B-cell, Epithelial, Brain,
Adipose, Muscle, Heart, Fetal Lung, Fetal Adrenal Gland, Liver, Spleen, GM12878 Lymphoblastoid Cells, HUVEC Umbilical Vein
Endothelial Primary Cells, Monocytes-CD14+ RO01746 Primary Cells. fiPSC, ES-deriv, HSC & B-cell, Epithelial, Adipose, Spleen,
GM12878 Lymphoblastoid Cells, HUVEC Umbilical Vein Endothelial Primary Cells. ¥IMR90, ESC, iPSC, ES-deriv, Blood & T-cell,
HSC & B-cell, Epithelial, Thymus, Brain, Adipose, Muscle, Heart, Digestive, Fetal Lung, Fetal Adrenal Gland, Placenta, Liver,
Lung, Spleen, Dnd41 TCell Leukemia Cell Line, GM12878 Lymphoblastoid Cells, HUVEC Umbilical Vein Endothelial Primary Cells,
K562 Leukemia Cells, Monocytes-CD14+ RO01746 Primary Cells. $iPSC, HSC & B-cell, Brain, Adipose, Heart, Digestive, Liver,
Dnd41 TCell Leukemia Cell Line, GM12878 Lymphoblastoid Cells, HUVEC Umbilical Vein Endothelial Primary Cells, Monocytes-
CD14+ RO01746 Primary Cells. JESC, iPSC, ES-deriv, Blood & T-cell, HSC & B-cell, Epithelial, Thymus, Brain, Adipose, Muscle,
Heart, Digestive, Fetal Lung, Fetal Adrenal Gland, Placenta, Liver, Lung, Spleen, Dnd41 TCell Leukemia Cell Line, GM12878
Lymphoblastoid Cells, HUVEC Umbilical Vein Endothelial Primary Cells, Monocytes-CD14+ RO01746 Primary Cells. I1iPSC, HSC
& B-cell, Epithelial, Brain, Adipose, Heart, Digestive, Ovary, Liver, Dnd41 TCell Leukemia Cell Line, GM12878 Lymphoblastoid
Cells, HUVEC Umbilical Vein Endothelial Primary Cells, Monocytes-CD14+ RO01746 Primary Cells. *"HSC & B-cell, Monocytes-
CD14+ RO01746 Primary Cells. "iPSC, Adipose, Digestive. **Blood & T-cell, HSC & B-cell, Brain, Adipose, Heart, Digestive, Liver,
Dnd41 TCell Leukemia Cell Line, GM12878 Lymphoblastoid Cells, Monocytes-CD14+ RO01746 Primary Cells. $Blood & T-cell,
Adipose, Sm. Muscle, Dnd41 TCell Leukemia Cell Line, GM12878 Lymphoblastoid Cells, Monocytes-CD14+ RO01746 Primary
Cells. MBlood & T-cell, HSC & B-cell, Brain, Dnd41 TCell Leukemia Cell Line, GM12878 Lymphoblastoid Cells, Monocytes-CD14+
RO01746 Primary Cells
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Supplementary Table 8. Signals of replication at gene level in the GEN-SEP dataset within 100 kb of
previously reported candidate genes.

Independent Gene-\_lvise .

Gene signals Bonferroni p-value SNP min p-value A1/A2 OR [95% CI] p-value
threshold

ABCC1 275-18 1-82x10* rs246233 G/T 198 [1-21, 3-25] 6-79x10°3
ACE 72-:94 6-85x10* rs9857615 T/C 0-70 [0-49, 0-98] 3-89x10?
ADA 137-74 3-63x10* rs17687734 G/A 2-60[1-31, 5-16] 6-31x103
ADGRV1 640-97 7-80x10° rs6094023 A/G 0-48 [0-29, 0-79] 3-65x103
ADIPOQ 288-87 1.73x10* rs114210898 A/G 1-34 [1-05, 1-72] 2-06x10?
ADRBK2 318-26 1-57x10* rs1467387 C/T 0-67 [0-50, 0-89] 5-96x10°3
AGER* 363-32 1-38x10* rs61746206 T/C 0-32[0-13, 0-83] 1-83x1072
AGT 303-17 1-65x10* rs1078499 G/A 0-69 [0-53, 0-91] 8-68x103
AGTR1 2814 1.78x10* rs275643 A/G 1-86 [1-24, 2-80] 2-70x103
AHR 201-39 2:48x10* rs140084506 T/C 4-69 [1-26, 17-4] 2:10x10?
ANGPT2 456-67 1.09x10* rs2442570 A/G 0-43 [0-24, 0-76] 3.76x103
APOA1 236-49 2-11x10% rs2513094 c/T 1-36 [1-03, 1-79] 2-99x102
ARSD 159-08 3.14x10* rs1698814 /T 1-45 [1-08, 1-96] 1-46x107?
BCL11A 2624 1.91x10* rs76064527 A/C 1-90 [1-08, 3-37] 2-69x10?
CBS 160-35 3-12x10* rs2401154 T/C 1-49 [1-06, 2-08] 2-:03x10?
CELF2 669-82 7-46x10° rs76209150 T/G 2-65[1-33, 5:26] 5-50x10°3
CHIT1 269-23 1-86x10* rs1845466 T/G 0-64 [0-49, 0-83] 8:63x10*
CLASRP 113-15 4-42x10* rs10405859 c/T 0-71[0-56, 0-91] 6-50x10°3
CcXCL2 96-08 5-20x10* rs28574621 C/G 0-30 [0-09, 0-94] 3-85x10
CXCR2 98-44 5-08x10* rs12989315 A/G 2:26 [1-26, 4-07] 6-36x10°3
CYP1A1 82-88 6-03x10* rs17861120 G/A 0-51[0-32,0-83] 6-20x10°3
DARC 202-96 2-46x10* rs55833893 T/C 0-31[0-14, 0-68] 3-66x103
DIO2 158:36 3-16x10* rs17176215 G/A 0-24 [0-07, 0-87] 2-96x10?
EGF 240-96 2-08x10* rs146141236 c/T 0-22 [0-09, 0-55] 1-25x10°3
EGLNI* 144-18 3.47x10* rs141921538 T/C 4.56 [1-44, 14-39] 9-75x103
EPAS1 417-3 1.20x10* rs11888926 G/C 1-65[1-19, 2-28] 2:63x103
F5 269-74 1-85x10* rs144628673 A/G 5-37[1-51, 19-05] 9-37x1073
FAAH 187-13 2:67x10* rs78918625 G/C 0-17 [0-04, 0-78] 2-30x10?
FAS 239-16 2:09x10* rs61852572 G/A 0-60 [0-41, 0-89] 1-11x107?
FER* 644-44 7-76x10° rs10515395 c/T 1.82[1-22,2:71] 3-28x10°3
FTL 143.23 3.49x10* rs140747916 T/A 1.70 [1-08, 2-66] 2-12x10?
FZD2 125-26 3.99x10* rs9900767 T/C 0-50 [0-28, 0-90] 2-09x10?
GADD45A 184-53 2:71x10* rs344923 G/A 1-33[1-05, 1-70] 1.92x1072
GHR 322-68 1.55x10* rs41271073 A/G 0-34 [0-15, 0-74] 6-48x10°3
GP5 210-56 2:37x10* rs7611390 T/C 0-57 [0-41, 0-81] 1-63x10°3
GRM3 285-81 1.75x10* rs6974073 A/C 1-59 [1-02, 2-47] 4-01x107?
HAS1 225-37 2:22x10* rs113174648 G/C 1-51[1-12, 2:03] 7-03x10°3
HECTD2 174-41 2-87x10* rs11186608 T/G 0-71 [0-56, 0-89] 3-23x10°3
HMOX1 129-66 3-86x10* rs4645773 T/C 0-35[0-16, 0-75] 6-49x10°3
HMOX2 119-94 4-17x10* rs190300249 T/C 0-34[0-12,0-93] 3-51x10?
HSPG2 351-59 1.42x10* rs72662414 C/A 3.05 [1-03, 9-07] 4-50x107
HTR2A 286-1 1.75x10* rs1923886 T/C 1-54 [1-21, 1-96] 5-36x10*
IL10 185-14 2-70x10* rs79474100 A/T 0-27 [0-10, 0-73] 9-99x1073
113 86-87 5-76x10* rs60153262 T/C 2-94 [1-50, 5-77] 1-74x10°3
118 143-25 3.49x10* rs360723 T/A 0-69 [0-49, 0-96] 2:87x10
ILIRN 281-1 1.78x10* rs6746416 G/A 137 [1-07, 1-76] 1-28x107
IL32 7073 7-07x10* rs12598558 G/T 0-58 [0-38, 0-89] 1-18x107?
L4 9111 5-49x10* rs60153262 T/C 2:94[1:50, 5-77] 1.74x10°
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L6 23693 2:11x10* rs75897827 A/G 270 [1-18, 6-21] 1-91x102
L8 154.71 3.23x10* rs7686667 G/A 243 [1-06, 5-61] 3-69x107
IRAK3 186-89 2-68x10* rs569436368 A/G 0-26 [0-09, 0-81] 2-05x107
ISG15 812 6-16x10°3 rs12093451 A/C 0-50 [0-29, 0-88] 1-55x102
KLK2 20125 2-48x10* rs1701934 T/C 5.03 [1-65, 15+4] 4-61x10°
LRRC16A 7818 6-40x10° rs2690123 G/A 1-41[1-11, 1-8] 5-64x10°
LTA 459-6 1-09x10*4 rs45552734 T/C 0-58 [0-41, 0-82) 2-40x10°
MAP3K1* 26239 1-91x10* rs1910019 T/C 1.77 [1-25, 250] 1-30x103
MAP3K6 86-03 5.81x10* rs12742921 c/T 0-72 [0-52, 0-99] 4.53x10
MBL2 25005 2:00x10* rs34546527 C/A 0-44 [0-28, 0-68] 2-50x10*
MIF 141-4 3-54x10* rs75761219 T/C 0-22 [0-06, 0-76) 1-72x102
MUC5B* 71-73 6-97x10* rs2071175 T/C 2:10[1-18, 3-74] 1-16x102
MYLK 30719 1-63x10* rs16834826 G/A 1-48 [1-15, 1-91] 2-45x10°
NAMPT 23831 2-10x10* rs56844330 G/A 0-64 [0-47, 0-87) 5.02x10°
NFE2L2 196-18 2-55x10*4 rs2588866 T/C 0-51 [0-30, 0-87) 1-25x102
NFKB1 210-58 2:37x10* rs76615823 G/A 3-21[1-13,9-14] 2-88x107
NFKBIA 254-35 1-97x10* rs75208350 T/C 244 [1-15,5-19] 2:01x10%
NOS3 195-41 2:56x10* rs41307316 A/G 0-22 [0-10, 0-51] 4.03x10"*
NQO1 143-23 3-49x10* rs116423606 A/G 0-30 [0-09, 0-95] 3-98x10%
PDE4B 53028 9-43x10° rs6664875 C/A 0-64 [0-48, 0-85] 1-96x103
PI3 14259 3.51x10* rs877608 AT 1-98 [1-08, 3-63] 2:71x107
PLAU 116:57 4.29x10* rs72816344 A/G 3-50 [1-08, 11-36] 3-73x107
POPDC3 18191 2:75x10* rs1051484 T/C 0-62 [0-46, 0-82] 1-12x10°
PPARGCIA 978-39 5.11x10° rs6847465 T/C 392 [1-51, 10-15] 4-96x10°
PPFIA1-SHANK2 88108 5.67x10° rs11602848 c/T 1-71[1-20, 2-43] 3-01x10°
PRKAG2 64811 7:71x10° rs10231047 c/T 0-71[0-56, 0-89] 2:91x10°
SI1PR3 243-08 2:06x10* rs150901384 G/T 4-57 [1-44, 14-5] 9-79x10°
SELPLG 176-88 2-83x10* rs8179106 A/G 177 [1-17, 2-66] 6-44x10°
SERPINE1 207-41 2-41x10* rs73168394 A/G 0-33[0-17, 0-67] 2:22x10°
SFTPA1 14317 3.49x10*4 rs17886197 G/T 1-60 [1-14, 2-26) 7-27x103
SFTPA2 166-37 3.01x10* rs17886197 G/T 1-60 [1-14, 2-26) 7-27x103
SFTPB 165-98 3-01x10* rs75830997 T/G 364 [1-51, 8-73] 3-86x10°
SFTPD 22205 2:25x10* rs7082484 C/A 227 (122, 4-24] 9.55x10°
soD3 175-95 2-84x10* rs2361079 c/T 0-59 [0-40, 0-85] 4.55x10°
STAT1 161-06 3-10x10* rs4853453 A/G 1-58[1-12, 2-24] 9-30x10°
TGFB2 244.72 2:04x10* rs75854892 c/T 5.78 [160, 20-9] 7-43x10°
TIA1 104-96 4.76x10" rs11694045 G/T 142 [1-11, 1-82) 5.48x1073
TIRAP 187-4 2-67x10* rs12283024 A/G 0-34 [0-15, 0-78) 1-08x102
TLR1 227-88 2:19x10* rs193202734 c/T 563 [1-86, 17-01] 2:20x10°
TNF 448-83 1-11x10* rs45552734 T/C 0-58 [0-41, 0-82] 2:40x10°
TNFRSF11A 246-87 2:03x10* rs7235828 A/G 0-65 [0-47, 0-89] 7-73x10°
TRAF6 185-4 2:70x10* rs2458928 A/G 0-68 [0-52, 0-89] 5-39x10°
UGT2B7 18683 2-68x10* rs139914109 c/T 7-69 [1-65, 35-87] 9.42x10°
VEGFA 262-98 1-90x10* rs9367172 A/G 0-55 [0-41, 0-73] 4-69x10°5
VLDLR 37576 1-33x10* rs10491716 C/A 1-55 [1-19, 2:02] 1-20x103
VWF 403-43 1-24x10* rs2239160 G/A 0-42 [0-26, 0-68) 3-28x10*
XKR3 97-09 5-15x10* rs5994042 A/T 3-23[1-20, 8-71] 2-03x107
ZNF335 141-92 3-52x10* rs1736493 G/A 0-53 [0-31, 0-89] 1-72x102

Al, Effect allele; A2, Non-effect allele; Cl, Confidence Interval; OR, Odds ratio for the effect alleles. In bold,
genes harboring variants reaching the bonferroni threshold. *Genes identified for this study (December 2015
to November 2018) based on the search of terms “acute respiratory distress syndrome”, “ARDS” OR “acute
lung injury” with “polymorphism” OR “genetic variant”.
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Chapter 3.

Early bacterial dysbiosis in the lungs predicts ICU mortality in non-pulmonary
sepsis patients

Sepsis is the main factor leading to ARDS and an important cause of mortality in ICU. However,
there is a lack of efficient prognostic methods for sepsis patients. In this chapter, we assessed the lung
microbiome of patients with non-pulmonary sepsis by means of the analysis of lung aspirate samples
collected at three different time points (at 8 h of sepsis diagnosis, and after 48 h and 72 h). We used
NGS technologies to sequence the hypervariable region V4 of the 16S rRNA gene, and bioinformatics

and statistical tools to determine the bacterial abundance and to perform diversity analyses.

In this single-center study, we observed that bacterial diversity in lung aspirates was significantly
linked to patient mortality within 8 h of sepsis diagnosis, being much lower in deceased patients and
presenting a predictive value (area under the curve) of 86.5% in our data, higher than the value
obtained considering the Acute Physiology and Chronic Health Evaluation Il (APACHE II) score.
Additionally, we observed that lung aspirates from deceased patients presented commensal gut
bacteria genera and were depleted in healthy lung bacteria genera. Therefore, these results suggest
the potential of using the microbial diversity as an early prognostic biomarker in patients with sepsis,
as well as the utility of NGS techniques in clinical practice as a complement to culture-dependent

methods.

This study has been published in Intensive Care Medicine with the title "Could lung bacterial
dysbiosis predict ICU mortality in patients with extra-pulmonary sepsis? A proof-of-concept study"

(doi: 10.1007/s00134-020-06190-4). It is reproduced under the Springer Nature terms of use.
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Abstract

Introduction: Sepsis is an important cause of mortality in adult intensive care units (ICUs). The lack of
efficient prognostic methods for patients with sepsis makes clear the necessity of identifying novel
early biomarkers. The lung microbiome has a key role in the maintenance of lung immune homeostasis,
although its link with sepsis outcomes remains unknown. Here we hypothesized that lung bacterial

dysbiosis is associated with ICU mortality in patients with sepsis.

Materials and methods: A total of 36 patients with non-pulmonary sepsis admitted into a single
medical-surgical ICU were included in the study. We analyzed 69 tracheal aspirates collected from
these patients at sepsis diagnosis (within 8 h), and after 24 h and 72 h. Bacterial abundance was
obtained by DNA sequencing of the V4 hypervariable region of the 16S rRNA gene. Sequence data
preprocessing, taxonomic assignment, Shannon diversity estimates, and statistical comparisons were

performed with QIIME and R programming.

Results: Bacterial diversity did not vary significantly between the three ICU collection times. However,
diversities were extremely different very early between deceased and surviving patients (p=0.001).
Among bacteria detected in deceased patients, we found gut commensals and a depletion of bacterial
genera commonly found in healthy lungs. The predictive value of ICU mortality by the diversity index

was 86.5% in our data, greater than the obtained by the APACHE Il score at inclusion.
Conclusions: The reduction of bacterial lung diversity in patients with non-pulmonary sepsis was found

to be associated with ICU mortality within 8 h of diagnosis, supporting its role as a potential novel early

prognostic biomarker.
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Introduction

Sepsis is a complex disorder currently defined as a life-threatening organ dysfunction that results
from a systemic inflammatory response due to infections (Singer et al. 2016). Sepsis is one of the most
common causes of death in adult patients admitted into intensive care units (ICUs) (Angus et al. 2001),
and it is the major risk factor of acute respiratory distress syndrome (ARDS) development, a fatal
condition with poor prognosis (Bellani et al. 2016). Several biomarkers alone or combined with clinical
symptoms have been related to the mortality of sepsis patients (Gibot et al. 2012; Larsen and Petersen
2017). However, despite all the efforts to establish clinically-relevant prognostic methods for sepsis,
these have showed a limited power to predict patient severity (Gibot et al. 2012). Therefore, there is

an urgent necessity to identify earlier and more accurate biomarkers of sepsis prognosis.

Several studies have reported the important role of the microbiome in complex diseases and
immunity (Thaiss et al., 2016). Particularly, shifts in the microbial diversity (commonly known as
dysbiosis) have been recently linked to the natural disease development and to interventions in the
critically ill patient (Dickson 2016; McDonald et al. 2016; Jacobs et al. 2017; Lamarche et al. 2018).
Given the infectious nature of sepsis, these observations may be clinically relevant in the pathogenesis
or the aggravation of this critical condition. In fact, injurious ventilation regimes have been associated
with an increase in the spreading of infections in animal models of non-pulmonary sepsis (Rodriguez-
Gonzalez et al. 2014). This can be reconciled with the observations of MacFie and colleagues (MacFie

et al. 1999), who reported the association of bacterial translocation and septic morbidity.

Microbial dysbiosis in the lung, blood and the upper airways has been correlated with sepsis
development and severity (Dickson 2016; Gosiewski et al. 2017; Tan et al. 2019). Interestingly, an
enrichment of the gut-associated bacteria in the lung microbiome has been found in patients with
sepsis and ARDS, possibly explained by the systemic translocation of the intestinal microbes in these
patients (Dickson et al. 2016; Mukherjee and Hanidziar 2018). Changes in the gut microbiome have
been linked to sepsis morbidity and mortality (Haak and Wiersinga 2017), as well as to outcomes in
patients with systemic inflammatory response syndrome (SIRS) (Shimizu et al. 2011). Lamarche and
colleagues also reported a reduced microbial diversity at three anatomical sites, including the trachea,
associated with severity among a heterogeneous ICU patient population (Lamarche et al. 2018).
Therefore, although it is known that the lung microbiome is severely altered in critically ill patients, a

specific association of lung dysbiosis with sepsis mortality remains to be determined.

To test this possibility while avoiding the potential confounder effects in lung dysbiosis due to

pneumonia infection, which generally leads to bacterial overgrowth of single bacterial species in the
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respiratory tract (de Steenhuijsen Piters et al. 2016), we focused on intubated non-pulmonary sepsis
patients from a single medical-surgical ICU. To gain insight into the bacterial shifts and increase the
power to detect the association, we collected lung aspirates at three times over 72 h while the patient
was intubated. Our sequencing analyses based on the 16S ribosomal RNA (16 rRNA) gene strongly

supported the existence of an early reduction in bacterial lung diversity associated with ICU mortality.

Methods

Sample description

The study was conducted on 36 mechanically-ventilated adult patients of European ancestry
diagnosed with non-pulmonary sepsis (Singer et al. 2016) that were admitted to a medical-surgical ICU
at University Hospital Nuestra Sefiora de Candelaria (Santa Cruz de Tenerife, Spain) between January
2015 and January 2019. Tracheal aspirate samples were collected from these patients at three
different times whenever possible while the patients remained intubated: within the first 8 h of sepsis
diagnosis, at 48 h after sepsis onset, and after 72 h. A total of 69 aspirates were finally obtained from
the patients and stored at -20 2C. Bacterial DNA was extracted from the aspirates using the QlJAamp®
UCP Pathogen Mini Kit (Qiagen), quantified with a Qubit 3.0 fluorometer using a High Sensitivity DNA

Analysis Kit (Thermo Fisher Scientific), and stored at -20 2C until use.

The study was approved by the Research Ethics Committee of the hospital and performed according
to The Code of Ethics of the World Medical Association (Declaration of Helsinki). An informed consent

was obtained from all patients or from their representatives.

Amplification and sequencing of V4 16S rRNA

The V4 hypervariable region of the 16 rRNA gene was amplified by polymerase chain reaction (PCR)
in 20-pl reactions. We used a HotStarTaq DNA Polymerase (Qiagen) along with fusion primers including
12 bp Golay barcodes and the lllumina adaptor sequences (Caporaso et al. 2012). Purification and size-
selection of PCR products was performed with the AxyPrep™ Mag FragmentSelect-| purification kit
(Axygen), using a 1.4 ratio of magnetic beads/PCR product. Purified PCR products were normalized
with the SequalPrep™ Normalization Plate (96) Kit (Thermo Fisher Scientific) and pooled to 96-plex at
25 ng per sample. In addition to the lung aspirates, libraries from a mock community (ZymoBIOMICS™
Microbial Community DNA Standard, Zymo Research) and from PCR-grade water were also included in
each of the pools to serve as positive and negative controls, respectively. The pooled libraries were

quantified by a 7500 Fast Real-Time PCR System (Life Technologies) using the KAPA Library
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Quantification Kit lllumina® platforms (KapaBiosystems) and by the Qubit High Sensitivity DNA Analysis
Kit. The size distribution of amplicons was evaluated with the Agilent 4200 TapeStation system using
the High Sensitivity D1000 ScreenTape Assay kit (Agilent Technologies Inc.). Libraries were loaded at
12 pM and sequenced using the MiSeq Reagent V2 kit (300 cycles paired-end) in a MiSeq sequencer
(Hlumina Inc.), including a 10% of PhiX library as a sequencing control. Sequencing experiments were

performed at Instituto Tecnoldgico y de Energias Renovables (Santa Cruz de Tenerife, Spain).

Bioinformatics and statistical analysis

Analyses of the 16S rRNA sequencing data were conducted with the Quantitative Insights Into
Microbial Ecology (QIIME) v1.9 package (Caporaso et al. 2010), by means of a custom BASH pipeline.
After joining forward and reverse read pairs, considering a minimum overlap of 47 bp, raw data were
demultiplexed by barcode and low-quality reads (Phred quality score<30) were filtered. Operational
taxonomic unit (OTU) clustering was performed with an open-reference approach using UCLUST (Edgar
2010) and chimeric sequences were detected and removed using ChimeraSlayer (Haas et al. 2011). The
taxonomic assignment with a 97% sequence identity was based on the Greengenes database (DeSantis
et al. 2006). Alignment was conducted with PyNAST (Caporaso et al. 2010), and a phylogenetic tree
was then built using FastTree (Price et al. 2010). Human mitochondrial OTUs and the OTUs with at least
10 reads in the negative controls, were removed from downstream analyses. Diversity analyses were
also conducted with QIIME and focused on the core lung microbiome, defined by the OTUs that were
present in >50% of the patients. Although the analyses were focused on the Shannon diversity index,
a high correlation between it and other diversity indices was found in our results (Supplementary
Table 1). In order to normalize across patients and time points, analyses were conducted using a
random sampling of 1,000 reads per library. The OTU abundance was determined and taxa abundance
plots were generated. Alpha diversity metrics were computed and subsequently compared between
survivors and deceased groups based on a nonparametric two-sample t-test using Monte Carlo
permutations. To compare diversities of more than three groups, Kruskal-Wallis tests were performed
with R version 3.3.2 (R Core Team 2013). Additional logistic regressions were performed in R to
evaluate the effect of different clinical and demographic covariates in the model. The online software
Calypso (Zakrzewski et al. 2017) was used to compare the alpha diversity scores between deceased
and survivors and to identify significant differences in the relative abundances of individual taxa by
means of the Linear Discriminant Analysis Effect Size (LEfSe) algorithm. Beta diversity was also assessed
by means of weighted and unweighted UniFrac distance matrices with QIIME, in order to generate
Principal Coordinates Analysis (PCoA) plots. An additional principal component (PC) analysis (PCA) was
performed from relative abundances using the R FactoMineR package (Lé et al. 2008). A PCA biplot

showing both PC scores of samples and of the loadings from bacterial taxa was generated with the
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factoextra R package. The area under the ROC curve (AUC) was calculated using the R pROC package
(Robin et al. 2011) to evaluate the predictive value of the bacterial lung diversity index at 8 h of sepsis
diagnosis, compared to that of the Acute Physiology and Chronic Health Evaluation Il (APACHE Il) score
at inclusion, to discriminate between the sepsis patients surviving or dying in the ICU. Finally, based
on the model of Cumsill and colleagues (Cumsille et al. 2000), and assuming a probability threshold of
0.5 in a binary logistic regression, we estimated a cutoff point for the bacterial diversity index in the

lung aspirates in order to predict ICU mortality.

Statistical power

Based on internal observations of the dissimilarity in the microbiome profiles from lung aspirates
from patients with respiratory infections vs. controls (associated with modified Cramer’s ¢ >0.20), and
assuming a minimum of 10,000 reads per sample and a significance level of 0.01, a thousand
simulations performed following the procedures described elsewhere (La Rosa et al. 2012) indicated
that a minimum of 5 patients per comparison group provides a statistical power >80% to detect

differences in the microbiome profiles.

Results

Study sample and sequencing performance

A total of 69 lung aspirates from 36 individuals with non-pulmonary sepsis were finally included in
the study. Main demographic and clinical features of these patients are provided in Table 1, suggesting
that survivors and deceased patients were significantly discordant only for the age and the APACHE Il
score at inclusion. Sequencing and filtering the V4 16S rRNA data left us with a total of 7,646,140 high-
quality paired-end reads for further analyses (110,813 on average per sample). The presence of
bacterial DNA was evidenced in all samples. The core lung microbiome of sepsis patients was
composed by 54 OTUs with a frequency higher than 0.1%, 38 OTUs when only the samples collected

within 8 h of diagnosis were considered.

Longitudinal analysis in the ICU

We first focused in the changes in bacterial abundance over collection times. Because of the
dropout of patients from the study because of ICU discharge, extubation or death, we analyzed 36 lung
aspirates collected within the first 8 h of sepsis diagnosis, 17 aspirates collected at 48 h after sepsis
onset, and 16 aspirates collected at 72 h after sepsis onset. A PCoA based on weighted UniFrac

distances showed that there was a lack of a clear clustering of the lung aspirates by the day of collection
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(Supplementary Figure 1). Supporting this observation, the bacterial diversity did not vary significantly
among the three sample collection times (p=0.99) (Table 2). To maximize the power of the study and
based on these results and on the clinical relevance of identifying prognostic biomarkers of sepsis in
the earliest possible disease stage, subsequent analyses focused exclusively on the lung aspirates

within 8 h of sepsis diagnosis.

Bacterial dysbiosis and ICU mortality

Diversity and abundance estimates in the bacterial lung communities within 8 h of sepsis diagnosis
were compared between the patients that were discharged alive from the ICU and those who died
during the ICU stay. We found that bacterial diversity decreased significantly in deceased compared to
surviving patients (Shannon diversity index, p=0.001) (Figure 1). Results were similar if mortality was
considered at 28, 60, or 90-day. Furthermore, a sensitivity analysis was performed to evaluate the
effect of possible confounding variables in the association of bacterial diversity with ICU mortality. We
observed that the association was robust to adjustments for age, APACHE Il score, ARDS incidence,

comorbidities, isolated pathogen and infection source, among others (Table 3).

A total of 13 and 36 OTUs were found in deceased patients and survivors, respectively. The most
abundant taxa comprised 95.1% of the core lung microbiome among deceased patients and included
the genera Achromobacter, Enterococcus, Proteus, Pseudomonas, and Staphylococcus, as well as the
family Enterobacteriaceae (classified from reads than did not enable the classification at genus level)
(Figure 2). Accordingly, the PCA with the loadings showing how strongly each taxon contributed to
each PC also showed a strong relationship between these bacteria and ICU mortality (Figure 3).
Remarkably, these taxa represented only 13.7% of the core bacterial lung microbiome among
survivors. The most abundant taxa in the lungs of the survivors were Acinetobacter, Haemophilus, and
Streptococcus (58.4% of the total), which were barely detected among the lung aspirates from
deceased patients (0.64%) (Figure 2). Comparatively, the LEfSe analysis prioritized some genera as the
most likely observations to explain differences between deceased and survivors (Figure 4). We
observed that the genus Proteus was significantly enriched among deceased patients, while
Streptococcus, Prevotella, Veillonella, and Leptotrichia were significantly enriched among survivors

(Figure 4).
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Predicting ICU mortality by the bacterial diversity in lung aspirates

The ROC assessment revealed that the predictive value of the lung bacterial diversity at 8 h of
diagnosis on the ICU mortality was 86.5%, even higher than that provided by the APACHE Il score at
inclusion (Figure 5). In fact, APACHE Il was not significantly associated with ICU mortality in the study
(p=0.078). Finally, we estimated a suggestive cutoff point of 0.42 for the bacterial diversity index to
optimally predict ICU mortality. A visual inspection of the bacterial diversity distributions suggested
that all sepsis patients with a diversity index above 2.50 survived, while those with an index ranging

between 0.42 and 2.50 were difficult to classify based on the model (Supplementary Figure 2).

Discussion

In clinical practice, the prognostic stratification system is based on severity scores as the APACHE Il
at inclusion (Giamarellos-Bourboulis et al. 2012) and the Sequential Organ Failure Assessment (SOFA)
(Singer et al. 2016), in combination with plasma biomarkers like the procalcitonin, the C-reactive
protein or the lactate (Larsen and Petersen 2017). However, it is well known that none of these scores
or the plasma biomarkers have a good predictive level of the severity of critical patients (Vincent et al.
2010). Therefore, there is a huge necessity of identifying effective biomarkers of disease prognosis. To
the best of our knowledge, this is the first time that lung bacterial dysbiosis is associated with ICU
mortality in patients with non-pulmonary sepsis. Based on NGS methods, we evidenced a strong
reduction in the lung bacterial diversity in the patients that died during the ICU stay in comparison to
those who survived. Most importantly, such lung dysbiosis was identified as early as within the 8 h of
the sepsis diagnosis, supporting it as a novel early biomarker for fatal outcomes in sepsis. In fact, the
APACHE Il score at inclusion did not significantly predict ICU mortality in our study. On the contrary,
the lung diversity index calculated within 8 h of sepsis diagnosis was able to precisely predict ICU
mortality in our study (86.5%). These observations in sepsis are analogous to others supporting the
association of gut dysbiosis with SIRS patient mortality and complications (Shimizu et al. 2011) or of
lung dysbiosis with idiopathic pulmonary fibrosis (IPF) mortality (Molyneaux et al. 2014; O’'Dwyer et al.
2019), further supporting the importance of assessing the microbiome in complex conditions for

prognostic purposes.

The lung microbiome profile of deceased patients with sepsis was mainly composed of pathogenic
bacteria, including the genera Pseudomonas, Proteus, Achromobacter, Enterococcus, and
Staphylococcus, and the family Enterobacteriaceae. Consistently, Staphylococcus aureus, Escherichia

coli, and Pseudomonas aeruginosa are among the most frequently isolated pathogenic bacteria species
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from patients with sepsis (Opal et al. 2003; Minasyan 2019). Among the five genera that were
abundant among the deceased patients, only the abundance of the genus Proteus differed significantly
by ICU mortality. Proteus is a member of the Enterobacteriaceae family consisting of Gram-negative
bacilli commonly found in the normal intestinal flora (Hamilton et al. 2018). Some Proteus spp (mainly
P. mirabilis) are broadly involved in urinary tract infections, although they can also invade the
bloodstream and lead to bacteremia (Chen et al. 2012). Proteus spp have been linked also to
respiratory tract infections including ventilator-associated pneumonia (Finegold and Johnson 1985; Xia
et al. 2015). The fact that bacterial taxa that are generally located in the gut (such as Proteus and
Enterococcus) have been found in the lungs of patients with sepsis is not surprising given that the
translocation of gut commensals into the lungs has been previously described in critical care patients
(Dickson et al. 2016; Mukherjee and Hanidziar 2018). Moreover, previous studies revealed that the
development of ARDS, a deadly syndrome commonly caused by sepsis, is highly correlated with an

enrichment of Enterobacteriaceae spp in the patient’s lungs (Panzer et al. 2018).

Significant differences in abundance between survivors and deceased patients were also found for
the Gram-positive genus Streptococcus and the Gram-negative genera Prevotella, Veillonella and
Leptotrichia, which were all present at a higher proportion in surviving patients. Interestingly, the two
most abundant bacteria genera described in the low respiratory tract of healthy subjects are Prevotella
spp and Veillonella spp (Dickson et al. 2017), which are also the most abundant taxa in the oral cavity,
together with Streptococcus spp (Dickson et al. 2017). The latter is also found among the most
commonly isolated bacteria in patients with sepsis (Minasyan 2019). In this sense, the reduction of
Prevotella spp and Veillonella spp in the lungs accompanied by the presence of potential pathogenic
bacteria has been related to asthma risk (Hilty et al. 2010; Moffatt and Cookson 2017), and a lower
abundance of Prevotella, Veillonella, and Leptotrichia spp in the upper respiratory tract has been
associated with pneumonia in the elderly (de Steenhuijsen Piters et al. 2016). In agreement with this,
Park and found a reduction of Prevotella spp in oropharyngeal swab samples from patients with
chronic obstructive pulmonary disease or with asthma (Park et al. 2014; Yadava et al. 2016). On the
other hand, the abundance of Streptococcus, Veillonella and Prevotella spp in the bronchoalveolar
lavage fluid has been associated with less airway inflammation (Zemanick et al. 2017). This is
particularly relevant for Prevotella spp, for which a key role in the immunologic homeostasis of the
airways has been suggested (Huffnagle et al. 2017). Furthermore, the presence of Streptococcus and
Veillonella spp in the lungs has been associated with IPF risk (Molyneaux et al. 2014), suggesting that
these bacteria could have a role in lung fibrosis. Therefore, through their links with the immunological
homeostasis of the lung, the depletion of these bacterial genera in sepsis patient’s lungs could have a

central role in their ICU survival.
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Our study has a number of strengths and limitations. The main strength is that our findings are
based on patients from a single medical-surgical ICU, allowing to limit the heterogeneous
environmental exposures of the patients enrolled. Additionally, the inclusion of patients with non-
pulmonary sepsis guaranteed that the observed lung dysbiosis was a consequence of the sepsis per se
and not due to the overgrowth of single bacteria that takes place during pneumonia. Our results were
robust to confounding factors, addressed through a sensitivity analysis. Furthermore, the findings were
similar when 28, 60 or 90-day ICU mortality were considered instead of ICU mortality, indicating that
results are robust and independent of the patient follow up records of mortality. On the other hand,
the analyses were based on next-generation sequencing technologies, which allowed to detect
bacteria in all samples, reducing the bias derived from conventional microbiological methods such as
microbiological cultures. Among the main limitations, we acknowledge that the analysis was based on
a limited sample size and the lack of an analysis of patients from an independent ICU to validate our
results. Additionally, because of the utilized approach, taxa were only classified at genus level, and the
rich information that may come from the detection of bacterial species and strains remains
unexplored. In this sense, alternative approaches, such as the shotgun sequencing, would offer much
better resolution of the taxa. Furthermore, we focused on bacterial DNA, not implying that those
bacteria were alive at the moment of sampling or that they were pathogens. Finally, although bacteria
are the main microorganisms involved in sepsis (Faria et al. 2018), it can be also caused by viruses and

fungi, which were not analyzed in this study.

Conclusions

The results of this study revealed that a decreased bacterial lung diversity within 8 h of sepsis was
associated with ICU mortality among non-pulmonary sepsis patients. Additionally, both the presence
of gut commensals in the lungs and the reduction of healthy lung bacteria were related to ICU
mortality. These results support a central role of the host-microbial interactions in maintaining lung

homeostasis and provide a novel early prognostic biomarker for sepsis.
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Figure 1. Bacterial lung diversity in ICU patients with sepsis at 8
h of diagnosis.
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Figure 2. Main bacterial taxa identified in lung aspirates from ICU patients with sepsis at 8 h
of diagnosis.

105



Chapters

7.5-

Paracoccus

50-

'
i
1
'
i
1
1
'
1
i
'
1
I
1
'
i
! cos2
1
1
]
'
1
i
i
i
1
1
'
r
)
1
i
i

! 06
§ 04
par!
=} Dialister 02
= S
N otsacteriam d
o —
- a2 =
e 1 . Fill.
e
@ Deceased
— S — > Megasphaera- - - - - - @ Survivors
° Capnocytophaga e
* Ll
.
.
6

3
Dim1 (21.2%)

Figure 3. PCA biplot summarizing the two main dimensions of patient differentiation (colored dots)
and their correlation with the bacterial taxa (arrows) identified in lung aspirates collected at 8 h of
diagnosis.

106



Chapters

. Deceased . Survivors

Streptococcus
Prevotella-
Veillonella-
LeptotrichiaF

Proteus

1 2 3 4 5
LDA Score (log 10)

[=F

Figure 4. Prioritized lung bacterial genera explaining the differences between
deceased and survivors at 8 h of sepsis diagnosis based on the LEfSe analysis.

107



Chapters

100
|

80
]

60
1

AUC: 72.7%
AUC: 86.5 %

40

True Positive Percentage

20

Shannon index

APACHE-II score

I I I I I I
0 20 40 60 80 100

False Positive Percentage
Figure 5. Comparison of ROC curves and AUC estimates of the bacterial lung

diversity at 8 h of diagnosis (Shannon index) and the APACHE Il score at
inclusion as predictors of ICU mortality.

108



Chapters

Table 1. Demographic and clinical features of the sample.

Survivors (n=29) Deceased (n=7) p-value*
Sex (% male) 75.9 57.1 0.60
Mean age (years) 66.3+11.8 71.6+5.9 4.44E-14
Hypertension (%) 55.2 57.1 1.00
Smokers (%) 20.7 28.6 1.00
ARDS (%) 13.8 0.0 0.71
Previous severe infections 13.8 0.0 0.71
Antibiotic treatment (%)* 82.8 85.7 1.00
Comorbidities 32.0 57.1 0.44
APACHE Il (median) (P25—P7s) 24 (19-27) 27 (26-31) 1.73E-13
Infection source (%)
Abdominal and gastrointestinal tract 86.2 100.0 0.71
Genitourinary system 10.3 0.0 0.90
Bones and soft tissues 3.4 0.0 1.00
Brain and central nervous system 0.0 0.0 -
Pathogen (%)
Gram-positive bacteria 16.7 28.6 0.71
Gram-negative bacteria 37.5 28.6 1.00
Gram-positive and Gram-negative 37.5 14.3 1.00
Fungi 4.2 0.00 1.00
Virus 0.00 0.00 -
Polymicrobial 29.2 28.6 1.00
Organ dysfunction (%)
Circulatory 89.7 100.0 0.90
Coagulation 34.5 42.9 0.88
Hepatic 20.7 14.3 1.00
Neurologic 65.5 71.4 1.00
Renal 34.5 14.3 0.56

*Mean age and APACHE Il comparisons were conducted by the Wilcoxon signed-rank test; the
other variables were compared by a chi-square test.
*Percentage of patients with an active antibiotic treatment at 8 h of sepsis diagnosis.
APACHE Il, Acute Physiology and Chronic Health Evaluation Il at inclusion; ARDS, acute respiratory
distress syndrome; P25, percentile 25; P75, percentile 75. Percentages refer only to the individuals

with available data for each clinical feature.
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Table 2. Differences in diversity between the three sample collection times

8h (7:29)° 48h (3:14)°  72h (2:14)? p-value®

Shannon diversity index

2.02+1.34 2.01+1.34 197+1.31 0.99
(mean £ SD)

aDeceased:Survivors with available data; °Data compared by Kruskal-Wallis test.
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Table 3. Sensitivity analyses for the Shannon diversity index

Adjusted model

OR [95% ClI] p-value
Sex 0.23[0.07, 0.84] 0.026
Age 0.21 [0.05, 0.81] 0.023
APACHE Il 0.24 [0.07, 0.85] 0.027
ARDS 0.22 [0.06, 0.78] 0.019
Smokers 0.23 [0.07, 0.80] 0.020
Previous severe infections 0.20 [0.06, 0.74] 0.016
Infection source 0.25 [0.08, 0.82] 0.023
Isolated pathogen 0.23 [0.07,0.81] 0.022
Antibiotic treatment* 0.17 [0.04, 0.74] 0.018
Multi organ dysfunction® 0.20 [0.05, 0.80] 0.022
Comorbidities* 0.23 [0.06, 0.85] 0.028
Arterial hypertension 0.22 [0.06, 0.80] 0.022

*Active antibiotic treatment at 8 h of sepsis diagnosis.

*Two or more affected organs.

*Presence of comorbidities (autoimmune diseases, cancer, chronic
diseases, diabetes, hepatopathies, immunosuppression, kidney
diseases, morbid obesity, pregnancy, severe infections, severe brain
damage, valvulopathies).

APACHE I, Acute Physiology and Chronic Health Evaluation Il at
inclusion; ARDS, Acute Respiratory Distress Syndrome; OR, Odds
Ratio; Cl, Confidence Interval.
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Supplementary Material
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Supplementary Figure 1. Plot of the three main principal components (PC) of
patient differentiation at the three distinct sample collection times (8 h, 48 h and
72 h) based on weighted UniFrac distances from the abundance of lung bacterial
taxa. In parenthesis, fraction of variance explained by each PC. The legend shows
the number of samples with available data at each collection time.
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Supplementary Figure 2. ICU mortality probability (with 95% confidence interval)
estimated based on bacterial lung diversity at 8 h of sepsis diagnosis. The model
estimated a cutoff point of Shannon diversity index at 0.42 (vertical broken red
line), assuming a probability threshold of 0.5 in a binary logistic regression.
Individual bacterial diversity estimates in deceased (blue) and survivors (red) are
indicated.
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Supplementary Table 1. Spearman correlation between the different diversity indices
estimated in the study patients.

Shannon Simpson Chaol Observed species

Shannon 1 - - -
Simpson 0.99 1 - -
Chaol 0.85 0.82 1

Observed species 0.94 0.91 0.92 1
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Chapter 4.

Genomic Analyses of Human European Diversity at the Southwestern Edge:
Isolation, African Influence and Disease Associations in the Canary Islands

Since the genetic ancestry is associated with the development and outcomes of complex diseases,
likely including critical illnesses, the study of the genetic makeup of a recently admixed population is
crucial to identify genomic regions where ancestry tend to be coinherited with specific diseases. This
fourth chapter contains the results of the genomic characterization of the recent evolutionary history
of Canary Islanders by using SNP array data and WGS. We estimated the global and local genetic

ancestries of this population and assessed the links between particular regions and disease risks.

The results of this study revealed that up to 34% of the genome of current Canary Islanders is of
recent African descent. Additionally, we identified eight genomic regions with large local ancestry
deviations in African or European ancestry that harbored genes linked to prevalent diseases, such as
asthma and diabetes, to infectious diseases and to severe acute respiratory syndrome (SARS), among
other traits. Interestingly, some of these genomic regions were located near well-known targets of
natural selection, including the lactase (LCT) gene and the HLA region. We also estimated that the last
African admixture in this population occurred ~14 generations ago, and that the average number of
ancestry blocks per haploid genome equals 276. These findings lay the foundations for designing
admixture mapping studies in the Canary Islands population to identify novel disease risk genes for

complex traits such as sepsis and ARDS.

This chapter was published in 2018 in Molecular Biology and Evolution with the title "Genomic
Analyses of Human European Diversity at the Southwestern Edge: Isolation, African Influence and
Disease Associations in the Canary Islands" (doi: 10.1093/molbev/msy190). This is an Open Access

article that is reproduced under the terms of John Wiley and Sons License.
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Southwestern Edge: Isolation, African Influence and Disease
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Abstract

Despite the genetic resemblance of Canary Islanders to other southern European populations, their geographical isolation
and the historical admixture of aborigines (from North Africa) with sub-Saharan Africans and Europeans have shaped a
distinctive genetic makeup that likely affects disease susceptibility and health disparities. Based on single nucleotide
polymorphism array data and whole genome sequencing (30<), we inferred that the last African admixture took place
~14 generations ago and estimated that up to 34% of the Canary Islander genome is of recent African descent. The
length of regions in homozygosis and the ancestry-related mosaic organization of the Canary Islander genome support
the view that isolation has been strongest on the two smallest islands. Furthermore, several genomic regions showed
significant and large deviations in African or European ancestry and were significantly enriched in genes involved in
prevalent diseases in this community, such as diabetes, asthma, and allergy. The most prominent of these regions were
located near LCT and the HLA, two well-known targets of selection, at which 40-50% of the Canarian genome is of recent
African descent according to our estimates. Putative selective signals were also identified in these regions near the
SLC6A11-SLC6AT, KCNMB2, and PCDH20-PCDH9 genes. Taken together, our findings provide solid evidence of a signif-
icant recent African admixture, population isolation, and adaptation in this part of Europe, with the favoring of African
alleles in some chromosome regions. These findings may have medical implications for populations of recent African
ancestry.

Key words: consanguinity, ROH, local ancestry, MHC, natural selection.

Introduction

The Canarian Archipelago consists of seven main islands lo-
cated in the Atlantic Ocean ~100km from the northwest
African coast. By no later than 2,500years B.P. (Onrubia
Pintado 1987) and until the XVth century, when the
Spanish conquest began, the Canary Islands were inhabited
by the indigenous Guanche population (Crosby 1999). Many
anthropological, archaeological, and cultural traits indicate
that the most likely origin of Guanche aborigines was the
Berber population from North Africa (Hooton 1970), and
supporting evidence indicates more than one aboriginal set-
tlement from the Maghreb and the Sahara likely occurred
(Arco and Navarro 1987). The Spanish conquest can be
divided into two stages: 1) occupation of the less populated
islands, which was concluded rapidly and peacefully, and

2) a subsequent slower and violent invasion of the more
populated islands, which ended in 1496 (de Abreu Galindo
and Cioranescu 1977). Despite the devastating effect of the
congquest, many aborigines remained in the territory, either
freed or enslaved. The strategic location of the Canary Islands
(located between the Americas and Africa) stimulated a con-
tinuous immigration between the XVIth and XIXth centuries
from Europe and sub-Saharan Africa, with immigration from
the latter occurring as a result of the slave trade (Lobo-
Cabrera 1993). By the XVIth century, the chronicles estimated
the population size as ~35,000 inhabitants, of which nearly
11,000 were potentially of aboriginal or sub-Saharan African
origin (Walfel 1930). Physical anthropology studies of the
inhabitants provided evidence of the continuity of indigenous
traits during the XXth century (Falkenburger 1942; Ara 1959;
Berthelot 1978).
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The aboriginal, historical, and contemporary populations
inhabiting the Canary Islands have been the subjects of many
population-genetics studies. Among these studies, those fo-
cusing on uniparental inheritance markers in samples from
current inhabitants (Rando et al. 1999; Flores et al. 2003) and
ancient DNA studies of aboriginal (Maca-Meyer et al. 2004;
Fregel et al. 2009; Rodriguez-Varela et al. 2017) and historical
remains (Maca-Meyer et al. 2005) have yielded consistent
findings. Overall, the genetic evidence strongly supports a
nearby North African origin of Guanches. Although this an-
cestry is still evident in present-day inhabitants of the archi-
pelago, other genetic influences from Europe and Africa are
also apparent. These other genetic influences have been
explained by the shifts in ethnic mixtures after the Spanish
conquest. However, because of the sexual asymmetry in the
genetic contributions of the ancestral populations (Flores
et al. 2001), autosomal markers offer more unbiased estimates
than uniparental markers of the recent admixture of
European (EUR), North African (NAF) and sub-Saharan
African (SSA) ancestry among present-day Canary Islanders.
Classical studies analyzing a few blood groups, red-blood-cell
enzymes, or approximately a dozen polymorphic Alu inser-
tions have shown that this three-way admixture model
encompasses a prominent EUR ancestry (62-78%) and as
much as 20-38% NAF and 3-10% SSA ancestries (Flores
et al. 2001; Maca-Meyer et al. 2004). Studies using single nu-
cleotide polymorphisms (SNPs), although limited by number
of genetic markers (Pino-Yanes et al. 2011) or sample size
(Botigué et al. 2013), have shown agreement in placing the
population ancestries at ~75-83% EUR, <2% SSA, and as
much as 17-23% NAF. Therefore, although NAF ancestry is
widespread in Southern Europe (particularly in southwestern
populations), these estimates suggest that NAF ancestry in
Canary Islands populations reaches the highest levels so far
described for Europe (Botigué et al. 2013).

We recently showed that the genetic diversity related to
NAF ancestry has important biomedical implications for EUR
populations (Botigué et al. 2013). Because of its unique ge-
netic admixture and/or environmental exposures (likely in-
volving evolutionary adaptations), the population inhabiting
the Canarian Archipelago suffers from a disproportionate
burden of prevalent chronic conditions and associated com-
plications. For example, the prevalence of asthma and allergic
diseases in children in the Canary Islands is markedly higher
than that in mainland Spain (Sanchez-Lerma et al. 2009).
Diabetes, obesity, and hypertension are also more prevalent
among Canary Islanders than in other Spanish populations in
all age groups (Marcelino-Rodriguez et al. 2016). Moreover,
despite the Canarian Archipelago and mainland Spain share
the healthcare system, diabetes-related mortality in the
Canary Islands remains the highest in the country, and the
incidence of diabetes-related morbidities, such as end-stage
renal disease and lower limb amputation, differ between the
two regions (Aragon-Sanchez et al. 2009; Lorenzo et al. 2010).

Here, we aimed to characterize in detail the genomes of
Canary Islanders at an unprecedented scale using SNP arrays
and whole genome sequencing (WGS) of samples from all
seven islands. We also assessed these data to evidence loci

showing large deviations in ancestry with respect to the av-
erage of the genome, putative targets of selection and disease
associations. In addition, because the population offers a
uniquely challenging admixture scenario (i.e, a three-way ad-
mixture combined with the admixture of parental popula-
tions exhibiting small to moderate degrees of differentiation),
this study secondarily evaluated the performance of two of
the fastest and most accurate methods of local ancestry es-
timation for multiway admixtures (Chimusa et al. 2014; Guan
2014).

Results

Time since Admixture and Genomic Ancestry
Proportions

After quality control procedures, the intersection with refer-
ence data sets, and the exclusion of regions in high-linkage
disequilibrium (LD), a total of 100,175 SNPs (* threshold of
0.5) from 416 individuals (34 from El Hierro, 35 from La Palma,
78 from La Gomera, 64 from Tenerife, 117 from Gran Canaria,
32 from Fuerteventura, and 56 from Lanzarote) were used for
the analyses. The leading principal components (PCs)
(explaining 62.54% of total variation) from the principal com-
ponent analysis (PCA) including reference populations evi-
denced the intermediate position of Canary Islanders
between the NAF and EUR populations (separated by PC2)
and their more distant relationships with SSA, separated by
PC1 (fig. 1). In addition, despite the relative homogeneity of
ancestry supported by the tight clustering of populations
from the different islands, individuals from La Gomera and
El Hierro clustered closer to NAF, whereas those from
Tenerife and Gran Canaria clustered closer to EUR. These
results suggest that there is no clear relationship between
the geographic and genetic distances from Africa in the
Canary Islands.

We next examined whether Canary Islanders as a whole
can be considered an admixed population based on formal
tests. To do so, for each pair of reference populations consid-
ered as surrogates for the true ancestral populations, we used
ALDER to calculate a weighted two-locus admixture LD sta-
tistic based on the decay (supplementary fig. 1,
Supplementary Material online) and assess whether this sta-
tistic supports an admixture of the ancestral populations. In
all of the pairs considering one EUR population and one SSA
population as proxies of the ancestral populations, there was
consistent and  significant  evidence of admixture
(P < 3.1 %10~ ®). Using ALDER, we also estimated the num-
ber of generations since the last admixture event. The results
were consistent across comparisons and indicated that the
admixture event took place ~13.6* 0.7 generations ago
(429-495 years BP), which is within the timescale of the his-
torical conquest of the archipelago in the XVth century.

To complement these results, we examined the ancestry
proportions based on a clustering analysis using ADMIXTURE
with K varying from 2 to 7 (supplementary fig. 2,
Supplementary Material online). This revealed a clear ancestry
component separating SSA from the other populations from
K =2 through K =7 and being absent in EUR individuals. At
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Fic. 1. Plot of the first two principal components (explaining 62.5% of
variability) from PCA of Canary Islanders and samples from reference
populations from Europe, North Africa, and sub-Saharan Africa. The inset
depicts a detailed view per island. Results are based on a subsample of
100,175 SNPs excluding those in high LD (pairwise * threshold = 0.5).

K>3, a new ancestry cluster became apparent, which
reached its maximum frequency in EUR and Canary
Islanders. At K=4 and above, ~40-60% of the ancestry
clusters detected in NAF individuals were assigned to a new
cluster with its maximum in these populations (>95% on an
average in Tunisians). This NAF-related ancestry was also ev-
ident in Canary Islanders. Other ancestry clusters emerged for
K > 4, which generally reflected both further ancestry sharing
or unresolved clustering in NAF and Canary Islanders and
additional ancestry subdivisions among NAF populations
compatible with the mixed pattern of ancestry components
evidenced elsewhere (Henn et al. 2012; Arauna et al. 2017).
Cross-validation error was lowest for K=4 (fig. 2). At this
value, the clusters roughly corresponded to the ancestries,
reaching their maximum frequencies in SSA and NAF plus
two other ancestry clusters defined for EUR. The results for
EUR are largely compatible with previous observations (Seldin
et al. 2006). To provide further support to the ancestry clus-
ters evidenced by the ADMIXTURE analysis, we evaluated the
fitting of the admixture model with the optimal measures of
haplotype sharing between groups using badMIXTURE. For
K = 4, we observed small residuals with no systematic pat-
terns on the Canary Islanders, whereas larger residuals were
concentrated in one of the ancestral components (NAF)
(supplementary fig. 3, Supplementary Material online).
Therefore, regardless of the genetic heterogeneity resulting
from the merging of different North African populations
into a single group, the structure of the residuals indicate
that the admixture proportions provided by the
ADMIXTURE analysis constitute robust inferences of the
ancestries in Canary Islanders.

3012

Based on this evidence, we interpreted the EUR-, NAF-,
and SSA-related fractions indicated by the ADMIXTURE anal-
ysis as the admixture proportions in Canary Islanders. For
K =4, the overall ancestry proportions among Canary
Islanders were, on an average, 22% NAF and 3% SSA (table 1).
These estimates are highly concordant with our previous
results obtained under standard settings (Botigué et al.
2013) despite the latter being based on a data set containing
SNPs with moderate levels of LD (r* threshold set at 0.5).
However, in this study, which comprised a larger and more
diverse sample of Canary Islanders, we found a wider NAF-
related ancestry interval of 14.9-29.9%, and a slightly higher
SSA-related ancestry of as much as 9.2% (table 1 and fig. 2).
The use of alternative African data sets from The 1000
Genomes Project (1KGP) as SSA representatives in the
ADMIXTURE analysis did not qualitatively change the results
as the ancestry estimates were highly correlated (for K =4,
R*>0995; P < 22x10 " in all comparisons). Similarly, bal-
ancing the number of individuals from the reference popula-
tions (n =75 for each) resulted in similar ancestry estimates
(averages of 26% NAF and 1% SSA). Overall, these results
demonstrate that the Canary Islanders are closely related to
EUR but show substantial influences from NAF and distant
relatedness with SSA.

There was no difference in the NAF-related ancestry be-
tween the eastern (Fuerteventura, Lanzarote, and Gran
Canaria) and western islands (Tenerife, La Gomera, La
Palma, and El Hierro) (22.4% vs. 21.8%, respectively;
Wilcoxon test P = 0.160), although the SSA-related ancestry
differed significantly between the eastern and western islands
(3.1% vs. 2.8%, respectively; Wilcoxon test P=6.4x10"").
However, the largest differences were observed between the
islands that were conquered first and more peacefully by the
Spanish (Fuerteventura, Lanzarote, La Gomera, and El Hierro)
and those in which the conquest took longer (Tenerife, Gran
Canaria, and La Palma) (24.0% vs. 20.3%, respectively, for the
NAF-related fraction, and 3.5% vs. 2.4%, respectively, for the
SSA-related fraction; Wilcoxon test P < 3.0x10 ° for both
comparisons). This observation agrees with findings based
on mitochondrial DNA (mtDNA) lineages that suggest in-
creased African affinities on the former islands (Rando et al.
1999). However, they differ from those based on the non-
recombining portion of the Y chromosome (NRY) that indi-
cate limited NAF affinities of paternal genetic markers on all
of the Canary Islands but particularly the populations from
the westernmost islands (Flores et al. 2003). Such different
distributions of NAF and SSA ancestries, previously evidenced
by only uniparental markers, are expected given the sexual
asymmetry of parental contributions detected in the current
and historical populations of the archipelago (Flores et al.
2001; Fregel et al. 2009).

Population Isolation

Recent studies have indicated that runs of homozygosity
(ROHs) are common to all world populations, are longer
than expected, and have profiles that can indicate distinctive
demographic histories of the population and of inbreeding
(Kirin et al. 2010; Pemberton et al. 2012). Here, we have
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Fic. 2. ADMIXTURE estimates for K = 4 for Canary Islanders and samples from reference populations from Europe, North Africa, and sub-Saharan

Africa.

Table 1. Genomic Ancestry Proportions (from ADMIXTURE, K = 4)
in Canary Islanders.

North African Sub-Saharan African

Min.  Mean Max. Min. Mean Max.
Fuerteventura 0218 0.255 0.296 0.011 0.027 0.046
Lanzarote 0214 0.254 0.296 0.014 0.032 0.057
Gran Canaria  0.155 0.200 0.264 0.005 0.032 0.082
Tenerife 0.149 0.208 0.255 0.002 0.015 0.057
La Gomera 0.160 0.221 0.289 0.013 0.048 0.092
La Palma 0.170 0.200 0.245 0.000 0.013 0.032
El Hierro 0.192 0.246 0.299 0.005 0.020 0.032

analyzed, for the first time, genome-wide ROH patterns in
Canary Islanders to reveal the level of population isolation.
Focusing first on the average total sum of ROHs over all
subjects sampled, we found that <10Mb of the Canary
Islanders genome on an average was in ROHs of >2Mb in
length. For smaller ROHs (< 1.6 Mb), which have been asso-
ciated with geographic distances from East Africa (Pemberton
et al. 2012), the profiles were very similar across the island
populations (fig. 3). However, among all ROHs >1.6 Mb, the
samples from La Gomera and El Hierro showed consistently
higher average total ROHs than did the samples from the
remaining islands, suggestive of increased recent inbreeding
in these two islands.

An exploration of average total ROHs by island again in-
dicated El Hierro and La Gomera as population outliers. The
genomes from these two islands showed the largest number
of fragments in ROHs and the longest average total ROH
length (fig. 4), the latter demonstrating significant differences
from all the other islands (Wilcoxon test P < 1.0x 10> for all
pairwise comparisons) except La Palma. Interestingly, La
Gomera and El Hierro showed average total ROH lengths of

114 and 134 Mb. The conclusions remained unchanged when
considering only ROHs >1.6 Mb for the average total ROHs
estimates (Wilcoxon test P < 1.0x 10" for all pairwise com-
parisons), whereas the differences disappeared when using
the average total of ROHs <1.6 Mb (lowest P = 4.5x 1073).
Given that variant ascertainment of the array is less of a
problem for ROHs >1Mb (Ceballos et al. 2018), we interpret
the ROH patterns observed for La Gomera and El Hierro as
signatures of genetic isolation, reduced population size and
consequently, endogamy within the archipelago. In this re-
spect, although the ROH patterns suggested a tendency to-
ward larger average total ROH length in the western and
smaller islands of the archipelago, the mean number of ge-
nomic regions in ROHs significantly increased with geograph-
ical longitude (Spearman’s rank correlation rho =093,
P=67x10"2).

Local Ancestry: Assessing Estimators and the Average
Size of Blocks

In cases of recent admixture, the genomes of admixed indi-
viduals become a mosaic of chromosomal stretches originat-
ing from the ancestral populations, which can be detected by
examining locus-specific ancestry (usually termed local ances-
try). Many local ancestry methods perform well in two-way
admixture scenarios with large genetic differences between
the ancestral populations (e.g, in African-Americans).
However, the difficulty increases with the number of ancestral
populations (e.g, three-way admixtures), particularly if a small
to moderate degree of differentiation exists between some of
the ancestral populations (e.g, between NAF and EUR). Given
that this study constitutes the first time that the patterns of
ancestry blocks in Canary Islander genomes have been
assessed, we first evaluated two of the fastest and most
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Fic. 3. Average length (Mb) of ROHs using two classifications into categories in the populations from the Canary Islands.

accurate methods of local ancestry estimation for multiway
admixtures, ELAI and LAMP-LD, both of which have been
fruitfully utilized with Hispanic populations (Baran et al.
2012; Zhou et al. 2016). We compared their results of these
methods with those obtained previously by ADMIXTURE,
pooling the two EUR-related ancestry fractions for the com-
parisons. The Pearson correlations between the estimates of
ADMIXTURE and either ELAI or LAMP-LD were strongly sig-
nificant (P < 5.0x10 "% in all cases) (table 2). However, ELAI
offered better fitting estimates than LAMP-LD based on the
overall estimates of NAF- and SSA-related ancestries
obtained. Whereas the ELAI estimates were similar to those
of ADMIXTURE (estimates for NAF and SSA of 23.6% and
2.3%, respectively), LAMP-LD provided an inflated estimate of
NAF-related ancestry (estimates for NAF and SSA of 32.7 and
1.4%, respectively) (fig. 5). A least squares estimator indicated
that individual fractions were between 2 (SSA) and 4 times
(EUR and NAF) as different between ADMIXTURE and
LAMP-LD than between ADMIXTURE and ELAI (not shown).
In addition, whereas the lengths of the ancestry blocks pro-
vided by ELAI and LAMP-LD were correlated for the three
ancestries (fig. 6), ELAI provided greater sensitivity for the
detection of smaller stretches of ancestry. Based on these
results, all further local ancestry analyses were conducted
with ELAI estimates.

Block sizes followed lognormal distributions (supplemen-
tary fig. 4, Supplementary Material online), with the largest
blocks on an average corresponding to the EUR-related com-
ponent (13.05 Mb) followed by the NAF (8.46 Mb) and SSA
(7.48 Mb) components, and with all pairwise comparisons
yielding  significant  differences  (Wilcoxon  test
P <3.0x10®). Based on these block length estimates and
the ADMIXTURE proportions calculated for all Canary
Islanders, we would expect averages of ~181 EUR-, 82 NAF-
, and 13 SSA-related blocks per haploid genome (ie, 276
ancestry blocks in total), which are lower than but within
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the range of the estimates previously suggested for
African—Americans (Shriner et al. 2011).

Deviations in Local Ancestry and Selection

Based on the previous results, we then used the ELAI esti-
mates to assess the existence of regional deviations in any of
the three ancestries in Canary Islanders. We detected eight
peaks with large ancestry deviations: two enriched in EUR
ancestry, and six associated with higher proportions of
African ancestries (fig. 7, table 3, and supplementary fig. 5,
Supplementary Material online). Notably, the EUR- and NAF-
related peak positions largely overlapped. The EUR-related
peaks were located on chr2 (with the lead SNP showing an
average local ancestry of 55% and flanked by the CXCR4 and
THSD7B genes) and chr6 (with all lead SNPs located within
HLA-B, with an average local ancestry of 49%). The two peaks
of NAF-related ancestry enrichment were located on chr2
(with the lead SNP showing an average local ancestry of
432% and flanked by the same genes flanking the EUR-
related peaks) and chr6 (with the lead SNP showing an aver-
age local ancestry of 46.3% and flanked by the NFKBIL1 and
LTA genes). Peaks associated with SSA-related ancestry were
situated on chr3 (two hits: one with the lead SNP located
within SLC6AT1, the other with the lead SNP located within
KCNMB2, both presenting an average local ancestry of
~4.0%), chr6 (with the lead SNP within ZNRD1, showing an
average local ancestry of 5.9%), and chr13 (with the lead SNP
near PCDH9 and flanked by two long intergenic noncoding
RNA genes: LINC00355 and LINC01052, showing an average
local ancestry of 4.4%). These regions span several Mbs (range
of 1.2-12.3 Mb), meaning that, while the observed ancestry
deviations may indicate adaptive processes, any adaptation
may be unrelated to the gene harboring the lead SNP.
However, it is likely that the LCT and HLA loci caused the
peaks on chr2 and chr6. One regulatory variant of LCT is the
major determinant for lactase persistence in EUR populations
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Table 2. Pearson Correlation between ADMIXTURE (K = 4) and ELAI
or LAMP-LD Estimates of Ancestry in Canary Islanders.

ELAI LAMP-LD
Ancestry Coef. 95% ClI Coef. 95% ClI
European 0.95 0.94-0.96 0.83 0.80-0.86
North African 0.88 0.85-0.90 0.74 0.68-0.78
Sub-Saharan African 0.93 0.92-0.94 0.89 0.87-0.91

and underlies the strongest signal of selection in the human
genome identified to date (Mathieson et al. 2015). Similarly,
this region has been shown to be under positive selection in
Bantu-speaking populations (Patin et al. 2017). As for HLA,
the gene-rich human leukocyte antigen region is also a
well-known target of selection in EUR and African

populations, likely involving balancing selection (Gurdasani
et al. 2015; Mathieson et al. 2015; Patin et al. 2017) as well as
directional selective processes, such as that described for HLA-
B alleles and malaria protection in the Sahel (Sanchez-Mazas
et al. 2017). Based on this evidence, we reasoned that all or
some of the remaining regions with ancestry deviations
detected (two on chr3 and one on chr13) could also have
resulted from selective processes. One of the hallmarks of
selection is increased homozygosity and reduced diversity in
the surrounding regions (Pickrell et al. 2009). Therefore, we
then assessed the mean heterozygosity and the number of
samples with ROHs containing SNPs from the ancestry-
enriched regions. We performed this assessment for all peaks
associated with African ancestry (including those in chr2 and
chr6) to obtain references for comparisons (table 4) and

3015

121

810z Jaquisoaq GO uo 1senb Aq Z£651 L5/0L0E/Z L/SEAOBASGR-O[0IUE/qU/WOd"dNO"dILBPEDE//:SARY WOl papeojumoq



Chapters

Guillen-Guio et al. - doi:10.1093/molbev/msy190

MBE

found that one of the regions on chr3 and the region on
chr13 showed signals of reduced diversity among Canary
Islanders. To formally test for the existence of selective signals
in chr3 and chr13 loci, we assessed the Tajima’s D and the
Population Branch Statistic (PBS) in a subset of individuals for
which WGS data was available. Deviations from neutrality at
three locations were revealed by at least one test for the three

NAF

EUR SSA

FiG. 5. Triangle plot of individual genomic admixture proportions in
Canary Islanders as estimated by ADMIXTURE with K = 4 (red), ELAI
(blue), and LAMP-LD (orange).

loci, with frequent support for more than one hit obtained for
some regions after accounting for the number of compari-
sons (P < 0.017 and P < 0.01 for Tajima’s D and PBS, respec-
tively, after Bonferroni correction). These three locations were
as follows: in the intergenic region between the SLC6A11 and
SLC6AT genes on chr3 (Tajima’s D=-1733, P<0.067;
PBS =0.108, P < 2.0x 10" ), near KC(NMB2 on the same chro-
mosome (Tajima’s D=—1511, P<0.130; PBS=0.064,
P<20x10 %), and in the intergenic region between
PCDH20 and PCDH9 on chr13 (Tajima’s D=-2.505,
PBS = 0.136, P < 2.0x10 “ in both comparisons) (table 5).
Interestingly, common genetic variants previously found to
be associated with height (He et al. 2015), bone traits (Kiel
et al. 2007), and asthma (Ferreira et al. 2011) reside in two of
these regions (table 5). This observation is in agreement with
the observation that variants for inflammatory diseases lo-
cated via genome-wide association studies are significantly
enriched in signatures of positive selection in European pop-
ulations (Raj et al. 2013).

One striking observation relates to the chr2 peak, which
indicates a higher proportion of NAF-related alleles in Canary
Islanders in this region. Given that at least three other LCT
variants have been linked with lactase persistence in other
populations, we then explored whether any of those variants
existed in this population and could offer a potential expla-
nation for this peak. By accessing the WGS data available for a
subset of 14 subjects, we found that the only detected variant
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Fic. 6. Inference of local ancestry by ELAI and LAMP-LD. The plot shows an example of inference in a chromosome region (one panel of each
parental population) comparing ELAI (blue) with LAMP-LD (green) allele dosages.
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Table 3. Genomic Regions with Supported Deviations in Ancestry among Canary Islanders.

Ancestry Region Lead SNP Z Score Mean Ancestry

North African chr2: 133,952,040-144,266,489 rs10177911 5.92 432
chré: 24,703,442-36,288,651 152844484 7.03 46.3

European chr2: 134,088,150-142,882,593 rs4954402 —5.41 55.0
chr6: 24,120,456-36,653,597 * —7.41 49.0

Sub~Saharan African chr3: 10,539,482-11,710,471 rs17033567 3.65 43
chr3: 177,443,968-178,679,751 rs13061192 3.02 3.9
chré6: 24,790,462-32,192,083 rs16896944 6.10 5.9
chr13: 57,962,413-70,091,195 159540226 3.77 44

(%) rs2524095, rs16899203, rs16899205, rs16899207, 152524089, rs2394967, 152524066, rs9366778.

position associated with lactase persistence was rs4988235 intermediate between the frequency reported in other central

(aka. -13,910), which is the major determinant for lactase and northern EUR populations (60-80%) and that in

persistence in Europe. The frequency of this lactase persis- NAF populations (24%) (Bersaglieri et al. 2004; Ben Halima

tence allele in Canary Islanders (-13,910%T, 40%) is et al. 2017) (http://www.uclacuk/mace-lab/resources/glad).
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Table 4. Diversity Estimates in Regions with Large Deviations in African Ancestry in Canary Islanders.

Heterozygosity SNPs in ROHs
Region Mean P value® Mean P value®
Genome 0.300 - 12.508 -
chr2: 133,952,040..144,266,489 0.298 0.452 11.934 1.38x10°7°
chr3: 10,539,482..11,710,471 0.278 0.010 9.155 0.037
chr3: 177,443,968..178,679,751 0.309 0.418 14.172 220%107'%°
chr6: 24,703,442..36,288,651 0.296 0.015 25.934 2.20%107'%°
chré: 24,790,462..32,192,083 0.285 5.28%x1077° 29.364 2.20%107'%°
chr13: 57,962,413..70,091,195 0.287 2.55x107*° 22.050 2.20%107'°
*Wilcoxon rank sum test.
PStatistically significant after adjusting for multiple tests (P < 810 ).
Table 5. Tajima’s D and PBS Test Results Calculated for chr3 and chr13 Regions with a Z score>|3|.
Tajima’s D PBS

Chr. Region (X1,000)  Score (probability) Gene Region (X1,000) Score (P<2.0X10 %) Gene (traits)
3p25.3 11,010-11,020 —1.733 (0.061) SLC6A11-SLC6AT  11,025-11,035 0.108 SLC6AT

11.635-11.645 0.087 VGLL4 (height®)
3q26.32 178,120-178,130 —1.510 (0.130) KCNMB2 177,465-177,475 0.177 LINC00578

178,573-178,583 0.064 KCNMB2
13q21.32 66,060-66,070 —2.505 (<2.0X10™ %) PCDH20-PCDH9  63,600-63,650 0.136 PCDH20-PCDH9

(bone traits®, asthma®)

“He et al. (2015).
bKiel et al. (2007).
“Ferreira et al. (2011).

Therefore, we suggest that the prevalence of lactase nonper-
sistence alleles in Canary Islanders and NAF populations likely
explains the chr2 peak in Canary Islanders. In fact, a recent
ancient DNA study of pre-Hispanic human teeth from a small
sample of five Guanche people from Tenerife and Gran
Canaria also suggested that the dominant phenotype was
lactose intolerance (Rodriguez-Varela et al. 2017). Taken to-
gether, this evidence reduces the possibility that the known
African or Arabian LCT variants (Ingram et al. 2009; Ranciaro
et al. 2014) are responsible for the chr2 peak, although we
cannot rule out the possibility that there may be other rare
variants associated with lactase persistence in this population
that remain undiscovered.

Links between Ancestry, Diseases, and Biological
Pathways

To determine whether the genomic regions with large devia-
tions in ancestry are linked with human diseases and biolog-
ical pathways, we applied enrichment analysis to the 341
unique genes mapping to the regions with significant evi-
dence of EUR-, NAF-, or SSA-related ancestry deviations
(fig. 8 and supplementary table 1, Supplementary Material
online). The top annotations were dominated by skin, vascu-
lar, renal, autoimmune, and neuropsychiatric diseases as well
as by DNA metabolism, amyloids, meiosis, and transcription
pathways. In addition, many prevalent diseases, such as dia-
betes, asthma, and allergy, and infectious diseases as well as
some severe conditions, such as oncologic and severe acute
respiratory syndrome, were also significantly enriched (g val-
ue < 0.05). Regulation of inflammatory response, the
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complement pathway, telomere maintenance, and antigen
processing and presentation were among the pathways sig-
nificantly enriched (g value < 0.05) but ranked lower in the
results (supplementary tables 2 and 3, Supplementary
Material online).

Discussion

The recent history of the Canary Islands has involved hetero-
geneous genetic influences from Europe and Africa since their
aboriginal settlement from nearby North Africa during the
first millennium BC. Here, we report new high-density geno-
typing and WGS data that allowed an exhaustive exploration
of the time since the last admixture event, genetic diversity
and isolation, disease links, and putative selective processes in
these populations. By using the largest and most diverse
Canary Islands sample analyzed to date at a genomic scale,
we recognized a wider range of interindividual African ances-
try assignments (as much as 29.9% NAF and 9.2% SSA), the
largest so far identified in southwestern EUR populations
(Botigué et al. 2013). Furthermore, a between-islands pattern
of variation in African ancestries was observed and inter-
preted according to the impact of the Spanish conquest
and settlement of the territory during and after the XVth
century. For the first time, we have found genomic signals
of inbreeding in the population, suggesting that isolation has
been especially drastic in the two smallest islands, El Hierro
and La Gomera, the latter of which is associated with the
highest frequency reported to date of the Northwest
African U6 mtDNA lineage (>36%) in a non-African
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population (Rando et al. 1999). In addition, we uncovered the
mosaic nature of Canary Islander genomes, finding that a
typical haploid genome would consist of fewer than 300 an-
cestry blocks and the number of EUR-related blocks would be
approximately twice and 10 times that of the NAF- and SSA-
related blocks, respectively. Finally, we used this information
to focus on particular chromosome regions that showed an
overrepresentation of one of the recognized ancestries. These
regions included the LCT gene, the HLA, and other genes that
appear to have undergone selective processes. Most impor-
tantly, chromosome regions with large deviations in the
ancestries were enriched in genes underlying important dis-
eases that disproportionately affect the archipelago, including
respiratory diseases and diabetes, among others,

Despite the profound impact of the European immigration
starting in the XVth century, our results indicate that signif-
icant genetic footprints of African ancestry persist in the cur-
rent inhabitants of the Canary Islands. Our data also imply
that gene flow between the island populations must have
been high to maintain the relative homogeneity observed
for the African ancestries, despite the significant discontinuity
favoring African affinities in the populations of El Hierro, La
Gomera, Fuerteventura, and Lanzarote. Strikingly, such a pat-
tern was also revealed in mtDNA studies of independent
samples (Rando et al. 1999), suggesting that African ancestry
has been better preserved in the populations that were con-
quered at the beginning of the historic process, where the
literature attests to a more peaceful occupation of those ter-
ritories (Suarez et al. 1988). In contrast to our previous study,
which was limited by the number of autosomal markers uti-
lized at the time (Pino-Yanes et al. 2011), in the present study,
we were able to measure the existence of a minor but sub-
stantial SSA-related influence in the populations of the seven
islands. SSA migrations into NAF populations are well known
(Rando et al. 1998; Wright 2007), suggesting that continuous
gene flow started before the aboriginal settlement of the
islands. In addition, our results evidenced significant differ-
ences in the mean ancestry block lengths interpreted as of
recent SSA and NAF origin in Canary Islanders. While this
result may be indicative of admixture events involving differ-
ent African components, as has been supported by many
previous studies (Arco and Navarro 1987 de Castro 1987;
Navarro Mederos 1997; Flores et al. 2003), independent anal-
yses should aim to establish the time periods of such events.

For example, in a recent genomic study of ancient DNA, a
very low proportion of SSA ancestry was observed in pre-
Hispanic human remains despite their genetic resemblance
to other modern NAF populations (Rodriguez-Varela et al.
2017). This finding suggests that the proportion of SSA an-
cestry we observed in Canary Islanders likely originated in the
postconquest importation of enslaved African people.

Previous genetic studies of pre-Hispanic remains, burial
remains from the XVlith century, and samples from current
inhabitants indicate declining frequencies of the NRY lineages
ascribed to aboriginal people (Fregel et al. 2009). However, a
continuity of aboriginal mtDNA lineages, possibly evolving
locally into Canarian-specific U6b subhaplogroups (Rando
et al. 1999; Maca-Meyer et al. 2004), has been evidenced in
the aboriginal remains and current inhabitants, suggesting an
important sexual asymmetry involved in the demographic
process of the population (Flores et al. 2001). In this study,
we found that five other regions in the autosomal genome,
including the HLA and LCT, paralleling this scenario, where
genetic affinities with African populations remain regionally
preserved today. Independent studies and our own data sup-
port that putative selective processes are the cause of such
autosomal affinities. However, given that the bulk of human
adaptation occurs via selection on standing variation
(Schrider and Kern 2017), it is possible that these signals are
not due to private alleles but to preexisting variations in any
of the parental populations involved in the admixture.
Indeed, extensive evidence indicates pervasive selection pro-
cesses in the HLA and LCT regions in different populations;
these processes have been explained by dietary and cultural
changes occurring with the Neolithic dispersion, including
population density increases and the establishment of per-
manent settlements, resulting in novel pathogen exposures
(Marciniak and Perry 2017).

Additionally, the SLC6AT1 and KCNMB2 genes have been
suggested to be under selective pressures in African and
American populations (Hu 2012; Watkins et al. 2012), and
literature evidence supports DIAPH3, not PCDHSY, as the clos-
est candidate target for selection in the chr13 region (Pickrell
et al. 2009). One important consequence of this observation is
that those regions contain genes in which mutations are
linked to rare disorders that are usually screened in families
with genetic risks, such as PCDH9, SLC6AT11, SLC6AT, and
COL11A2. Therefore, as local ancestry will act as a confounder
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in the context of genetic tests, disease genes linked to those
regions could be candidates for interpretative problems in
diagnosis (Manrai et al. 2016). However, beyond monogenic
conditions, such problems can arise in the context of complex
disease mapping and in the evaluation of known risk factors.
The HLA region, a central locus in the predisposition for or
protection from many diseases (Hill et al. 1991; Oksenberg
et al. 2004; Pelak et al. 2010), contains genetic markers that
have been previously identified as related to complex traits
such as asthma susceptibility (MUC22) (Galanter et al. 2014)
and HIV-1 infection control (HLA-C) (Thomas et al. 2009),
and their attributable risks would have passed unnoticed if
local ancestry was not appropriately accounted for in the
studies. Furthermore, the regions exhibiting local ancestry
deviations have significant associations with distinct preva-
lent diseases in this population. Therefore, it can be specu-
lated that the prevalence of some of these diseases in the
Canary Islands population might be influenced by the distinc-
tive genetic makeup of this population. This hypothesis is in
agreement with epidemiological studies of cardiovascular risk
factors (Cabrera de Ledn et al. 2006; Bueno et al. 2008;
Marcelino-Rodriguez et al. 2016), asthma and allergies
(Sanchez-Lerma et al. 2009; Julia-Serda et al. 2011).

To the best of our knowledge, this is the first study to
evaluate the proportion of the genome in ROHs in this pop-
ulation. Our results support distinct degrees of isolation and
consanguinity between the seven islands, which are most
extreme in the two smallest islands, La Gomera and El
Hierro. Because of isolation, the inhabitants of these islands
would be enriched in low-frequency functional variants (Xue
et al. 2017) that can lead to novel discoveries of disease genes
(Moltke et al. 2014; Jakobsdottir et al. 2016). As a conse-
quence, there is an increased number of recessive variants
that can confer risk for complex diseases (Rudan et al. 2003;
Campbell et al. 2007; Lencz et al. 2007; Ghani et al. 2015;
Thomsen et al. 2016). In addition, founder monogenic muta-
tions are expected, as observed in distinct Canarian popula-
tions for type 1 primary hyperoxaluria (Santana et al. 2003;
Lorenzo et al. 2006, 2014), sickle-cell anemia (Castella et al.
2011), Wilson's disease (Garcia-Villarreal et al. 2000), and car-
diovascular traits (Rodriguez-Esparragon et al. 2017),
highlighting the singular genetic characteristics of Canary
Islanders.

It is important to declare some limitations of our study.
First, scarce genomic data are available for NAF populations in
public databases (Henn et al. 2012). As a consequence, there
was limited overlap in SNP contents with the SNP array uti-
lized, leaving us with as few as 114,567 SNPs for some com-
ponents of the study. This circumstance forced us to use
1KGP population references to maximize SNP density in
the comparisons. Along with the number of generations since
admixture and the ascertained nature of the contents of the
array, these conditions likely had direct impacts on the local
ancestry estimates, the average lengths and the regions iden-
tified by the admixture scan. However, further studies will aim
to improve this overlap by further WGS and/or SNP array
genotyping of novel NAF samples to be able to refine future
scans. The regions identified by the admixture scan are
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relatively wide, on the order of several Mb, which limits the
precise allocation of ancestry peaks. Therefore, the genes
highlighted by proximity to the detected peaks should be
considered with caution. In this respect, the final data set
had low or no coverage of centrosomes, offering no basis
for local ancestry inference in those regions. Although this
situation would have affected all ancestries equally, we ex-
cluded those regions from the analysis to avoid an upward
bias in the average block length measures. Furthermore, the
choice of reference populations for ancestry inference is a
common concern in these studies. In our case, we balanced
choosing a reference data set with sufficient genetic resolu-
tion to retain the minimal number of SNPs required for the
analyses (>100K) with the use of EUR or SSA populations
where NAF or Near East influences were absent or minimal, as
both factors hamper local NAF ancestry inferences. In any
case, a ubiquitous Berber substrate was recently found in both
pre-Hispanic remains from the aboriginal Guanche people
and samples from modern NAF populations, supporting a
close genetic affinity between these populations (Rodriguez-
Varela et al. 2017). Finally, even in the ideal scenario of having
access to population data sets from all over the world, most
natural populations are expected to represent heterogeneous
groups as well. This heterogeneity was the justification for
considering all available NAF data sets as a single population
source in the model. However, we admit that the reference
population sources utilized in the study constitute model
simplifications.

In conclusion, here we have provided a genetic dissection
of population ancestries and isolation in Canary Islanders at
an unprecedented level. We estimate that up to 34% of
Canarian genomes are of recent African descent and that
the geographical distribution of ancestries still reflects histor-
ical events. Local ancestry estimates enabled the identification
of Mb-size chromosome regions with higher-than-expected
African affinities, most likely involving putative adaptive sig-
nals. Our results suggest that these observations may have
implications for the major health disparities affecting the pop-
ulation. In addition, genetic testing and genetic mapping
studies of diseases in Canary Islanders should take local an-
cestry into account. Finally, because the adaptive signals were
previously described in populations from Africa and America,
our conclusions could also have repercussions for the identi-
fication of disease loci in other recently admixed populations.

Materials and Methods

Samples, Genotyping, and Reference Population Data
Sets

The sample of Canary Islanders consisted of 429 unrelated
subjects who self-declared as having two generations of
ancestors born on the same island of the Archipelago.
Samples were selected from a large cohort study entitled
“CDC of the Canary Islands” (Cabrera de Ledn et al. 2004),
which included ~7,000 randomly selected representatives of
the general Canarian population aged between 18 and
75 years and unbiased for gender. Informed consent and an
extensive health survey were obtained from all participants
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through personal interviews. Genotyping of 587,352 variants
was conducted using the Axiom Genome-Wide Human CEU
1 Array (Affymetrix, Santa Clara, CA) with the support of the
National Genotyping Center (CeGen), Universidad de
Santiago de Compostela Node. Genotyping quality control
was performed with R 322 and PLINK v1.07 (Purcell et al.
2007). Thus, samples with genotype call rates <95%, discor-
dant sex and family relationships (PIHAT > 0.2) were re-
moved from the study, leaving a total of 416 individuals,
205 men and 211 women, for further analyses (34 from El
Hierro, 35 from La Palma, 78 from La Gomera, 64 from
Tenerife, 117 from Gran Canaria, 32 from Fuerteventura,
and 56 from Lanzarote). Additionally, those SNPs with a gen-
otyping rate <95%, a minor allele frequency (MAF) <0.01, or
deviating from Hardy—Weinberg expectations
(P < 1.0x107°) were excluded, leaving a total of 516,348
SNPs. To maximize SNP density in the downstream analyses,
we relied on the TKGP Phase 3 data to extract the data sets
serving as EUR and SSA sources (Sudmant et al. 2015).
According to recent genome-wide ancestry estimates
(Botigué et al. 2013), the presence of Near East or NAF influ-
ences in EUR and SSA populations is minimal. In addition,
NAF ancestry in EUR populations is clearly distinguishable
from Near Eastern influences (Botigué et al. 2013). This infor-
mation motivated the selection of British (GBR) and Finnish
(FIN) people and Utah residents with NW EUR ancestry
(CEU) (overall n = 289) as well as Yoruba Nigerian (YRI) peo-
ple (n = 108) as the representatives for EUR and SSA sources,
respectively. To perform sensitivity analyses of the results,
random subsamples of 75 individuals from each set of EUR,
NAF, and SSA samples were alternatively used as well as other
data sets from 1KGP, namely the Gambian Mandenka (GWD;
n=113) and Sierra Leone Mende (MSL; n = 85) data sets.
The NAF representative grouping (n=125) was gathered
from samples with origins in North and South Morocco,
Occidental Sahara, Algeria, Tunisia, Egypt, and Libya that
had previously been genotyped with the Genome-Wide
Human SNP Array 60 (Affymetrix) (Henn et al. 2012).
Using PLINK, we ensured that all samples in the reference
data had a genotyping call rate >95% and excluded SNPs
with a > 5% missing rate or with a Hardy—Weinberg equilib-
rium P < 110" ®in at least one population. The intersection
of data sets and postfiltering (of SNPs located in mtDNA or
the sex chromosomes) left a total of 114,567 SNPs for down-
stream analyses (data available in http://www.iter.es/wp-con-
tent/uploads/2018/09/AffyCEU1_data from_Canary
Islanders_MBE-Guillen-Guio-et-al.2018zip).

Admixture Inference and Population Analyses

Principal Component Analysis (PCA) was performed using
PLINK v1.9 (Chang et al. 2015). ALDER v1.03 (Loh et al.
2013) was used to calculate the two-locus decay of admixture
LD to test the existence of admixture and to infer the time of
the most recent admixture event in Canary Islanders (assum-
ing 33 years per generation). ALDER was first used to pretest
all reference populations to determine the best pair of pop-
ulations to be considered as ancestral for the estimate, avoid-
ing the presence of long-range LD correlations with the

admixed population. Then, we were able to test for admixture
and date the admixture event using FIN or CEU as surrogates
of EUR and YRI, GWD, or MSL as surrogates of SSA. All of the
other populations failed in the pretest.

We used ADMIXTURE v1.22 (Alexander et al. 2009), which
uses a maximum likelihood estimation of individual ancestries
averaged across the genome, to compute the ancestry clus-
ters of each individual and to serve as a reference for assessing
the performance of the local ancestry estimators. The
ADMIXTURE calculations assumed 2 to 7 ancestral popula-
tions (K) and used a 10-times cross-validation with random
seeds to estimate the best predictive K. A subsample of
100,175 SNPs from EUR, NAF, SSA, and Canary Islanders
was used for this assessment. This subset resulted from ex-
cluding with PLINK those SNPs in LD (window size = 50,
step = 10, pairwise r threshold = 0.5) or located in regions
of longrange LD according to hgl9 positions (chrs:
43,964,243-51,464,244; chr6: 24,892,021-33,392,022; chr8:
7962,590-11,962,591; and chr11: 45043,424-57,243,424).
The ADMIXTURE results were also assessed for the effects
of downsampling the number of samples from the reference
populations and the use of alternative SSA surrogates other
than YRI (GWD and MSL). To provide further support to the
ADMIXTURE results, we assessed the goodness of fit of the
ADMIXTURE model to the underlying genomic data based
on the patterns of haplotype sharing between individuals
using badMIXTURE v0.0.0.9000 (https://github.com/danjlaw-
son/badMIXTURE), whose residuals provide information on
the ancestral relationships between the population groups.
Statistical differences in ADMIXTURE ancestry estimates be-
tween islands and regions were assessed by Wilcoxon test.

To further explore the population history and isolation of
Canary Islanders, ROHs were calculated with PLINK based on a
previously described sliding window approach (Kirin et al. 2010)
considering regions of 5,000 kb (ensuring a minimum density of
50kb/SNP per window to reduce biases due to differences in
local SNP densities), allowing for one heterozygous variant and
up to five missing calls per window, and counting those ROHs
with a minimum length of 500 kb. As a measure of the average
total extent of homozygosity per population, we then calcu-
lated the average lengths of the ROHs in six categories (0.5-1,
1-2, 2-4, 4-8, 8-16, and >16 Mb). Additionally, to provide
further support to the findings, we classified ROHs according
to the size limits suggested by Pemberton et al. (2012) but
simply stratified into ROHs < 1.6 Mb and 1.6 Mb. ROH length
patterns in Canary Islanders were also explored by assessing the
average number of genome regions in ROHs and by the average
total length of ROHs per island. Differences in the average total
ROH lengths were assessed by Wilcoxon test adjusting for the
number of comparisons via Bonferroni  correction
(P < 2410 considered significant).

Local Ancestry Assessments and Block Sizes

Local ancestry blocks across autosomes were inferred by using
LAMP-LD v1.0 (Baran et al. 2012) and ELAI v1.0 (Guan 2014)
assuming three admixing populations (EUR, NAF, and SSA).
These two methods do not require SNPs to be independent
and perform well with recent multiway admixtures, However,
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while ELAI uses multilocus genotype data, overcoming the
inherent uncertainty of the phasing step, LAMP-LD requires
haplotype data for the parental populations. For that step, we
used SHAPEIT v2.727 (Delaneau et al. 2014) for haplotype
reconstruction under the default settings. We assumed 15
generations since admixture, which is consistent with our
results as well as with assumptions made on studies in pop-
ulations with similar historic scenarios (Price et al. 2007). We
then compared the LAMP-LD and ELAI estimates to those
provided by ADMIXTURE by Pearson correlation coefficients
and by a least squares estimator of the differences in individ-
ual ancestry estimates. Ancestry block sizes were calculated
excluding the centromere regions, as they are not adequately
covered by genotyping arrays. In addition, given that ELAI
provides ancestry dosages in a continuum (0-2), ancestry
block size estimates in this case were derived from dosage
approximations to the next nonnegative integer estimates
(thresholds set at 0.6 and 14) (supplementary fig. 6,
Supplementary Material online).

Local Ancestry and Diversity Deviations and
Enrichment Analyses

We used the method proposed by Zhu (ZHu 2012) to esti-
mate a Z-score statistic at each SNP position as a measure of
the deviation in the local ancestries with respect to the aver-
age ancestry in the genome. This scan was conducted for the
three ancestries separately, and an excess of locus-specific
ancestry in a segment was considered significant if a large
deviation was detected (ie, Z score>|3|, P<2.7x102). In
those regions showing large ancestry deviations, genetic di-
versity was evaluated on the basis of the mean SNP hetero-
zygosity estimates and the mean number of subjects with
SNPs from those regions that were contained in ROH
stretches. The statistical significance of the differences in these
regions compared with data from the whole genome was
assessed by Wilcoxon rank sum tests. Enrichment analyses
were conducted for all regions with ancestry deviations to-
gether based on the peak regions defined by a Z score > 3 on
hg19 using the Genomic Regions Enrichment of Annotations
Tool (GREAT) (McLean et al. 2010). A hypergeometric test
was used to estimate the significance of ontology term en-
richment in the unique genes extracted in those regions with
respect to the set of all genes in the genome. This analysis was
evaluated for annotations in two particular ontologies (hu-
man diseases and MSigDB pathways), and the significance
was corrected for multiple comparisons with a false discovery
rate (FDR g value).

Whole Genome Sequencing Data

Given that deviations of local ancestry often contain well-
known targets of selection (i.e, LCT on chr2 and the HLA
genes on chr6), we accessed data from deep WGS from a
subset of 14 individuals (two per island) to further explore if
the other regions showing deviations also harbored putative
signals of selection. Briefly, DNA samples were processed with
a Nextera DNA Prep kit with dual indexes following the
manufacturer’s recommendations (lllumina Inc, San Diego,
CA). Library sizes were checked on a TapeStation 4200
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(Agilent Technologies, Santa Clara, CA). The concentration
of each library was determined by a Qubit dsDNA HS Assay
(Thermo Fisher, Waltham, MA). As a control, a PhiX DNA
sample (1%) was also sequenced with the samples. Samples
were sequenced to an average depth of 36.5x (range 24—
45x) with paired-end 150-base reads on a HiSeq 4000 instru-
ment (lllumina). Reads were preprocessed with bcl2fastq
v2.18 and aligned to hg19 with BWA-MEM 0.7.15-r1140 (Li
and Durbin 2010), and the BAMs were processed with
Qualimap v2.2.1 (Okonechnikov et al. 2016), SAMtools v1.3
(Li et al. 2009), and Picard v2.1.1 (http://broadinstitute.github.
io/picard). Variant calls were obtained with HaplotypeCaller
in GATK (v3.7) (DePristo et al. 2011) following best practices
workflow recommendations. These analyses were conducted
in the Teide-HPC Supercomputing facility (http://teidehpc.
iteres/en). Sequencing data are available in http://www.iter.
es/wp-content/uploads/2018/09/chr3_data_from_Canary_
Islanders_MBE-Guillen-Guio-et-al.2018.vcf _.tar.gz for chromo-
some 3 and in http://www.iter.es/wp-content/uploads/2018/
09/chr13_data_from_Canary_lslanders_MBE-Guillen-Guio-
et-al.2018.vcf_targz for chromosome 13.

Detection of Natural Selection

WGS data from Canary Islanders were used to extract the
genotypes for the four described SNPs located upstream of
LCT that are involved in lactase persistence as reported pre-
viously in the literature: rs4988235, rs41525747, rs41380347,
and rs145946881 (Ingram et al. 2009). Furthermore, biallelic
SNPs identified from WGS from the chr3 and chr13 regions
defined by a Z score>> 3| were used to ascertain the existence
of candidate signals of evolutionary adaptation. To do so, we
assessed Tajima’s D and PBS (Yi et al. 2010) in 10-kb windows,
registering the observed local minima for Tajima’s D and
the largest PBS scores for each chromosome region.
Observed Tajima’s D and PBS statistics were compared
against a null distribution generated from 5,000 neutral
simulations under a simplified demographic model
(details below). Statistical significance was calculated us-
ing Hudson's “sample_stats” software (http://home.uchi-
cago.edu/rhudson1/source/mksamples.html).

For the simulations, we used msHOT software (Hellenthal
and Stephens 2007). As parameters, we used those from the
reference model of Gutenkunst et al. (2009) for the general
African (simulated population #1), European (#2) and Asian
(#3) populations. These parameters were slightly modified to
include a fourth population sample representing the Canary
Islanders (#4). The output only included a set of 28 haplo-
types representing the Canarian sample, equivalent in num-
ber to those assessed by WGS. To model the Canary Islanders’
demography, we assumed a simplified model that attempted
to reflect, in a broad sense, their history according to historical
records and genetically supported evidence of their effective
population size (Ne) in pre-European times. No attempt was
made to infer the most likely parameters for the Canary
Islanders. In general terms, we assumed a small constant-
sized isolated population of African origin, starting from
10,000 years BP, which suffered a strong decline in population
size after European colonization of the Archipelago
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(simulated as an instant admixture occurring 500 years BP).
The specific command line was as follows:

./msHOT 28 5000 -t tbs -r tbs 10000 -14 000 28 -n 1 1.68202
-n 2 3.73683 -n 3 7.29205 -n 4 3.73683 -g 2 116.010723 -g 3
160.246047 -ma x 0.881098 0.5671966 0 0.881098 x 2.79746 10
0.561966 2.79746 x 0 0 1 0 x -es 0.0005 4 0.1 -¢j 0.0005 5 2 -en
0.0005 4 0.068 -¢j 0.0135 4 1 -¢j 0.028985 3 2 -en 0.028985 2
0.287184 -eM 0.028985 28 -¢j 0.197963 2 1 -en 0.303501 1 1 <
random_thetas-rhos.txt > output_file.ms

The initial values of theta were inferred from the compar-
ison of human and chimp orthologous sequences for each 10-
kb region using a mutation rate based on the average number
of substitutions per site (with the Jukes and Cantor correc-
tion) as assessed by DnaSP v5.1 (Librado and Rozas 2009). The
rho parameter was estimated from the deCODE Genetics sex-
averaged recombination-rate track in the UCSC Genome
Browser (https://genome-euro.ucscedu). Uncertainty in the
estimates of theta and rho was considered by generating a
random and normally distributed set of values for these
parameters, with mean equal to the estimated value and
variance equal to the mean, from which we sampled a pair
of values in each simulation.

To estimate the Ne of Canary Island aborigines in pre-
European times, we accessed the publicly available Guanche
genome (gun0171; accession number ENA: PRJEB86458) with
the largest depth-of-coverage (3.9x) from Rodriguez-Varela
et al. (2017). These data correspond to a male found in
Tenerife for which radiocarbon dating supports an age of
1,216 = 27 years BP (the oldest one analyzed with the lowest
contamination levels), which predates the European coloni-
zation of the Canary Islands. We used a total of 187.7 million
reads mapped to the GRCh37 human reference genome as
single-end reads. SAMtools (v1.3) and BCFtools (v1.3.1) were
used to generate whole-genome consensus sequences at loci
with a minimum mapping quality of 30 and a minimum and
maximum read-depth of 3 and 20, respectively. Finally, the
Pairwise Sequentially Markovian Coalescent (PSMC) method
(Li and Durbin 2011) was used on the reads with base qual-
ities >20 to estimate the Ne of the ancestral aboriginal pop-
ulation assuming 33 years per generation, a mutation rate of
25%107%, and a range of background false negative rates
(FNRs) of 0.0-0.3 for variant discovery. Considering the broad
range of FNRs assumed, this analysis yielded a uniform Ne in
the range of 470-560 for the Guanche population.

Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.
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Supplementary Figure 1. ALDER results for 2-reference weighted LD computations
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Supplementary Figure 2. ADMIXTURE results from K= 2 through 7. Individuals are
represented as vertical lines, and each K ancestral genetic cluster is represented by a
color. The lowest CV error was obtained at K=4, differentiating two ancestry clusters in
Europeans. For K>5 a new genetic cluster arises mainly assigned to the Tunisian
population, revealing novel ancestry clusters in populations other than SSA.
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Supplementary Figure 3. Admixture model fitting as provided by badMIXTURE.
Upper panel: Ancestry clusters as estimated by ADMIXTURE (K=4). Lower panel:
Residuals from the goodness of fit of the model with CHROMOPAINTER measures of
haplotype sharing with individuals from NAF, EUR and SSA groups.
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Supplementary Figure 4. Density plot of approximate ELAI block size estimates.
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integer (pink) to assist in the estimation of ELAI block lengths.
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Supplementary Table 1. Genes mapping to the regions with large deviations in ancestry.

ABCF1, ABHD16A, ABT1, ACMSD, ACOT13, AGER, AGPAT1, AIF1, ALDH5A1, ANKS1A, APOM, ARHGAP15, ARMC12, ATAT1, ATF6B, ATG7,
ATP2B2, ATP6V1G2, B3GALT4, BAG6, BAK1, BRD2, BRPF3, BTN1A1, BTN2A1, BTN2A2, BTN3A1, BTN3A2, BTN3A3, BTNL2, C2, C4A, C4B 2,
Céorf1, Céorf10, C6orf106, C6orf136, Céorf15, Céorf222, Céorf25, Céorf47, Céorf48, C6orf62, CCHCR1, CCNT2, CDKN1A, CDSN, CFB, CLIC1,
CLPS, CLPSL1, CLPSL2, COL11A2, CSNK2B, CUTA, CXCR4, CYP21A2, DARS, DAXX, DCDC2, DDAH2, DDR1, DDX39B, DEF6, DHX16, DIAPHS3,
DPCR1, EGFL8, EHMT2, ETV7, FAM65B, FANCE, FKBP5, FKBPL, FLOT1, GABBR1, GMNN, GNL1, GPANK1, GPLD1, GPSM3, GPX5, GPX6,
GRM4, GTF2H4, HFE, HIST1H1A, HIST1H1B, HIST1H1C, HISTTH1D, HISTIH1E, HIST1H1T, HIST1H2AA, HIST1H2AB, HIST1H2AC, HIST1H2AD,
HIST1H2AE, HIST1H2AG, HIST1H2AH, HIST1H2AJ, HIST1H2AK, HIST1H2AL, HIST1H2AM, HIST1H2BA, HIST1H2BB, HIST1H2BC, HIST1H2BD,
HIST1H2BE, HIST1H2BF, HIST1H2BG, HIST1H2BH, HIST1H2BI, HIST1H2BJ, HIST1H2BK, HIST1H2BL, HIST1H2BM, HIST1H2BN, HIST1H2BO,
HIST1H3A, HIST1H3B, HIST1H3C, HIST1H3D, HIST1H3E, HIST1H3F, HIST1H3G, HIST1H3H, HIST1H3I, HIST1H3J, HIST1H4A, HIST1H4B,
HIST1HA4C, HIST1H4D, HIST1HA4E, HIST1H4F, HIST1H4G, HIST1H4H, HIST1H4l, HIST1H4J, HIST1H4K, HIST1HA4L, HLA-A, HLA-B, HLA-C, HLA-
DMA, HLA-DMB, HLA-DOA, HLA-DOB, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DQB2, HLA-DRA, HLA-DRB1, HLA-DRBS,
HLA-E, HLA-F, HLA-G, HMGA1, HMGN4, HNMT, HRH1, HSD17B8, HSPA1A, HSPA1B, HSPATL, IER3, IP6K3, ITPR3, KAAG1, KCNMB2, KCTD20,
KIAA0319, KIFC1, KYNU, LCT, LEMD2, LHFPL5, LRP1B, LRRC16A, LSM2, LST1, LTA, LTB, LY6G5B, LY6G5C, LY6G6C, LY6GED, LYBGEF,
MAP3K19, MAPK13, MAPK14, MAS1L, MCCD1, MCM6, MDC1, MGAT5, MICA, MICB, MLN, MOG, MRPS18B, MRS2, MUC21, MUC22, NCKAPS,
NCR3, NELFE, NEU1, NFKBIL1, NKAPL, NOTCH4, NRM, NRSN1, NUDT3, NXPH2, OR10C1, OR11A1, OR12D2, OR12D3, OR14J1, OR2B2,
OR2B3, OR2B6, OR2H1, OR2H2, OR2J2, OR2J3, OR2W1, OR5V1, PACSIN1, PBX2, PCDH17, PCDH20, PCDH9, PFDN6, PGBD1, PHF1, PNPLAT,
POM121L2, POU5F1, PPARD, PPP1R10, PPP1R11, PPP1R18, PPT2, PRR3, PRRC2A, PRRT1, PRSS16, PSMB8, PSMB9, PSORSI1C1,
PSORS1C2, PXT1, R3HDM1, RAB3GAP1, RGL2, RING1, RNF39, RNF5, RPL10A, RPP21, RPS10, RPS18, RXRB, SCGN, SCUBES3, SFTA2,
SKIV2L, SLC17A1, SLC17A2, SLC17A3, SLC17A4, SLC26A8, SLC39A7, SLC44A4, SLC6A1, SLC6A11, SNRPC, SPDEF, SPOPL, SRPK1, SRSF3,
STK19, STK38, SYNGAP1, TAF11, TAP1, TAP2, TAPBP, TCF19, TCP11, TDP2, TDRD3, TEAD3, THSD7B, TMEM163, TNF, TNXB, TRIM10,
TRIM15, TRIM26, TRIM27, TRIM31, TRIM38, TRIM39, TRIM39-RPP21, TRIM40, TUBB, TULP1, UBD, UBXN4, UHRF1BP1, VARS, VARS2, VGLL4,
VPS52, VWA7, WDR46, ZBTB12, ZBTB22, ZBTB9, ZFP57, ZKSCAN3, ZKSCAN4, ZKSCANS, ZNF165, ZNF184, ZNF311, ZNF322, ZNF391, ZNF76,
ZNRD1, ZRANB3, ZSCAN16, ZSCAN23, ZSCAN26, ZSCAN31, ZSCAN9
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Supplementary Table 2. Significantly enriched human diseases in regions with large
deviations in ancestry.

Fraction in
Term g-value annotation
Psoriasis 3.44E-10 7.18%
Mucocutaneous lymph node syndrome 2.13E-08 3.74%
Vascular skin disease 2.88E-08 5.75%
Lymphadenitis 4.16E-08 3.74%
Integumentary system disease 1.03E-07 11.21%
Skin disease 1.10E-07 10.92%
Peripheral vascular disease 5.50E-07 6.03%
Polyarteritis nodosa 6.91E-07 3.74%
Nephrotic syndrome 8.71E-06 3.16%
Nephrosis 1.37E-05 3.16%
Graves' disease 3.56E-05 3.16%
Sarcoidosis 4,96E-05 3.16%
Autoimmune disease 7.32E-05 10.92%
Hyperthyroidism 2.33E-04 3.16%
Thyrotoxicosis 2.44E-04 3.16%
Hepatitis 3.08E-04 6.90%
Goiter 4.04E-04 3.16%
Autoimmune disease of endocrine system 4.38E-04 3.16%
Cytomegalovirus infectious disease 4.53E-04 3.45%
(+)ssRNA virus infectious disease 4.56E-04 5.46%
Psoriatic arthritis 4.65E-04 2.01%
Pemphigus 4.65E-04 2.01%
Allergy 4.66E-04 4.31%
Duodenal ulcer 4.81E-04 1.72%
Cystic echinococcosis 5.30E-04 0.86%
Leprosy 5.44E-04 2.01%
Flaviviridae infectious disease 5.65E-04 4.89%
Echinococcosis 6.07E-04 1.15%
Demyelinating disease 6.73E-04 5.46%
Behcet's disease 6.78E-04 2.59%
Hepatitis C 7.20E-04 4.60%
DNA virus infectious disease 9.47E-04 7.76%
Intrahepatic cholestasis 1.04E-03 1.44%
Multiple sclerosis 1.04E-03 5.17%
Demyelinating disease of central nervous system 1.22E-03 517%
Hepatitis B 1.24E-03 4.02%
Pulmonary tuberculosis 1.30E-03 2.01%
Cavernous hemangioma 1.36E-03 0.86%
Liver disease 1.84E-03 8.05%
Congenital adrenal hyperplasia 1.84E-03 1.15%
Primary bacterial infectious disease 1.86E-03 4.60%
Arthritis 1.89E-03 8.05%
Bone inflammation disease 1.91E-03 8.33%
Dengue disease 2.20E-03 1.44%
Rheumatic fever 2.20E-03 1.44%
Urticaria 2.41E-03 2.01%
Food allergy 2.60E-03 2.59%
Glucose metabolism disease 3.26E-03 10.06%
Diabetes mellitus 3.26E-03 9.77%
Peptic ulcer 3.53E-03 2.01%
Nasopharynx carcinoma 3.77E-03 3.74%
Viral infectious disease 4.04E-03 10.06%
Brucellosis 4.31E-03 1.72%
Chagas cardiomyopathy 4.48E-03 0.86%
Neuromyelitis optica 5.01E-03 1.15%
Parasitic infectious disease 5.06E-03 3.16%
Systemic lupus erythematosus 5.14E-03 4.60%
Severe acute respiratory syndrome 5.67E-03 1.72%
Bacterial infectious disease 5.82E-03 4.89%
RNA virus infectious disease 5.89E-03 6.32%
Rheumatoid arthritis 6.17E-03 6.32%
Nidovirales infectious disease 6.18E-03 1.72%
Vitiligo 6.32E-03 2.01%
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Prostatitis

Celiac disease

Hepatobiliary disease

Aplastic anemia

Bullous skin disease
Herpesviridae infectious disease
Vasculitis

Purpura

Pure red-cell aplasia

Alcoholic pancreatitis

Autoimmune disease of gastrointestinal tract

Mycobacterium infectious disease
Hypotrichosis
Adrenal hyperplasia

Parasitic helminthiasis infectious disease

Gastrointestinal system disease
Dengue shock syndrome

Primary Actinomycetales infectious disease

Lupus erythematosus

Autoimmune disease of the nervous system

Dermatitis

Hair disease

Upper respiratory tract disease
Open-angle glaucoma
Myasthenia gravis
Neuromuscular junction disease
Nose disease

Facial neoplasm

Bacterial prostatitis

Spondylitis

Ankylosing spondylitis
Flavivirus infectious disease
Arthropathy

Primitive neuroectodermal tumor
Alopecia

Sickle cell anemia

Pancreatitis

Diabetes mellitus type 1

Uveal disease

Uveitis

Vascular hemostatic disease
dsDNA virus infectious disease
Embryonal cancer

Collagen disease

Sjogren's syndrome

Rubella

Dengue hemorrhagic fever
Alloimmunization

Alcoholic fatty liver

Complex regional pain syndrome
Crohn's disease

Tuberculosis

Nephritis

Spondyloarthropathy

Allergic rhinitis

Retinal degeneration

Rhinitis

6.41E-03
6.83E-03
7.70E-03
7.83E-03
7.83E-03
8.06E-03
8.27E-03
8.88E-03
8.92E-03
9.01E-03
9.07E-03
1.03E-02
1.07E-02
1.15E-02
1.16E-02
1.18E-02
1.19E-02
1.28E-02
1.30E-02
1.33E-02
1.40E-02
1.43E-02
1.67E-02
1.83E-02
1.89E-02
2.05E-02
2.06E-02
2.10E-02
2.10E-02
2.64E-02
2.64E-02
2.74E-02
2.77E-02
2.77E-02
2.94E-02
2.96E-02
3.03E-02
3.03E-02
3.17E-02
3.27E-02
3.35E-02
3.37E-02
3.44E-02
3.47E-02
3.47E-02
3.48E-02
3.48E-02
3.49E-02
3.49E-02
3.49E-02
3.50E-02
3.72E-02
3.73E-02
4.28E-02
4.33E-02
4.57E-02
4.78E-02

0.86%
2.30%
8.33%
2.01%
2.01%
4.02%
2.87%
2.01%
0.57%
0.86%
3.45%
3.16%
1.72%
1.15%
1.44%
14.66%
0.86%
3.16%
4.89%
1.72%
4.31%
1.72%
3.45%
1.72%
1.44%
1.44%
2.30%
0.57%
0.57%
1.72%
1.72%
1.44%
2.01%
6.03%
1.44%
1.15%
2.30%
0.86%
1.44%
1.15%
3.74%
517%
6.03%
2.87%
1.72%
0.86%
0.86%
0.57%
0.57%
0.57%
2.87%
2.59%
3.16%
1.72%
2.01%
3.45%
2.01%
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Supplementary Table 3. Significantly enriched MSigDB pathways in regions with large deviations in

ancestry.
Fraction in

Term g-value annotation
Systemic lupus erythematosus 6.79E-72 18.39%
Genes involved in RNA Polymerase | Promoter Opening 1.42E-54 11.78%
Genes involved in RNA Polymerase | Transcription 2.35E-49 12.36%
Genes involved in Meiotic Recombination 5.36E-48 12.07%
Genes involved in Amyloids 3.20E-47 11.78%
Slgnes |nvollved in RNA Polymerase |, RNA Polymerase lll, and 1 06E-41 12.36%

itochondrial Transcription
Genes involved in Meiosis 2.10E-41 12.07%
Genes involved in Packaging Of Telomere Ends 9.47E-40 8.91%
Genes involved in Transcription 3.06E-35 13.51%
Senes involved in Deposition of New CENPA-containing 6.53E-35 8.91%

ucleosomes at the Centromere
Genes involved in Meiotic Synapsis 1.38E-32 8.91%
Genes involved in Telomere Maintenance 1.06E-31 8.91%
Genes involved in Chromosome Maintenance 1.11E-24 8.91%
Antigen processing and presentation 1.83E-20 6.90%
Type | diabetes 2.36E-20 5.46%
Allograft rejection 2.45E-20 517%
Graft-versus-host disease 8.67E-20 5.17%
Autoimmune thyroid disease 1.95E-15 4.89%
Genes involved in Cell Cycle 3.57E-14 10.92%
Viral myocarditis 5.83E-13 4.89%
Asthma 3.19E-12 3.45%
Intestinal immune network for IgA production 2.14E-09 3.45%
Leishmania infection 2.59E-09 4.02%
Cell adhesion molecules (CAMs) 2.98E-08 4.89%
Genes involved in Antigen Presentation: Folding, assembly and o
peptide loading of class | MHC 9.61E-08 2.30%
Genes involved in Interferon gamma signaling 8.79E-07 3.16%
(say?aissénvolved in Translocation of ZAP-70 to Immunological 3.69E-06 1799
Genes involved in Endosomal/Vacuolar pathway 6.53E-06 1.44%
Sﬁ;ﬁ: involved in Phosphorylation of CD3 and TCR zeta 9.71E-06 1.729%
Genes involved in PD-1 signaling 2.25E-05 1.72%
Genes involved in ER-Phagosome pathway 8.82E-05 2.59%
Genes involved in Apoptosis induced DNA fragmentation 1.21E-04 1.44%
Genes involved in Generation of second messenger molecules 3.28E-04 1.72%
Genes involved in MHC class Il antigen presentation 3.91E-04 2.87%
Genes involved in Antigen processing-Cross presentation 4.61E-04 2.59%
Genes involved in Interferon Signaling 1.62E-03 3.45%
Genes involved in Downstream TCR signaling 2.05E-03 1.72%
Complement Pathway 1.42E-02 1.15%
Genes involved in Adaptive Immune System 1.57E-02 6.32%
Genes involved in TCR signaling 1.70E-02 1.72%
Natural killer cell mediated cytotoxicity 3.32E-02 2.59%
Genes involved in Costimulation by the CD28 family 3.44E-02 1.72%
Genes involved in Interferon alpha/beta signaling 3.99E-02 1.72%
Lectin Induced Complement Pathway 4.03E-02 0.86%
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4. Discussion

This thesis work addressed the complex pathophysiology of ARDS from distinct angles by using
different genomic approaches. As part of this study, we have: i) performed a systemic review of the
genetics of ARDS; ii) assessed the genetic variation in cases with ARDS and controls with sepsis, the
major cause of ARDS development, to identify novel disease genes; iii) studied the lung microbiome
shifts of patients with sepsis as a biomarker of ICU mortality; and iv) characterized the genomic
diversity of a recently admixed European population with the aim of revealing relationships between
genetic ancestry, adaptations and disease risks. As a result of these studies, we have proposed a new
therapeutic target for ARDS and an early prognostic biomarker for non-pulmonary sepsis patients. We
have also evidenced that genomic regions with large deviations in local ancestry in the Canary Islands
population harbor genes related to critical illnesses and have characterized the number and size of
their ancestry blocks, an information that is necessary to assist the design and analyses of subsequent

admixture mapping studies in this population.

4.1. Genetic association studies in ARDS: difficulties and challenges

In Chapter 1, we revised all published genetic association studies in ARDS until December 2015 to
detect the genes that were most likely involved in susceptibility or outcomes based on the number of
independent studies that reported a significant association. We observed that, while current
approaches allow to scan genetic variations across the genome in relation to a disease (Reilly et al.
2017), most of genetic studies in ARDS have focused on candidate genes based on their biological
plausibility, and only a few studies have evaluated the genetic variation at genomic level (Guillén-Guio
et al. 2016). Those genes that had the largest number of independent study findings were mainly
involved in the immune response, such as interleukin 1 receptor antagonist (/LIRN), IL6, IL10, and
mannose-binding lectin (protein C) 2, soluble (MBL2); and in vascular permeability, including ACE,
VEGFA, and the nicotinamide phosphoribosyltransferase (NAMPT) (Guillén-Guio et al. 2016).
Remarkably, the MYLK gene was also revealed as a robust ARDS gene based on candidate gene, GWAS
and WES studies (Gao et al. 2006; Christie et al. 2008; Christie et al. 2012; Lee et al. 2012), suggesting
again the important role of vascular permeability in ARDS pathophysiology. Unfortunately, although
candidate gene association studies have revealed important insights into ARDS pathogenesis, there
are no effective treatments designed based on the reported genes, and identifying novel genetic

factors involved in ARDS remains a necessity.
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The absence of potential therapeutic targets in ARDS is affected by the low replicability of candidate
gene association studies, which makes the results less unreliable (Chanock et al. 2007). In fact, a large
proportion of the associations between genetic variants and other complex diseases revealed by these
kind of studies have been questioned because of problems inherent to the approach and to the
difficulties in interpreting the results (Clark and Baudouin 2006). Furthermore, the lack of
reproducibility could also be caused by other factors. On the one hand, ARDS is a heterogeneous trait
with different sources and a complex pathology that hinders a precise patient classification. Since its
initial definition (Ashbaugh et al. 1967), the efforts to better classify ARDS have been constant.
Nowadays, the most recent ARDS classification follows the Berlin definition (ARDS Definition Task
Force et al. 2012), although it is far from being settled (Barbas et al. 2014; Villar et al. 2016). This
divergence of ARDS definitions through time can be also affecting the genetic studies, hindering
analyses and influencing the non-replicability of the findings. Furthermore, sample sizes used in these
studies are limited and, hence, their statistical power to reveal factors with weak effects is reduced

(Columb and Atkinson 2015).

In this sense, the use of larger sample sizes and high-throughput technologies that assess genetic
variation at a genomic scale, including GWAS, WES, and WGS, would be more powerful alternatives to
disentangle the genetic variation associated with ARDS. Their effectiveness has become evident by the
results obtained in the GWAS of sepsis-associated ARDS described in Chapter 2, where a novel ARDS
gene has emerged and a potential therapeutic target has been proposed. Moreover, a replication
phase in an independent sample should be practically mandatory to validate the association results,
regardless of the approach chosen. Ideally, the results should also be accompanied by sensitivity
analyses to control the effects of confounder factors, as well as by functional studies that can shed
light on how the risk alleles affect the disease. In addition, given that most association studies in ARDS
have been performed in European populations (Acosta-Herrera et al. 2014), further studies including
patients of other ethnicities are relevant to unmask novel variants that are prevalent in other
ancestries. In this sense, genetic studies in recently admixed populations, such as that of the Canary
Islands, constitute a promising complement to the most common studies conducted in admixed
American populations. Finally, given the complex nature of ARDS, which is associated with genetic and
environmental factors, the use of alternative “omics” in the context of ARDS (such as metagenomics,
metabolomics, epigenetics, and proteomics) is crucial to improve the knowledge of this syndrome, as

well as to design new therapeutic and prognostic options.
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4.2. The role of FLT1 in sepsis-associated ARDS

Our results from the first GWAS of sepsis-associated ARDS, described in Chapter 2, revealed a novel
genome-wide significant association (rs9508032) with ARDS susceptibility in individuals of European
ancestry. This variant was located within the FLT1 gene, which encodes VEGFR-1, one of the main
receptors of VEGF-A (also known as VEGF). FLT1 had never been specifically associated with ARDS
before in an independent study, although it has been related to pulmonary complications altogether
(Kim et al. 2012). It was also associated with other complex traits where, as in ARDS, the endothelium
has a key role, including preeclampsia (McGinnis et al. 2017; Gray et al. 2018) and coronary arterial
disease (CARDIoGRAMplusC4D Consortium et al. 2013; Konta et al. 2016). Conversely, most of the
candidate gene studies focusing the VEGF pathway had paid attention to the VEGFA gene, revealing
numerous independent associations with ARDS. Accordingly, when we performed the look-up of genes
that had been previously associated with ARDS in our GWAS findings, only genetic variants within
VEGFA were found to be significantly associated at the gene level after Bonferroni correction. Taken
together, this led to support the hypothesis that other genes from the VEGF pathway should be
promising candidates for further detailed genetic and functional studies in order to reveal novel ARDS

risks.

Additional functional analyses supported the role of the top-most significant variant in our GWAS
within FLT1 and its perfect LD proxies (all located within the intron 10) in the regulation of the FLT1
promoter. Specifically, luciferase reporter assays showed that the protective alleles of these variants
were associated with a reduced promoter activity in monocyte cells. Monocytes, which express VEGFR-
1 at high levels (Shibuya 2001), have been linked to the pathophysiology of ARDS (Herold et al. 2013;
Aggarwal et al. 2014; Abdulnour et al. 2018). During the syndrome, peripheral blood monocytes are
recruited into the alveolar compartment and differentiate into macrophages, mediating the
inflammatory response (Huang et al. 2018). In fact, the regulation of the function of macrophages and
monocytes could be a potential therapeutic option in ARDS patients (Huang et al. 2018). Interestingly,
FLT1 and other genes in the same locus (FLT3 and the poly(A) specific ribonuclease subunit PAN3
(PAN3)) have been associated with monocyte counts (Astle et al. 2016). Furthermore, previous studies
suggest that the VEGF-A signaling mediated by VEGFR-1 is involved in the migration of human
monocytes (Barleon et al. 1996; Clauss et al. 1996; Barratt et al. 2014).

The activity of the VEGF signaling pathway has been extensively linked to the ARDS pathophysiology
(Medford and Millar 2006; Barratt et al. 2014). VEGF-A is a key regulator of vascular permeability and

it is involved in angiogenesis, chemotaxis, and proliferation and migration of vascular endothelial cells
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(Olsson et al. 2006; Barratt et al. 2014). Studies in animal models have also supported the role of VEGF
in inflammation, permeability, and fibrosis (Hamada et al. 2005). In the context of ARDS, a study in an
animal model of sepsis-induced ALl suggested that the VEGF signaling is centrally involved in the
response mechanism during sepsis-associated ARDS (Acosta-Herrera et al. 2015). In this sense, an
increase in the VEGF gene expression was found in lungs of lipopolysaccharides-induced ALl models
(Karmpaliotis et al. 2002). Additionally, the patient’s VEGF-A levels have been related to increased
vascular permeability in the lungs and with the fibrotic process that occurs in the fibroproliferative
stage of ARDS (Medford and Millar 2006; Barratt et al. 2014; Murray et al. 2017). Interestingly, it has
been reported that the soluble form encoded by FTL1, known as sFLT-1, sequesters VEGF-A and inhibits
its biological function, acting as a competitive inhibitor of VEGF-A (Kendall and Thomas 1993). In this
sense, high plasma levels of sFLT1 have been associated with organ dysfunction and sepsis severity in
ICU patients (Shapiro et al. 2010; Hou et al. 2017). Accordingly, increased sFLT1 levels have been

detected in the bronchoalveolar lavage from patients with ARDS (Perkins et al. 2005).

Our RNA sequencing analysis in control subjects revealed a high expression of FLT1 isoforms in the
lungs, including the forms encoding the transmembrane receptor and the soluble form. Moreover,
results of the gene expression analysis in peripheral blood from ICU patients revealed a higher
expression of FLT1 (most likely of the transmembrane receptor) in peripheral blood from ARDS
patients compared to other critically ill patient groups. However, the expression of VEGFA did not vary
significantly among groups. Accordingly, a previous study supported that VEGF-A levels in pulmonary
edema were reduced both in ARDS and in hydrostatic pulmonary edema, without finding significant
differences between them (Ware et al. 2005). Based on the evidence, we speculate that protective
genetic variants within the intron 10 from FLT1 could be silencing the promoter activity of this gene.
This would lead to the decreased expression of the transmembrane receptor and, consequently, to the
reduction of the VEGF signaling activity. As a result, those pathological events triggered by VEGF during
ARDS would be dimmed. However, further studies would be necessary to disentangle the biological

relation between the reported genetic variants of FLT1 and the pathophysiology of the syndrome.

As previously indicated, there is a lack of specific treatments for ARDS patients. Despite the central
role of the VEGF signaling pathway in ARDS (Medford and Millar 2006; Barratt et al. 2014), the
mechanisms by which these activities influence the pathophysiology of the syndrome remain unclear,
which makes the development of new therapies particularly complicated. Only one clinical trial
targeting VEGF has been reported, although it was retired because of a lack of funding

(ClinicalTrials.gov identifier: NCT01314066). Interestingly, many of the drugs commercialized to treat
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cancer target the VEGF signaling pathway, although they are extremely invasive and would not be
suitable for patients with ARDS. Conversely, there are two safe and non-invasive drugs targeting
VEGFR-1 that could be repurposed for ARDS: nintenadib and itraconazole. The former is a tyrosine
kinase inhibitor currently used to treat idiopathic pulmonary fibrosis that blocks the
autophosphorylation of the VEGF receptors and the downstream signaling cascades (Richeldi et al.
2014; Wollin et al. 2015; Hajari Case and Johnson 2017). Given the important fibrotic process occurring
during the fibroproliferative phase of ARDS, this drug could have beneficial effects on the recovering
after the acute stage of ARDS. Accordingly, Li and colleagues reported that nintenadib reduced the
epithelial-mesenchymal transition caused by MV under a regime of high tidal volume and the
pulmonary fibrosis after mild ARDS induced by bleomycin (Li et al. 2017). With respect to itraconazole,
it is a drug used to treat fungal infections, including severe blastomycosis that can lead to ARDS (Smith
and Kauffman 2010; Schwartz et al. 2016). Although other antifungals have been tested in ARDS with
no satisfactory results (Thompson 2000), itraconazole could be a promising alternative, since this safe
drug inhibits the glycosylation of VEGFR-1 and VEGFR-2 and, hence, their trafficking and signaling
(Nacev et al. 2011).

4.3. Bacterial lung dysbiosis as a prognostic marker in non-pulmonary sepsis

In line with the discussion about the identification of a novel genetic factor of ARDS susceptibility,
the identification of effective prognostic markers in critically ill patients is also promising for clinical
practice. Nowadays, the prognosis of critical care patients is based on the use of severity scores, such
as the simplified acute physiology score (SAPS), the APACHE Il score, which is usually calculated just at
patient admission, and the sequential organ failure assessment (SOFA) score (Vincent et al. 2010;
Giamarellos-Bourboulis et al. 2012; Singer et al. 2016). Nevertheless, these score systems are limited
and should be updated, being necessary the identification of novel prognostic markers (Vincent et al.
2010). For that purpose, in Chapter 3, we have assessed the lung microbiome in a subset of the patients
with sepsis described in the discovery phase of the GWAS, with the aim of studying the implication of
the bacterial diversity in ICU mortality by using NGS targeting the 16S rRNA V4 region. Specifically, we
collected lung aspirates from 36 patients with non-pulmonary sepsis at three different collection times
and found a significant reduction of the relative bacterial abundance of the lung in deceased patients
with respect to survivors, even during the first 8 h after sepsis diagnosis. These findings agree with
those of other studies where microbiome shifts had already been linked to mortality in patients with
other infectious and respiratory diseases (Shimizu et al. 2011; Molyneaux et al. 2014; Lamarche et al.

2018; O’'Dwyer et al. 2019). In fact, the predictive value of the diversity index for ICU mortality in our
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data was surprisingly elevated (of 86.5%), higher than the one obtained with the commonly used
APACHE Il score (72.7%). Based on the evidence, the reduction of the bacterial diversity in lung could
be an early prognostic marker for patients with non-pulmonary sepsis. However, one must take into
account that a validation of the prediction is lacking from our study. Therefore, further studies in

independent samples should be performed to obtain a more precise estimate of the prediction.

The comparison of the microbiome profiles revealed five bacterial genera most likely to explain the
differences between deceased and survival patients. Among them, the genus Proteus was significantly
enriched in lung aspirates from deceased individuals, while the genera Streptococcus, Prevotella,
Veillonella and Leptotrichia were more abundant in survivors. Proteus species belong to the
Enterobacteriaceae family and some of them are normal commensals of the intestinal flora, although
their abundance is low (Yatsunenko et al. 2012; Hamilton et al. 2018). When the healthy host-
microorganism balance is altered, Proteus spp have been related to diseases including urinary tract
infections (Schaffer and Pearson 2015), intestinal diseases (Hamilton et al. 2018), bacteremia (Chen et
al. 2012), and ventilator-associated pneumonia (Xia et al. 2015). Our findings agree with previous
studies reporting an extravasation of gut bacteria into the lungs of critical patients (Dickson et al. 2016;
Mukherjee and Hanidziar 2018). This evidence supports the existence of a crosstalk between the lung
and other organs that affects the severity of sepsis, justifying the focus on patients with non-
pulmonary sepsis to assess the extrapulmonary impact on pulmonary homeostasis. Additionally,
Panzer and colleagues revealed an enrichment of Enterobacteriaceae species linked to ARDS
development and to the severity of the injury (Panzer et al. 2018). To our knowledge, for the first time,

our results link these observations to the prognosis of critical care patients.

Conversely, Prevotella spp, Veillonella spp, and Streptococcus spp, which were found to be
significantly reduced in lung aspirates of deceased patients, have been reported as the most abundant
bacterial genera of the healthy low respiratory tract and the oral cavity (Dickson et al. 2017).
Accordingly, previous studies have also detected a reduction in the lung abundance of these bacterial
genera (mainly of Prevotella spp) in other respiratory conditions such as asthma, pneumonia in the
elderly, and chronic obstructive pulmonary disease (Park et al. 2014; de Steenhuijsen Piters et al. 2016;
Yadava et al. 2016; Moffatt and Cookson 2017). These bacterial genera could have an important role
in the immune response during critical illness, since Streptococcus, Veillonella and Prevotella spp have
been related to less airway inflammation, and Prevotella spp could be involved in homeostatic

processes that regulate pulmonary immune responses (Huffnagle et al. 2017; Zemanick et al. 2017).
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The implication of microbial shifts in the dysregulation of the immune response in humans has been
well described, supporting the central role of the host-microbiome interactions (Rooks and Garrett
2016; Belkaid and Harrison 2017). In this sense, previous studies have linked host genetic variants
within immunity-related genes with the microbiome composition (Benson et al. 2010; Blekhman et al.
2015). Accordingly, numerous genetic variants have been related to an increased risk of bacterial
infections (Boyd et al. 2014). For example, Li and colleagues revealed genetic polymorphisms
associated with the interindividual variation of cytokine responses to specific pathogens (Li et al. 2016).
Additionally, Lee and colleagues reported common alleles associated with effects on inter-individual
variation in pathogen sensing and suggested that the pathogen-sensing pathway could have an
important role in inflammatory diseases (Lee et al. 2014). Furthermore, many of the genes that have
been previously associated with sepsis and ARDS are involved in immune response (Giamarellos-
Bourboulis and Opal 2016; Guillén-Guio et al. 2016). Based on all this evidence, further studies linking
the host genetics and the microbiome could help to improve the knowledge of the physiopathology of

these critical care conditions.

4.4. The study of the genetic ancestry in Canary Islanders as an approach to
evidence novel risk factors in critical illness

Most of genetic association studies in ARDS have been performed in European populations.
Therefore, many genetic risks for ARDS that are more prevalent in other ethnicities might remain
undiscovered. This is especially important for populations with recent African ancestry, since this
ancestry has been linked to large disparities in diverse complex diseases such as respiratory and critical
illnesses (National Research Council 2004; Ness et al. 2004; Kumar et al. 2010; Flores et al. 2012;
Rumpel et al. 2012; Soto et al. 2013; Vergara et al. 2013; Hernandez-Pacheco et al. 2016). In Chapter
4, we reported the results of the largest and more detailed genomic characterization of the current
inhabitants of the Canary Islands, a southern European population with a recent African admixture.
Based on SNP array data and WGS (30X), we estimated a high percentage of African descent of their
genome (up to 34%), evidenced signals of genetic isolation and of adaptation, and assessed the

implications of the admixture in disease.

As a result of our analyses, we calculated that the last African admixture in this population occurred
~14 generations ago. Additionally, we identified genomic signals of inbreeding, reflecting the historical
isolation of the inhabitants from El Hierro and La Gomera, the two smallest island populations that

were analyzed. This is especially relevant in the context of disease, since inbreeding can lead to an
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increase in the allelic frequency of deleterious recessive variants due to the increased homozygosity
rate, as has been described for hypertension (Rudan et al. 2003), schizophrenia (Lencz et al. 2007),
Alzheimer disease (Ghani et al. 2015), thyroid cancer (Thomsen et al. 2016), and quantitative traits
such as systolic and diastolic blood pressure, LDL cholesterol, and forced expiratory flow (Campbell et
al. 2007). Linked to the existence of founder mutations leading to monogenic diseases (Garcia-
Villarreal et al. 2000; Lorenzo et al. 2006; Castella et al. 2011; Rodriguez-Esparragén et al. 2017), this
makes the Canary Islands population attractive for subsequent genetic studies of disease. Besides,
these results could be used to develop a biogeographical map of homozygosity (as a proxy for genetic
risks) for the inhabitants of the islands, especially the smallest ones, which would be helpful for the

Healthcare system, for example, to prioritize carrier screenings of monogenic diseases.

Furthermore, local ancestry analyses revealed eight regions with large ancestry deviations that
contained genes related to prevalent diseases, especially in the Canary Islands population, such as
asthma or diabetes (Sanchez-Lerma et al. 2009; Marcelino-Rodriguez et al. 2016), and genes linked to
renal and neuropsychiatric diseases, as well as to infection response and to SARS, a condition that
implies the occurrence of respiratory failure and from which about 25% of patients progress to ARDS
(Lew et al. 2003). Thus, further genetic studies focused on these regions are projected in order to
reveal novel genetic variants associated with diseases. Based on this, we have assessed the results of
the discovery phase of the sepsis-associated ARDS GWAS for these regions of interest focusing only on
the Canary Islander patients. Although no signals reached the Bonferroni threshold considering all
independent SNPs within the African deviated regions (p<1.19x10°®), unpublished results revealed
three independent SNPs with a suggestive association with sepsis-associated ARDS (p<5.0x10%), where
effect alleles conferred protection from the syndrome. The best ranking SNP (rs4954479) was an
intronic variant of the thrombospondin type 1 domain containing 7B (THSD7B) gene, one of the genes
flanking the lead SNP of the EUR-related peak in chr2, as revealed in Chapter 4, that has been
previously associated with pulmonary function in the UK Biobank (Kichaev et al.
2019)(http://www.nealelab.is/uk-biobank/). The second ranked SNP (rs9592430) was located in the
intergenic region between the protocadherin (PCDH) 20 (PCDH20) and PCDH9 genes. Interestingly, in
the same chapter, we described putative selective signals in this intergenic region, which also
contained variants previously associated with asthma (Ferreira et al. 2011). This agrees with the fact
that genetic variants linked to inflammatory diseases in European populations are significantly
enriched in signatures of positive selection (Raj et al. 2013). Additionally, another intronic variant
(rs2766532) within the FKBP Prolyl Isomerase 5 (FKBP5) gene also ranked high in the GWAS results.

FKBP5 encodes a member of the immunophilin protein family that plays a major role in
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immunoregulation and has been previously associated with asthma, with eosinophil, leukocyte,
lymphocyte, and monocyte counts, and with lung function in the UK Biobank (Astle et al. 2016; Ferreira
et al. 2019; Kichaev et al. 2019)(http://www.nealelab.is/uk-biobank/), constituting a truly interesting

candidate for further genetic studies in ARDS.

In addition to PCDH20-PCDH9, the genomic regions identified in Chapter 4 included other putative
signals of natural selection. One can anticipate that the initial settlement of the Canary Islands by
aborigines was accompanied with a process of adaptation to particular climatic conditions and
pathogens, which usually entails frequency shifts in genetic variants (Sabeti et al. 2006; Novembre and
Di Rienzo 2009; Vasseur and Quintana-Murci 2013). In this sense, the peak in chromosome 6 includes
a well-recognized target of selection: the HLA region. HLA contains genes that are robustly associated
with many traits, including asthma and the response to infections (Thomas et al. 2009; Galanter et al.
2014; Sanchez-Mazas et al. 2017). Finally, based on the ancestry block length estimates, we obtained
the average number of blocks for a Canarian population haploid genome (i.e. 276 ancestry blocks),
laying the foundation for performing future admixture mapping studies in this population that will
allow to unravel novel disease risk factors. Future studies will need to assess this estimate considering
a varying number of chromosomes, likely through simulation studies, and a larger representation of

the population diversity.

4.5. Strengths and limitations

This thesis has several strengths that have allowed us to provide novel and robust insights into the
pathophysiology of ARDS through different approaches, including human genomics, metagenomics,
and a genetic ancestry study. Firstly, the selection of the donors in all studies has been systematic, and
detailed information has been collected from them. In all GWAS stages, patients with clinically-
characterized sepsis were included in the study and followed up collecting signs of aggravation,
including the development of ARDS according to the Berlin definition. Data from gender, age, APACHE
Il scores, and sources of infection, among other demographic and clinical parameters, were collected
from all patients. The metagenomic study used a subset of these donors, from a single center and a
single hospital service, in order to control potential environmental differences between sites. With
this, we tried to ensure a homogeneous sample of mechanically-ventilated patients with non-
pulmonary sepsis that were all under the same environmental conditions. Additionally, to limit the
effects of recent migrations, we ensured the donors used in Chapter 4 were selected for having two
generations of ancestors born on the same island. In all studies, individuals with a high degree of

kinship were excluded based on genetic estimates.
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Secondly, we report the results of the first GWAS of sepsis-associated ARDS published to date,
where we utilized a SNP array designed for European population and assessed almost eight million of
imputed genetic variants from well-characterized European patients with sepsis. As part of this study,
we performed genetic association analyses, after robust quality controls, followed by a replication
stage to validate the results. We also conducted complementary gene expression and functional
analyses that strongly supported the important role of FLT1 and its genetic variants in ARDS
pathophysiology. Thirdly, as a result of the metagenomic study, the reduction of the lung microbial
diversity was linked to the mortality by sepsis in ICUs, providing a potential early prognostic marker
for patients with non-pulmonary sepsis. We used an NGS approach that allowed to infer bacteria in all
samples analyzed, overcoming the bias derived from microbiological cultures and the limitations of the
microbial characterization of infections in sepsis patients (40-60% of microbiological cultures are
negative) (de Prost et al. 2013). Remarkably, sensitivity analyses were included in both the GWAS and
the 16S rRNA metagenomic study to assess the effects of confounding factors. Finally, using SNP array
data and WGS analyses, we identified genomic regions enriched in African or European alleles that
harbored signals of natural selection and links to disease. As a main strength, we used simulations to
assess the significance of the signals of selection detected, for which we had to estimate the effective
number of aborigines in pre-European times based on WGS data available from the literature and

corresponding to an individual from Tenerife (Rodriguez-Varela et al. 2017).

We acknowledge this thesis has also a number of limitations. Firstly, the sample size utilized in these
studies is limited, mainly in the 16S rRNA metagenomic study, restricting the statistical power of the
analyses. In the GWAS, this translates into limitations to detect low frequency variants and SNPs with
subtle effects. In the metagenomic study, the reduced sample size together with the absence of a
validation stage implies that further studies on independent samples are necessary, mainly to
optimally assess the predictive value of the lung bacterial dysbiosis. In the genetic ancestry study, the
main limitation with respect to the sample was the absence of a proper NAF dataset with higher marker
resolution that allowed the analysis of a greater number of genetic markers after overlapping the study
samples with the reference datasets. Therefore, future studies should include genetic data of NAF
individuals obtained from WGS or SNP arrays with a larger number of markers, with the aim of
optimizing the overlap with the other population datasets and, hence, of improving the local ancestry

estimation.

Secondly, only European individuals were included in our GWAS and in the 16S rRNA metagenomic

study, and populations of diverse ethnicities should be also assessed. In this sense, the evaluation of
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recently admixed populations is also a useful option in the context of disease studies. Besides, other
causes of ARDS development should also be considered to validate our association results. In addition,
the technology used in the metagenomic study is limited in terms of detection of bacterial species and
strains (only allows confident detection at the genus level) and of evaluation of their functionality. NGS
technology is also limited in terms of DNA extraction. We opted for a DNA extraction method that
allowed us to recuperate the greatest quantity of bacterial DNA based on a previous laboratory
comparison of different bacterial DNA extraction kits. Besides, DNA amplification is also a critical step,
because the primers utilized have a better base pair complementarity with the sequence of some
bacteria than with others, in addition to the bias introduced by the DNA polymerase. Additionally,
despite the use of antibiotics did not change the observations in the lung aspirates, the heterogeneity
in the specific antibiotics used per patient was not modelled in the statistical analyses due to the small
sample size. Another limitation is that the number of 16S rRNA copies, which is known to vary among
microbes, was not controlled in the analyses. Thus, bacterial abundances should be evaluated with
caution. Furthermore, we did not analyze the DNA of viruses and fungi that may be present in the lung
aspirates of our study. Finally, given the extension of the genomic regions identified in the genetic
ancestry study, those genes that we highlight in the chapter should also be considered with caution.
Besides, we did not analyze the local ancestry in the centrosomes, where we may be missing important
information. Moreover, the number of ancestry blocks that were estimated based on average block

length measures will necessitate simulation studies to reach a more accurate estimation.

4.6. Future directions

Despite the advances reported in this thesis, further studies that support and/or complement our
results will be necessary. These should include larger sample sizes and individuals of other ethnicities.
In this sense, the laboratory is currently recruiting more cases of sepsis that will be genotyped and
exome-sequenced and will also undergo future metagenomic studies. Additionally, other triggering
factors linked to ARDS development, rather than sepsis, should be considered. As we have described
in Chapter 2, we accessed the only publicly available GWAS of ARDS data entailing patients from an
insult other than sepsis, consisting on trauma-associated ARDS patients (Christie et al. 2012). However,
none of the FLT1 variants that we reported as significantly associated with sepsis-associated ARDS
were present in the reference panel used by that study for the imputation. Additionally, the use of
NGS technologies, such as WGS or WES, will help to assess the effects of rare variants that, due to the

limited statistical power of the GWAS, remained obscure in this thesis. Furthermore, because of the
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cancerous nature of the A549 cell line, additional luciferase reporter assays in primary human ATII cells

should be performed to evaluate the implications of FLT1 variants in the gene promoter activity.

On the other hand, alternative metagenomic approaches would be necessary to validate our results
linking the lung microbiome decreased with the ICU mortality. Strategies that are being currently
assessed in the laboratory in the context of critical illness include shotgun sequencing and third-
generation sequencing. The use of a shotgun approach would also allow the taxonomic classification
at (sub)species level, without the need for prior amplification of DNA or without relying on the 16S
rRNA gene. Additionally, the use of third-generation sequencers, as those marketed by the company
Oxford Nanopore Technologies, will allow to sequence larger DNA fragments in real time, permitting
the identification of bacteria at species level and reducing the time of analyses. At this moment, the
laboratory is trying to reproduce the analyses described in Chapter 3 by using the MinlON sequencer
and independent taxa classifiers, targeting the full 16S rRNA gene. In addition to the speed of analysis,
this is a portable sequencer that does not require large facilities or enormous amounts of DNA
material, presenting a great potential for clinical practice. All these strategies would also facilitate the
study of viruses, fungi, and bacterial pathogenic elements if adapted to alternative amplicon-based or
shotgun applications. Moreover, additional studies linking the lung microbiome with the genetics of
patients with sepsis would be interesting to further help understand the pathophysiology of sepsis and

ARDS.

Finally, the genomic characterization of Canary Islanders offers a range of possibilities for
subsequent studies. Firstly, the identification of genomic regions enriched in African alleles in this
population opens the door to future fine mapping studies in those specific sites to disentangle the
genetic variation associated with specific diseases, including sepsis and ARDS. Additionally, the
estimation of the number of ancestry blocks provides the basis for performing admixture mapping
studies of disease. Accordingly, we are currently conducting an admixture mapping study of sepsis in
the Canary Islander ICU patients, with the aim of identifying genomic regions where the genetic

ancestry and the syndrome are linked.

155



5. Conclusions




5. Conclusions

1) Most genes associated with ARDS susceptibility or outcomes have been revealed based on a
candidate gene approach. These genes are mainly involved in the immune response and vascular

permeability.

2) The candidate genes associated with ARDS that have the largest number of independent study

findings are: ACE, ILIRN, IL6, IL10, MBL2, NAMPT, and VEGFA.

3) Common genetic variants within the FLT1 gene are associated with susceptibility to sepsis-

associated ARDS.

4) The expression of FLT1 gene in peripheral blood differed significantly among critical care patient

groups. ARDS patients showed the highest average expression of the FLT1 gene.

5) In silico and in vitro analyses of the function of the FLT1 variants associated with ARDS supported
their transcriptional role by affecting the regulation of the FLT1 promoter. The alleles with protective

effects in ARDS reduced the FLT1 promoter activity in a monocyte cell line.

6) The bacterial diversity in lung aspirates was reduced within 8 h of diagnosis in patients with non-

pulmonary sepsis who died in the ICU compared to those who survived.

7) The bacterial dysbiosis of lung aspirates from patients with non-pulmonary sepsis had a higher

predictive value of ICU mortality than the APACHE Il score in our study.

8) Lung aspirates from the patients with non-pulmonary sepsis deceased in the ICU presented

commensal gut bacterial genera and were depleted in healthy lung bacterial genera.

9) The genome of present-day Canary Islanders harbors eight regions with large local ancestry
deviations that contain putative signals of selection. These regions are enriched in genes related to

prevalent diseases, to the response to infections and to SARS, among many other traits.

10) The last African admixture in the Canary Islanders was estimated to take place ~14 generations
ago. Based on the admixture estimates in this population, we calculated a total of 276 ancestry blocks
on average per haploid genome. This provides the basis for designing admixture mapping studies of

complex traits in the Canary Islands, including sepsis and ARDS.
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