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Abstract 
 

The acute respiratory distress syndrome (ARDS) is an acute lung inflammatory process that 

commonly develops as a consequence of severe infections, being sepsis its main cause of 

development. Despite the fatality of the syndrome, there is a lack of specific therapeutic options and 

effective prognostic methods for patients. Since many studies support the influence of genetic factors 

and microbiome shifts in the origin and evolution of ARDS, here we have aimed to address its 

pathophysiology using different genomic approaches. We have performed a genome-wide association 

study in European patients with sepsis, revealing a novel gene associated with ARDS susceptibility. 

Additionally, we have sequenced the bacterial DNA extracted from lung aspirates from a subset of the 

individuals with sepsis, reporting the association of the reduction of bacterial diversity with intensive 

care unit mortality during the first 8 h of sepsis diagnosis. Finally, the exploration of the genomic 

variation of a recently admixed population has pointed out genomic regions related to the ethnicity 

and harboring novel genes associated with response to infections and with the severe acute 

respiratory syndrome, among many other traits. All these findings have allowed us to further 

understand the pathogenesis of the syndrome and of main risk factors, as well as i) to propose VEGFR-

1 as a potential therapeutic target, ii) to suggest the bacterial diversity as an early prognostic biomarker 

in critical patients, and iii) to lay the foundations for designing fine and admixture mapping studies in 

Canary Islanders to identify novel risk genes for complex traits such as sepsis and ARDS. 
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1. Introduction 
 

1.1 Acute respiratory distress syndrome (ARDS) 
 

The acute respiratory distress syndrome (ARDS) is an acute pulmonary inflammatory process that 

commonly manifests as a response to severe infections, trauma, and several other factors. This 

heterogeneous syndrome is caused by a direct or indirect insult to the alveolar-capillary barrier that 

leads to an increased vascular permeability and the consequent formation of pulmonary edema 

(Bernard et al. 1994). Clinically, patients with ARDS present severe hypoxemia, which is assessed by 

means of the ratio of the partial pressure of oxygen in arterial blood (PaO2) and the fraction of inspired 

oxygen (FiO2), as well as bilateral pulmonary infiltrates and decreased lung compliance (Villar 2011).  

 
Since 1967, when ARDS was first described (Ashbaugh et al. 1967), numerous studies have 

addressed the characteristics of the syndrome to identify a global diagnostic criterion for patients. 

According to the most recent definition of ARDS, the Berlin definition (ARDS Definition Task Force et 

al. 2012), ARDS is defined as an acute onset characterized by a PaO2/FiO2 ratio of less than or equal to 

300 mmHg, bilateral pulmonary opacities on chest radiograph, non-cardiogenic edema, and by the use 

of a minimum positive end-expiratory pressure (PEEP) or a continuous positive airway pressure (CPAP) 

of 5 cm H2O during mechanical ventilation (MV) (ARDS Definition Task Force et al. 2012). Additionally, 

based on the degree of hypoxemia, the syndrome can be classified as mild (200 mm Hg < PaO2/FiO2 ≤ 

300 mm Hg), moderate (100 mm Hg < PaO2/FiO2 ≤ 200 mm Hg), or severe (PaO2/FiO2 ≤ 100 mm Hg) 

(ARDS Definition Task Force et al. 2012). The mild form of ARDS was previously known as acute lung 

injury (ALI) (ARDS Definition Task Force et al. 2012). However, this definition is being questioning and 

a clear diagnostic consensus has not been reached yet (Barbas et al. 2014; Villar et al. 2016). 

 
The most common risk factor of ARDS development is sepsis, a severe systemic inflammatory 

response to infections of both pulmonary (pneumonia) and non-pulmonary origin (Cohen 2002; 

Rubenfeld et al. 2005). Additional risk factors for ARDS include severe trauma, aspiration, acute 

pancreatitis, and transfusion, among others (Stapleton et al. 2005; Gajic et al. 2011). Furthermore, age, 

gender, alcoholism, obesity, and diabetes also modify the predisposition to the syndrome (Gajic et al. 

2011). 
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1.2 Epidemiology of ARDS 
 

The incidence of ARDS is a matter of debate. It broadly varies among countries and even between 

studies, detecting the highest values in the USA (up to 82 cases per 100,000 person-years) (Li et al. 

2011). The annual incidence of ARDS estimated in Europe is approximately ten times lower, mostly 

ranging between five and eight cases per 100,000 persons (Villar et al. 2014), although it can reach 

higher values in other population-based studies from Europe (Hughes et al. 2003). The fluctuations in 

the estimate of incidence between USA and Europe may be due to the fact that European intensive 

care units (ICUs) admit much less patients that those from USA (Cavallazzi et al. 2010). In Spain, the 

annual incidence of ARDS was estimated in seven cases per 100,000 persons (Villar et al. 2011), which 

is similar to the rate found in other European studies (Villar et al. 2014). 

 
ARDS is also an important cause of morbidity and mortality in the ICUs worldwide, although 

mortality rates also differ between studies. The estimate of overall hospital mortality by ARDS is 40% 

on average (Pham and Rubenfeld 2017), reaching the highest values in patients with the most severe 

forms of the syndrome (ARDS Definition Task Force et al. 2012). This rate is also influenced by the 

ethnicity, with higher values among African-Americans, and by the gender of patients (Moss and 

Mannino 2002; Kangelaris et al. 2012). Furthermore, those patients who survive suffer from different 

ailments as a result of the syndrome, including muscle weakness and cognitive impairment (Mikkelsen 

et al. 2009; Fan et al. 2014).   

 
 

1.3 Pathophysiology of ARDS 
 

The progression to ARDS is a complex process marked by a severe inflammation that affects to the 

alveolar-capillary barrier. This barrier plays a key role in the proper gas exchange between the lung 

alveoli and the blood in the capillaries, and it is constituted by alveolar epithelial cells, capillary 

endothelial cells, and the extracellular matrix (Han and Mallampalli 2015; Herrero et al. 2018) (Figure 

1). The pulmonary epithelium is a mechanical barrier where alveolar type I (ATI) and alveolar type II 

(ATII) pneumocytes protect from lung insults and contribute to the maintenance of the alveolar 

integrity (Guillot et al. 2013). Meanwhile, the pulmonary endothelium is a dynamic layer with 

metabolic properties that regulates the vascular homeostasis and plays an important role in 

inflammatory events (Block 1992). Furthermore, the alveoli contain resident macrophages that 

participate in the regulation of the immune response and inflammation in the lungs (Divangahi et al. 

2015). 
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The pathogenesis of ARDS has been simplified in two phases: exudative and fibroproliferative. The 

exudative phase is characterized by alveolar inflammation mediated by different inflammatory 

markers, including tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1, and IL-6 (Ware and Matthay 

2000; Blondonnet et al. 2016) (Figure 1). In this acute stage, epithelial and endothelial damage occurs 

in the lungs, followed by the accumulation of protein-rich fluid in the interstitial and in the alveolar 

spaces that results in gas exchange impairment (Herrero et al. 2018). These changes are also 

accompanied by necrosis of ATI epithelial cells, the formation of hyaline membranes, and by an 

increase in the number of neutrophils in the lungs mediating the inflammatory response (Bellingan 

2002). Together with neutrophils, monocytes and macrophages have also been found to have a key 

role in inflammation during ARDS (Aggarwal et al. 2014). 

 

 

Figure 1. Schematic representation of a healthy alveolus (left) and the alveolus after the lung injury 

(right). Reproduced with permission from Ware and Matthay, N Engl J Med 2000 (Ware and Matthay 

2000), Copyright Massachusetts Medical Society. 
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The fibroproliferative phase is characterized by a fibrotic process and the reduction of alveolar 

edema (Bellingan 2002). During this phase, ATII cells proliferate and cover the damaged epithelial 

surface, where they differentiate into ATI pneumocytes to reconstitute the alveolar epithelium 

(Bellingan 2002). ATII cells also secrete pulmonary surfactant lipids and proteins to contribute to the 

maintenance of lung homeostasis (Fujino et al. 2012). Additionally, fibroblasts proliferate and 

differentiate into myofibroblasts, driving the deposition of collagen and other extracellular matrix 

components in the lung (Quesnel et al. 2010) (Figure 2). The fibroproliferative phase can be followed 

by a resolution stage where the normal alveolar structure is restored (Hendrickson et al. 2015). This is 

facilitated by the decrease of the alveolar edema and a clearance of apoptotic cells, including 

neutrophils (Bellingan 2002). Nevertheless, a dysregulation of the fibrotic process can also occur, 

resulting in an excessive accumulation of collagen that is commonly associated with disease 

aggravation (Hendrickson et al. 2015) (Figure 2). 

 

Figure 2. Fibroproliferative phase of ARDS and development. Reproduced with 

permission from Hendrickson and colleagues, Intensive Care Medicine 2015 

(Hendrickson et al. 2015), Springer Nature License. 
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Despite the advances leading to an overall improvement of the incidence rates and mortality by 

ARDS, the mechanisms underlying this heterogeneous syndrome remain elusive, complicating the 

development of specific therapies (Bellingan 2002; Shaver and Bastarache 2014). The only therapeutic 

option currently available for ARDS patients is the use of MV under a regime of low tidal volume and 

a high level of PEEP (Acute Respiratory Distress Syndrome Network et al. 2000; Guo et al. 2018). 

Additionally, prone positioning of patients with ARDS can also improve their oxygenation and survival 

(Guérin et al. 2013). For this reason, numerous studies focus their efforts on the identification of novel 

therapeutic targets and biomarkers, necessary to develop more effective therapeutic strategies for 

ARDS patients. 

 
 

1.4 Genetics and genomics of ARDS 
 

As for other complex diseases, ARDS susceptibility and survival are expected to be conditioned by 

genetic factors, in addition to the environment. This is supported by twin studies and by genetic 

association studies (Sørensen et al. 1988; Acosta-Herrera et al. 2014). Accordingly, it has been reported 

that clinical factors alone do not predict the ARDS development or severity (Reilly et al. 2017). Thus, 

the identification of genes associated with the syndrome is crucial to further understanding the 

physiopathology of the disease, and to develop novel therapeutic, predictive, and prognostic options, 

with the aim of implementing precision medicine strategies. The genetic association studies are the 

most common genetic studies in ARDS. These are based in the comparison of allele frequencies for 

specific loci, typically single nucleotide polymorphisms (SNPs), between cases with ARDS and controls 

that do not develop the syndrome (Flores et al. 2008; Acosta-Herrera et al. 2014).  

 

1.4.1 Candidate gene association studies of ARDS 
 
 Historically, candidate gene association studies are the most common approaches applied to 

unravel the genetics of ARDS, while an assessment at genomic levels remains practically unexplored 

(Hernández-Beeftink et al. 2019). These studies focus on particular genes selected based on a previous 

biological hypothesis of their implication in the disease, constituting a very narrow strategy with low 

replicability rates and difficulty of interpretation (Marigorta et al. 2018). Candidate gene studies in 

ARDS have involved genes linked to immune response, chemotaxis, response to the oxidative stress, 

cell proliferation, and cell signal transduction (Flores et al. 2008; Acosta-Herrera et al. 2014). Despite 

the limitations of these studies, a few associations with ARDS have been validated in different 

independent studies (Meyer et al. 2012). Some of these genes are IL6, IL10, vascular endothelial 

growth factor A (VEGFA), and angiotensin-converting enzyme (ACE) (Acosta-Herrera et al. 2014). IL-6, 
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a cytokine encoded by IL6, is an important pro-inflammatory mediator of the exudative phase of ARDS 

(Blondonnet et al. 2016) and has been associated with ARDS development and with bad prognosis in 

patients with sepsis or ARDS (Meduri et al. 1995; Remick et al. 2005; Aisiku et al. 2016). Likewise, the 

serum levels of IL-10, encoded by IL10, have also been linked to ARDS development (Aisiku et al. 2016; 

Chen et al. 2018).  

 
 On the other hand, ACE and VEGFA are centrally involved in vascular permeability. The protein 

encoded by ACE catalyzes the conversion of angiotensin I into angiotensin II, which is a key mediator 

of arterial blood pressure (Patel et al. 2016). The renin-angiotensin system has been implicated in ARDS 

pathogenesis (Vrigkou et al. 2017) and reduced serum ACE levels have been correlated with severity 

of lung injury during ARDS (Fourrier et al. 1985). More interestingly, the role of VEGFA has been broadly 

related to ARDS development and progression (Barratt et al. 2014). The protein encoded by this gene 

(known as VEGF or VEGF-A) is highly expressed in healthy lungs (Figure 3) (Medford and Millar 2006; 

Voelkel et al. 2006).  

 
 

 

Figure 3. Expression of VEGF in the healthy lung. Reproduced and edited with permission 

from Medford, Thorax 2006 (Medford and Millar 2006), BMJ Publishing Group Ltd. 

 

 In the context of ARDS, VEGF-A has been related to increased vascular permeability in lungs, as well 

as to the fibrosis process during the fibroproliferative phase of the syndrome (Barratt et al. 2014; 

Murray et al. 2017). However, despite the VEGF family seems to be a key element in ARDS 
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physiopathology (Barratt et al. 2014), several studies report contradictory findings about the 

underlying mechanisms (Medford and Millar 2006), which makes difficult the development of 

therapeutic strategies targeting this pathway in critical patients. 

 

1.4.2 Genomic studies of ARDS 
 

Although candidate gene association studies have allowed to outline a catalogue of genes 

associated with ARDS, there is still a long way to unravel the genetics of ARDS. In this sense, those 

studies at genome-wide level have a greater potential to identify novel genes associated with the 

syndrome (Reilly et al. 2017). Genome-wide association studies (GWAS) represent a good alternative 

because a previous biological hypothesis is not required, analysis protocols are more standardized, and 

the chances of replicability are higher (Marigorta et al. 2018). Under the “common disease-common 

variant” hypothesis, which proposes that frequent genetic variants underlie common diseases in a 

population, GWAS allow to test the genetic association of a high proportion of frequent variants with 

a complex disease (Dehghan 2018). These studies are based in the use of commercial SNP arrays that 

allow genotyping hundreds of thousands of selected SNPs located along the genome (Dehghan 2018). 

Additionally, to improve the statistical power of the analyses, many other million variants that are 

known to correlate with the genotyped variants (i.e. that are in high linkage disequilibrium (LD)) can 

be imputed using reference datasets from different studies, including the Haplotype Reference 

Consortium (HRC) (McCarthy et al. 2016) and the 1000 Genomes Project (1KGP) (1000 Genomes 

Project Consortium et al. 2015).  

 
Despite their evident potential, there are only two GWAS of ARDS published to date. Christie and 

colleagues  performed a GWAS of trauma-associated ARDS on 2,866 individuals of European ancestry 

(600 cases and 2,266 controls) and replicated the association of SNPs with p<0.01 in an independent 

dataset (Christie et al. 2012). Results were followed up by a functional evaluation phase based on 

expression quantitative trait loci (eQTL) analyses, which allowed them to identify a variant associated 

with the mRNA expression of the PTPRF interacting protein alpha 1 (PPFIA1) gene. On the other hand, 

Bime and colleagues performed a GWAS on 232 African-American ARDS patients and 162 at-risk 

controls followed by a biological pathway analysis to prioritize variants (Bime et al. 2018). They 

identified coding variants in the selectin p ligand (SELPLG) gene that were associated with ARDS risk. 

However, there was no evidence of replication for any of the assessed SNPs in the independent sample. 

The authors also conducted solid functional analyses using animal models that reinforced the role of 

SELPLG in ARDS susceptibility, likely involving an increase in SELPLG gene expression. 
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In addition to the GWAS, next-generation DNA sequencing (NGS)-based approaches are 

increasingly used to reveal novel genes related to complex diseases (Petersen et al. 2017). These 

studies allow to determine the sequence of nucleotides in DNA extracted from different biological 

samples. As a result, the whole spectrum of risk allele frequencies can be assessed, including rare 

genetic variants that cannot be determined by GWAS because they are not catalogued in the reference 

datasets, which provides a better understanding of the genetics of a disease (Petersen et al. 2017). 

Nowadays, and because of the cost-efficiency and the insight into the interpretable genome, whole-

exome sequencing (WES) is the NGS approach that is most frequently used for the study of genetic risk 

factors associated with human diseases. WES allows to obtain the nucleotide sequence of the exons 

from most of the protein-coding genes, which are estimated to harbor about 85% of mutations related 

to human diseases (Majewski et al. 2011).  

 
Two small WES studies have been performed so far in ARDS patients. On the one hand, Lee and 

colleagues  sequenced the exome of 88 individuals with sepsis-associated ARDS and reported that the 

myosin light chain kinase (MYLK) gene was the top-ranked when correlated with ARDS severity, 

measured by ventilator-free days (VFD) (Lee et al. 2012). This gene had already been associated with 

ARDS in previous candidate gene association studies (Gao et al. 2006; Christie et al. 2008), being 

related to the inflammatory response during ARDS. On the other hand, Shortt and colleagues 

performed WES in DNA samples from 96 patients with ARDS and compared it with data from 1KGP 

(Shortt et al. 2014).  As a result, they identified three novel genes related to ARDS susceptibility, 

severity and outcomes, including the arylsulfatase D gene (ARSD), the XK, Kell blood group complex 

subunit-related family, member 3 gene (XKR3), and the zinc-finger protein 335 (ZNF335). Whole-

genome sequencing (WGS) studies of ARDS are still lacking from the literature (Hernández-Beeftink et 

al. 2019), likely due to the high associated costs. 

 
 
 

1.5 The microbiome and disease 
 

1.5.1 The human microbiome 
 

It has been estimated that the human body is colonized by up to 100 trillion symbiotic microbial 

cells (Qin et al. 2010), including bacteria, viruses, archaea, fungi, and other eukaryotes (Lloyd-Price et 

al. 2016). This collection of microorganisms is referred to as the human microbiota, which is organized 

in complex communities that can adapt to environmental changes and is involved in human processes 

such as metabolic functions, epithelial development, and the immune response (Wang et al. 2017). To 
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conduct these functions, the human microbiota carries more than 100-fold more genes that the human 

genome (Qin et al. 2010). The catalog of genes these microbial cells harbor is known as human 

microbiome (Ursell et al. 2012).  

In 2009, an initiative called the Human Microbiome Project (HMP) emerged to characterize the 

human microbiome by studying samples from different human tissues of healthy individuals using 

high-throughput technologies (Peterson et al. 2009). Additionally, the HMP seeks to determine the 

correlation between changes in microbiomes and health or disease, as well as to provide a standard 

database of microbial genomes and of new technologies and tools to enable the data analyses 

(Peterson et al. 2009). Most of research studies performed so far have been focused on the 

gastrointestinal tract, where most of the human microbiota resides (Lloyd-Price et al. 2016). Besides, 

other body sites such as the skin, oral cavity, placenta, urogenital system, and lung also have their 

specific microbiomes, which are also being studied because of their implication in disease (Lloyd-Price 

et al. 2016). 

 

1.5.2 Metagenomics  
 

Historically, the study of the human microbiota has focused on traditional culture-based methods 

of single microorganisms from complex biological samples. These cultures require prior knowledge of 

the metabolic necessities of the bacteria to be grown, which implies that a huge proportion of the 

bacteria is yet uncultivable. Specifically, only 1% of the total microbial population can be cultured 

(Pham and Kim 2012). Furthermore, microbial cultures require restricted media and cultivation 

conditions to grow each microorganism, limiting the study of their complex natural environments 

(Pham and Kim 2012). As an alternative, a culture-independent approach based on the study of 

microbial DNA has emerged to overcome the deficiencies of conventional microbiological methods 

based on isolated microorganisms. This approach is known as metagenomics and consists in the 

genomic study of the collective microorganisms present in environmental samples, such as biological 

tissues and fluids (Handelsman 2004; Tringe and Rubin 2005). Metagenomics is now based in the use 

of NGS technologies that allow to obtain the DNA sequence of microorganisms, including uncultured 

microbials, with the aim of revealing the microbial composition of complex systems and studying 

microbial changes between groups of samples (Pflughoeft and Versalovic 2012). Metagenomic studies 

have frequently utilized random DNA sequencing (shotgun) or targeted gene sequencing (Ursell et al. 

2012), both mainly focused on the bacterial DNA assessment. Shotgun consists in the untargeted 

sequencing of microbial DNA extracted from an environmental sample and subsequently sheared into 

small fragments (Quince et al. 2017). This results in overlapping sequence segments (i.e. reads) that 

are preprocessed and classified to obtain the microbiome profile. Finally, statistical analyses are 
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performed to evidence differences between the different samples (Quince et al. 2017). This approach 

is independent of DNA amplification and allows to examine thousands of organisms in parallel, as well 

as a taxonomic classification at (sub)species level (Nayfach and Pollard 2016; Ranjan et al. 2016).  

Historically, metagenomic studies have been performed using targeted gene sequencing 

technologies, although, strictly speaking, these do not involve the analysis of the whole genome (Ursell 

et al. 2012). The 16S ribosomal RNA bacterial gene (16S rRNA) (~1,500 bp) is the most commonly used 

marker in these studies because of its utility to differentiate among bacterial taxa (Janda and Abbott 

2007). The RNA encoded by this gene is a component of the 30S small subunit of the prokaryotic 

ribosome, involved in protein synthesis (Mizrahi-Man et al. 2013). The 16S rRNA contains many 

conserved regions and nine hypervariable regions (V1-V9) that allow to distinguish among different 

bacteria (Chakravorty et al. 2007). The 16S rRNA sequencing is based on the amplification by 

polymerase chain reaction (PCR) of one or few of these hypervariable regions of 16S rRNA using 

flanking primers, with V3 and V4 being the most frequently evaluated regions, as these have proven 

to be the most informative (Mizrahi-Man et al. 2013). Once the amplified products (amplicons) are 

sequenced, a bioinformatic analysis must be performed. Among others, sequence reads must be pre-

processed, filtered, and grouped into operational taxonomic units (OTUs) (Mizrahi-Man et al. 2013). 

Finally, the taxa assignment is conducted based on reference data and diversity analyses are 

performed using specific software to compare samples (Caporaso et al. 2010). A schematic 

representation of a typical 16S rRNA sequencing procedure is shown in Figure 4. For the study of fungi, 

a specific region of the 18S rRNA of these organisms is sequenced instead, although it fails to 

adequately fully cover fungal diversity (Soeta et al. 2009; Wang et al. 2014; Budden et al. 2019). 
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Figure 4. Schematic strategy for 16S rRNA V4 sequencing. A) Primers design for 

amplification of 16S rRNA V4. B) Procedure to obtain the microbiome profile from 

environmental samples through 16S rRNA V4 sequencing. OTUs, operational 

taxonomic units. 

 
 

1.5.3 The microbiome and critical illness 
 

In the last decades, the study of the implication of the human microbiome in health and disease 

has been rapidly increased thanks to the use of high-throughput sequencing technologies and the 
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possibilities of bioinformatics analyses (Cox et al. 2013). The importance of these studies is based in 

the need to identify novel prognostic methods and more efficient therapies. In this sense, 

perturbations in human microbial populations (microbial dysbiosis) have been broadly related to the 

development of complex diseases and to immune dysregulation (Pflughoeft and Versalovic 2012). 

Diseases such as Crohn’s disease, diabetes, obesity, inflammatory bowel disease, atopic dermatitis, 

and metabolic syndrome have been associated with changes of the normal microbiome (Pflughoeft 

and Versalovic 2012; Althani et al. 2016). Furthermore, numerous studies have linked this microbial 

dysbiosis to infectious diseases and critical illness (Caverly et al. 2015; McDonald et al. 2016; Jacobs et 

al. 2017), and a reduced microbial diversity has been related to patient severity in the ICU (Lamarche 

et al. 2018).  

 
Among critical diseases, a large part of the studies conducted to date have focused on the 

implications of the microbiome in patients with sepsis, by mainly assessing the gut microbiome (Haak 

and Wiersinga 2017). Accordingly, the gut flora has been linked to sepsis complications and mortality 

by systemic inflammatory response syndrome (SIRS) (Shimizu et al. 2011). Additionally, recent studies 

support that microbial dysbiosis processes in blood, nasal cavity, and the lungs are related to sepsis 

susceptibility and/or severity (Dickson 2016; Gosiewski et al. 2017; Tan et al. 2019). Furthermore, 

Dickson and colleagues reported that the lung microbiome of critical patients is significantly altered 

and enriched in bacteria commonly found in the gastrointestinal tract, probably because the 

translocation of microorganisms from the gut to the patient’s lungs (Dickson et al. 2016). Given the 

relevance of these results, further studies must be performed to explore their potential translation 

into clinical practice. 

 
 

1.6 Implication of the genetic ancestry in disease 
 

1.6.1 Genetic ancestry and critical illness 
 

The prevalence of numerous diseases has been shown to be different across ethnic groups 

(National Research Council 2004). Particularly, several studies highlight the relationship between the 

ancestry of an individual and the risk to develop critical illnesses, including sepsis and ARDS (Moss and 

Mannino 2002; Soto et al. 2013; Sandoval and Chang 2016). In this context, it was reported that African 

Americans were more likely to be admitted to the ICU than individuals of European ancestry 

(Dombrovskiy et al. 2005). African Americans also had the highest risk for sepsis development (Martin 

et al. 2003; Barnato et al. 2008; Mayr et al. 2010). Furthermore, higher rates of hospital mortality by 
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sepsis have been evidenced for African-American and Latin-Americans compared to European patients 

(Martin et al. 2003; Jones et al. 2017). Accordingly, the mortality rates of African-American patients 

with ARDS are higher than those of individuals of European ancestry (Moss and Mannino 2002; 

Erickson et al. 2009). 

 
These disparities cannot be explained solely by socioeconomic factors (Moss and Mannino 2002; 

Esper et al. 2006; Soto et al. 2013). Recent studies have shown that genetic ancestry can influence the 

development and outcomes of complex diseases (National Research Council 2004), including 

respiratory diseases (Kumar et al. 2010; Flores et al. 2012; Rumpel et al. 2012; Vergara et al. 2013; 

Hernandez-Pacheco et al. 2016) and critical illnesses (Soto et al. 2013). In this sense, genetic variants 

linked to the ancestry could be affecting the response to infection and inflammatory processes in 

critical care patients (Soto et al. 2013). For example, genetic variants known to increase the expression 

of proinflammatory cytokines (such as IL-1Α, IL-1Β, IL-6, and IL-18) and to reduce the expression of the 

anti-inflammatory cytokine IL-10 were more frequent in African-American women compared to 

women of European ancestry (Ness et al. 2004). Additionally, polymorphisms in MYLK that were 

related with a higher risk of sepsis and ARDS have shown distinct allele frequencies between 

populations of different ethnicities (Gao et al. 2006; Christie et al. 2008), and a genetic variant in the 

Duffy antigen/receptor for chemokines (DARC) gene was associated with worse clinical outcomes in 

African American patients with mild ARDS (Kangelaris et al. 2012).  

 
Furthermore, polymorphisms in the human Toll-like receptor (TLR) 2 gene (TLR2), which is involved 

in pathogen recognition and inflammatory responses, have been revealed to confer differences 

between racial groups (Yim et al. 2004). Accordingly, a study assessing TLR4 polymorphism haplotypes 

revealed higher allele frequencies in sub-Saharan African populations, suggesting that it was related 

to protection against mortality from malaria as a consequence of an evolutionary pressure in this 

population (Ferwerda et al. 2007). Interestingly, this gene had been correlated with susceptibility to 

infectious diseases (Agnese et al. 2002) and increased mortality to septic shock (Lorenz et al. 2002). A 

similar scenario, where polymorphism frequencies have shifted because of natural selection processes, 

has been found in other studies (Stephens et al. 1998; Taylor et al. 2012; Meyer et al. 2018). 

Remarkably, it is well known that signatures of natural selection are found in the human leukocyte 

antigen (HLA) system, involving both positive and balancing selection (Meyer et al. 2018). As is the case 

of TLR4, alleles within HLA-B have been related to malaria protection in African populations (Sanchez-

Mazas et al. 2017). 
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Based on the evidence, it has become apparent that the genetic makeup of a population has 

important consequences in the predisposition to complex diseases and for drug response (Wilson et 

al. 2001; Botigué et al. 2013). In fact, the ethnicity of an individual is starting to be considered in clinical 

practice for precision medicine (Li et al. 2009; Dean 2012). For example, polymorphisms in vitamin k 

epoxide reductase complex subunit 1 (VKORC1) and in the cytochrome P450 family 1 subfamily c 

member 9 (CYP2C9), which influence the metabolism of warfarin, a widely used anticoagulant, have 

been found at distinct frequencies across populations (Li et al. 2009). As a result, the warfarin dose can 

be adjusted in patients based on their ethnicity and genotypes (Li et al. 2009). A similar situation is 

found for the clopidogrel therapy, an antiplatelet agent, and the CYP2C19 genotype (Dean 2012). 

 

1.6.2 Estimation of the genetic ancestry in a recently admixed population 
 

The stratification of the genetic variation among populations across the world is mainly explained 

by genetic drift and migration, but also by the existence of selective pressures that are related to past 

or ongoing local adaptations (Seldin et al. 2011). Therefore, genetic studies in recently admixed 

populations have a huge potential to evaluate the influence of the genetic ancestry in diseases, with 

the final objective of identifying novel candidates to be evaluated as genetic risk factors of diseases, 

including critical illnesses (Seldin et al. 2011). In this sense, a profound characterization of the genetic 

structure of the assessed population is needed (Figure 5) (Thornton and Bermejo 2014). 

 
Genetic ancestry estimators involve the use of genetic data from the putative ancestral populations 

that were mixed in the past recent history. Thus, prior knowledge of the historical admixture of the 

population is required (Alexander et al. 2009). There are two main types of ancestry estimators of the 

genome: global and local. The global ancestry is the overall genetic ancestry of an individual (Figure 

5A) (Thornton and Bermejo 2014) and  can be estimated by means of programs such as ADMIXTURE, 

one of the most commonly used algorithms, which uses a maximum likelihood model to obtain 

individual ancestry proportions based on multiple unlinked SNPs (Alexander et al. 2009). The local 

ancestry refers to the genetic ancestry of an individual at a given chromosomal locus (Thornton and 

Bermejo 2014). As a result of the admixture of different populations, the genome of recently admixed 

individuals becomes a mosaic composed by different chromosomal fragments or ancestry blocks, each 

derived from an ancestral population (Figure 5B) (Tang et al. 2006). The longer the time since the 

admixture, the shorter the size of the ancestry blocks. Therefore, the local ancestry can be estimated 

analyzing this mosaic comparing it with genomes from reference populations. Three of the algorithms 

that are commonly used to estimate the local ancestry are LAMP-LD (Baran et al. 2012), RFMIX (Maples 

et al. 2013), and ELAI (Guan 2014). LAMP-LD and RFMIX are based on haplotype transitions from the 
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parental population; hence they depend on a previous step for haplotype reconstruction. These 

software tools have been broadly used to estimate the local ancestry in Latino populations 

(Padhukasahasram 2014; Eyheramendy et al. 2015; Sofer et al. 2017; Spear et al. 2019). Contrarily, 

ELAI is a more recent method that directly uses genotype data, without needing a phasing step. This 

software can detect small ancestry tracts and has been used to characterize the complex admixture of 

South African populations (Pierron et al. 2018; Williams et al. 2018). 

 

 
 

Figure 5. Schematic representation of the genetic ancestry of a recently admixed population with three 

ancestral populations (plotted in pink, blue, and green colors). A) Global ancestry proportions for six 

admixed individuals. B) Recombination events between haplotypes of different ancestries (left) and 

local ancestry estimations for an individual genome (right). 

 

In case a disease risk variant has distinct allele frequencies across ancestral populations and confers 

a different disease susceptibility, a deviation in local ancestry can be found at that locus in a recently 

admixed population (Mani 2017; Shriner 2017). Consequently, local ancestry estimates can be used to 

identify genomic regions where ancestry tends to be coinherited with a specific disease. This analysis 

is known as admixture mapping, which allows to reveal novel disease genes that show differential risk 

by ancestry (Patterson et al. 2004; Shriner 2017). This kind of studies can be performed only in recently 

admixed populations. However, it has the advantage over general association studies in that, as local 
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ancestry blocks are larger than haplotype blocks, the correction by multiple tests is less restrictive and 

the statistical power to detect disease signals is increased, allowing to use more reduced sample sizes 

to attain a given power (Shriner et al. 2011). Conversely, large regions are identified by means of this 

method, and additional studies are required to identify the underlying risk variants (Shriner 2017). 

 

1.6.3 The Canary Islands population in genetic ancestry studies 
 

The current inhabitants of the Canary Islands have a unique genetic admixture that makes it suitable 

to be considered in genetic ancestry studies. The previous evidence supports that the aboriginal 

population from the Canarian archipelago (collectively known as Guanches) had a North African (NAF) 

origin (Hooton 1970; Onrubia Pintado 1987). The Spanish conquest took place during the XVth century 

(de Abreu Galindo and Cioranescu 1977), which resulted in an admixture of the aborigines with the 

European population (EUR) (de Abreu Galindo and Cioranescu 1977), as well as with sub-Saharan 

Africans (SSA), due to the flourishing slave trade occurring at that historical moment (Lobo-Cabrera 

1993). This admixture has been shown by classical molecular studies focused on blood groups, red 

blood cell enzymes, or with a few of polymorphic Alu insertions (Flores et al. 2001; Maca-Meyer et al. 

2004). These estimated that ancestry proportions of the Canary Islanders were 62-78% EUR, 20-38% 

NAF, and 3-10% SSA. Accordingly, other studies analysing a reduced number of SNPs or a limited 

sample size (Pino-Yanes et al. 2011; Botigué et al. 2013) revealed comparable proportions of ancestry, 

finding 75-83% EUR, 17-23% NAF, and less than 2% SSA. However, none of these studies have 

evaluated the disease implications of such admixture scenario in the Canary Islanders.  

 
The Canary Islands population have an increased prevalence of different chronic diseases, including 

cardiovascular diseases, such as diabetes, obesity, and hypertension (Cabrera de León et al. 2006; 

Bueno et al. 2008; Marcelino-Rodríguez et al. 2016), and respiratory diseases, such as asthma 

(Sánchez-Lerma et al. 2009; Juliá-Serdá et al. 2011), when compared to other mainland Spanish 

populations. This disease burden could be affected, in addition to environmental factors, by the 

distinctive genetic admixture of this population. Furthermore, due to the historical isolation of the 

Canary Islands, one would expect that the genomes of the current inhabitants have an enrichment in 

low-frequency functional variants (Xue et al. 2017), resulting in an increased number of recessive 

variants that could confer risk to specific complex diseases (Campbell et al. 2007; Moltke et al. 2014; 

Ghani et al. 2015). Additionally, mutations underlying monogenic disorders would be expected in the 

Canary Islanders. For example, a founder mutation in the alanine-glyoxylate and serine-pyruvate 

aminotransferase (AGXT) gene has been associated with a high prevalence of type 1 primary 

hyperoxaluria in La Gomera (Santana et al. 2003; Lorenzo et al. 2006; Lorenzo et al. 2014). Additionally, 
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a high percentage of patients from La Palma carry the most frequent mutation in the Fanconi anemia 

complementation group A (FANCA) gene, which perhaps explains the high incidence of sickle-cell 

anemia in this population (Castella et al. 2011). Finally, an increased prevalence of Wilson disease has 

been related to a variant of the ATPase copper transporting beta (ATP7B) gene in individuals from Gran 

Canaria, and other variants have been associated with cardiovascular traits in the same population, 

pinpointing again the singular genetic characteristics of Canary Islanders (García-Villarreal et al. 2000; 

Rodríguez-Esparragón et al. 2017). Therefore, the characterization of the genome of the Canary 

Islanders would be important for revealing gene regions that are distinctive of this population and that 

may be linked to particular disease risks, including critical illnesses, as well as for designing subsequent 

admixture mapping studies in this population.  
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2. Hypothesis and objectives 

 
Despite numerous studies have tried to disentangle the biological complexity of ARDS, there is still 

a lack of specific treatments and effective prognostic methods for critical care patients. Given that this 

syndrome is influenced by both environmental and genetic factors, the hypothesis of this work is that 

the use of different genomic approaches will provide complementary information to better 

understand the pathophysiology of ARDS and of main risk factors, revealing novel therapeutic and 

prognostic options.  

 
The specific objectives of this work are: 

1. To perform a systematic review of all published studies reporting associations of genetic variants 

with ARDS susceptibility and outcomes. 

2.  To identify novel common genetic variants associated with ARDS susceptibility by means of the first 

GWAS in patients with sepsis-associated ARDS. 

3. To identify if there are lung microbiome shifts in patients with sepsis associated with aggravation 

and to evaluate its prognostic utility. 

4. To characterize the recent evolutionary history of current inhabitants of the Canary Islands based 

on genome-wide data to identify links between genetic ancestry and risks of sepsis and ARDS, and to 

lay the foundation for designing admixture mapping studies in this particular population. 

 

 

 

 

 

 

 

 

 

  



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Chapters 
 
The methods of Chapter 1 are detailed on the introductory page to the chapter. Chapters 2, 3, and 4 include their 

specific introduction, methods, results, discussion and conclusions. All chapters also include a section of 

references.
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Chapter 1. 
 

Systematic review of the genetics of ARDS 
 

A bibliographic review of all the genetic association studies in ARDS published from September 2012 

to December 2015 is reported in this chapter. The quality assessment of these studies was based on 

diverse criteria considered in previous works performed by this research group, where the quality of 

genetic association studies from 1996 to 2012 had been previously evaluated in two different articles 

(Flores et al. 2008; Acosta-Herrera et al. 2014). The final objective of this work was to complete a 

systematic search of all genes reported to be significantly associated with ARDS susceptibility or 

outcomes.  

 
We conducted a search in PubMed using the following combinations of terms: “acute respiratory 

distress syndrome” AND “polymorphism”, “acute respiratory distress syndrome” AND “genetic 

variant”, “ARDS” AND “polymorphism”, “ARDS” AND “genetic variant”, “acute lung injury” AND 

“polymorphism”, and “acute lung injury” AND “genetic variant”. All references were manually revised, 

and those genes harboring genetic variants nominally associated with ALI/ARDS susceptibility or 

outcomes (significance of p≤0.05) were considered. As a result, we found a total of 81 candidate genes 

that had been associated with ARDS until December 2015, most of them involved in immune response 

and vascular permeability. The association of only seven of these genes was validated in at least four 

independent samples. This assessment supports the low replicability of this type of studies and the 

difficulties in the interpretation of results, as well as the need of implementing genomic approaches 

to identify novel ARDS risk genes, accompanying the results with functional studies. In this sense, as 

reported in this chapter, only one GWAS and two WES studies in ARDS patients had been published 

until 2015.   

 
 

 

This chapter was published in 2016 in eLS with the title "Genetics of Acute Respiratory Distress 

Syndrome" (doi: 10.1002/9780470015902.a0026533). It is reproduced under the terms of John Wiley 

and Sons License. 
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Chapter 2. 
 

Genome-wide association study of sepsis-associated ARDS in individuals of 

European ancestry 
 

This second chapter reports the results of the first GWAS of susceptibility to sepsis-associated ARDS, 

performed in 1,935 individuals with sepsis of European ancestry. Given that the genetic catalog of 

ARDS remains largely unknown, the aim of this case-control study was to identify novel genes 

associated with ARDS and to propose new therapeutic options. The GWAS design consisted in a 

discovery stage to identify suggestive signals of association, a replication stage to validate the results, 

and a meta-analysis of both stages together. The discovery stage included 672 patients admitted into 

a network of Spanish ICUs, while the replication stage included 1,345 individuals from two 

independent datasets of American and German cohorts. Finally, functional analyses of significant 

signals were performed, involving RNA-sequencing from lung biopsies, in silico analyses, and luciferase 

reporter assays. 

 
Our analyses revealed common genetic variants associated with susceptibility to sepsis-associated 

ARDS. These variants were located within the Fms Related Tyrosine Kinase 1 (FLT1) gene, which 

encodes the VEGF receptor 1 (VEGFR-1), broadly involved in vascular permeability and immunity, 

among other processes. The functional assessment revealed a higher expression of FLT1 in peripheral 

blood from ARDS patients compared to other critical care patient groups and supported the role of 

these variants in the regulation of the FLT1 promoter. Particularly, protective alleles reduced the 

promoter activity in a monocyte cell line. These results corroborated the implication of the VEGF 

signaling pathway in ARDS pathophysiology and suggested VEGFR-1 as a potential therapeutic target. 

Based on the evidence, we suggest that the repurpose of marketed drugs targeting VEGFR-1 should be 

considered as novel potential treatments for ARDS patients. 

 
 

 

This study has been published in The Lancet Respiratory Medicine with the title "Sepsis-associated 

acute respiratory distress syndrome in individuals of European ancestry: a genome-wide association 

study" (doi: 10.1016/S2213-2600(19)30368-6).  
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Abstract 

Background. The acute respiratory distress syndrome (ARDS) is a lung inflammatory process mainly 

caused by sepsis. Most previous studies that identified genetic risks for ARDS were focused on 

biological candidates. We aimed to identify novel genetic variants associated with ARDS susceptibility 

and to provide complementary functional evidence.   

 
Methods. We conducted a case-control genome-wide association study (GWAS) in 1,935 European 

subjects, using sepsis-associated ARDS patients as cases and sepsis patients without ARDS as controls. 

The discovery stage included 672 patients admitted into a network of Spanish intensive care units. The 

replication stage comprised 1,345 individuals from two independent datasets involving the MESSI 

cohort study (U.S.A.) and the VISEP/MAXSEP trials of the SepNet study (Germany). We used RNAseq-

based gene expression data from lung biopsies, in silico analyses, and luciferase reporter assays to 

assess functionality. 

 
Findings. We identified a novel genome-wide significant association with sepsis-associated ARDS 

susceptibility (rs9508032, odds ratio [OR]=0·61 [95% CI=0·41-0·91], p-value=5·18x10-8) located within 

the Fms Related Tyrosine Kinase 1 (FLT1) gene encoding the vascular endothelial growth factor (VEGF) 

receptor 1 (VEGFR-1). The region containing the sentinel variant and its best proxies acted as a silencer 

for FLT1 promoter, and alleles with protective effects in ARDS further reduced promoter activity 

(p=4·66x10-3). A literature mining of all previously described ARDS genes validated the association of 

VEGFA (p=4·69x10-5; OR=0·55 [95%CI = 0·41-0·73]).  

 
Interpretation. A common variant within FLT1 gene is associated with sepsis-associated ARDS. Our 

findings support the central role of VEGF signaling pathway in ARDS pathogenesis and provides a 

potential therapeutic target. 
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Thuringian Foundation for Technology, Innovation and Research, the German Sepsis Society, German 

Ministry of Education and Research, NIH, and the American Thoracic Society Foundation. 
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Research in context 

Evidence before this study: We conducted a literature search on PubMed for all studies reporting 

genes which were significantly associated with ARDS up to November 2018. Most previous genetic 

studies in ARDS have focused on biological candidate genes mainly involved in the immune response, 

vascular permeability, and metabolism. Two small whole-exome sequencing studies and two genome-

wide association studies (GWAS) of ARDS have been published to date, although none of them focused 

exclusively on sepsis-associated ARDS. 

 
Added value of this study: To our knowledge, we report the results of the first GWAS of sepsis-

associated ARDS susceptibility conducted on 1,935 European patients with sepsis. We reveal a novel 

protective genome-wide significant association with sepsis-associated ARDS within the Fms Related 

Tyrosine Kinase 1 (FLT1) gene, encoding the vascular endothelial growth factor receptor 1 (VEGFR-1). 

We also report that SNP alleles with protective effects in ARDS reduce FLT1 promoter activity. These 

findings reinforce the need to target VEGF signaling in ARDS pathogenesis, a pathway linked to vascular 

permeability and immune and inflammatory responses. 

 
Implications of all the available evidence: Our results support the central role of VEGF signaling in 

ARDS pathogenesis and suggest VEGFR-1 as a potential therapeutic target. There are effective drugs 

targeting this protein that are being used in other diseases and they could be potentially repurposed 

for ARDS. 
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Introduction 

Acute respiratory distress syndrome (ARDS) is a serious complication of sepsis of pulmonary or non-

pulmonary origin.1 This syndrome is defined as an acute inflammatory process of the lung caused by 

injury to the alveolar-capillary barrier, resulting in increased alveolar-capillary permeability and 

protein-rich pulmonary edema. This leads to severe hypoxemia (assessed by PaO2/FiO2 ratio), bilateral 

pulmonary infiltrates, and decreased lung compliance.  

 

The annual incidence of ARDS ranges from five to 80 cases per 100,000 individuals,2,3 with an overall 

hospital mortality of approximately 40%.4 In fact, ARDS is a cause of morbidity and mortality in adult 

intensive care units (ICUs) worldwide. Survivors often develop physical and cognitive impairments, 

including neuropsychiatric disorders, that diminish their quality of life.5,6 At present, there are no 

available methods to treat or rapidly rehabilitate lungs of affected patients. Effective therapeutic 

options remain elusive, likely due to the heterogeneity of the syndrome. Currently, the only available 

interventions that impact patient survival involve specific strategies for mechanical ventilation (MV) 

and  patient position to minimize ventilator-induced lung injury.7,8  

 

Given the limited therapeutic options, there is a strong interest in identifying genetic factors that 

modify ARDS risks and which may serve as potential therapeutic targets. Several studies have reviewed 

the implication of genetic factors in ARDS susceptibility and outcomes.9 Overall, most genetic studies 

have focused on biologically motivated candidate genes mainly involved in the immune response, 

vascular permeability and metabolism.9 In addition, two small whole-exome sequencing studies in 

ARDS patients revealed that the MYLK gene was associated with ARDS severity as measured by 

ventilator-free days,10 and that three other genes (ARSD, XKR3, and ZNF335) were associated with 

ARDS susceptibility, severity and  mortality outcomes.11  

 

Two genome-wide association studies (GWAS) of ARDS have been published to date, one used 

trauma-associated ARDS cases of European ancestry12 and the other used all-cause ARDS African-

American cases.13 These studies revealed two potential ARDS genes, PPFIA1 and SELPLG, although the 

reported variants both failed to reach genome-wide significance. Despite the marginal associations, 

prior GWAS results were paired with functional analyses either based on expression quantitative trait 

loci (eQTL) or on animal models to reinforce the role of prioritized genes in ARDS susceptibility. 

 

Nonetheless, the genetics of ARDS susceptibility remains largely elusive. Thus, further studies on a 

genomic scale and larger sample sizes are needed. To our knowledge, here we performed the first 
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GWAS of susceptibility to ARDS in 1,935 individuals of European ancestry, using sepsis-associated ARDS 

patients as cases and sepsis patients without ARDS as controls. With the hypothesis that frequent 

genetic variants in the population associate with disease risk, we aimed to identify genetic variants 

associated with ARDS susceptibility and provide complementary functional evidence using in silico 

analyses, gene expression data, and luciferase reporter assays. 

 

Methods 

Study design and sample description 

We performed a case-control GWAS of ARDS in sepsis patients of European ancestry. A discovery 

stage was designed to prioritize variants based on their suggestive association. At the conclusion of 

this stage (during November of 2017), investigators from two independent cohorts were contacted 

and their data were used to validate the associations in the replication stage. Finally, a meta-analysis 

combining the discovery and replication association results was performed during September of 2018 

to identify variants significantly associated with ARDS. 

 

The GEN-SEP cohort was used in the discovery stage (Figure 1 and Appendix). It consisted of 672 

unrelated adult patients with sepsis14 who were followed for the development of ARDS according to 

the Berlin definition criteria.15 Controls constituted patients with all-cause sepsis who did not develop 

ARDS during their ICU stay. DNA was extracted from peripheral blood of all patients (Appendix). 

 

The replication stage was conducted on two independent datasets from European-ancestry ICU 

patients, where sepsis-associated ARDS were used as cases and sepsis without ARDS were considered 

as at-risk controls (Figure 1). The first dataset was derived from 605 patients (268 cases and 337 

controls) out of 1,263 patients of multiple ancestries from the “Molecular Epidemiology of Sepsis in 

the ICU” (MESSI) cohort study (U.S.A.). The second dataset was obtained from 740 patients (91 cases 

and 649 controls) out of 880 patients from the VISEP and MAXSEP trials of the SepNet study group 

(Germany). Patients in both studies meet the Berlin definition criteria for ARDS.15 These datasets, 

thereafter referred to as MESSI and SepNet datasets, have been previously described.16,17  

 

Genotyping and statistical analyses 

For the discovery stage, a total of 587,352 SNPs were genotyped using the Axiom Genome-Wide 

Human CEU 1 Array (Affymetrix). Additionally, a principal component (PC) analysis (PCA) was 

conducted to reduce the effects of population stratification in the analysis (Appendix and 

Supplementary Figure 1). SNPs were genotyped using the Affymetrix Axiom TxArray v.1 (Affymetrix) in 
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the MESSI study, while HumanOmniExpressExome arrays (Illumina, Inc.) were used in the SepNet 

study. Genotyping procedures are detailed in the Appendix.  

 

After variant imputation in GEN-SEP data, logistic regression models assumed an additive 

inheritance. Sex, age, and the Acute Physiology and Chronic Health Evaluation II (APACHE II) score were 

included as covariates to address potential bias. Variants with low allele frequency (MAF<1%) or with 

a low imputation quality (Rsq<0·3) were excluded from the analysis. Details of imputation and 

association procedures are described in Appendix. Independent variants showing a p<5·0x10-5 were 

followed up in the replication stage.  

 

In the MESSI study, logistic regression models were performed assuming additive inheritance 

considering the first two PCs, age, and sex as covariates. For the SepNet study, logistic regressions 

were performed including the first three PCs, sex, age, and APACHE II as covariates. Meta-analysis was 

performed on the results of these two studies. For variants that showed a nominal association (p<0·05) 

with ARDS susceptibility in the replication stage, a meta-analysis including discovery and replication 

stages was also performed. Genome-wide significance was declared with a meta-analysed significance 

of p<9·26x10-8 according to the most recent empirical estimations in European populations.18 

 

FLT1 and VEGFA gene expression and functional annotation of genetic variants 

In silico and in vitro approaches were used to investigate potential biological consequences of 

variants associated with ARDS. First, FLT1 and VEGFA expressions were assessed in nine lung biopsies 

from healthy individuals by means of RNA-sequencing (Appendix). In parallel, we accessed public gene 

expression data (GSE32707) from 88 critically-ill adult patients that were evaluated for sepsis and ARDS 

(Appendix). Next, to highlight the functional role of the associated variant and of SNPs that were LD 

proxies in Europeans (r2=1·0), we applied several in silico tools for variant prioritization [DeepSea, 

DSNetwork, Open Targets Genetics] and to predict potential regulatory genomic regions including 

epigenetic modifications [DeepSea, HaploReg, RegulomeDB], long-distance physical interactions 

[Capture Hi-C Plotter (CHiCP)], and tissue specific local expression quantitative trait loci (cis eQTLs) 

[GTEx, TIVAN]. Additional tools [VEP, SNPdelScore] were used to predict the likelihood of 

deleteriousness of each SNP. See Appendix for further details. 
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Dual-luciferase reporter assays 

The potential regulatory effect of the ARDS-associated variant on promoter activity was 

investigated using a Dual-Luciferase Reporter Assay System® (Promega, Madison, WI). Experiments 

were performed using human lung epithelial (A549) and peripheral blood monocyte (THP-1) cell lines, 

both known to have an active FLT1 promoter activity and expressing VEGFR-1.19 Two types of 

constructs were generated: 1) a reporter construct including a fragment of the FLT1 promoter inserted 

into a promoterless pGL4.10 [luc2] luciferase reporter vector, and 2) two regulatory constructs 

including a region of intron 10 containing either the reference or alternative alleles of the most 

significantly associated variant within FLT1 and its perfect LD proxies, which were inserted into the 

reporter construct. Promoter activities were expressed as a relative response ratio of Firefly 

luciferase/Renilla luciferase signals. See Appendix for further details. 

 

Literature mining of previously reported ARDS-associated genes 

A literature search for all studies reporting genes which were significantly associated with ARDS 

was conducted. Association results in the discovery stage were extracted and an effective number of 

independent signals per gene was measured in order to adjust for multiple testing. See Appendix for 

further details. 

 

Role of the funding source 

The funders had no role in the study design, data collection, analysis, interpretation of data, 

decision to publish, or preparation of the manuscript. CF was involved in all stages of study 

development and delivery, had full access to all data in the study, and had final responsibility for the 

decision to submit for publication. 

 

Results 

GWAS of sepsis-associated ARDS 

After filtering steps and the quality control, a total of 515,657 SNPs from 590 patients (274 sepsis-

associated ARDS cases and 316 controls with sepsis) were used for the discovery stage (Figure 1). 

Demographic and clinical features of these patients are shown in Table 1. Genotype imputation on the 

HRC r.1.1 allowed us to perform the association testing of this stage on 7·98 million variants with 

MAF≥1%. The genomic inflation factor (λ=0·98) did not show signs of inflation of the results 
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(Supplementary Figure 2). Suggestive associations (p<5·0x10-5) were detected for 229 variants residing 

in 53 independent loci (lowest p=2·6x10-7) (Figure 2, Supplementary Table 1).  

 

The replication stage in a total of 359 patients with sepsis-associated ARDS and 986 controls with 

sepsis focused on the sentinel variants (variants with the smallest p-values) of 52 autosomal loci (Figure 

1, Supplementary Table 2). Because of the difficulties in accessing data, we did not follow up the X 

chromosome variants in the replication stage. Association testing in the replication stage revealed four 

SNPs that were nominally significant (uncorrected p<0·05; Table 2), although none of them were 

significantly associated with ARDS susceptibility after a Bonferroni correction (threshold p=9·62x10-4). 

The first signal is an intronic variant (rs9508032) of the FLT1 gene (Figure 3), encoding the 

transmembrane receptor known as the VEGFR-1. The other three SNPs were located intergenic 

(rs11195238) to the genes encoding the structural maintenance of chromosomes 3 (SMC3) and the 

RNA binding motif protein 20 (RBM20); intergenic (rs8001184) to the genes encoding slit and 

neurotrophic tyrosine kinase (NTRK) like family member 5 (SLITRK5) and glypican 5 (GPC5); and in 

intron one (rs2734600) of the gene encoding serine protease 3 (PRSS3). Meta-analysis of results from 

the discovery and replication stages for these four SNPs revealed that the sentinel variant rs9508032, 

located intronic to the FLT1 gene, was the only SNP that reached genome-wide significance (Table 2). 

The FLT1 variant showed consistent direction of effects, with an odds ratio (OR) for the T allele of 0·61 

(95% confidence interval (CI) = 0·41-0·91), and a p-value of 5·18x10-8. A sensitivity analysis of the 

association of rs9508032 at FLT1 supported that the association was robust to adjustment for 

comorbidities, isolated pathogen, and the disease severity (Supplementary Table 3), though clinical 

data was missing for a significant proportion of subjects for some variables (up to 55%). The rs9508032-

ARDS association demonstrated similar effect sizes and directions even when the sample size was 

significantly reduced due to missing clinical data. Furthermore, there were 16 additional variants 

residing in FLT1 among the 226 SNPs with suggestive associations in the discovery stage 

(Supplementary Table 4). All but one was nominally significant in the replication stage, and five 

achieved genome-wide significance after meta-analysis of discovery and replication stages. In ad hoc 

analyses, we evaluated if the association of the sentinel variant persisted when unselected population 

controls were used instead of the at-risk controls. Based on the genotypes from 927 unrelated Spanish 

individuals that were genotyped with the same array in previous studies,20,21 results also supported a 

significant association of rs9508032 with ARDS (OR= 0·73, 95% CI= 0·58-0·90, p-value=3·86x10-3). We 

also evaluated if the sentinel variant predicted ICU mortality. However, our results indicated that it did 

not predict ICU survival among sepsis or ARDS patients from the GEN-SEP cohort (Supplementary Table 

5). This evidence further supports that the FLT1 association with sepsis-associated ARDS was genuine. 

Finally, at this stage, we assessed if the sentinel variant (and perfect LD proxies) of the FLT1 also 
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associated with ARDS after trauma, but none of them was present in the GWAS of Christie and 

colleagues (Appendix).12  

 

Gene expression and functional impact predictions at variant sites 

Transcriptomic data from lung biopsies obtained from non-ARDS control subjects revealed a high 

expression of FLT1 (9,977 counts per million on average ± 5,228) and VEGFA (19,221 counts per million 

on average ± 16,165) in lung tissues, which is in agreement with GTEx information supporting a 

prominent expression of these genes in the lung. Among the eight FLT1 isoforms that were evaluated 

on the RNAseq dataset, the canonical isoform encoding a membrane-spanning protein (FLT1-201, 

ENST00000282397) and the next one in size (FLT1-207, ENST00000615840), which encodes a secreted 

VEGF-binding protein of 687 amino acids,22 accumulated more than 10 times more reads in average 

than the rest of the gene isoforms (Supplementary Table 6). Among the 29 VEGFA isoforms we 

assessed, those that had higher expression in the lungs were VEGFA-205 (ENST00000372067), VEGFA-

229 (ENST00000621747), VEGFA-227 (ENST00000615393), VEGFA-222 (ENST00000520948), VEGFA-

206 (ENST00000372077), VEGFA-212 (ENST00000480614), and VEGFA-215 (ENST00000497139) 

(Supplementary Table 6). We also accessed array expression data from peripheral blood obtained from 

a cohort of critically-ill patients that included donors with sepsis, with and without ARDS, as well as 

non-sepsis patients. These data strongly supported that the mean FLT1 expression level in peripheral 

blood varied significantly among patient groups (ANOVA, p=0·002), with a higher average FLT1 gene 

expression among ARDS patients than in ICU controls without sepsis or SIRS (t-test, p=0·001) 

(Supplementary Figure 3). On the contrary, the expression levels for the three available probes of 

VEGFA did not vary significantly among ICU patient groups (ANOVA; ILMN_2375879, p=0·638; 

ILMN_1693060, p=0·435; and ILMN_1803882, p=0·214) (Supplementary Figure 3). Next, we performed 

an in silico bioinformatic approach to explore the functional features of rs9508032 and the other five 

variants of FLT1 that reached genome-wide significance after meta-analysis (Supplementary Table 4). 

Relevant functional information was found for rs9508032 and two of its proxies (rs722503 and 

rs8002446), all of them from intron 10, as these three SNPs were located in enhancer and promoter 

histone marks, in DNase I hypersensitive sites (DHS) of many cell types, and were related to the 

alteration of regulatory motifs (Supplementary Table 7). Additionally, rs722503 and rs8002446 have 

predicted effects on transcription factor binding. The algorithmic framework of DeepSEA predicted a 

significant functional effect for rs722503 (p=0·045). DSNetwork predicted similar results where 

rs722503 was prioritized as the best candidate variant for further functional analysis in this region. In 

contrast, Open Targets Genetics prioritized rs8002446 as potentially functional based on information 

of DHS and enhancer- transcription start sites data. Using GTEx, no significant eQTLs were identified 
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for rs9508032 or its proxies, although we did observe that both rs9508032 and rs722503 had high 

CellulAr dePendent dEactivating (CAPE) scores for eQTL and DNase I QTLs in human umbilical vein 

endothelial cells, fibroblasts, epithelial and immune (monocyte) cells (Supplementary Table 7). Using 

the CHiCP to visualize capture Hi-C experiments conducted by Mifsud and colleagues,23 we observed 

the existence of physical interactions between the region containing the three variants and the FLT1 

promoter region in a lymphoblastoid cell line (GM12878). 

 

In vitro luciferase assays 

Based on the above evidence, we then performed luciferase promoter assays to assess the effect 

of the intron 10 region containing the genome-wide significance SNPs on FLT1 promoter activity 

(Figure 4A). Our results showed that the FLT1 intron 10 region containing these variants repressed 

gene promoter activity with a consistent effect on both peripheral blood monocytes (65·1 ± 10·7% 

reduction) and human lung epithelial cells (48·7 ± 4·1% reduction) (Wilcoxon test, p=4·10x10-4 and 

p=0·02, respectively) (Figure 4B). When we compared the constructs with reference vs. alternative 

alleles for all positions within intron 10 of FLT1, we found that the presence of alternative alleles 

(protective for ARDS) were associated with a further decrease (48·6 ± 7·2% reduction) of the FLT1 

promoter activity in peripheral blood monocytes (Wilcoxon test, p=4·66x10-3) (Figure 4C). No 

significant reduction of the FLT1 promoter activity was found for pneumocytes (Wilcoxon test, p=0·89).  

 

Association of previously reported ARDS genes 

Finally, we performed a thorough literature mining on genes previously associated with ARDS in 

our discovery stage. Results of our search merged with previous reviews identified 96 genes with prior 

reported association with ARDS susceptibility or outcome (Supplementary Table 8). Although none of 

the 96 genes surpassed a study-wise Bonferroni-corrected threshold in the discovery (p=2·18x10-6), 

the VEGFA gene reached a gene-wise significance after Bonferroni correction in the discovery study 

(top signal: OR= 0·55, 95% CI = 0·41-0·73; p=4·69x10-5) (Supplementary Table 8). Not surprisingly, 

VEGF-A is one of the main ligands of VEGFR-1.19 

 

Discussion 

To our knowledge, here we reported the results of the first GWAS of sepsis-associated ARDS 

completed to date, where we identified a locus located in FLT1 associated with ARDS that reached 

genome-wide significance in a combined meta-analysis of all cohorts. Of note, the sentinel SNP of FLT1 

(rs9508032) and the perfect LD proxies were all located in close proximity within intron 10, a region 

which we observed acting as a silencer of the FLT1 promoter activity in monocyte and human lung 
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epithelial cell lines. In conjunction with human transcriptomics data, we also determined that different 

FLT1 isoforms are expressed in lung tissues, and that its expression in peripheral blood is positively 

correlated with the severity of illness, with the highest levels detected in ARDS patients. Evidence from 

our studies suggested a possible functional role of the sentinel SNP (rs9508032) and two of its perfect 

LD proxies in Europeans. Findings also revealed allelic effects of intron 10 on the FLT1 promoter 

activity, which was particularly significant on monocytes. Interestingly, FLT1 and other nearby genes 

(FLT3 and PAN3) were strongly associated with monocyte counts in the UK Biobank.24 All these findings 

reinforce the concept that monocytes are also crucial in the VEGF-mediated lung response.19 Variants 

from FLT1 had never been associated with ARDS susceptibility or outcomes in previous independent 

studies, although Kim and colleagues25 have reported the association of FLT1 with all-cause pulmonary 

complications. Additionally, there is evidence of association of FLT1 with other complex diseases, such 

as coronary arterial disease26 and preeclampsia,27,28 where the endothelium plays an important 

pathophysiological role. 

 

FLT1 encodes VEGFR-1, a tyrosine-protein kinase that acts as a transmembrane receptor of VEGF-

A, other VEGF family members, and the placental growth factor (PLGF). VEGF was originally identified 

as a vascular permeability factor,19 although it has diverse and pleiotropic activities beyond the 

regulation of the alveolar-capillary barrier.29 VEGF has been involved in the fibroproliferative phase of 

ARDS30, as well as in resolution of ventilator-associated pneumonia.31 However, Ware and colleagues 

found that levels of VEGF were similar in undiluted edema fluid from hydrostatic and ARDS patients.32 

Although its role remains unclear, abundant evidence supports a negative regulatory role of an 

alternatively spliced soluble form of VEGFR-1 (sFLT-1) sequestering part of VEGF bioactivity.22 High 

levels of sFLT-1 in the alveolar space are associated in humans with the occurrence of late ARDS in 

trauma,33 as well as with sepsis severity, organ dysfunction, and ICU survival.34,35,36 In parallel, we have 

found that FLT1 expression varied between ARDS and other ICU patients in peripheral blood, while 

VEGFA expression did not show differences. Taken together, this suggests that disease-related VEGF 

bioavailability could be dependent on the receptor isoforms. Interestingly, the array-based 

transcriptomics experiment specifically targeted exon 30 of FLT1 (Supplementary Figure 3), which 

critically involves the canonical receptor (FLT1-201), one of the few highly expressed isoforms. These 

observations offer a potential mechanistic link between the GWAS results and ARDS pathophysiology, 

suggesting that the FLT1 SNPs could be linked to the expression of the VEGFR-1 transmembrane 

isoform. The decrease of FLT1 promoter activity in vitro in the presence of intron 10 alleles associated 

with ARDS protection may translate in a reduction of the canonical VEGFR-1 expression and, thus, in a 

decrease of VEGF signalling. This hypothesis reconciles with the attenuation of many of the VEGF-

mediated pathophysiologic effects in ARDS, including the formation of pulmonary edema. However, 
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given the limitations to distinguish expression levels from gene isoforms in array-based transcriptomics 

experiments and that the cell type(s) that mechanistically link FLT1 SNPs with the ARDS 

pathophysiology remains unknown, this scenario is purely speculative. 

 

Despite the central role of VEGF in ARDS and the availability of VEGF-targeting drugs, clinical trials 

using drugs directed towards VEGF pathways for ARDS patients are scarce. There is one entry of clinical 

trial of the efficacy of bevacizumab (anti-VEGF antibody) to prevent sepsis-associated ARDS 

(ClinicalTrials.gov identifier: NCT01314066). However, it was withdrawn without a single patient 

enrolled due to a lack of funding. A search in DrugBank37 and additional in silico explorations in 

Gene2drug38 allowed us to systematically identify available drugs targeting this pathway. Although 

most of them are currently in use for cancer treatment (none of them under evaluation in ARDS 

patients), nintedanib constitutes one of the few effective antifibrotic therapies as it targets VEGFR-1 

and slows the rate of forced vital capacity decline of idiopathic pulmonary fibrosis.39 In addition, the 

antifungal drug itraconazole is known to inhibit the glycosylation of VEGFR-1 and VEGFR-2, affecting 

their migration pattern and signaling activity.40 Based on this and our findings, nintedanib and 

itraconazole potentially might be repurposed as ARDS drugs and warrant further investigation. 

 

We acknowledge there are strengths and limitations of our study. The main strength is that, to our 

knowledge, our study is the first GWAS of sepsis-associated ARDS, a complex acute syndrome with a 

high morbidity and mortality in ICUs worldwide. We contrast our ARDS cases with similarly well-

characterized critically ill sepsis patients that did not develop ARDS to address the heterogeneity of 

the syndrome. This approach allowed us to identify reproducible associations at one locus. We provide 

strong evidence (transcriptomics data, functional annotations and in vitro experiments) to sustain a 

functional implication of FLT1 variants in ARDS physiopathology. However, this study also has some 

limitations. The main weakness is the small sample size overall, limiting the power for detecting 

variants of smaller effects or of lower frequency. The limited sample size can be attributed to the low 

incidence and high heterogeneity of the syndrome, which makes sample collection difficult and slow. 

In this respect, it is plausible that rare variants in or near the identified regions remain undetected 

because of technological limitations. Whole-exome and genome sequencing analyses would offer 

better resolution to achieve that aim. Therefore, more ARDS loci are to be expected as the genomic 

studies of ARDS increase in size and marker resolution. Additionally, this study focused only on 

European ancestry patients. Further studies are needed to identify whether FLT1 variation also impacts 

ARDS risk in non-European populations. We used the A549 cell line as a model for human alveolar 

epithelial cell, which inherently entails experimental limitations because of its cancerous nature. 

Further experiments should evaluate primary human alveolar type 2 cells to assess the impact of this 
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choice in our observations. Finally, because the X chromosome is usually filtered out from most GWAS 

because it adds a level of difficulty to the analyses, we were unable to follow-up a variant in OPHN1 

gene (encoding a Rho-GTPase-activating protein) in the replication stage.  

 

In summary, we describe the results of a GWAS of sepsis-associated ARDS. We report one novel 

locus located in FLT1 involved in ARDS susceptibility. Based on these results and the accumulated 

evidence, this study provides an orthogonal demonstration of the genuine central role of VEGF 

signalling pathway in ARDS susceptibility and strongly favours that VEGFR-1 is a therapeutic target for 

preventing ARDS. Independent studies should aim to validate our findings, including independent 

association studies in non-sepsis ARDS patients. 
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Figure 1. Flow chart of quality control steps for the samples and genotyped SNPs in the discovery 

and replication stages. CR, Call rate; DQC, Affymetrix dish quality control; FLD, Fisher´s Linear 

Discriminant; HetSO, Heterozygous Cluster Strength Offset; HWE, Hardy-Weinberg Equilibrium; MAF, 

minor allele frequency; mtDNA, mitochondrial DNA; Y-chr, Y chromosome. 
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Figure 2. Manhattan plot of GWAS results for the discovery stage. Axes display the -log10 transformed 

p-values by position in each chromosome. The horizontal line indicates the threshold considered for 

prioritizing variants for the replication stage (p=5·0x10-5). 
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Figure 3. Regional plot of association results for the genome-wide significant locus. The -log10 

transformed p-values for association tests are plotted by position. The SNP rs number indicated on the 

plot denotes the sentinel SNP. The remaining SNPs are color coded to reflect their degree of linkage 

disequilibrium with the indicated SNP based on pairwise r2 values from the European population from 

The 1000 Genomes Project. Estimated recombination rates (light blue line) are plotted on the right y-

axis. 
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Figure 4. Luciferase reporter assay to assess the role of intron 10 and of rs9508032 and its perfect LD 

proxies on FLT1 promoter activity. A) Scheme of vector constructs. B) Experimental data showing that 

the intron 10 fragment harboring the reference alleles suppresses the FLT1 promoter activity in A549 

and THP-1 cells. C) Experimental data showing that the intron 10 fragment harboring the alternative 

alleles further decreased the FLT1 promoter activity, showing a significant difference in THP-1 cells. 

Significance was assessed by Wilcoxon signed-rank tests (*p<0·05, #p<0·005, §p<0·0005). Ref and Alt 

indicate risk and protective alleles, respectively. 
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Table 1. Demographic and clinical features of the GEN-SEP study. 

 
  Controls (n=316) Cases (n=274) p-value† 

Sex (n males/N) 197/316 (62·3%) 194/274 (70·8%) 0·04 

Mean age (years)* 63·0 ± 15·0 62·5 ± 14·1 0·47 

Hypertension (n/N) 60/144 (41·7%) 73/160 (45·6%) 0·56 

Smokers (n/N) 61/188 (32·4%) 59/175 (33·7%) 0·88 

Previous surgery (%) 32/127 (25·2%) 35/137 (25·5%) 1·00 

Ischemic cardiac disease (n/N) 31/285 (10·9%) 19/210 (9·0%) 0·61 

Pulmonary sepsis (n/N) 83/267 (31·1%) 128/252 (50·8%) 7·5x10-6 

APACHE II (median) (P25–P75)* 20 (15-24) 22 (18-27) 2·2x10-5 

ICU mortality (n/N) 79/310 (25·5%) 115/268 (42·9%) 1·5x10-5 

Pathogen (n/N)    
      Gram-positive 48/178 (27·0%) 58/162 (35·8%) 0·09 

      Gram-negative 74/178 (41·6%) 59/162 (36·4%) 0·41 

      Gram-positive and Gram-negative  26/178 (14·6%) 17/162 (10·5%) 0·34 

      Fungi 5/178 (2·8%) 3/162 (1·9%) 0·83 

      Virus 2/178 (1·1%) 9/162 (5·6%) 0·04 

      Polymicrobial 16/178 (9·0%) 11/162 (6·8%) 0·45 

Organ dysfunction (n/N)    
      Circulatory 232/270 (85·9%) 238/255 (93·3%) 0·01 

      Coagulation 62/270 (23·0%) 68/255 (26·7%) 0·38 

      Hepatic 48/269 (17·8%) 41/255 (16·1%) 0·67 

      Neurologic 54/270 (20·0%) 59/254 (23·2%) 0·43 

      Renal 124/316 (39·2%) 108/274 (39·4%) 1·00 

n=number of individuals with data available, N=group size. *All individuals have age and APACHE II data. 
Percentages refer only to the individuals with available data for each clinical feature. †Mean age and 
APACHE II comparisons were conducted by the Wilcoxon signed-rank test; the other variables were 
compared by a chi-square test. APACHE II, Acute Physiology and Chronic Health Evaluation II; ARDS, acute 
respiratory distress syndrome; ICU, intensive care unit; P25, percentile 25; P75, percentile 75.  
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Appendix 

 

The GEN-SEP cohort 

GEN-SEP is a national, multicenter, observational study conducted in a Spanish network of 11 

intensive care units (ICUs) between 2,002 and 2,017. The list of Spanish hospitals involved in this study 

are: Hospital Universitario de Canarias, Tenerife; Hospital Universitario NS de Candelaria, Tenerife; 

Hospital Universitario Río Hortega, Valladolid; Hospital Universitario Dr. Negrin, Gran Canaria; Hospital 

General de Ciudad Real, Ciudad Real; Complejo Hospitalario Universitario de León, León; Hospital 

Virgen de la Luz, Cuenca; Complejo Hospitalario Universitario de Santiago de Compostela, Santiago de 

Compostela; Fundació Althaia-Manresa, Barcelona; Hospital Clinic, Barcelona; and Hospital Clínico de 

Valladolid¸ Valladolid. 

 
A total of 672 patients with sepsis1 were included in this stage and diagnosed with ARDS based on 

Berlin definition criteria:2 1) acute onset with PaO2/FiO2 <300 mmHg, 2) bilateral pulmonary infiltrates 

on frontal chest radiograph, 3) use of invasive mechanical ventilation, and 4) no evidence of cardiac 

failure. Controls were those sepsis patients that did not develop ARDS during their ICU stay. 

 
Four ml of peripheral blood were withdrawn at the time of inclusion into the study and stored at -

20oC until use. DNA was extracted using the Illustra™ blood genomicPrep Mini Spin Kit (GE Healthcare), 

quantified with a Qubit 3.0 fluorometer (Thermo Fisher Scientific), and stored at -20oC until use. 

Samples with a low concentration of DNA (<10 ng/µl) were cleaned and concentrated using the 

RealClean & concentrator microspin kit (Real Laboratory). 
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Genotyping and quality control in discovery and replication stages 

For the discovery stage, a total of 587,352 SNPs were genotyped in the National Genotyping Centre 

(CeGen) using the Axiom Genome-Wide Human CEU 1 Array (Affymetrix). Variant calling was 

performed in a single batch for all samples using AffyPipe3 following the authors’ recommendations to 

fine tune the filtering of low quality SNPs and samples. PLINK v1.904 and R 3.3.25 tools were used to 

conduct quality controls. Samples with missing clinical information, genotype call rates < 95%, sex 

mismatches between genotypes and the clinical data, samples with high degree of kinship (PIHAT>0·2), 

and heterozygosity outliers were removed. Variants with low minor allele frequency (MAF<0·01), 

genotype call rates (CR) < 95%, or deviated from Hardy Weinberg equilibrium expectations (HWE, 

p<1·0x10−6) were excluded. Additionally, a Principal Component (PC) analysis (PCA) was conducted to 

reduce the effects of population stratification in the analysis. For this purpose, we removed SNPs 

located at known regions that are in long-distance linkage disequilibrium (LD). We then pruned SNPs 

in high LD using the function “indep-pairwise” of PLINK, setting a r2 of 0·15 to keep approximately 

100,000 independent variants. After excluding eight ancestry outliers, the two first PCs for the 

discovery sample were plotted overlaid with the HapMap3 populations.6 The PCA evidenced the 

similarity between the GEN-SEP samples included in the discovery stage and the European population 

from HapMap (Supplementary Figure 1). 

 

In the MESSI study, SNPs were genotyped using the Affymetrix Axiom TxArray v.1 (Affymetrix). As 

described elsewhere,7 variants were filtered if they were located on sex chromosomes, had a MAF<5%, 

had a missing genotype rate of >10%, or if deviated from HWE (p<1·0x10-3). In the SepNet study, 

HumanOmniExpressExome arrays (Illumina, Inc.) were used for variant genotyping. As described 

elsewhere,8 individuals with sex mismatches, missing sex records, CR<98%, implausible heterozygosity 

(<20% and >26%), and ancestry outliers based on the PCA were removed. Variants with CR≤95%, 

MAF<1%, or deviated from HWE (p<1·0x10-6) were also excluded. 

 
Statistical analyses for discovery stage 

For variant imputation, phasing was conducted with SHAPEIT v2.r7909 and the Haplotype Reference 

Consortium (HRC) version r.1.1 data were used as the reference panel10 on the Michigan Imputation 

Server11. Logistic regression models assuming an additive inheritance were carried out using EPACTS 

v3.2.612 based on the Wald test. We included sex, age, and the Acute Physiology and Chronic Health 

Evaluation II (APACHE II) score as covariates. For the variants in the X chromosome, variant imputation 

and association tests were conducted separately in males and females, and results were subsequently 
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meta-analysed with METASOFT v2.0.113. Fixed-effects or Han and Eskin's Random Effects models were 

used depending on the significance of the Cochran's Q statistic. Variants with low allele frequency 

(MAF<1%) or with a low imputation quality (Rsq<0·3) were excluded from the analysis. The genomic 

inflation factor (λ) of the results was calculated with the GenABEL package v1.8-0.14 

 

GCTA-COJO 1.26.015 was used for conditional regression analyses to identify independent loci taking 

into account the underlying LD structure in the study sample. Independent variants showing a 

p<5·0x10-5 were followed up in the replication stage. Regional association plots were generated using 

LocusZoom16 based on LD information of European populations from the 1000 Genomes Project 

(1KGP)17 and gene information from the UCSC browser data. 

 
Statistical analyses for replication stage  

Pre-phasing and variant imputation in MESSI were conducted with MACH v1.0,18 using the 

European population from 1KGP Phase 1 v2 as the reference panel. Logistic regression models were 

performed assuming additive inheritance using R 3.3.2 stats package (glm function, binomial 

distribution),5 considering the first two PCs, age, and sex as covariates. All the investigated variants in 

MESSI had a MAF >1% and Rsq >0·3. As described elsewhere,8 for the SepNet study SHAPEIT v2.r7909 

was utilized for pre-phasing, and IMPUTE2 v2.3.119 was used for variant imputation considering the 

1KGP Phase 1 v3 data as the reference panel. Logistic regressions were performed with SNPTEST v2.5,19 

which included the first three PCs, sex, age, and APACHE II as covariates. All the assessed variants in 

SepNet had MAF >1%, no evidence for deviations from HWE (p>1·0x10−10) and an INFO Score >0·8. To 

combine the results from MESSI and SepNet, a meta-analysis was assessed using METASOFT v2.0.1.13 

 

Meta-analysis of discovery and replication stages 

A meta-analysis across discovery and replication stages was performed with METASOFT v2.0.113 to 

estimate the overall effect size of the SNPs reaching nominal significance in replication stage. Fixed-

effects or Han and Eskin's Random-effects models were used based on the Cochran's Q test 

significance. Genome-wide significance was declared with a meta-analysed significance of p<9·26x10-

8 according to the most recent empirical estimations in European populations.20 The same 

approximation was used for the sensitivity analysis of the association of the sentinel variant. 
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Statistical power 

Statistical power was estimated using the Genetic Association Study (GAS) Power Calculator.21 We 

assumed a multiplicative model, a GWAS with a sample size of 630 cases and 1,302 controls, a relative 

risk of 1·5 and a prevalence of 0·1, the study had 80·4% statistical power for detecting associated 

variants with MAF of 0·30 or greater at significance level of p<9·26x10-8. 

 
FLT1 and VEGFA gene expression and functional annotation of genetic variants 

Total RNAs from nine lung biopsies of healthy individuals obtained from the Gift of Hope Network 

Regional Organ Bank of Il (GOH/ROBI) were isolated and subjected to RNA-sequencing. Expression 

levels of FLT1 and VEGFA were expressed in counts per million (Shwu-Fan Ma and Imre Noth, personal 

communication). Additionally, the ExAtlas tool22 was used to explore public gene expression data 

available (GSE32707) from a peripheral blood transcriptomics analysis in 88 critically-ill adult patients 

that were evaluated for sepsis and ARDS.23 For this analysis we used ANOVA followed by pairwise 

Student’s t-tests to assess the differences in average intensities of the array probe targeting FLT1 

(ILMN_1752307, which targets exon 30, that is found in the canonical isoform FLT1-201) and VEGFA 

(ILMN_2375879, ILMN_1693060, and ILMN_1803882) between ICU controls (n=34), systemic 

inflammatory response syndrome (SIRS, n=21), sepsis (n=30), and sepsis-associated ARDS patients 

(n=18) at study inclusion. We report uncorrected two-sided p-values. 

 

Next, we used a combination of tools and datasets to evaluate the regulatory potential of the 

associated variants in gene expression (through epigenetic mechanisms, long-distance physical 

interactions, and tissue-specific cis- expression quantitative trait loci (eQTLs)), and the likelihood of 

deleteriousness. These included Capture Hi-C Plotter (CHiCP),24 DeepSea,25 DSNetwork,26 GTEx Analysis 

Release V7,27 HaploReg v4.1,28 Open Targets Genetics,29 RegulomeDB,30 SNPdelScore,31 TIVAN,32 and 

Variant Effect Predictor (VEP).33 

 
CHiCP allows for the determination of empirically-observed physical interactions between distal 

DNA regulatory elements and gene promoters in multiple tissues. DeepSea predicts the epigenetics 

state of a sequence and prioritize regulatory variants by calculating functional significance scores, 

while DSNetwork allows for the selection of the most probable functional SNP from a list of variants 

according to nearly sixty prediction approaches. The GTEx Portal allows for the study of Single-Tissue 

eQTL and tissue-specific gene expression and regulation. HaploReg, Open Targets Genetics, and 

RegulomeDB explore annotations of coding and non-coding variants integrating data from chromatin 
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states, regulatory motifs, eQTLs, pQTLs, DNase I hypersensitive sites, enhancer-transcription start 

sites, and promoter capture Hi-C experiments from different cell lines. Open Targets Genetics puts 

functional information in the context of the UK Biobank association evidence, allowing one to link each 

variant to its proximal and distal target gene(s), using a single evidence score. SNPdelScore combines 

different methods to address deleterious effects of noncoding variants, including the CellulAr 

dePendent dEactivating (CAPE) mutations predictor. Finally, TIVAN allows for the prediction of tissue-

specific cis-eQTL single nucleotide variants, and VEP determines the effect of the variants analysed on 

genes, transcripts, protein sequence, and regulatory regions. 

 

Constructs, transient transfections, and dual-luciferase reporter assays 

A Dual-Luciferase Reporter Assay System® (Promega, Madison, WI) was used to evaluate the 

potential regulatory effect of the ARDS-associated variant on promoter activity. The reporter construct 

was generated by synthesizing (GenScript Inc, Piscataway, NJ) a fragment of 1,032 bp of the FLT1 

promoter (Ensembl ID: ENSR00000060438) plus 284 bp of the 5’ UTR of exon one and 784 bp of the 

upstream sequence (chr13: 29,068,982-29,070,013; GRCh37/hg19 coordinates), and inserting it into a 

promoterless pGL4.10 [luc2] luciferase reporter vector (Promega). This FLT1 promoter region was 

chosen for having the highest activity in vitro in a previous characterization of the gene promoter.34 In 

addition, two regulatory constructs were generated by synthesizing (GenScript Inc, Piscataway, NJ) a 

1·9 kb intron 10 fragment containing either the reference or alternative alleles of the most significantly 

associated variant within FLT1 and its perfect LD proxies (i.e. rs9508032, rs9508034, rs722503, 

rs8002446, rs9513111, r2=1·0) in Europeans (chr13: 28,995,800-28,997,700; GRCh37/hg19 

coordinates) and inserting them into the reporter construct.  

 

The constructed plasmids (50 ng DNA each) and the control plasmid pGL4.74 [hRluc/TK] (10 ng DNA) 

were transiently co-transfected into human lung epithelial (A549) or peripheral blood monocyte (THP-

1) cell lines using the TransIT®-LT1 Transfection Reagent (Mirus Bio LLC, Madison, WI) following 

manufacturer’s protocol. A549 and THP-1 cells were separately grown in 10% DMEM or 10% RPM 1640 

media, respectively, and were plated into white 96-well plates until confluency. Twenty-four hours 

after transfection, cells were collected and luminescence was measured by Dual-Luciferase Reporter 

Assay System according to manufacturer’s instructions using a Cytation5 plate reader (BioTek, 

Winooski, VT). Luminescence experiments were performed four to eight times, with each transfection 

in triplicate. Following manufacturer's instructions,35 to reduce variability, simplify comparisons and 

improve significance, promoter activities were expressed as the relative response ratio of Firefly 

luciferase/Renilla luciferase luminescence according to the formula: 



Chapters 

 

72 
 

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑟𝑎𝑡𝑖𝑜 =
(𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒 𝑟𝑎𝑡𝑖𝑜) − (𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑟𝑎𝑡𝑖𝑜)

(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑟𝑎𝑡𝑖𝑜) − (𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑟𝑎𝑡𝑖𝑜)
 

 

We considered the construct including only the FLT1 promoter as the positive control and the 

promoterless construct as the negative control (see figure 4A). Mean differences among the 

independent experimental groups were assessed by non-parametric Wilcoxon signed-rank test. Again, 

we report uncorrected two-sided p-values. 

 

Literature mining of previously reported ARDS-associated genes 

In order to evaluate genes that were previously associated with ARDS, we conducted a bibliographic 

search on PubMed for all studies reporting genes which were significantly associated with ARDS from 

December 2015 to November 2018. This updated result was merged with a list of all published studies 

we collected up to December 2015 available elsewhere.36–38 For that search, we used combinations of 

the terms “acute respiratory distress syndrome”, “ARDS” OR “acute lung injury” with “polymorphism” 

OR “genetic variant” and retrieved seven publications reporting five additional candidate ARDS genes 

in adults. Association results in the discovery stage were extracted and an effective number of 

independent signals per gene was measured using the Genetic Type I Error Calculator39 in order to 

adjust for multiple testing. Significant association was declared if any of the individual variants 

surpassed one of two Bonferroni-corrected significant levels. We considered a study-wise adjustment 

accounting for all the independent tests across all genes, and a gene-wise adjustment just accounting 

- i.e. adjusting for the independent variants mapping at individual genes. 

 

Evaluation of FLT1 variants in a trauma-associated ARDS cohort 

We evaluated if the FLT1 sentinel variant and perfect proxies also associated with non-sepsis ARDS. 

For that, we accessed the table S2 of the only GWAS of trauma-associated ARDS published to date,40 

containing publicly available (but incomplete) summary data. We found that none of the FLT1 variants 

that achieved genome-wide significance in sepsis-associated ARDS were present in that study because 

of the reference panel used for variant imputation. Despite this, it was reassuring to find that out of 

13 FLT1 SNPs listed (all within a region of 31 kb and showing nominally significant associations with 

ARDS after trauma), six were also located in intron 10 (p-values in the range of 9·15x10-4 to 2·44x10-3). 

However, their LD with the sentinel variant of our study was weak in Europeans (r2=0·13).  

 

 



Chapters 

 

73 
 

References 

1 Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for 

Sepsis and Septic Shock (Sepsis-3). JAMA 2016; 315: 801–10. 

2 ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, et al. Acute respiratory distress syndrome: 

the Berlin Definition. JAMA 2012; 307: 2526–33. 

3 Nicolazzi EL, Iamartino D, Williams JL. AffyPipe: an open-source pipeline for Affymetrix Axiom 

genotyping workflow. Bioinformatics 2014; 30: 3118–9. 

4 Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to 

the challenge of larger and richer datasets. Gigascience 2015; 4: 7. 

5 R Core Team. R: A language and environment for statistical computing. R Found Stat Comput 

Vienna, Austria 2013. http://www.r-project.org/. Accessed September 2017. 

6 International HapMap 3 Consortium, Altshuler DM, Gibbs RA, et al. Integrating common and rare 

genetic variation in diverse human populations. Nature 2010; 467: 52–8. 

7 Reilly JP, Wang F, Jones TK, et al. Plasma angiopoietin-2 as a potential causal marker in sepsis-

associated ARDS development: evidence from Mendelian randomization and mediation analysis. 

Intensive Care Med 2018; 44: 1849–58. 

8 Scherag A, Schöneweck F, Kesselmeier M, et al. Genetic Factors of the Disease Course after Sepsis: 

A Genome-Wide Study for 28Day Mortality. EBioMedicine 2016; 12: 239–46. 

9 Delaneau O, Howie B, Cox AJ, Zagury J-F, Marchini J. Haplotype estimation using sequencing reads. 

Am J Hum Genet 2013; 93: 687–96. 

10 McCarthy S, Das S, Kretzschmar W, et al. A reference panel of 64,976 haplotypes for genotype 

imputation. Nat Genet 2016; 48: 1279–83. 

11 Das S, Forer L, Schönherr S, et al. Next-generation genotype imputation service and methods. Nat 

Genet 2016; 48: 1284–7. 

12 Kang H. Efficient and parallelisable association container toolbox (EPACTS). 

http://genome.sph.umich.edu/wiki/EPACTS 2014. Accessed October 2017. 

13 Han B, Eskin E. Random-Effects Model Aimed at Discovering Associations in Meta-Analysis of 

Genome-wide Association Studies. Am J Hum Genet 2011; 88: 586–98. 

14 Aulchenko YS, Ripke S, Isaacs A, van Duijn CM. GenABEL: an R library for genome-wide association 



Chapters 

 

74 
 

analysis. Bioinformatics 2007; 23: 1294–6. 

15 Zhu Z, Zheng Z, Zhang F, et al. Causal associations between risk factors and common diseases 

inferred from GWAS summary data. Nat Commun 2018; 9: 224. 

16 Pruim RJ, Welch RP, Sanna S, et al. LocusZoom: regional visualization of genome-wide association 

scan results. Bioinformatics 2010; 26: 2336–7. 

17 1000 Genomes Project Consortium RA, Auton A, Brooks LD, et al. A global reference for human 

genetic variation. Nature 2015; 526: 68–74. 

18 Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR. MaCH: using sequence and genotype data to estimate 

haplotypes and unobserved genotypes. Genet Epidemiol 2010; 34: 816–34. 

19 Marchini J, Howie B, Myers S, McVean G, Donnelly P. A new multipoint method for genome-wide 

association studies by imputation of genotypes. Nat Genet 2007; 39: 906–13. 

20 Kanai M, Tanaka T, Okada Y. Empirical estimation of genome-wide significance thresholds based 

on the 1000 Genomes Project data set. J Hum Genet 2016; 61: 861–6. 

21 Johnson JL, Abecasis GR. GAS Power Calculator: web-based power calculator for genetic 

association studies. bioRxiv 2017. Doi: https://doi.org/10.1101/164343. 

22 Sharov AA, Schlessinger D, Ko MSH. ExAtlas: An interactive online tool for meta-analysis of gene 

expression data. J Bioinform Comput Biol 2015; 13: 1550019. 

23 Dolinay T, Kim YS, Howrylak J, et al. Inflammasome-regulated cytokines are critical mediators of 

acute lung injury. Am J Respir Crit Care Med 2012; 185: 1225–34. 

24 Schofield EC, Carver T, Achuthan P, et al. CHiCP: a web-based tool for the integrative and 

interactive visualization of promoter capture Hi-C datasets. Bioinformatics 2016; 32: 2511–3. 

25 Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with deep learning-based 

sequence model. Nat Methods 2015; 12: 931–4. 

26 Lemaçon A, Scott-Boyer M-P, Soucy P, Ongaro-Carcy R, Simard J, Droit A. DSNetwork: An 

integrative approach to visualize predictions of variants’ deleteriousness. bioRxiv 526335 2019. 

Doi:https://doi.org/10.1101/526335. 

27 GTEx Consortium J, Thomas J, Salvatore M, et al. The Genotype-Tissue Expression (GTEx) project. 

Nat Genet 2013; 45: 580–5. 

28 Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and 



Chapters 

 

75 
 

regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res 2012; 40: D930-

4. 

29 Carvalho-Silva D, Pierleoni A, Pignatelli M, et al. Open Targets Platform: new developments and 

updates two years on. Nucleic Acids Res 2019; 47: D1056–65. 

30 Boyle AP, Hong EL, Hariharan M, et al. Annotation of functional variation in personal genomes 

using RegulomeDB. Genome Res 2012; 22: 1790–7. 

31 Vera Alvarez R, Li S, Landsman D, Ovcharenko I. SNPDelScore: combining multiple methods to 

score deleterious effects of noncoding mutations in the human genome. Bioinformatics 2017; 34: 289–

91. 

32 Chen L, Wang Y, Yao B, Mitra A, Wang X, Qin X. TIVAN: Tissue-specific cis-eQTL single nucleotide 

variant annotation and prediction. Bioinformatics 2018; published online Oct 10. 

Doi:10.1093/bioinformatics/bty872. 

33 McLaren W, Gil L, Hunt SE, et al. The Ensembl Variant Effect Predictor. Genome Biol 2016; 17: 122. 

34 Morishita K, Johnson DE, Williams LT. A novel promoter for vascular endothelial growth factor 

receptor (flt-1) that confers endothelial-specific gene expression. J Biol Chem 1995; 270: 27948–53. 

35 Eggers C, Hook B, Lewis S, Strayer C, Landreman A. Designing a Bioluminescent Reporter Assay: 

Normalization. Promega Corp. Web site. http://www.promega.es/resources/pubhub/designing-a-

bioluminescent-reporter-assay-normalization/ 2016. Accessed April 23, 2019. 

36 Flores C, Pino-Yanes M del M, Villar J. A quality assessment of genetic association studies 

supporting susceptibility and outcome in acute lung injury. Crit Care 2008; 12: R130. 

37 Acosta-Herrera M, Pino-Yanes M, Perez-Mendez L, Villar J, Flores C. Assessing the quality of 

studies supporting genetic susceptibility and outcomes of ARDS. Front Genet 2014; 5: 20. 

38 Guillén‐Guío B, Acosta‐Herrera M, Villar J, Flores C. Genetics of Acute Respiratory Distress 

Syndrome. eLS. John Wiley Sons 2016. DOI: 10.4046/trd.2001.51.1.5 

39 Li M-X, Yeung JMY, Cherny SS, Sham PC. Evaluating the effective numbers of independent tests 

and significant p-value thresholds in commercial genotyping arrays and public imputation reference 

datasets. Hum Genet 2012; 131: 747–56. 

40 Christie JD, Wurfel MM, Feng R, et al. Genome wide association identifies PPFIA1 as a candidate 

gene for acute lung injury risk following major trauma. PLoS One 2012; 7: e28268. 



Chapters 

 

76 
 

Supplementary Figures 

 
Supplementary Figure 1. Principal component analysis. Plot of the first two principal components (PC) 
of individuals analyzed in the discovery stage were projected on the HapMap3 reference dataset. 
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Supplementary Figure 2. Quantile-Quantile (Q-Q) plot. Observed versus expected -log10 p-values for 
the GWAS results of the discovery stage. 
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Supplementary Figure 3. FLT1 and VEGFA gene expression in critical care patients. Probe intensities 
of expression arrays obtained from peripheral blood samples from ICU controls (n=34), systemic 
inflammatory response syndrome (SIRS, n=21), sepsis (n=30) and sepsis-associated ARDS patients 
(n=18) at study inclusion. Note that the probe ILMN_1752307 targets FLT1 exon 30, which is found in 
the canonical isoform (FLT1-201), one of the most highly expressed isoforms of the gene. Differences 
in average intensities were assessed using ANOVA followed by t-tests. GEO accession: GSE32707.23 
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Supplementary Tables 
 

Supplementary Table 1. Top 53 independent SNPs associated with ARDS in the discovery stage (p<5·0x10-5). 

Variant Chr Position (hg19) Gene A1/A2 MAF OR [95% CI] p-value 

rs598782 1 202572596 SYT2 T/C 0·173 0·49 [0·35, 0·69] 3·16x10-5 

 rs10917581 1 162624504 DDR2 G/A 0·262 0·56 [0·42, 0·74] 4·37x10-5 

rs56865040 2 30907832 LCLAT1-CAPN13 G/A 0·066 3·35 [1·95, 5·77] 1·24x10-5 

rs58982889 3 85080936 CADM2 C/G 0·483 0·57 [0·44, 0·73] 1·37x10-5 

rs12494792 3 54631523 CACNA2D3 A/G 0·251 1·82 [1·38, 2·40] 2·52x10-5 

rs71331755 3 134040335 RYK-AMOTL2 C/G 0·237 1·83 [1·37, 2·43] 3·20x10-5 

rs76763432 4 20933002 KCNIP4 T/C 0·114 2·36 [1·60, 3·48] 1·38x10-5 

rs12513121 4 126763999 FAT4-INTU A/C 0·302 0·55 [0·43, 0·72] 1·48x10-5 

rs11097547 4 77763070 SHROOM3-SOWAHB G/A 0·200 1·95 [1·44, 2·64] 1·51x10-5 

rs78119818 4 78068598 CCNI-CCNG2 A/T 0·048 3·79 [2·03, 7·06] 2·81x10-5 

rs10518480 4 126898260 FAT4-INTU G/A 0·202 1·93 [1·41, 2·64] 3·46x10-5 

rs66691935 4 184540486 ING2-RWDD4 T/C 0·175 1·97 [1·43, 2·71] 3·67x10-5 

rs62300402 4 66422737 EPHA5 G/A 0·276 0·56 [0·42, 0·74] 4·46x10-5 

rs66486976 5 177602232 NHP2-GMCL2 T/C 0·313 0·55 [0·42, 0·71] 1·00x10-5 

rs58681704 5 133268913 FSTL4-C5orf15 A/G 0·202 0·51 [0·37, 0·70] 3·18x10-5 

rs62390494 5 177493565 FAM153C-N4BP3 T/C 0·199 1·90 [1·40, 2·60] 4·53x10-5 

rs9453845 6 67330152 EYS-ADGRB3 T/G 0·107 0·41 [0·27, 0·62] 2·81x10-5 

rs3003179 6 74677167 CD109-COL12A1 A/G 0·279 1·76 [1·35, 2·30] 3·20x10-5 

rs58277258 6 129194762 LAMA2 C/T 0·084 2·69 [1·68, 4·30] 3·88x10-5 

rs12197618 6 85969855 TBX18-NT5E A/G 0·053 3·58 [1·95, 6·57] 4·01x10-5 

rs9367172 6 43709993 MRPS18A-VEGFA A/G 0·237 0·55 [0·41, 0·73] 4·69x10-5 

rs72611587 7 146905995 CNTNAP2 T/C 0·140 2·16 [1·51, 3·09] 2·78x10-5 

rs7777943 7 150483237 GIMAP5-TMEM176B G/A 0·277 0·57 [0·44, 0·74] 3·18x10-5 

rs12678166 8 8520530 PRAG1-CLDN23 T/C 0·152 2·05 [1·46, 2·89] 3·80x10-5 

rs796455145 9 5487547 PLGRKT C/T 0·411 1·74 [1·37, 2·22] 7·49x10-6 

rs4740791 9 4611901 SPATA6L  T/C 0·087 2·62 [1·66, 4·12] 3·14x10-5 

rs2734600 9 33753355 PRSS3 T/C 0·152 0·48 [0·33, 0·68] 3·76x10-5 

rs1751276 10 4477665 KLF6-AKR1E2 A/G 0·123 2·53 [1·70, 3·77] 4·85x10-6 

rs1867966 10 71187839 TACR2-TSPAN15 G/A 0·430 0·58 [0·45, 0·74] 1·32x10-5 

rs11195238 10 112388857 SMC3-RBM20 T/C 0·151 0·47 [0·33, 0·67] 2·97x10-5 

rs10795549 10 7582855 SFMBT2-ITIH5 C/A 0·478 0·60 [0·47, 0·76] 3·02x10-5 

rs10736526 11 122589092 UBASH3B C/T 0·207 0·50 [0·37, 0·67] 3·73x10-6 

rs61710829 11 126566557 KIRREL3 G/C 0·378 1·71 [1·33, 2·20] 3·07x10-5 

rs602124 11 69388853 MYEOV-CCND1 C/G 0·297 1·77 [1·35, 2·31] 3·15x10-5 

rs76921243 12 26606699 ITPR2 A/G 0·056 0·25 [0·13, 0·47] 1·81x10-5 

rs1861180 12 12958559 DDX47 T/C 0·088 0·40 [0·25, 0·62] 4·07x10-5 

rs1904566 12 68125847 DYRK2-IFNG C/A 0·420 1·69 [1·31, 2·17] 4·49x10-5 

rs9508032 13 28995940 FLT1 T/C 0·288 0·49 [0·38, 0·65] 2·62x10-7 

rs8001184 13 90603540 SLITRK5-GPC5 A/C 0·483 1·65 [1·30, 2·10] 4·48x10-5 

rs946626 14 49140883 MDGA2-RPS29 A/G 0·428 1·73 [1·36, 2·20] 8·59x10-6 

rs7161717 14 26389695 STXBP6-NOVA1 C/T 0·132 0·44 [0·30, 0·64] 2·54x10-5 

rs4887263 15 86626153 AGBL1 A/C 0·096 2·73 [1·74, 4·28] 1·19x10-5 

rs12902176 15 65518664 CILP-PARP16 G/A 0·268 1·78 [1·35, 2·35] 4·04x10-5 

rs11647343 16 84454267 ATP2C2 C/A 0·384 1·75 [1·36, 2·24] 1·05x10-5 

rs244783 16 84360055 WFDC1 T/G 0·212 1·97 [1·45, 2·69] 1·77x10-5 

rs4791367 17 9724374 GLP2R G/A 0·092 0·35 [0·22, 0·56] 1·25x10-5 

rs9675656 18 2947220 LPIN2 C/G 0·109 2·44 [1·63, 3·66] 1·65x10-5 

rs397195 19 6619504 CD70-TNFSF14 G/C 0·354 1·71 [1·32, 2·20] 3·44x10-5 

rs285251 19 16415993 AP1M1-KLF2 C/T 0·286 0·56 [0·42, 0·74] 4·00x10-5 
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rs6040856 20 11702045 JAG1-BTBD3 G/C 0·354 1·68 [1·32, 2·15] 3·16x10-5 

rs2831537 21 29516376 ADAMTS5-N6AMT1 T/C 0·462 0·57 [0·45, 0·73] 7·65x10-6 

rs4817154 21 28477085 ADAMTS5-N6AMT1 A/G 0·082 2·59 [1·64, 4·10] 4·57x10-5 

rs1155955 X 67297091 OPHN1 G/A 0·120 3·12 [1·83, 5·31] 2·87x10-5 

A1, Effect allele; A2, Non-effect allele; CI, Confidence Interval; MAF, Minor Allele Frequency; OR, Odd Ratio. 
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Supplementary Table 3. Sensitivity analysis for the rs9508032 in the three cohorts together. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

  OR [95% CI] p-value 

Unadjusted* 0·62 [0·43, 0·90] 1·07x10-7 

Sex 0·62 [0·43, 0·90] 1·11x10-7 

Age 0·62 [0·43, 0·90] 1·30x10-7 

APACHE† 0·61 [0·40, 0·93] 1·81x10-8 

Smokers‡ 0·58 [0·42, 0·80] 9·72x10-4†† 

Previous surgery§ 0·64 [0·50, 0·83] 7·35x10-4†† 

Ischemic cardiac disease§ 0·56 [0·45, 0·70] 3·05x10-7‡‡ 

Pulmonary sepsis 0·61 [0·41, 0·91] 9·12x10-8‡‡ 

Mortality¶ 0·62 [0·41, 0·94] 2·51x10-7 

Pathogen‡ 0·48 [0·34, 0·68] 2·34x10-5†† 

Multi organ dysfunction|| 0·61 [0·41, 0·91] 1·03x10-7 

Comorbidities** 0·62 [0·40, 0·94] 1·56x10-7‡‡ 

*Unadjusted data for GEN-SEP, adjustment for 2 PC for MESSI, and adjustment for 3 PC for 
SepNet; †APACHE III was measured for the MESSI Cohort and APACHE II for GEN-SEP and 
SepNet Cohorts; ‡There was only information available for GEN-SEP study; §There was not 
information available for MESSI study; ¶ICU mortality was considered for the GENSEP cohort, 
30-day mortality was considered for the MESSI Cohort, and 28-day mortality for the SepNet 
cohort; ||Two or more affected organs; **For the GEN-SEP and SepNet studies, comorbidities 
considered are autoimmune diseases, cancer, chronic diseases, diabetes, hepatopathies, 
immunosuppression, kidney diseases, morbid obesity, pregnancy, severe infections, severe 
brain damage, and valvulopathies. For MESSI, comorbidities are defined as 
immunocompromise (cancer receiving treatment, hematologic malignancy, AIDS, metastatic 
cancer, or receiving immunosuppressive medication), cirrhosis, congestive heart failure, or 
chronic renal insufficiency including dialysis; ††Missing data for more than 35% of individuals 
from the GEN-SEP study; ‡‡Missing data for the 15-20% of individuals from the GEN-SEP study. 
APACHE, Acute Physiology and Chronic Health Evaluation; ICU, intensive care unit; OR, Odd 
Ratio; CI, Confidence Interval. 
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Supplementary Table 5. Prediction of ICU survival for the sentinel variant at FLT1 in GEN-SEP  

  OR [95% CI] p-value 

Sepsis 1·00 [0·81, 1·24] 0·974 

ARDS 1·16 [0·87, 1·54] 0·307 

Data were obtained using Cox regression models adjusted for age, sex, and APACHE II scores. 
APACHE II, Acute Physiology and Chronic Health Evaluation II; ICU, intensive care unit; OR, Odd 
Ratio; CI, Confidence Interval. 
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Supplementary Table 6. Expression of FLT1 and VEGFA isoforms in lung tissue. 

Name Average SD 

FLT1-201 5,928 2,803 

FLT1-202 5 5 

FLT1-203 6 4 

FLT1-204 20 12 

FLT1-205 6 7 

FLT1-206 12 12 

FLT1-207 3,998 2,492 

FLT1-208 2 2 

VEGFA-203 0 0 

VEGFA-226 11 28 

VEGFA-209 0 0 

VEGFA-207 12 14 

VEGFA-205 3,804 3,543 

VEGFA-213 0 0 

VEGFA-228 5 12 

VEGFA-229 2,748 2,824 

VEGFA-208 0 0 

VEGFA-204 0 0 

VEGFA-227 1,804 3,203 

VEGFA-220 5 7 

VEGFA-202 0 0 

VEGFA-224 0 0 

VEGFA-222 1,536 1,704 

VEGFA-218 94 81 

VEGFA-225 9 27 

VEGFA-219 0 1 

VEGFA-223 1 4 

VEGFA-201 69 75 

VEGFA-206 1,232 1,325 

VEGFA-210 1 4 

VEGFA-221 1 1 

VEGFA-212 3,393 2,676 

VEGFA-215 4,193 3,631 

VEGFA-211 52 41 

VEGFA-214 83 105 

VEGFA-217 8 15 

VEGFA-216 161 158 

No data was available for the isoforms FLT1-209, VEGFA-230, VEGFA-231, or 
VEGFA-232. SD, standard deviation. Values are given in counts per million. 
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Supplementary Table 7. Functional annotation of the FLT1 top hit (rs9508032) and the most promising two 
proxies. 
 

 

 

 

  rs9508032 rs722503 rs8002446 

Functional significance 
score predicted with 

DeepSEA 
0·13 <0·05 0·10 

regulomedB Score (5) TF binding or Dnase peak 
(3a) TF binding + any motif + Dnase 

peak 
(4) TF binding + Dnase peak 

Enhancer histone marks H3K4me1*, H3K27ac† H3K4me1‡, H3K27ac§ H3K4me1¶, H3K27ac|| 

Promoter histone marks H3K4me3**, H3K9ac†† H3K4me3‡‡, H3K9ac§§ H3K4me3¶¶, H3K9ac§§ 

DNAse 
HSC & B-cell, Monocytes-

CD14+ RO01746 Primary Cells 
HSC & B-cell, ES-deriv 

IMR90, iPSC, Blood & T-cell, HSC & 
B-cell, Epithelial, Thymus, Muscle, 

Fetal Kidney, Fetal Lung, Ovary, 
Placenta, GM12878 

Lymphoblastoid Cells, Monocytes-
CD14+ RO01746 Primary Cells 

Altered regulatory motifs Cdc5, Gfi-1, HNF1, Mef2 CCNT2, MAZR, NF-kappaB, Spz1 None 

Proteins bound None POL2, NFKB 
BCL11A, EBF1, EBF1, ELF1, 

PAX5C20, PAX5N19, PU1, SP1, PU1, 
POL2, CMYC, MAX 

CHICP 
CD34: POMP (11·36); GM12878: POMP (9·71), FLT1 (10·97), SLC46A3/RNU6-53P (9·91), PAN3 (9·13), 

SLC46A3/CYP51A1P2 (8·63) 

Open Targets Genetics None None FLT3 (top ranked), POMP, PAN3 

eQTLs None None None 

Score CAPE dsQTL >0·5 
HUVEC, A549 EtOH 0.02pct 

Lung Carcinoma Cell Line 
None None 

Score CAPE eQTL >0·5 None 

HUVEC, NHLF Lung Fibroflast Primary 
Cells, NHDF-Adult Dermal Fibroflast 

Primary Cells, Monocytes-CD14+ 
RO01746 Primary Cells, A549 EtOH 
0·02pct Lung Carcinoma Cell Line, 
Foreskin Fibroblast Primary Cells 

skin01, IMR90 fetal lung fibroblasts 
Cell Line 

A549 EtOH 0·02pct Lung Carcinoma 
Cell Line 

CAPE, Cellular dependent deactivating mutations; CD34, human hematopoietic progenitor cell line; GM12878, lymphoblastoid 
cell line; HUVEC, Human umbilical vein endothelial cell; IMR90, Human foetal lung cells; NHDF, Normal Human Dermal 
Fibroblasts; NHLF, Normal human lung fibroblasts. *IMR90, ESC, iPSC, ES-deriv, Blood & T-cell, HSC & B-cell, Epithelial, Brain, 
Adipose, Muscle, Heart, Fetal Lung, Fetal Adrenal Gland, Liver, Spleen, GM12878 Lymphoblastoid Cells, HUVEC Umbilical Vein 
Endothelial Primary Cells, Monocytes-CD14+ RO01746 Primary Cells. †iPSC, ES-deriv, HSC & B-cell, Epithelial, Adipose, Spleen, 
GM12878 Lymphoblastoid Cells, HUVEC Umbilical Vein Endothelial Primary Cells. ‡IMR90, ESC, iPSC, ES-deriv, Blood & T-cell, 
HSC & B-cell, Epithelial, Thymus, Brain, Adipose, Muscle, Heart, Digestive, Fetal Lung, Fetal Adrenal Gland, Placenta, Liver, 
Lung, Spleen, Dnd41 TCell Leukemia Cell Line, GM12878 Lymphoblastoid Cells, HUVEC Umbilical Vein Endothelial Primary Cells, 
K562 Leukemia Cells, Monocytes-CD14+ RO01746 Primary Cells. §iPSC, HSC & B-cell, Brain, Adipose, Heart, Digestive, Liver, 
Dnd41 TCell Leukemia Cell Line, GM12878 Lymphoblastoid Cells, HUVEC Umbilical Vein Endothelial Primary Cells, Monocytes-
CD14+ RO01746 Primary Cells. ¶ESC, iPSC, ES-deriv, Blood & T-cell, HSC & B-cell, Epithelial, Thymus, Brain, Adipose, Muscle, 
Heart, Digestive, Fetal Lung, Fetal Adrenal Gland, Placenta, Liver, Lung, Spleen, Dnd41 TCell Leukemia Cell Line, GM12878 
Lymphoblastoid Cells, HUVEC Umbilical Vein Endothelial Primary Cells, Monocytes-CD14+ RO01746 Primary Cells. ||iPSC, HSC 
& B-cell, Epithelial, Brain, Adipose, Heart, Digestive, Ovary, Liver, Dnd41 TCell Leukemia Cell Line, GM12878 Lymphoblastoid 
Cells, HUVEC Umbilical Vein Endothelial Primary Cells, Monocytes-CD14+ RO01746 Primary Cells. **HSC & B-cell, Monocytes-
CD14+ RO01746 Primary Cells. ††iPSC, Adipose, Digestive. ‡‡Blood & T-cell, HSC & B-cell, Brain, Adipose, Heart, Digestive, Liver, 
Dnd41 TCell Leukemia Cell Line, GM12878 Lymphoblastoid Cells, Monocytes-CD14+ RO01746 Primary Cells. §§Blood & T-cell, 
Adipose, Sm. Muscle, Dnd41 TCell Leukemia Cell Line, GM12878 Lymphoblastoid Cells, Monocytes-CD14+ RO01746 Primary 
Cells. ¶¶Blood & T-cell, HSC & B-cell, Brain, Dnd41 TCell Leukemia Cell Line, GM12878 Lymphoblastoid Cells, Monocytes-CD14+ 
RO01746 Primary Cells 
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Supplementary Table 8. Signals of replication at gene level in the GEN-SEP dataset within 100 kb of 

previously reported candidate genes. 

 

Gene 
Independent 

signals 

Gene-wise 
Bonferroni p-value 

threshold 
SNP min p-value A1/A2 OR [95% CI] p-value 

ABCC1 275·18 1·82x10-4 rs246233 G/T 1·98 [1·21, 3·25] 6·79x10-3 

ACE 72·94 6·85x10-4 rs9857615 T/C 0·70 [0·49, 0·98] 3·89x10-2 

ADA 137·74 3·63x10-4 rs17687734 G/A 2·60 [1·31, 5·16] 6·31x10-3 

ADGRV1 640·97 7·80x10-5 rs6094023 A/G 0·48 [0·29, 0·79] 3·65x10-3 

ADIPOQ 288·87 1·73x10-4 rs114210898 A/G 1·34 [1·05, 1·72] 2·06x10-2 

ADRBK2 318·26 1·57x10-4 rs1467387 C/T 0·67 [0·50, 0·89] 5·96x10-3 

AGER* 363·32 1·38x10-4 rs61746206 T/C 0·32 [0·13, 0·83] 1·83x10-2 

AGT 303·17 1·65x10-4 rs1078499 G/A 0·69 [0·53, 0·91] 8·68x10-3 

AGTR1 281·4 1·78x10-4 rs275643 A/G 1·86 [1·24, 2·80] 2·70x10-3 

AHR 201·39 2·48x10-4 rs140084506 T/C 4·69 [1·26, 17·4] 2·10x10-2 

ANGPT2 456·67 1·09x10-4 rs2442570 A/G 0·43 [0·24, 0·76] 3·76x10-3 

APOA1 236·49 2·11x10-4 rs2513094 C/T 1·36 [1·03, 1·79] 2·99x10-2 

ARSD 159·08 3·14x10-4 rs1698814 C/T 1·45 [1·08, 1·96] 1·46x10-2 

BCL11A 262·4 1·91x10-4 rs76064527 A/C 1·90 [1·08, 3·37] 2·69x10-2 

CBS 160·35 3·12x10-4 rs2401154 T/C 1·49 [1·06, 2·08] 2·03x10-2 

CELF2 669·82 7·46x10-5 rs76209150 T/G 2·65 [1·33, 5·26] 5·50x10-3 

CHIT1 269·23 1·86x10-4 rs1845466 T/G 0·64 [0·49, 0·83] 8·63x10-4 

CLASRP 113·15 4·42x10-4 rs10405859 C/T 0·71 [0·56, 0·91] 6·50x10-3 

CXCL2 96·08 5·20x10-4 rs28574621 C/G 0·30 [0·09, 0·94] 3·85x10-2 

CXCR2 98·44 5·08x10-4 rs12989315 A/G 2·26 [1·26, 4·07] 6·36x10-3 

CYP1A1 82·88 6·03x10-4 rs17861120 G/A 0·51 [0·32, 0·83] 6·20x10-3 

DARC 202·96 2·46x10-4 rs55833893 T/C 0·31 [0·14, 0·68] 3·66x10-3 

DIO2 158·36 3·16x10-4 rs17176215 G/A 0·24 [0·07, 0·87] 2·96x10-2 

EGF 240·96 2·08x10-4 rs146141236 C/T 0·22 [0·09, 0·55] 1·25x10-3 

EGLN1* 144·18 3·47x10-4 rs141921538 T/C 4·56 [1·44, 14·39] 9·75x10-3 

EPAS1 417·3 1·20x10-4 rs11888926 G/C 1·65 [1·19, 2·28] 2·63x10-3 

F5 269·74 1·85x10-4 rs144628673 A/G 5·37 [1·51, 19·05] 9·37x10-3 

FAAH 187·13 2·67x10-4 rs78918625 G/C 0·17 [0·04, 0·78] 2·30x10-2 

FAS 239·16 2·09x10-4 rs61852572 G/A 0·60 [0·41, 0·89] 1·11x10-2 

FER* 644·44 7·76x10-5 rs10515395 C/T 1·82 [1·22, 2·71] 3·28x10-3 

FTL 143·23 3·49x10-4 rs140747916 T/A 1·70 [1·08, 2·66] 2·12x10-2 

FZD2 125·26 3·99x10-4 rs9900767 T/C 0·50 [0·28, 0·90] 2·09x10-2 

GADD45A 184·53 2·71x10-4 rs344923 G/A 1·33 [1·05, 1·70] 1·92x10-2 

GHR 322·68 1·55x10-4 rs41271073 A/G 0·34 [0·15, 0·74] 6·48x10-3 

GP5 210·56 2·37x10-4 rs7611390 T/C 0·57 [0·41, 0·81] 1·63x10-3 

GRM3 285·81 1·75x10-4 rs6974073 A/C 1·59 [1·02, 2·47] 4·01x10-2 

HAS1 225·37 2·22x10-4 rs113174648 G/C 1·51 [1·12, 2·03] 7·03x10-3 

HECTD2 174·41 2·87x10-4 rs11186608 T/G 0·71 [0·56, 0·89] 3·23x10-3 

HMOX1 129·66 3·86x10-4 rs4645773 T/C 0·35 [0·16, 0·75] 6·49x10-3 

HMOX2 119·94 4·17x10-4 rs190300249 T/C 0·34 [0·12, 0·93] 3·51x10-2 

HSPG2 351·59 1·42x10-4 rs72662414 C/A 3·05 [1·03, 9·07] 4·50x10-2 

HTR2A 286·1 1·75x10-4 rs1923886 T/C 1·54 [1·21, 1·96] 5·36x10-4 

IL10 185·14 2·70x10-4 rs79474100 A/T 0·27 [0·10, 0·73] 9·99x10-3 

IL13 86·87 5·76x10-4 rs60153262 T/C 2·94 [1·50, 5·77] 1·74x10-3 

IL18 143·25 3·49x10-4 rs360723 T/A 0·69 [0·49, 0·96] 2·87x10-2 

IL1RN 281·1 1·78x10-4 rs6746416 G/A 1·37 [1·07, 1·76] 1·28x10-2 

IL32 70·73 7·07x10-4 rs12598558 G/T 0·58 [0·38, 0·89] 1·18x10-2 

IL4 91·11 5·49x10-4 rs60153262 T/C 2·94 [1·50, 5·77] 1·74x10-3 
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IL6 236·93 2·11x10-4 rs75897827 A/G 2·70 [1·18, 6·21] 1·91x10-2 

IL8 154·71 3·23x10-4 rs7686667 G/A 2·43 [1·06, 5·61] 3·69x10-2 

IRAK3 186·89 2·68x10-4 rs569436368 A/G 0·26 [0·09, 0·81] 2·05x10-2 

ISG15 8·12 6·16x10-3 rs12093451 A/C 0·50 [0·29, 0·88] 1·55x10-2 

KLK2 201·25 2·48x10-4 rs1701934 T/C 5·03 [1·65, 15·4] 4·61x10-3 

LRRC16A 781·8 6·40x10-5 rs2690123 G/A 1·41 [1·11, 1·8] 5·64x10-3 

LTA 459·6 1·09x10-4 rs45552734 T/C 0·58 [0·41, 0·82] 2·40x10-3 

MAP3K1* 262·39 1·91x10-4 rs1910019 T/C 1·77 [1·25, 2·50] 1·30x10-3 

MAP3K6 86·03 5·81x10-4 rs12742921 C/T 0·72 [0·52, 0·99] 4·53x10-2 

MBL2 250·05 2·00x10-4 rs34546527 C/A 0·44 [0·28, 0·68] 2·50x10-4 

MIF 141·4 3·54x10-4 rs75761219 T/C 0·22 [0·06, 0·76] 1·72x10-2 

MUC5B* 71·73 6·97x10-4 rs2071175 T/C 2·10 [1·18, 3·74] 1·16x10-2 

MYLK 307·19 1·63x10-4 rs16834826 G/A 1·48 [1·15, 1·91] 2·45x10-3 

NAMPT 238·31 2·10x10-4 rs56844330 G/A 0·64 [0·47, 0·87] 5·02x10-3 

NFE2L2 196·18 2·55x10-4 rs2588866 T/C 0·51 [0·30, 0·87] 1·25x10-2 

NFKB1 210·58 2·37x10-4 rs76615823 G/A 3·21 [1·13, 9·14] 2·88x10-2 

NFKBIA 254·35 1·97x10-4 rs75208350 T/C 2·44 [1·15, 5·19] 2·01x10-2 

NOS3 195·41 2·56x10-4 rs41307316 A/G 0·22 [0·10, 0·51] 4·03x10-4 

NQO1 143·23 3·49x10-4 rs116423606 A/G 0·30 [0·09, 0·95] 3·98x10-2 

PDE4B 530·28 9·43x10-5 rs6664875 C/A 0·64 [0·48, 0·85] 1·96x10-3 

PI3 142·59 3·51x10-4 rs877608 A/T 1·98 [1·08, 3·63] 2·71x10-2 

PLAU 116·57 4·29x10-4 rs72816344 A/G 3·50 [1·08, 11·36] 3·73x10-2 

POPDC3 181·91 2·75x10-4 rs1051484 T/C 0·62 [0·46, 0·82] 1·12x10-3 

PPARGC1A 978·39 5·11x10-5 rs6847465 T/C 3·92 [1·51, 10·15] 4·96x10-3 

PPFIA1-SHANK2 881·08 5·67x10-5 rs11602848 C/T 1·71 [1·20, 2·43] 3·01x10-3 

PRKAG2 648·11 7·71x10-5 rs10231047 C/T 0·71 [0·56, 0·89] 2·91x10-3 

S1PR3 243·08 2·06x10-4 rs150901384 G/T 4·57 [1·44, 14·5] 9·79x10-3 

SELPLG 176·88 2·83x10-4 rs8179106 A/G 1·77 [1·17, 2·66] 6·44x10-3 

SERPINE1 207·41 2·41x10-4 rs73168394 A/G 0·33 [0·17, 0·67] 2·22x10-3 

SFTPA1 143·17 3·49x10-4 rs17886197 G/T 1·60 [1·14, 2·26] 7·27x10-3 

SFTPA2 166·37 3·01x10-4 rs17886197 G/T 1·60 [1·14, 2·26] 7·27x10-3 

SFTPB 165·98 3·01x10-4 rs75830997 T/G 3·64 [1·51, 8·73] 3·86x10-3 

SFTPD 222·05 2·25x10-4 rs7082484 C/A 2·27 [1·22, 4·24] 9·55x10-3 

SOD3 175·95 2·84x10-4 rs2361079 C/T 0·59 [0·40, 0·85] 4·55x10-3 

STAT1 161·06 3·10x10-4 rs4853453 A/G 1·58 [1·12, 2·24] 9·30x10-3 

TGFB2 244·72 2·04x10-4 rs75854892 C/T 5·78 [1·60, 20·9] 7·43x10-3 

TIA1 104·96 4·76x10-4 rs11694045 G/T 1·42 [1·11, 1·82] 5·48x10-3 

TIRAP 187·4 2·67x10-4 rs12283024 A/G 0·34 [0·15, 0·78] 1·08x10-2 

TLR1 227·88 2·19x10-4 rs193202734 C/T 5·63 [1·86, 17·01] 2·20x10-3 

TNF 448·83 1·11x10-4 rs45552734 T/C 0·58 [0·41, 0·82] 2·40x10-3 

TNFRSF11A 246·87 2·03x10-4 rs7235828 A/G 0·65 [0·47, 0·89] 7·73x10-3 

TRAF6 185·4 2·70x10-4 rs2458928 A/G 0·68 [0·52, 0·89] 5·39x10-3 

UGT2B7 186·83 2·68x10-4 rs139914109 C/T 7·69 [1·65, 35·87] 9·42x10-3 

VEGFA 262·98 1·90x10-4 rs9367172 A/G 0·55 [0·41, 0·73] 4·69x10-5 

VLDLR 375·76 1·33x10-4 rs10491716 C/A 1·55 [1·19, 2·02] 1·20x10-3 

VWF 403·43 1·24x10-4 rs2239160 G/A 0·42 [0·26, 0·68] 3·28x10-4 

XKR3 97·09 5·15x10-4 rs5994042 A/T 3·23 [1·20, 8·71] 2·03x10-2 

ZNF335 141·92 3·52x10-4 rs1736493 G/A 0·53 [0·31, 0·89] 1·72x10-2 

A1, Effect allele; A2, Non-effect allele; CI, Confidence Interval; OR, Odds ratio for the effect alleles. In bold, 
genes harboring variants reaching the bonferroni threshold. *Genes identified for this study (December 2015 
to November 2018) based on the search of terms “acute respiratory distress syndrome”, “ARDS” OR “acute 
lung injury” with “polymorphism” OR “genetic variant”. 
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Chapter 3. 
 

Early bacterial dysbiosis in the lungs predicts ICU mortality in non-pulmonary 

sepsis patients 
 

Sepsis is the main factor leading to ARDS and an important cause of mortality in ICU. However, 

there is a lack of efficient prognostic methods for sepsis patients. In this chapter, we assessed the lung 

microbiome of patients with non-pulmonary sepsis by means of the analysis of lung aspirate samples 

collected at three different time points (at 8 h of sepsis diagnosis, and after 48 h and 72 h). We used 

NGS technologies to sequence the hypervariable region V4 of the 16S rRNA gene, and bioinformatics 

and statistical tools to determine the bacterial abundance and to perform diversity analyses.   

 
In this single-center study, we observed that bacterial diversity in lung aspirates was significantly 

linked to patient mortality within 8 h of sepsis diagnosis, being much lower in deceased patients and 

presenting a predictive value (area under the curve) of 86.5% in our data, higher than the value 

obtained considering the Acute Physiology and Chronic Health Evaluation II (APACHE II) score. 

Additionally, we observed that lung aspirates from deceased patients presented commensal gut 

bacteria genera and were depleted in healthy lung bacteria genera. Therefore, these results suggest 

the potential of using the microbial diversity as an early prognostic biomarker in patients with sepsis, 

as well as the utility of NGS techniques in clinical practice as a complement to culture-dependent 

methods.  

 
 

 

This study has been published in Intensive Care Medicine with the title "Could lung bacterial 

dysbiosis predict ICU mortality in patients with extra-pulmonary sepsis? A proof-of-concept study" 

(doi: 10.1007/s00134-020-06190-4). It is reproduced under the Springer Nature terms of use. 
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Abstract 

 

Introduction: Sepsis is an important cause of mortality in adult intensive care units (ICUs). The lack of 

efficient prognostic methods for patients with sepsis makes clear the necessity of identifying novel 

early biomarkers. The lung microbiome has a key role in the maintenance of lung immune homeostasis, 

although its link with sepsis outcomes remains unknown. Here we hypothesized that lung bacterial 

dysbiosis is associated with ICU mortality in patients with sepsis. 

 

Materials and methods: A total of 36 patients with non-pulmonary sepsis admitted into a single 

medical-surgical ICU were included in the study. We analyzed 69 tracheal aspirates collected from 

these patients at sepsis diagnosis (within 8 h), and after 24 h and 72 h. Bacterial abundance was 

obtained by DNA sequencing of the V4 hypervariable region of the 16S rRNA gene. Sequence data 

preprocessing, taxonomic assignment, Shannon diversity estimates, and statistical comparisons were 

performed with QIIME and R programming.  

 

Results: Bacterial diversity did not vary significantly between the three ICU collection times. However, 

diversities were extremely different very early between deceased and surviving patients (p=0.001). 

Among bacteria detected in deceased patients, we found gut commensals and a depletion of bacterial 

genera commonly found in healthy lungs. The predictive value of ICU mortality by the diversity index 

was 86.5% in our data, greater than the obtained by the APACHE II score at inclusion. 

 

Conclusions: The reduction of bacterial lung diversity in patients with non-pulmonary sepsis was found 

to be associated with ICU mortality within 8 h of diagnosis, supporting its role as a potential novel early 

prognostic biomarker. 
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Introduction 

 
Sepsis is a complex disorder currently defined as a life-threatening organ dysfunction that results 

from a systemic inflammatory response due to infections (Singer et al. 2016). Sepsis is one of the most 

common causes of death in adult patients admitted into intensive care units (ICUs) (Angus et al. 2001), 

and it is the major risk factor of acute respiratory distress syndrome (ARDS) development, a fatal 

condition with poor prognosis (Bellani et al. 2016). Several biomarkers alone or combined with clinical 

symptoms have been related to the mortality of sepsis patients (Gibot et al. 2012; Larsen and Petersen 

2017). However, despite all the efforts to establish clinically-relevant prognostic methods for sepsis, 

these have showed a limited power to predict patient severity (Gibot et al. 2012). Therefore, there is 

an urgent necessity to identify earlier and more accurate biomarkers of sepsis prognosis. 

 
Several studies have reported the important role of the microbiome in complex diseases and 

immunity (Thaiss et al., 2016). Particularly, shifts in the microbial diversity (commonly known as 

dysbiosis) have been recently linked to the natural disease development and to interventions in the 

critically ill patient (Dickson 2016; McDonald et al. 2016; Jacobs et al. 2017; Lamarche et al. 2018). 

Given the infectious nature of sepsis, these observations may be clinically relevant in the pathogenesis 

or the aggravation of this critical condition. In fact, injurious ventilation regimes have been associated 

with an increase in the spreading of infections in animal models of non-pulmonary sepsis (Rodríguez-

González et al. 2014). This can be reconciled with the observations of MacFie and colleagues (MacFie 

et al. 1999), who reported the association of bacterial translocation and septic morbidity. 

 
Microbial dysbiosis in the lung, blood and the upper airways has been correlated with sepsis 

development and severity (Dickson 2016; Gosiewski et al. 2017; Tan et al. 2019). Interestingly, an 

enrichment of the gut-associated bacteria in the lung microbiome has been found in patients with 

sepsis and ARDS, possibly explained by the systemic translocation of the intestinal microbes in these 

patients (Dickson et al. 2016; Mukherjee and Hanidziar 2018). Changes in the gut microbiome have 

been linked to sepsis morbidity and mortality (Haak and Wiersinga 2017), as well as to outcomes in 

patients with systemic inflammatory response syndrome (SIRS) (Shimizu et al. 2011). Lamarche and 

colleagues also reported a reduced microbial diversity at three anatomical sites, including the trachea, 

associated with severity among a heterogeneous ICU patient population (Lamarche et al. 2018). 

Therefore, although it is known that the lung microbiome is severely altered in critically ill patients, a 

specific association of lung dysbiosis with sepsis mortality remains to be determined.  

 
To test this possibility while avoiding the potential confounder effects in lung dysbiosis due to 

pneumonia infection, which generally leads to bacterial overgrowth of single bacterial species in the 
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respiratory tract (de Steenhuijsen Piters et al. 2016), we focused on intubated non-pulmonary sepsis 

patients from a single medical-surgical ICU. To gain insight into the bacterial shifts and increase the 

power to detect the association, we collected lung aspirates at three times over 72 h while the patient 

was intubated. Our sequencing analyses based on the 16S ribosomal RNA (16 rRNA) gene strongly 

supported the existence of an early reduction in bacterial lung diversity associated with ICU mortality. 

 
 

Methods 

 

Sample description 
 

The study was conducted on 36 mechanically-ventilated adult patients of European ancestry 

diagnosed with non-pulmonary sepsis (Singer et al. 2016) that were admitted to a medical-surgical ICU 

at University Hospital Nuestra Señora de Candelaria (Santa Cruz de Tenerife, Spain) between January 

2015 and January 2019. Tracheal aspirate samples were collected from these patients at three 

different times whenever possible while the patients remained intubated: within the first 8 h of sepsis 

diagnosis, at 48 h after sepsis onset, and after 72 h. A total of 69 aspirates were finally obtained from 

the patients and stored at -20 ºC. Bacterial DNA was extracted from the aspirates using the QIAamp® 

UCP Pathogen Mini Kit (Qiagen), quantified with a Qubit 3.0 fluorometer using a High Sensitivity DNA 

Analysis Kit (Thermo Fisher Scientific), and stored at -20 ºC until use. 

 
The study was approved by the Research Ethics Committee of the hospital and performed according 

to The Code of Ethics of the World Medical Association (Declaration of Helsinki). An informed consent 

was obtained from all patients or from their representatives. 

 

Amplification and sequencing of V4 16S rRNA  
 

The V4 hypervariable region of the 16 rRNA gene was amplified by polymerase chain reaction (PCR) 

in 20-µl reactions. We used a HotStarTaq DNA Polymerase (Qiagen) along with fusion primers including 

12 bp Golay barcodes and the Illumina adaptor sequences (Caporaso et al. 2012). Purification and size-

selection of PCR products was performed with the AxyPrep™ Mag FragmentSelect-I purification kit 

(Axygen), using a 1.4 ratio of magnetic beads/PCR product. Purified PCR products were normalized 

with the SequalPrep™ Normalization Plate (96) Kit (Thermo Fisher Scientific) and pooled to 96-plex at 

25 ng per sample. In addition to the lung aspirates, libraries from a mock community (ZymoBIOMICS™ 

Microbial Community DNA Standard, Zymo Research) and from PCR-grade water were also included in 

each of the pools to serve as positive and negative controls, respectively. The pooled libraries were 

quantified by a 7500 Fast Real-Time PCR System (Life Technologies) using the KAPA Library 
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Quantification Kit Illumina® platforms (KapaBiosystems) and by the Qubit High Sensitivity DNA Analysis 

Kit. The size distribution of amplicons was evaluated with the Agilent 4200 TapeStation system using 

the High Sensitivity D1000 ScreenTape Assay kit (Agilent Technologies Inc.). Libraries were loaded at 

12 pM and sequenced using the MiSeq Reagent V2 kit (300 cycles paired-end) in a MiSeq sequencer 

(Illumina Inc.), including a 10% of PhiX library as a sequencing control. Sequencing experiments were 

performed at Instituto Tecnológico y de Energías Renovables (Santa Cruz de Tenerife, Spain). 

 

Bioinformatics and statistical analysis 
 

Analyses of the 16S rRNA sequencing data were conducted with the Quantitative Insights Into 

Microbial Ecology (QIIME) v1.9 package (Caporaso et al. 2010), by means of a custom BASH pipeline. 

After joining forward and reverse read pairs, considering a minimum overlap of 47 bp, raw data were 

demultiplexed by barcode and low-quality reads (Phred quality score<30) were filtered. Operational 

taxonomic unit (OTU) clustering was performed with an open-reference approach using UCLUST (Edgar 

2010) and chimeric sequences were detected and removed using ChimeraSlayer (Haas et al. 2011). The 

taxonomic assignment with a 97% sequence identity was based on the Greengenes database (DeSantis 

et al. 2006). Alignment was conducted with PyNAST (Caporaso et al. 2010), and a phylogenetic tree 

was then built using FastTree (Price et al. 2010). Human mitochondrial OTUs and the OTUs with at least 

10 reads in the negative controls, were removed from downstream analyses. Diversity analyses were 

also conducted with QIIME and focused on the core lung microbiome, defined by the OTUs that were 

present in >50% of the patients. Although the analyses were focused on the Shannon diversity index, 

a high correlation between it and other diversity indices was found in our results (Supplementary 

Table 1). In order to normalize across patients and time points, analyses were conducted using a 

random sampling of 1,000 reads per library. The OTU abundance was determined and taxa abundance 

plots were generated. Alpha diversity metrics were computed and subsequently compared between 

survivors and deceased groups based on a nonparametric two-sample t-test using Monte Carlo 

permutations. To compare diversities of more than three groups, Kruskal-Wallis tests were performed 

with R version 3.3.2 (R Core Team 2013). Additional logistic regressions were performed in R to 

evaluate the effect of different clinical and demographic covariates in the model. The online software 

Calypso (Zakrzewski et al. 2017) was used to compare the alpha diversity scores between deceased 

and survivors and to identify significant differences in the relative abundances of individual taxa by 

means of the Linear Discriminant Analysis Effect Size (LEfSe) algorithm. Beta diversity was also assessed 

by means of weighted and unweighted UniFrac distance matrices with QIIME, in order to generate 

Principal Coordinates Analysis (PCoA) plots. An additional principal component (PC) analysis (PCA) was 

performed from relative abundances using the R FactoMineR package (Lê et al. 2008). A PCA biplot 

showing both PC scores of samples and of the loadings from bacterial taxa was generated with the 
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factoextra R package. The area under the ROC curve (AUC) was calculated using the R pROC package 

(Robin et al. 2011) to evaluate the predictive value of the bacterial lung diversity index at 8 h of sepsis 

diagnosis, compared to that of the Acute Physiology and Chronic Health Evaluation II (APACHE II)  score 

at inclusion, to discriminate between the sepsis patients surviving or dying in the ICU. Finally, based 

on the model of Cumsill and colleagues (Cumsille et al. 2000), and assuming a probability threshold of 

0.5 in a binary logistic regression, we estimated a cutoff point for the bacterial diversity index in the 

lung aspirates in order to predict ICU mortality. 

 

Statistical power 
 

Based on internal observations of the dissimilarity in the microbiome profiles from lung aspirates 

from patients with respiratory infections vs. controls (associated with modified Cramer’s ϕ >0.20), and 

assuming a minimum of 10,000 reads per sample and a significance level of 0.01, a thousand 

simulations performed following the procedures described elsewhere (La Rosa et al. 2012) indicated 

that a minimum of 5 patients per comparison group provides a statistical power >80% to detect 

differences in the microbiome profiles. 

 
 

Results 
 

Study sample and sequencing performance 
 

A total of 69 lung aspirates from 36 individuals with non-pulmonary sepsis were finally included in 

the study. Main demographic and clinical features of these patients are provided in Table 1, suggesting 

that survivors and deceased patients were significantly discordant only for the age and the APACHE II 

score at inclusion. Sequencing and filtering the V4 16S rRNA data left us with a total of 7,646,140 high-

quality paired-end reads for further analyses (110,813 on average per sample). The presence of 

bacterial DNA was evidenced in all samples. The core lung microbiome of sepsis patients was 

composed by 54 OTUs with a frequency higher than 0.1%, 38 OTUs when only the samples collected 

within 8 h of diagnosis were considered.  

 

Longitudinal analysis in the ICU 
 

We first focused in the changes in bacterial abundance over collection times. Because of the 

dropout of patients from the study because of ICU discharge, extubation or death, we analyzed 36 lung 

aspirates collected within the first 8 h of sepsis diagnosis, 17 aspirates collected at 48 h after sepsis 

onset, and 16 aspirates collected at 72 h after sepsis onset. A PCoA based on weighted UniFrac 

distances showed that there was a lack of a clear clustering of the lung aspirates by the day of collection 
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(Supplementary Figure 1). Supporting this observation, the bacterial diversity did not vary significantly 

among the three sample collection times (p=0.99) (Table 2). To maximize the power of the study and 

based on these results and on the clinical relevance of identifying prognostic biomarkers of sepsis in 

the earliest possible disease stage, subsequent analyses focused exclusively on the lung aspirates 

within 8 h of sepsis diagnosis. 

 

Bacterial dysbiosis and ICU mortality 
 

Diversity and abundance estimates in the bacterial lung communities within 8 h of sepsis diagnosis 

were compared between the patients that were discharged alive from the ICU and those who died 

during the ICU stay. We found that bacterial diversity decreased significantly in deceased compared to 

surviving patients (Shannon diversity index, p=0.001) (Figure 1). Results were similar if mortality was 

considered at 28, 60, or 90-day. Furthermore, a sensitivity analysis was performed to evaluate the 

effect of possible confounding variables in the association of bacterial diversity with ICU mortality. We 

observed that the association was robust to adjustments for age, APACHE II score, ARDS incidence, 

comorbidities, isolated pathogen and infection source, among others (Table 3). 

 
A total of 13 and 36 OTUs were found in deceased patients and survivors, respectively. The most 

abundant taxa comprised 95.1% of the core lung microbiome among deceased patients and included 

the genera Achromobacter, Enterococcus, Proteus, Pseudomonas, and Staphylococcus, as well as the 

family Enterobacteriaceae (classified from reads than did not enable the classification at genus level) 

(Figure 2). Accordingly, the PCA with the loadings showing how strongly each taxon contributed to 

each PC also showed a strong relationship between these bacteria and ICU mortality (Figure 3). 

Remarkably, these taxa represented only 13.7% of the core bacterial lung microbiome among 

survivors. The most abundant taxa in the lungs of the survivors were Acinetobacter, Haemophilus, and 

Streptococcus (58.4% of the total), which were barely detected among the lung aspirates from 

deceased patients (0.64%) (Figure 2). Comparatively, the LEfSe analysis prioritized some genera as the 

most likely observations to explain differences between deceased and survivors (Figure 4). We 

observed that the genus Proteus was significantly enriched among deceased patients, while 

Streptococcus, Prevotella, Veillonella, and Leptotrichia were significantly enriched among survivors 

(Figure 4).  
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Predicting ICU mortality by the bacterial diversity in lung aspirates 
 

The ROC assessment revealed that the predictive value of the lung bacterial diversity at 8 h of 

diagnosis on the ICU mortality was 86.5%, even higher than that provided by the APACHE II score at 

inclusion (Figure 5). In fact, APACHE II was not significantly associated with ICU mortality in the study 

(p=0.078). Finally, we estimated a suggestive cutoff point of 0.42 for the bacterial diversity index to 

optimally predict ICU mortality. A visual inspection of the bacterial diversity distributions suggested 

that all sepsis patients with a diversity index above 2.50 survived, while those with an index ranging 

between 0.42 and 2.50 were difficult to classify based on the model (Supplementary Figure 2).  

 
 

Discussion 
 

In clinical practice, the prognostic stratification system is based on severity scores as the APACHE II 

at inclusion (Giamarellos-Bourboulis et al. 2012) and the Sequential Organ Failure Assessment (SOFA) 

(Singer et al. 2016), in combination with plasma biomarkers like the procalcitonin, the C-reactive 

protein or the lactate (Larsen and Petersen 2017). However, it is well known that none of these scores 

or the plasma biomarkers have a good predictive level of the severity of critical patients (Vincent et al. 

2010). Therefore, there is a huge necessity of identifying effective biomarkers of disease prognosis. To 

the best of our knowledge, this is the first time that lung bacterial dysbiosis is associated with ICU 

mortality in patients with non-pulmonary sepsis. Based on NGS methods, we evidenced a strong 

reduction in the lung bacterial diversity in the patients that died during the ICU stay in comparison to 

those who survived. Most importantly, such lung dysbiosis was identified as early as within the 8 h of 

the sepsis diagnosis, supporting it as a novel early biomarker for fatal outcomes in sepsis. In fact, the 

APACHE II score at inclusion did not significantly predict ICU mortality in our study. On the contrary, 

the lung diversity index calculated within 8 h of sepsis diagnosis was able to precisely predict ICU 

mortality in our study (86.5%). These observations in sepsis are analogous to others supporting the 

association of gut dysbiosis with SIRS patient mortality and complications (Shimizu et al. 2011) or of 

lung dysbiosis with idiopathic pulmonary fibrosis (IPF) mortality (Molyneaux et al. 2014; O’Dwyer et al. 

2019), further supporting the importance of assessing the microbiome in complex conditions for 

prognostic purposes. 

 
The lung microbiome profile of deceased patients with sepsis was mainly composed of pathogenic 

bacteria, including the genera Pseudomonas, Proteus, Achromobacter, Enterococcus, and 

Staphylococcus, and the family Enterobacteriaceae. Consistently, Staphylococcus aureus, Escherichia 

coli, and Pseudomonas aeruginosa are among the most frequently isolated pathogenic bacteria species 
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from patients with sepsis (Opal et al. 2003; Minasyan 2019). Among the five genera that were 

abundant among the deceased patients, only the abundance of the genus Proteus differed significantly 

by ICU mortality. Proteus is a member of the Enterobacteriaceae family consisting of Gram-negative 

bacilli commonly found in the normal intestinal flora (Hamilton et al. 2018). Some Proteus spp (mainly 

P. mirabilis) are broadly involved in urinary tract infections, although they can also invade the 

bloodstream and lead to bacteremia (Chen et al. 2012). Proteus spp have been linked also to 

respiratory tract infections including ventilator-associated pneumonia (Finegold and Johnson 1985; Xia 

et al. 2015). The fact that bacterial taxa that are generally located in the gut (such as Proteus and 

Enterococcus) have been found in the lungs of patients with sepsis is not surprising given that the 

translocation of gut commensals into the lungs has been previously described in critical care patients 

(Dickson et al. 2016; Mukherjee and Hanidziar 2018). Moreover, previous studies revealed that the 

development of ARDS, a deadly syndrome commonly caused by sepsis, is highly correlated with an 

enrichment of Enterobacteriaceae spp in the patient’s lungs (Panzer et al. 2018). 

 
Significant differences in abundance between survivors and deceased patients were also found for 

the Gram-positive genus Streptococcus and the Gram-negative genera Prevotella, Veillonella and 

Leptotrichia, which were all present at a higher proportion in surviving patients. Interestingly, the two 

most abundant bacteria genera described in the low respiratory tract of healthy subjects are Prevotella 

spp and Veillonella spp (Dickson et al. 2017), which are also the most abundant taxa in the oral cavity, 

together with Streptococcus spp (Dickson et al. 2017). The latter is also found among the most 

commonly isolated bacteria in patients with sepsis (Minasyan 2019). In this sense, the reduction of 

Prevotella spp and Veillonella spp in the lungs accompanied by the presence of potential pathogenic 

bacteria has been related to asthma risk (Hilty et al. 2010; Moffatt and Cookson 2017), and a lower 

abundance of Prevotella, Veillonella, and Leptotrichia spp in the upper respiratory tract has been 

associated with pneumonia in the elderly (de Steenhuijsen Piters et al. 2016). In agreement with this, 

Park and found a reduction of Prevotella spp in oropharyngeal swab samples from patients with 

chronic obstructive pulmonary disease or with asthma (Park et al. 2014; Yadava et al. 2016). On the 

other hand, the abundance of Streptococcus, Veillonella and Prevotella spp in the bronchoalveolar 

lavage fluid has been associated with less airway inflammation (Zemanick et al. 2017). This is 

particularly relevant for Prevotella spp, for which a key role in the immunologic homeostasis of the 

airways has been suggested (Huffnagle et al. 2017). Furthermore, the presence of Streptococcus and 

Veillonella spp in the lungs has been associated with IPF risk (Molyneaux et al. 2014), suggesting that 

these bacteria could have a role in lung fibrosis. Therefore, through their links with the immunological 

homeostasis of the lung, the depletion of these bacterial genera in sepsis patient’s lungs could have a 

central role in their ICU survival. 
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Our study has a number of strengths and limitations. The main strength is that our findings are 

based on patients from a single medical-surgical ICU, allowing to limit the heterogeneous 

environmental exposures of the patients enrolled. Additionally, the inclusion of patients with non-

pulmonary sepsis guaranteed that the observed lung dysbiosis was a consequence of the sepsis per se 

and not due to the overgrowth of single bacteria that takes place during pneumonia. Our results were 

robust to confounding factors, addressed through a sensitivity analysis. Furthermore, the findings were 

similar when 28, 60 or 90-day ICU mortality were considered instead of ICU mortality, indicating that 

results are robust and independent of the patient follow up records of mortality. On the other hand, 

the analyses were based on next-generation sequencing technologies, which allowed to detect 

bacteria in all samples, reducing the bias derived from conventional microbiological methods such as 

microbiological cultures. Among the main limitations, we acknowledge that the analysis was based on 

a limited sample size and the lack of an analysis of patients from an independent ICU to validate our 

results. Additionally, because of the utilized approach, taxa were only classified at genus level, and the 

rich information that may come from the detection of bacterial species and strains remains 

unexplored. In this sense, alternative approaches, such as the shotgun sequencing, would offer much 

better resolution of the taxa. Furthermore, we focused on bacterial DNA, not implying that those 

bacteria were alive at the moment of sampling or that they were pathogens. Finally, although bacteria 

are the main microorganisms involved in sepsis (Faria et al. 2018), it can be also caused by viruses and 

fungi, which were not analyzed in this study. 

 
 

Conclusions 

 
The results of this study revealed that a decreased bacterial lung diversity within 8 h of sepsis was 

associated with ICU mortality among non-pulmonary sepsis patients. Additionally, both the presence 

of gut commensals in the lungs and the reduction of healthy lung bacteria were related to ICU 

mortality. These results support a central role of the host-microbial interactions in maintaining lung 

homeostasis and provide a novel early prognostic biomarker for sepsis.  
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Figure 1. Bacterial lung diversity in ICU patients with sepsis at 8 
h of diagnosis. 
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Figure 2. Main bacterial taxa identified in lung aspirates from ICU patients with sepsis at 8 h 
of diagnosis. 
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Figure 3. PCA biplot summarizing the two main dimensions of patient differentiation (colored dots) 
and their correlation with the bacterial taxa (arrows) identified in lung aspirates collected at 8 h of 
diagnosis. 
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Figure 4. Prioritized lung bacterial genera explaining the differences between 
deceased and survivors at 8 h of sepsis diagnosis based on the LEfSe analysis. 
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Figure 5. Comparison of ROC curves and AUC estimates of the bacterial lung 
diversity at 8 h of diagnosis (Shannon index) and the APACHE II score at 
inclusion as predictors of ICU mortality. 
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Table 1. Demographic and clinical features of the sample. 

  Survivors (n=29) Deceased (n=7) p-value* 

Sex (% male) 75.9 57.1 0.60 

Mean age (years) 66.3 ± 11.8 71.6 ± 5.9 4.44E-14 

Hypertension (%) 55.2 57.1 1.00 

Smokers (%) 20.7 28.6 1.00 

ARDS (%) 13.8 0.0 0.71 

Previous severe infections 13.8 0.0 0.71 

Antibiotic treatment (%)† 82.8 85.7 1.00 

Comorbidities 32.0 57.1 0.44 

APACHE II (median) (P25–P75) 24 (19-27) 27 (26-31) 1.73E-13 

Infection source (%)    
      Abdominal and gastrointestinal tract 86.2 100.0 0.71 

      Genitourinary system 10.3 0.0 0.90 

      Bones and soft tissues 3.4 0.0 1.00 

      Brain and central nervous system 0.0 0.0 - 

Pathogen (%)    
      Gram-positive bacteria 16.7 28.6 0.71 

      Gram-negative bacteria 37.5 28.6 1.00 

      Gram-positive and Gram-negative  37.5 14.3 1.00 

      Fungi 4.2 0.00 1.00 

      Virus 0.00 0.00 - 

      Polymicrobial 29.2 28.6 1.00 

Organ dysfunction (%)    
      Circulatory 89.7 100.0 0.90 

      Coagulation 34.5 42.9 0.88 

      Hepatic 20.7 14.3 1.00 

      Neurologic 65.5 71.4 1.00 

      Renal 34.5 14.3 0.56 

*Mean age and APACHE II comparisons were conducted by the Wilcoxon signed-rank test; the 
other variables were compared by a chi-square test. 
†Percentage of patients with an active antibiotic treatment at 8 h of sepsis diagnosis. 
APACHE II, Acute Physiology and Chronic Health Evaluation II at inclusion; ARDS, acute respiratory 
distress syndrome; P25, percentile 25; P75, percentile 75. Percentages refer only to the individuals 
with available data for each clinical feature. 
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Table 2. Differences in diversity between the three sample collection times 

  8h (7:29)a 48h (3:14)a 72h (2:14)a p-valueb 

Shannon diversity index 
(mean ± SD) 

2.02 ± 1.34 2.01 ± 1.34 1.97 ± 1.31 0.99 

aDeceased:Survivors with available data; bData compared by Kruskal-Wallis test. 
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Table 3. Sensitivity analyses for the Shannon diversity index 

    Adjusted model 

   OR [95% CI] p-value 

Sex  0.23 [0.07, 0.84] 0.026 

Age  0.21 [0.05, 0.81] 0.023 

APACHE II  0.24 [0.07, 0.85] 0.027 

ARDS  0.22 [0.06, 0.78] 0.019 

Smokers  0.23 [0.07, 0.80] 0.020 

Previous severe infections  0.20 [0.06, 0.74] 0.016 

Infection source  0.25 [0.08, 0.82] 0.023 

Isolated pathogen  0.23 [0.07, 0.81] 0.022 

Antibiotic treatment*   0.17 [0.04, 0.74] 0.018 

Multi organ dysfunction†  0.20 [0.05, 0.80] 0.022 

Comorbidities‡  0.23 [0.06, 0.85] 0.028 

Arterial hypertension  0.22 [0.06, 0.80] 0.022 

*Active antibiotic treatment at 8 h of sepsis diagnosis. 
†Two or more affected organs. 
‡Presence of comorbidities (autoimmune diseases, cancer, chronic 
diseases, diabetes, hepatopathies, immunosuppression, kidney 
diseases, morbid obesity, pregnancy, severe infections, severe brain 
damage, valvulopathies). 
APACHE II, Acute Physiology and Chronic Health Evaluation II at 
inclusion; ARDS, Acute Respiratory Distress Syndrome; OR, Odds 
Ratio; CI, Confidence Interval.  
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Supplementary Material 

 

 

 
 

Supplementary Figure 1. Plot of the three main principal components (PC) of 
patient differentiation at the three distinct sample collection times (8 h, 48 h and 
72 h) based on weighted UniFrac distances from the abundance of lung bacterial 
taxa. In parenthesis, fraction of variance explained by each PC. The legend shows 
the number of samples with available data at each collection time. 
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Supplementary Figure 2. ICU mortality probability (with 95% confidence interval) 
estimated based on bacterial lung diversity at 8 h of sepsis diagnosis. The model 
estimated a cutoff point of Shannon diversity index at 0.42 (vertical broken red 
line), assuming a probability threshold of 0.5 in a binary logistic regression. 
Individual bacterial diversity estimates in deceased (blue) and survivors (red) are 
indicated. 
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Supplementary Table 1. Spearman correlation between the different diversity indices 
estimated in the study patients. 

  Shannon Simpson Chao1 Observed species 

Shannon 1 - - - 

Simpson 0.99 1 - - 

Chao1 0.85 0.82 1  
Observed species 0.94 0.91 0.92 1 
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Chapter 4. 
 

Genomic Analyses of Human European Diversity at the Southwestern Edge: 

Isolation, African Influence and Disease Associations in the Canary Islands 
 

Since the genetic ancestry is associated with the development and outcomes of complex diseases, 

likely including critical illnesses, the study of the genetic makeup of a recently admixed population is 

crucial to identify genomic regions where ancestry tend to be coinherited with specific diseases. This 

fourth chapter contains the results of the genomic characterization of the recent evolutionary history 

of Canary Islanders by using SNP array data and WGS. We estimated the global and local genetic 

ancestries of this population and assessed the links between particular regions and disease risks. 

 
The results of this study revealed that up to 34% of the genome of current Canary Islanders is of 

recent African descent. Additionally, we identified eight genomic regions with large local ancestry 

deviations in African or European ancestry that harbored genes linked to prevalent diseases, such as 

asthma and diabetes, to infectious diseases and to severe acute respiratory syndrome (SARS), among 

other traits. Interestingly, some of these genomic regions were located near well-known targets of 

natural selection, including the lactase (LCT) gene and the HLA region. We also estimated that the last 

African admixture in this population occurred ~14 generations ago, and that the average number of 

ancestry blocks per haploid genome equals 276. These findings lay the foundations for designing 

admixture mapping studies in the Canary Islands population to identify novel disease risk genes for 

complex traits such as sepsis and ARDS. 

 
 

 

This chapter was published in 2018 in Molecular Biology and Evolution with the title "Genomic 

Analyses of Human European Diversity at the Southwestern Edge: Isolation, African Influence and 

Disease Associations in the Canary Islands" (doi: 10.1093/molbev/msy190). This is an Open Access 

article that is reproduced under the terms of John Wiley and Sons License. 
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4. Discussion 

 
This thesis work addressed the complex pathophysiology of ARDS from distinct angles by using 

different genomic approaches. As part of this study, we have: i) performed a systemic review of the 

genetics of ARDS; ii) assessed the genetic variation in cases with ARDS and controls with sepsis, the 

major cause of ARDS development, to identify novel disease genes; iii) studied the lung microbiome 

shifts of patients with sepsis as a biomarker of ICU mortality; and iv) characterized the genomic 

diversity of a recently admixed European population with the aim of revealing relationships between 

genetic ancestry, adaptations and disease risks. As a result of these studies, we have proposed a new 

therapeutic target for ARDS and an early prognostic biomarker for non-pulmonary sepsis patients. We 

have also evidenced that genomic regions with large deviations in local ancestry in the Canary Islands 

population harbor genes related to critical illnesses and have characterized the number and size of 

their ancestry blocks, an information that is necessary to assist the design and analyses of subsequent 

admixture mapping studies in this population. 

 

4.1. Genetic association studies in ARDS: difficulties and challenges 
 

In Chapter 1, we revised all published genetic association studies in ARDS until December 2015 to 

detect the genes that were most likely involved in susceptibility or outcomes based on the number of 

independent studies that reported a significant association. We observed that, while current 

approaches allow to scan genetic variations across the genome in relation to a disease (Reilly et al. 

2017), most of genetic studies in ARDS have focused on candidate genes based on their biological 

plausibility, and only a few studies have evaluated the genetic variation at genomic level (Guillén‐Guío 

et al. 2016). Those genes that had the largest number of independent study findings were mainly 

involved in the immune response, such as interleukin 1 receptor antagonist (IL1RN), IL6, IL10, and 

mannose-binding lectin (protein C) 2, soluble (MBL2); and in vascular permeability, including ACE, 

VEGFA, and the nicotinamide phosphoribosyltransferase (NAMPT) (Guillén‐Guío et al. 2016). 

Remarkably, the MYLK gene was also revealed as a robust ARDS gene based on candidate gene, GWAS 

and WES studies (Gao et al. 2006; Christie et al. 2008; Christie et al. 2012; Lee et al. 2012), suggesting 

again the important role of vascular permeability in ARDS pathophysiology. Unfortunately, although 

candidate gene association studies have revealed important insights into ARDS pathogenesis, there 

are no effective treatments designed based on the reported genes, and identifying novel genetic 

factors involved in ARDS remains a necessity. 
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The absence of potential therapeutic targets in ARDS is affected by the low replicability of candidate 

gene association studies, which makes the results less unreliable (Chanock et al. 2007). In fact, a large 

proportion of the associations between genetic variants and other complex diseases revealed by these 

kind of studies have been questioned because of problems inherent to the approach and to the 

difficulties in interpreting the results (Clark and Baudouin 2006). Furthermore, the lack of 

reproducibility could also be caused by other factors. On the one hand, ARDS is a heterogeneous trait 

with different sources and a complex pathology that hinders a precise patient classification. Since its 

initial definition (Ashbaugh et al. 1967), the efforts to better classify ARDS have been constant. 

Nowadays, the most recent ARDS classification follows the Berlin definition (ARDS Definition Task 

Force et al. 2012), although it is far from being settled (Barbas et al. 2014; Villar et al. 2016). This 

divergence of ARDS definitions through time can be also affecting the genetic studies, hindering 

analyses and influencing the non-replicability of the findings. Furthermore, sample sizes used in these 

studies are limited and, hence, their statistical power to reveal factors with weak effects is reduced 

(Columb and Atkinson 2015).  

 

In this sense, the use of larger sample sizes and high-throughput technologies that assess genetic 

variation at a genomic scale, including GWAS, WES, and WGS, would be more powerful alternatives to 

disentangle the genetic variation associated with ARDS. Their effectiveness has become evident by the 

results obtained in the GWAS of sepsis-associated ARDS described in Chapter 2, where a novel ARDS 

gene has emerged and a potential therapeutic target has been proposed. Moreover, a replication 

phase in an independent sample should be practically mandatory to validate the association results, 

regardless of the approach chosen. Ideally, the results should also be accompanied by sensitivity 

analyses to control the effects of confounder factors, as well as by functional studies that can shed 

light on how the risk alleles affect the disease. In addition, given that most association studies in ARDS 

have been performed in European populations (Acosta-Herrera et al. 2014), further studies including 

patients of other ethnicities are relevant to unmask novel variants that are prevalent in other 

ancestries. In this sense, genetic studies in recently admixed populations, such as that of the Canary 

Islands, constitute a promising complement to the most common studies conducted in admixed 

American populations. Finally, given the complex nature of ARDS, which is associated with genetic and 

environmental factors, the use of alternative “omics” in the context of ARDS (such as metagenomics, 

metabolomics, epigenetics, and proteomics) is crucial to improve the knowledge of this syndrome, as 

well as to design new therapeutic and prognostic options. 
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4.2. The role of FLT1 in sepsis-associated ARDS 
 

Our results from the first GWAS of sepsis-associated ARDS, described in Chapter 2, revealed a novel 

genome-wide significant association (rs9508032) with ARDS susceptibility in individuals of European 

ancestry. This variant was located within the FLT1 gene, which encodes VEGFR-1, one of the main 

receptors of VEGF-A (also known as VEGF). FLT1 had never been specifically associated with ARDS 

before in an independent study, although it has been related to pulmonary complications altogether 

(Kim et al. 2012). It was also associated with other complex traits where, as in ARDS, the endothelium 

has a key role, including preeclampsia (McGinnis et al. 2017; Gray et al. 2018) and coronary arterial 

disease (CARDIoGRAMplusC4D Consortium et al. 2013; Konta et al. 2016). Conversely, most of the 

candidate gene studies focusing the VEGF pathway had paid attention to the VEGFA gene, revealing 

numerous independent associations with ARDS. Accordingly, when we performed the look-up of genes 

that had been previously associated with ARDS in our GWAS findings, only genetic variants within 

VEGFA were found to be significantly associated at the gene level after Bonferroni correction. Taken 

together, this led to support the hypothesis that other genes from the VEGF pathway should be 

promising candidates for further detailed genetic and functional studies in order to reveal novel ARDS 

risks.  

 
Additional functional analyses supported the role of the top-most significant variant in our GWAS 

within FLT1 and its perfect LD proxies (all located within the intron 10) in the regulation of the FLT1 

promoter. Specifically, luciferase reporter assays showed that the protective alleles of these variants 

were associated with a reduced promoter activity in monocyte cells. Monocytes, which express VEGFR-

1 at high levels (Shibuya 2001), have been linked to the pathophysiology of ARDS (Herold et al. 2013; 

Aggarwal et al. 2014; Abdulnour et al. 2018). During the syndrome, peripheral blood monocytes are 

recruited into the alveolar compartment and differentiate into macrophages, mediating the 

inflammatory response (Huang et al. 2018). In fact, the regulation of the function of macrophages and 

monocytes could be a potential therapeutic option in ARDS patients (Huang et al. 2018). Interestingly, 

FLT1 and other genes in the same locus (FLT3 and the poly(A) specific ribonuclease subunit PAN3 

(PAN3)) have been associated with monocyte counts (Astle et al. 2016). Furthermore, previous studies 

suggest that the VEGF-A signaling mediated by VEGFR-1 is involved in the migration of human 

monocytes (Barleon et al. 1996; Clauss et al. 1996; Barratt et al. 2014).  

 
The activity of the VEGF signaling pathway has been extensively linked to the ARDS pathophysiology 

(Medford and Millar 2006; Barratt et al. 2014). VEGF-A is a key regulator of vascular permeability and 

it is involved in angiogenesis, chemotaxis, and proliferation and migration of vascular endothelial cells 
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(Olsson et al. 2006; Barratt et al. 2014). Studies in animal models have also supported the role of VEGF 

in inflammation, permeability, and fibrosis (Hamada et al. 2005). In the context of ARDS, a study in an 

animal model of sepsis-induced ALI suggested that the VEGF signaling is centrally involved in the 

response mechanism during sepsis-associated ARDS (Acosta-Herrera et al. 2015). In this sense, an 

increase in the VEGF gene expression was found in lungs of lipopolysaccharides-induced ALI models 

(Karmpaliotis et al. 2002). Additionally, the patient’s VEGF-A levels have been related to increased 

vascular permeability in the lungs and with the fibrotic process that occurs in the fibroproliferative 

stage of ARDS (Medford and Millar 2006; Barratt et al. 2014; Murray et al. 2017). Interestingly, it has 

been reported that the soluble form encoded by FTL1, known as sFLT-1, sequesters VEGF-A and inhibits 

its biological function, acting as a competitive inhibitor of VEGF-A (Kendall and Thomas 1993). In this 

sense, high plasma levels of sFLT1 have been associated with organ dysfunction and sepsis severity in 

ICU patients (Shapiro et al. 2010; Hou et al. 2017). Accordingly, increased sFLT1 levels have been 

detected in the bronchoalveolar lavage from patients with ARDS (Perkins et al. 2005). 

 
Our RNA sequencing analysis in control subjects revealed a high expression of FLT1 isoforms in the 

lungs, including the forms encoding the transmembrane receptor and the soluble form. Moreover, 

results of the gene expression analysis in peripheral blood from ICU patients revealed a higher 

expression of FLT1 (most likely of the transmembrane receptor) in peripheral blood from ARDS 

patients compared to other critically ill patient groups. However, the expression of VEGFA did not vary 

significantly among groups. Accordingly, a previous study supported that VEGF-A levels in pulmonary 

edema were reduced both in ARDS and in hydrostatic pulmonary edema, without finding significant 

differences between them (Ware et al. 2005). Based on the evidence, we speculate that protective 

genetic variants within the intron 10 from FLT1 could be silencing the promoter activity of this gene. 

This would lead to the decreased expression of the transmembrane receptor and, consequently, to the 

reduction of the VEGF signaling activity. As a result, those pathological events triggered by VEGF during 

ARDS would be dimmed. However, further studies would be necessary to disentangle the biological 

relation between the reported genetic variants of FLT1 and the pathophysiology of the syndrome.  

 
As previously indicated, there is a lack of specific treatments for ARDS patients. Despite the central 

role of the VEGF signaling pathway in ARDS (Medford and Millar 2006; Barratt et al. 2014), the 

mechanisms by which these activities influence the pathophysiology of the syndrome remain unclear, 

which makes the development of new therapies particularly complicated. Only one clinical trial 

targeting VEGF has been reported, although it was retired because of a lack of funding 

(ClinicalTrials.gov identifier: NCT01314066). Interestingly, many of the drugs commercialized to treat 
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cancer target the VEGF signaling pathway, although they are extremely invasive and would not be 

suitable for patients with ARDS. Conversely, there are two safe and non-invasive drugs targeting 

VEGFR-1 that could be repurposed for ARDS: nintenadib and itraconazole. The former is a tyrosine 

kinase inhibitor currently used to treat idiopathic pulmonary fibrosis that blocks the 

autophosphorylation of the VEGF receptors and the downstream signaling cascades (Richeldi et al. 

2014; Wollin et al. 2015; Hajari Case and Johnson 2017). Given the important fibrotic process occurring 

during the fibroproliferative phase of ARDS, this drug could have beneficial effects on the recovering 

after the acute stage of ARDS. Accordingly, Li and colleagues reported that nintenadib reduced the 

epithelial-mesenchymal transition caused by MV under a regime of high tidal volume and the 

pulmonary fibrosis after mild ARDS induced by bleomycin (Li et al. 2017). With respect to itraconazole, 

it is a drug used to treat fungal infections, including severe blastomycosis that can lead to ARDS (Smith 

and Kauffman 2010; Schwartz et al. 2016). Although other antifungals have been tested in ARDS with 

no satisfactory results (Thompson 2000), itraconazole could be a promising alternative, since this safe 

drug inhibits the glycosylation of VEGFR-1 and VEGFR-2 and, hence, their trafficking and signaling 

(Nacev et al. 2011).  

 
 

4.3. Bacterial lung dysbiosis as a prognostic marker in non-pulmonary sepsis 
 

In line with the discussion about the identification of a novel genetic factor of ARDS susceptibility, 

the identification of effective prognostic markers in critically ill patients is also promising for clinical 

practice. Nowadays, the prognosis of critical care patients is based on the use of severity scores, such 

as the simplified acute physiology score (SAPS), the APACHE II score, which is usually calculated just at 

patient admission, and the sequential organ failure assessment (SOFA) score (Vincent et al. 2010; 

Giamarellos-Bourboulis et al. 2012; Singer et al. 2016). Nevertheless, these score systems are limited 

and should be updated, being necessary the identification of novel prognostic markers (Vincent et al. 

2010). For that purpose, in Chapter 3, we have assessed the lung microbiome in a subset of the patients 

with sepsis described in the discovery phase of the GWAS, with the aim of studying the implication of 

the bacterial diversity in ICU mortality by using NGS targeting the 16S rRNA V4 region. Specifically, we 

collected lung aspirates from 36 patients with non-pulmonary sepsis at three different collection times 

and found a significant reduction of the relative bacterial abundance of the lung in deceased patients 

with respect to survivors, even during the first 8 h after sepsis diagnosis. These findings agree with 

those of other studies where microbiome shifts had already been linked to mortality in patients with 

other infectious and respiratory diseases (Shimizu et al. 2011; Molyneaux et al. 2014; Lamarche et al. 

2018; O’Dwyer et al. 2019). In fact, the predictive value of the diversity index for ICU mortality in our 
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data was surprisingly elevated (of 86.5%), higher than the one obtained with the commonly used 

APACHE II score (72.7%). Based on the evidence, the reduction of the bacterial diversity in lung could 

be an early prognostic marker for patients with non-pulmonary sepsis. However, one must take into 

account that a validation of the prediction is lacking from our study. Therefore, further studies in 

independent samples should be performed to obtain a more precise estimate of the prediction.  

 
 The comparison of the microbiome profiles revealed five bacterial genera most likely to explain the 

differences between deceased and survival patients. Among them, the genus Proteus was significantly 

enriched in lung aspirates from deceased individuals, while the genera Streptococcus, Prevotella, 

Veillonella and Leptotrichia were more abundant in survivors. Proteus species belong to the 

Enterobacteriaceae family and some of them are normal commensals of the intestinal flora, although 

their abundance is low (Yatsunenko et al. 2012; Hamilton et al. 2018). When the healthy host-

microorganism balance is altered, Proteus spp have been related to diseases including urinary tract 

infections (Schaffer and Pearson 2015), intestinal diseases (Hamilton et al. 2018), bacteremia (Chen et 

al. 2012), and ventilator-associated pneumonia (Xia et al. 2015). Our findings agree with previous 

studies reporting an extravasation of gut bacteria into the lungs of critical patients (Dickson et al. 2016; 

Mukherjee and Hanidziar 2018). This evidence supports the existence of a crosstalk between the lung 

and other organs that affects the severity of sepsis, justifying the focus on patients with non-

pulmonary sepsis to assess the extrapulmonary impact on pulmonary homeostasis. Additionally, 

Panzer and colleagues revealed an enrichment of Enterobacteriaceae species linked to ARDS 

development and to the severity of the injury (Panzer et al. 2018). To our knowledge, for the first time, 

our results link these observations to the prognosis of critical care patients. 

 
 Conversely, Prevotella spp, Veillonella spp, and Streptococcus spp, which were found to be 

significantly reduced in lung aspirates of deceased patients, have been reported as the most abundant 

bacterial genera of the healthy low respiratory tract and the oral cavity (Dickson et al. 2017). 

Accordingly, previous studies have also detected a reduction in the lung abundance of these bacterial 

genera (mainly of Prevotella spp) in other respiratory conditions such as asthma, pneumonia in the 

elderly, and chronic obstructive pulmonary disease (Park et al. 2014; de Steenhuijsen Piters et al. 2016; 

Yadava et al. 2016; Moffatt and Cookson 2017). These bacterial genera could have an important role 

in the immune response during critical illness, since Streptococcus, Veillonella and Prevotella spp have 

been related to less airway inflammation, and Prevotella spp could be involved in homeostatic 

processes that regulate pulmonary immune responses (Huffnagle et al. 2017; Zemanick et al. 2017).  
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 The implication of microbial shifts in the dysregulation of the immune response in humans has been 

well described, supporting the central role of the host-microbiome interactions (Rooks and Garrett 

2016; Belkaid and Harrison 2017). In this sense, previous studies have linked host genetic variants 

within immunity-related genes with the microbiome composition (Benson et al. 2010; Blekhman et al. 

2015). Accordingly, numerous genetic variants have been related to an increased risk of bacterial 

infections (Boyd et al. 2014). For example, Li and colleagues revealed genetic polymorphisms 

associated with the interindividual variation of cytokine responses to specific pathogens (Li et al. 2016). 

Additionally, Lee and colleagues reported common alleles associated with effects on inter-individual 

variation in pathogen sensing and suggested that the pathogen-sensing pathway could have an 

important role in inflammatory diseases (Lee et al. 2014). Furthermore, many of the genes that have 

been previously associated with sepsis and ARDS are involved in immune response (Giamarellos-

Bourboulis and Opal 2016; Guillén‐Guío et al. 2016). Based on all this evidence, further studies linking 

the host genetics and the microbiome could help to improve the knowledge of the physiopathology of 

these critical care conditions. 

 
 

4.4. The study of the genetic ancestry in Canary Islanders as an approach to 

evidence novel risk factors in critical illness 
 

Most of genetic association studies in ARDS have been performed in European populations. 

Therefore, many genetic risks for ARDS that are more prevalent in other ethnicities might remain 

undiscovered. This is especially important for populations with recent African ancestry, since this 

ancestry has been linked to large disparities in diverse complex diseases such as respiratory and critical 

illnesses (National Research Council 2004; Ness et al. 2004; Kumar et al. 2010; Flores et al. 2012; 

Rumpel et al. 2012; Soto et al. 2013; Vergara et al. 2013; Hernandez-Pacheco et al. 2016). In Chapter 

4, we reported the results of the largest and more detailed genomic characterization of the current 

inhabitants of the Canary Islands, a southern European population with a recent African admixture. 

Based on SNP array data and WGS (30X), we estimated a high percentage of African descent of their 

genome (up to 34%), evidenced signals of genetic isolation and of adaptation, and assessed the 

implications of the admixture in disease.  

 

As a result of our analyses, we calculated that the last African admixture in this population occurred 

~14 generations ago. Additionally, we identified genomic signals of inbreeding, reflecting the historical 

isolation of the inhabitants from El Hierro and La Gomera, the two smallest island populations that 

were analyzed. This is especially relevant in the context of disease, since inbreeding can lead to an 
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increase in the allelic frequency of deleterious recessive variants due to the increased homozygosity 

rate, as has been described for hypertension (Rudan et al. 2003), schizophrenia (Lencz et al. 2007), 

Alzheimer disease (Ghani et al. 2015), thyroid cancer (Thomsen et al. 2016), and quantitative traits 

such as systolic and diastolic blood pressure, LDL cholesterol, and forced expiratory flow (Campbell et 

al. 2007). Linked to the existence of founder mutations leading to monogenic diseases (García-

Villarreal et al. 2000; Lorenzo et al. 2006; Castella et al. 2011; Rodríguez-Esparragón et al. 2017), this 

makes the Canary Islands population attractive for subsequent genetic studies of disease. Besides, 

these results could be used to develop a biogeographical map of homozygosity (as a proxy for genetic 

risks) for the inhabitants of the islands, especially the smallest ones, which would be helpful for the 

Healthcare system, for example, to prioritize carrier screenings of monogenic diseases. 

 

Furthermore, local ancestry analyses revealed eight regions with large ancestry deviations that 

contained genes related to prevalent diseases, especially in the Canary Islands population, such as 

asthma or diabetes (Sánchez-Lerma et al. 2009; Marcelino-Rodríguez et al. 2016), and genes linked to 

renal and neuropsychiatric diseases, as well as to infection response and to SARS, a condition that 

implies the occurrence of respiratory failure and from which about 25% of patients progress to ARDS 

(Lew et al. 2003). Thus, further genetic studies focused on these regions are projected in order to 

reveal novel genetic variants associated with diseases. Based on this, we have assessed the results of 

the discovery phase of the sepsis-associated ARDS GWAS for these regions of interest focusing only on 

the Canary Islander patients. Although no signals reached the Bonferroni threshold considering all 

independent SNPs within the African deviated regions (p<1.19x10-6), unpublished results revealed 

three independent SNPs with a suggestive association with sepsis-associated ARDS (p<5.0x10-4), where 

effect alleles conferred protection from the syndrome. The best ranking SNP (rs4954479) was an 

intronic variant of the thrombospondin type 1 domain containing 7B (THSD7B) gene, one of the genes 

flanking the lead SNP of the EUR-related peak in chr2, as revealed in Chapter 4, that has been 

previously associated with pulmonary function in the UK Biobank  (Kichaev et al. 

2019)(http://www.nealelab.is/uk-biobank/). The second ranked SNP (rs9592430) was located in the 

intergenic region between the protocadherin (PCDH) 20 (PCDH20) and PCDH9 genes. Interestingly, in 

the same chapter, we described putative selective signals in this intergenic region, which also 

contained variants previously associated with asthma (Ferreira et al. 2011). This agrees with the fact 

that genetic variants linked to inflammatory diseases in European populations are significantly 

enriched in signatures of positive selection (Raj et al. 2013). Additionally, another intronic variant 

(rs2766532) within the FKBP Prolyl Isomerase 5 (FKBP5) gene also ranked high in the GWAS results. 

FKBP5 encodes a member of the immunophilin protein family that plays a major role in 

http://www.nealelab.is/uk-biobank/
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immunoregulation and has been previously associated with asthma, with eosinophil, leukocyte, 

lymphocyte, and monocyte counts, and with lung function in the UK Biobank (Astle et al. 2016; Ferreira 

et al. 2019; Kichaev et al. 2019)(http://www.nealelab.is/uk-biobank/), constituting a truly interesting 

candidate for further genetic studies in ARDS.  

 
In addition to PCDH20-PCDH9, the genomic regions identified in Chapter 4 included other putative 

signals of natural selection. One can anticipate that the initial settlement of the Canary Islands by 

aborigines was accompanied with a process of adaptation to particular climatic conditions and 

pathogens, which usually entails frequency shifts in genetic variants (Sabeti et al. 2006; Novembre and 

Di Rienzo 2009; Vasseur and Quintana-Murci 2013). In this sense, the peak in chromosome 6 includes 

a well-recognized target of selection: the HLA region. HLA contains genes that are robustly associated 

with many traits, including asthma and the response to infections (Thomas et al. 2009; Galanter et al. 

2014; Sanchez-Mazas et al. 2017). Finally, based on the ancestry block length estimates, we obtained 

the average number of blocks for a Canarian population haploid genome (i.e. 276 ancestry blocks), 

laying the foundation for performing future admixture mapping studies in this population that will 

allow to unravel novel disease risk factors. Future studies will need to assess this estimate considering 

a varying number of chromosomes, likely through simulation studies, and a larger representation of 

the population diversity.  

 

4.5. Strengths and limitations 
 
 This thesis has several strengths that have allowed us to provide novel and robust insights into the 

pathophysiology of ARDS through different approaches, including human genomics, metagenomics, 

and a genetic ancestry study. Firstly, the selection of the donors in all studies has been systematic, and 

detailed information has been collected from them. In all GWAS stages, patients with clinically-

characterized sepsis were included in the study and followed up collecting signs of aggravation, 

including the development of ARDS according to the Berlin definition. Data from gender, age, APACHE 

II scores, and sources of infection, among other demographic and clinical parameters, were collected 

from all patients. The metagenomic study used a subset of these donors, from a single center and a 

single hospital service, in order to control potential environmental differences between sites. With 

this, we tried to ensure a homogeneous sample of mechanically-ventilated patients with non-

pulmonary sepsis that were all under the same environmental conditions. Additionally, to limit the 

effects of recent migrations, we ensured the donors used in Chapter 4 were selected for having two 

generations of ancestors born on the same island. In all studies, individuals with a high degree of 

kinship were excluded based on genetic estimates.  
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 Secondly, we report the results of the first GWAS of sepsis-associated ARDS published to date, 

where we utilized a SNP array designed for European population and assessed almost eight million of 

imputed genetic variants from well-characterized European patients with sepsis. As part of this study, 

we performed genetic association analyses, after robust quality controls, followed by a replication 

stage to validate the results. We also conducted complementary gene expression and functional 

analyses that strongly supported the important role of FLT1 and its genetic variants in ARDS 

pathophysiology. Thirdly, as a result of the metagenomic study, the reduction of the lung microbial 

diversity was linked to the mortality by sepsis in ICUs, providing a potential early prognostic marker 

for patients with non-pulmonary sepsis. We used an NGS approach that allowed to infer bacteria in all 

samples analyzed, overcoming the bias derived from microbiological cultures and the limitations of the 

microbial characterization of infections in sepsis patients (40-60% of microbiological cultures are 

negative) (de Prost et al. 2013). Remarkably, sensitivity analyses were included in both the GWAS and 

the 16S rRNA metagenomic study to assess the effects of confounding factors. Finally, using SNP array 

data and WGS analyses, we identified genomic regions enriched in African or European alleles that 

harbored signals of natural selection and links to disease. As a main strength, we used simulations to 

assess the significance of the signals of selection detected, for which we had to estimate the effective 

number of aborigines in pre-European times based on WGS data available from the literature and 

corresponding to an individual from Tenerife (Rodríguez-Varela et al. 2017). 

 
We acknowledge this thesis has also a number of limitations. Firstly, the sample size utilized in these 

studies is limited, mainly in the 16S rRNA metagenomic study, restricting the statistical power of the 

analyses. In the GWAS, this translates into limitations to detect low frequency variants and SNPs with 

subtle effects. In the metagenomic study, the reduced sample size together with the absence of a 

validation stage implies that further studies on independent samples are necessary, mainly to 

optimally assess the predictive value of the lung bacterial dysbiosis. In the genetic ancestry study, the 

main limitation with respect to the sample was the absence of a proper NAF dataset with higher marker 

resolution that allowed the analysis of a greater number of genetic markers after overlapping the study 

samples with the reference datasets. Therefore, future studies should include genetic data of NAF 

individuals obtained from WGS or SNP arrays with a larger number of markers, with the aim of 

optimizing the overlap with the other population datasets and, hence, of improving the local ancestry 

estimation.  

 
Secondly, only European individuals were included in our GWAS and in the 16S rRNA metagenomic 

study, and populations of diverse ethnicities should be also assessed. In this sense, the evaluation of 
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recently admixed populations is also a useful option in the context of disease studies. Besides, other 

causes of ARDS development should also be considered to validate our association results. In addition, 

the technology used in the metagenomic study is limited in terms of detection of bacterial species and 

strains (only allows confident detection at the genus level) and of evaluation of their functionality. NGS 

technology is also limited in terms of DNA extraction. We opted for a DNA extraction method that 

allowed us to recuperate the greatest quantity of bacterial DNA based on a previous laboratory 

comparison of different bacterial DNA extraction kits. Besides, DNA amplification is also a critical step, 

because the primers utilized have a better base pair complementarity with the sequence of some 

bacteria than with others, in addition to the bias introduced by the DNA polymerase. Additionally, 

despite the use of antibiotics did not change the observations in the lung aspirates, the heterogeneity 

in the specific antibiotics used per patient was not modelled in the statistical analyses due to the small 

sample size. Another limitation is that the number of 16S rRNA copies, which is known to vary among 

microbes, was not controlled in the analyses. Thus, bacterial abundances should be evaluated with 

caution. Furthermore, we did not analyze the DNA of viruses and fungi that may be present in the lung 

aspirates of our study. Finally, given the extension of the genomic regions identified in the genetic 

ancestry study, those genes that we highlight in the chapter should also be considered with caution. 

Besides, we did not analyze the local ancestry in the centrosomes, where we may be missing important 

information. Moreover, the number of ancestry blocks that were estimated based on average block 

length measures will necessitate simulation studies to reach a more accurate estimation. 

 
 

4.6. Future directions 
 
 Despite the advances reported in this thesis, further studies that support and/or complement our 

results will be necessary. These should include larger sample sizes and individuals of other ethnicities. 

In this sense, the laboratory is currently recruiting more cases of sepsis that will be genotyped and 

exome-sequenced and will also undergo future metagenomic studies. Additionally, other triggering 

factors linked to ARDS development, rather than sepsis, should be considered. As we have described 

in Chapter 2, we accessed the only publicly available GWAS of ARDS data entailing patients from an 

insult other than sepsis, consisting on trauma-associated ARDS patients (Christie et al. 2012). However, 

none of the FLT1 variants that we reported as significantly associated with sepsis-associated ARDS 

were present in the reference panel used by that study for the imputation. Additionally, the use of 

NGS technologies, such as WGS or WES, will help to assess the effects of rare variants that, due to the 

limited statistical power of the GWAS, remained obscure in this thesis. Furthermore, because of the 
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cancerous nature of the A549 cell line, additional luciferase reporter assays in primary human ATII cells 

should be performed to evaluate the implications of FLT1 variants in the gene promoter activity.  

 
On the other hand, alternative metagenomic approaches would be necessary to validate our results 

linking the lung microbiome decreased with the ICU mortality. Strategies that are being currently 

assessed in the laboratory in the context of critical illness include shotgun sequencing and third-

generation sequencing. The use of a shotgun approach would also allow the taxonomic classification 

at (sub)species level, without the need for prior amplification of DNA or without relying on the 16S 

rRNA gene. Additionally, the use of third-generation sequencers, as those marketed by the company 

Oxford Nanopore Technologies, will allow to sequence larger DNA fragments in real time, permitting 

the identification of bacteria at species level and reducing the time of analyses. At this moment, the 

laboratory is trying to reproduce the analyses described in Chapter 3 by using the MinION sequencer 

and independent taxa classifiers, targeting the full 16S rRNA gene. In addition to the speed of analysis, 

this is a portable sequencer that does not require large facilities or enormous amounts of DNA 

material, presenting a great potential for clinical practice. All these strategies would also facilitate the 

study of viruses, fungi, and bacterial pathogenic elements if adapted to alternative amplicon-based or 

shotgun applications. Moreover, additional studies linking the lung microbiome with the genetics of 

patients with sepsis would be interesting to further help understand the pathophysiology of sepsis and 

ARDS. 

 
Finally, the genomic characterization of Canary Islanders offers a range of possibilities for 

subsequent studies. Firstly, the identification of genomic regions enriched in African alleles in this 

population opens the door to future fine mapping studies in those specific sites to disentangle the 

genetic variation associated with specific diseases, including sepsis and ARDS. Additionally, the 

estimation of the number of ancestry blocks provides the basis for performing admixture mapping 

studies of disease. Accordingly, we are currently conducting an admixture mapping study of sepsis in 

the Canary Islander ICU patients, with the aim of identifying genomic regions where the genetic 

ancestry and the syndrome are linked. 
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5. Conclusions 

 
1) Most genes associated with ARDS susceptibility or outcomes have been revealed based on a 

candidate gene approach. These genes are mainly involved in the immune response and vascular 

permeability.  

2) The candidate genes associated with ARDS that have the largest number of independent study 

findings are: ACE, IL1RN, IL6, IL10, MBL2, NAMPT, and VEGFA.  

3) Common genetic variants within the FLT1 gene are associated with susceptibility to sepsis-

associated ARDS. 

4) The expression of FLT1 gene in peripheral blood differed significantly among critical care patient 

groups. ARDS patients showed the highest average expression of the FLT1 gene. 

5) In silico and in vitro analyses of the function of the FLT1 variants associated with ARDS supported 

their transcriptional role by affecting the regulation of the FLT1 promoter. The alleles with protective 

effects in ARDS reduced the FLT1 promoter activity in a monocyte cell line. 

6) The bacterial diversity in lung aspirates was reduced within 8 h of diagnosis in patients with non-

pulmonary sepsis who died in the ICU compared to those who survived. 

7) The bacterial dysbiosis of lung aspirates from patients with non-pulmonary sepsis had a higher 

predictive value of ICU mortality than the APACHE II score in our study. 

8) Lung aspirates from the patients with non-pulmonary sepsis deceased in the ICU presented 

commensal gut bacterial genera and were depleted in healthy lung bacterial genera. 

9) The genome of present-day Canary Islanders harbors eight regions with large local ancestry 

deviations that contain putative signals of selection. These regions are enriched in genes related to 

prevalent diseases, to the response to infections and to SARS, among many other traits. 

10) The last African admixture in the Canary Islanders was estimated to take place ~14 generations 

ago. Based on the admixture estimates in this population, we calculated a total of 276 ancestry blocks 

on average per haploid genome. This provides the basis for designing admixture mapping studies of 

complex traits in the Canary Islands, including sepsis and ARDS. 
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