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Abstract

Diseases are due to a malfunctioning of the physiology of the organism. In order to understand
the mechanisms of the diseases it has to be taken into account the structural complexity of the
biological organisms, not only as the set of molecular interactions but also its dynamics. Since in many
cases the disease is due to a dynamical imbalance of the system we need methods to induce the
dynamics from the interacting network to find strategies to cure them. The approach which deals with
this problem is systems biology; it makes use of mathematical modelling methodologies to deal with the
structural and dynamical complexity of the biological organisms. First, the general considerations about
mathematical modelling in biosciences are discussed, and then it is presented a review of mathematical
modelling approaches in the topic of intra-host malaria infection. Four highly prevalent diseases are
evaluated in this perspective to unravel the molecular and cellular complexity which explains their
physiology. Malaria is highly prevalent in developing countries, and it is produced by the dynamical
interaction of the parasite and the cells in the blood stream; HIV infection is firstly produced by the
invasion of the T4 lymphocytes by the virus. This process is driven by many molecular pathways
triggered by the virus inside the lymphocyte, these signaling pathways produce the opening of a small
pore through the HIV enters; Alzheimer’s disease is a neurodegenerative pathology without known
cause, the main hypothesis relates the production of the neurotoxic peptide B-amyloid with certain lipid
domains formed by differential lateral movement of the lipids in the membrane of the neurons; finally,
melanoma is a very aggressive kind of cancer. After a metastasis, a microtumor originates in the
bloodstream and it interacts with the immune system; the final outcome depends on this dynamical
interaction. Potential therapeutic targets in which can be focused on the search of new drugs against
these diseases are proposed by the models which reproduce the disease in certain conditions.

Resumen

Las enfermedades se producen por un mal funcionamiento del organismo. Con el fin de
comprender los mecanismos de las enfermedades se debe tener en cuenta la complejidad de los
organismos bioldgicos, no sélo como el conjunto de interacciones moleculares, sino también su
dinamica. Las enfermedades se producen por un desequilibrio en la dindmica del sistema, ello implica
que hacen falta métodos que permitan inducir la dindmica a partir de la red de interacciones de forma
gue sea posible encontrar nuevas estrategias para el tratamiento de las enfermedades. El enfoque que
se ocupa de este inferir la dinamica a partir de las redes de interacciones es la biologia de sistemas; esta
hace uso de metodologias de modelizacion matematica para hacer frente a la complejidad estructural y
dinamica de los organismos bioldgicos. En primer lugar se resumen y analizan las cuestiones generales
sobre modelizacién matematica en biociencias, luego se presenta una revisién de aproximaciones
mediante modelizacion matematica en el tema de infeccidon por malaria dentro del hospedador. Cuatro
enfermedades altamente prevalentes son evaluados bajo este enfoque desentrafiando la complejidad
molecular y celular que explica su fisiologia. La malaria es altamente prevalente en los paises en
desarrollo, y es producida por la interaccién dindmica del parasito y las células del sistema inmunoldgico
en el torrente sanguineo; la infeccidon por VIH es producida en primer lugar por la invasién de los
linfocitos T4 por el virus, este proceso estd promovido por muchas rutas de sefalizacion molecular
desencadenadas por el virus en el interior del linfocito, que culminan con la apertura de un poro por el
cual entra el VIH; la enfermedad de Alzheimer es una patologia neurodegenerativa sin causa conocida,
la hipétesis principal alude a la produccién de un péptido neurotdxico, el B-amiloide, en ciertos dominios
lipidicos formados por el movimiento lateral diferencial de los lipidos en la membrana de las neuronas;
por ultimo, el melanoma es un tipo de cancer de melanocitos muy agresivo. Inicialmente, un
microtumor crece en el torrente sanguineo interactuando con el sistema inmune; la evolucion de la



enfermedad depende de esta interaccion dindmica. En cada caso se proponen potenciales dianas
terapéuticas en las que puede centrarse la busqueda de nuevos farmacos contra estas enfermedades
haciendo uso de los modelos que reproducen la enfermedad en determinadas condiciones.
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1. Introduction

Historical introduction

A disease is an abnormal condition of the organism physiology. Many classifications of the
diseases can be made depending on the chosen criterion; we group them based on the causes. Some of
the diseases are produced by external agents, as traumatisms, nutritional disorders or caused by toxins.
These can be considered passive diseases as the agent is not able to reproduce. On the other hand,
active external agents are microorganisms and parasites. The diseases which have an endogen origin can
be caused by immune system malfunction, for example in allergic, inflammatory and autoimmune
diseases; others are able to be inherited or caused congenitally and, finally, neoplastic and degenerative
diseases are mostly caused during aging, although they can also be produced by acquired mutations.
Some other diseases do not have any known cause, as Alzheimer’s disease. There are two main
strategies to deal with the treatment of the diseases: i) removing the external agent, when there is one;
ii) restoring the physiology to its normal condition. Conceptually, the first strategy is easier because the
objective is to destroy the physiology of the pathogen, but the second strategy requires restoring the
patient physiology to its unique functional state. In practice, many situations can make the problem
more complicated, for example the acquirement of resistance to the treatment by the pathogen. When
the causes of the disease are well known the intuitive strategy is trying to reverse the malfunction
without affecting any other relevant process in a way that the result of the treatment is not worse than
the disease. We are saying that the target of the treatment is the same as the target of the disease.
However many treatments are able to restore the organism physiology without reversing the affected
process. Instead of that, they act on a different place in a way that they are able to compensate the
malfunction in a whole. We can say that these are counterintuitive therapies, as there is no easy way to
find them by intuition, considering the high complexity of the organism. These kinds of treatments are
mostly found under extensive screening of substances, or even by chance. But as it will be discussed
below, it is possible to find counterintuitive treatments in a directed way.

A biological organism is not a soup of elements, knowing its precise composition is not enough
to understand its physiology. The individual functionality arises from the orchestrated interaction of all
the elements in space and in time. Even knowing the complete genome of one cell it is not possible to
predict its response to certain stimulus, because the genetic information has only sense in the context of
the dynamic networks of molecules. This network has two main characteristics: i) all processes occur far
from the thermodynamic equilibrium; ii) the interactions between elements are nonlinear (doubling the
input does not duplicate the response). These two properties make the system admit very complicated
dynamical behavior, as oscillations and chaos. It is frequent that for a proper functioning of the
organisms this dynamics has to be conserved, in a way that losing oscillatory or even chaotic dynamics
would produce a disease (Mackey and Glass, 1977). Then, it is crucial being able to infer the dynamical



response of the biological systems from the interaction network in order to understand the physiology
of the diseases. As it was mentioned above, some counterintuitive responses under certain
modifications are expected if we are not able to infer the dynamic response of the system. The approach
which deals with the biological organisms in the presented way above is systems biology. As it was said
it is not a methodology but an approach to study biological systems, it is the paradigm shift needed to
understand the complexity of the biological organisms.

The history of systems biology begins out of biology. As many, if not all, of the scientific
disciplines we can assume that it started with the publication of Philosophiae naturalis principia
mathematica by Isaac Newton, in England. In this precise moment the humanity was able to understand
that there are mathematical principles which rule the Universe, but at the same time Isaac Newton also
provides to the world a new tool to analyze and predict the dynamical behavior of the nature,
differential calculus. The genius said to us where and how we can discover the secrets of the universe,
and the era of the great scientific discoveries began. The study of the nature was mostly descriptive until
then, however the ability to uncover the mathematical principles of the observed phenomena concludes
with the establishment of universal laws. Mechanics was followed by thermodynamics and
electrodynamics, and the scientists began to think they were able to predict any process in the universe,
as it was manifested by one of the biggest scientists of the time, William Thomson, first Baron Kelvin:
“there is nothing new to be discovered in physics now. All that remains is more and more precise
measurement”. However, since science cannot be stopped, Max Planck unravels another relevant
mathematical principle on nature, quantum mechanics. It was the beginning of the second revolution in
physics during the XX century, which ends with the two current big theories about the mathematical
principles of nature, the Standard Model and the General Theory of Relativity.

The mathematical principles which rule the biological systems are the same as in the inert
matter, but it was very late in the history of science when it could be known. The explicit differences
between living organisms and the rest of phenomena established the vitalism, which assumes a
conceptual difference between the living and non-living entities. It was considered that the laws of
physics cannot be applied to biology, and hence the lack of interest in finding the mathematical
principles of the biological systems. After the famous experiment of Friedrich Wohler synthesizing the
organic compound urea in laboratory the vitalism theory was called into question, and then it was
admissible applying the laws of nature to living organisms. Although the application of the natural laws
on the biological systems was not so obvious, some exercises in order to unravel the mathematical
nature of biological systems were made at the beginnings of XX century. Alfred J. Lotka applied the
mathematical law of the kinetics of chemical reactions, as autocatalysis and mass action law, into a set
of ecological models in which species interact, culminating in 1920 with a mathematical model of
predator-prey interaction in an ecosystem (Lotka, 1920); and during the same time, Vito Volterra
derived the same equations to explain the observed oscillations on the number of marine individual
(Volterra, 1927). Also during the first years of the XX century, sir Ronald Ross, using the same ideas from
the mass action law, proposed the mathematical behavior of epidemic diseases (Ross, 1915). From these
ideas it arose the current epidemiological models, the concept of basic reproduction number and the
vaccination control of epidemics using mathematical concepts as the herd immunity. Also very
remarkable, the foundations of enzyme kinetics were established by Leonor Michaelis and Maud
Menten in 1913 (Johnson and Goody, 2011), based in chemical reaction mathematical principles as well.
Nevertheless it had to be developed an emerging idea which was growing in parallel to this initial
application of mathematical models to biology, the principles of the Systems Theory. It was the
formalization of previous approaches to the complexity, as Control Theory which deals with dynamical
systems and the effect of the output on the input of systems by feedback loops; Chaos Theory which



had its conceptual origins at the end of XIX century, or other discoveries of interest in biology as the self-
reproducing systems founded by John von Neumann in his cellular automata model. Ludwig von
Bertalanffy published the General Theory of Systems in 1969 (Bertalanffy, 1969), and it provided a
mathematical structure for complexity, a set of interacting elements from which they emerge some
common properties and behaviors which can be analyzed, referred as the system. After this great
formalization for the study of systems other key contributions for the culmination of the mathematical
analysis of biological systems were the concepts of dissipative structures as a way to apply the laws of
thermodynamics on living structures, being them open systems far from the equilibrium. The dissipative
structures were presented by llya Prigogine in 1961 (Prigogine, 1968). The first great application to
systems theory on biology was the mathematical model of Alan Hodgkin and Andrew Huxley in 1952
(Hodgkin and Huxley, 1952), in this work they were able to reproduce the dynamical behavior of the
initiation and propagation of the action potential in axons. This model proposed the ionic mechanisms
under the process which was verified later by molecular experiments.

The next revolution on the field of systems biology was in technology, the development of
personal computers gave a very potent tool to analyze mathematical models. As it was introduced
before, the interactions occurring between elements in biological systems are nonlinear, which produce
mathematical equations which are very difficult or even impossible to analyze by hand. The use of
computational power made possible the application of mathematical tools for numerical analysis which
require a lot of simple calculations. With the theories and mathematical tools available the attention
was drawn to the study of metabolism during the seventies. Metabolic pathway were well known since
the molecular biology and enzyme assays studies, but the knowledge were based on analyzing individual
reactions in vitro, and the inference of the dynamical behavior of the whole network is not an easy task.
There was no any method which took into account the nonlinear nature of those biochemical systems.
Trying to deal with this lack, two mathematical approaches appeared on this decade, Metabolic Control
Analysis (Fell, 1996; Heinrich and Rapoport, 1974; Kacser and Burns, 1973) and Biochemical Systems
Theory (Savageau, 1969, 2010), converging both in the main ideas behind the mathematical principles of
biochemical systems. The first approach tried to solve the conceptual problem of limiting reaction, as it
cannot be predicted from in vitro studies. It is because the limiting reaction of a pathway is an emerging
property of the whole pathway, depending on the connectivity and kinetics of the network. This
approach gives some mathematical properties of the biochemical networks which are conserved, in a
way that it is possible to predict from the network which reactions are able to mostly control the
velocity of the whole pathway, based on control coefficients which inform about the amount of control
on the system that each reaction has. On the other hand, Biochemical Systems Theory introduced a
canonical mathematical formalization to analyze the dynamics of biochemical pathways; it assumes a
linear relationship between reactants and reaction rate under a double log representation. This
assumption has proved to deal with the main nonlinearities on biological dynamic behavior (saturability,
synergy, oscillations, etc.) and also this assumption let to easily formulate and analyze biochemical
pathways. From this formulation it can be derived the sensitivities of the system response under
changes in biochemical parameters, which has a very close relationship with the control coefficients of
Metabolic Control Analysis (Savageau et al., 1987). The application of those approaches to metabolism
has provided the understanding of many responses coming from metabolic systems (Voit, 2013), and it
also uncovered the design principles on metabolic pathways which explain the observed phenomena
(Savageau, 2011).

The last revolution on systems biology started after the development of methodologies to
obtain high throughput data, also called omics. It began with the Human Genome Project, for the first
time the whole genetic information of one human was available. At that moment it was a very



complicated challenge in which there was involved an international consortium of many countries
during one decade. Advances in sequencing technology provide now the opportunity for almost every
laboratory in the world to be able to sequence the entire genome of an organism in days. The next
challenges came by increasing the amount of data, as the 1000 Genomes Project (1000 Genomes Project
Consortium et al., 2010) or the ENCODE Project (ENCODE Project Consortium, 2004). It is also available
high throughput data for any kind of biological information, the expression level of all genes, the
amount of proteins of a cell, the metabolites concentration and the epigenetic marks are just some
examples of the emerging technologies to obtain data from the whole organism. The data collected
from the omics technologies need to be analyzed to obtain useful information from it, which makes
bioinformatics and data analysis very useful and trending disciplines nowadays. This is the first round of
analysis which can be made from this kind of data, but further steps must be done in order to really
understand the biological systems from the data. If we only perform statistical analysis on data we are
losing the information that the data give about the network of interactions of molecules.

Network theory has its origins on mathematics. It was Leonhard Euler the first to solve a
problem using graphs as mathematical objects, in the famous problem of the Seven Bridges of
Konigsberg. Out of mathematics it was mostly applied on information theory and social sciences, but
with the emergence of omics and high throughput data it was possible to contrast biological networks
with sufficient data measured from one organism. With this methodology it was possible to construct
the whole biochemical and genetic network of biological organisms and analyzing its properties.
Proposing new therapies for diseases based on biological networks inferred from high throughput data
is one of the most recent methodologies which deal with the problem of finding counterintuitive
therapies based on the network properties (Pérez-Nueno, 2015).

Although network analysis is a very informative and potent methodology to uncover the
complexity of biological systems it is not the last step for the comprehension of the function of them.
The physiology of an organism is not static, it changes during time. The knowledge of the actual network
of interactions of an organism does not give information about the dynamical response after certain
stimuli, as the response varies during time. The ultimate step for a genuine understanding of the
physiology of an organism comes from inferring its dynamical response from the network. To deal with
this challenge it is necessary the use of mathematical tools which explicitly incorporate the time
dimension. Although this methodology is the best approach to understand the biological physiology, it is
yet under improvement. The reason is that for constructing dynamical networks experimental data
taken during time are needed, which is not so available yet. Furthermore, dynamic mathematical models
are much more computationally expensive than the static ones, so they use to be constructed in a
smaller scale of detail. However, as the available data and the computing power increase exponentially
it is expected that the size and resolution of dynamical models keep increasing. Even under the current
situation about dynamical networks, there exist multiple applications of them to unravel the molecular
complexity of the diseases and proposing new directed and counterintuitive therapies based on the
dynamical response of small networks. Its utility and validation has been proven as they are able to
reproduce the dynamical networks which exist at different scaling levels.

Examples of dynamical mathematical models in biomedicine

The application of the principles of systems biology to biomedicine provides a new approach to
uncover the molecular mechanisms of the diseases, systems biomedicine (Antony et al., 2012; Zou et al.,
2013). This approach allows to propose therapies based on the dynamical structure of the organisms,
opening a new field of discoveries which was hidden under the reductionist approach alone. Now, it is



accepted that the study of the isolated elements of the system in conjunction with the holistic vision
which provides systems biomedicine is the most promising strategy to deal with the diseases. In this
section it will be presented a small selection of works on the topic of systems biomedicine to illustrate
the utility of the approach. It will be focused on mathematical models which explicitly include time, so
the diseases are studied as dynamical networks.

Neurodegenerative diseases are complex pathologies which ultimately affect neurons. The
causes are, in the best cases, partially known. In the case of Alzheimer’s disease (AD) the cause for the
most frequent kind, sporadic AD, is not known. The currently accepted hypothesis is based on the
aberrant production and accumulation of B-amyloid polymers on the extracellular region of the brain,
which produces the death of the neurons (Gouras et al., 2014). Based on this hypothesis, mathematical
models can provide useful information for the diagnosis of the evolution of the disease. A
compartmental mathematical model was used to evaluate the dynamics on the distribution of the B-
amyloid peptides through brain regions, as the cerebrospinal fluid, plasma and the brain (Craft et al.,
2002). It concluded that decreasing the production/elongation of peptides reduces the burden of B-
amyloid in all compartments, but increasing the clearance of the polymers only decreases the B-amyloid
burden in the brain, and it can even increase its amount on cerebrospinal fluid and plasma. This is a
notable consideration, as it would modify the interpretation of biomarkers based on the B-amyloid
burden on plasma. The intracellular accumulation of Tau protein is also considered as a key driver of AD,
as this accumulation would affect the proper structure of the cytoskeleton of neurons (Giacobini and
Gold, 2013). The cytoskeleton is a complex dynamic structure, and it makes very difficult to figure out
what is the actual effect of Tau on its physiology. In order to understand the structural changes on
microtubules in the neurons promoted by Tau, it was implemented a three-dimensional mathematical
model which considered the microtubule spatial dynamics (Buxton et al., 2010). It was able to predict
the changes observed by Tau accumulation, providing a dynamic mechanism which could prevent the
aberrant structure observed. If during the depolymerization of microtubules a new process of
polymerization occurs faster than the hydrolyzation of the terminal GTP the catastrophic
depolymerization can be terminated. It points at molecular targets for drug design based in a dynamical
view of the disease. The problem can also be considered in a wider scale, including the relationship
between the different cells on the brain. One mathematical model includes the crosstalk between
microglia, astroglia, neurons and B-amyloid (Puri and Li, 2010). Using this scale it was possible to
establish that the inflammatory activation of microglia is a relevant process for the evolution of the
disease, being an interesting target for drug design. Parkinson’s disease (PD) consists on a selective
death of dopaminergic neurons in the substantia nigra of the brain; the main driver considered is the
accumulation of a-synuclein (Dehay et al., 2015). The current main therapeutic strategy consists on the
increase of the accumulation of dopamine to compensate the reduction of dopaminergic neurons. But,
as metabolic pathways for dopamine production are very complex, and some other undesirable effects
as oxidative stress are involved, finding a proper therapy is not easy using exclusively reductionist
approaches. Two mathematical models which reproduce the metabolism of dopamine were able to
propose molecular therapies combined in a way that increase dopamine and decrease oxidative stress
(Qi et al., 2008; Sass et al., 2009).

Infectious diseases are driven by pathogens which colonize the organism, so we need to
understand the relationship between the microorganism and the host. Most of the infectious
microorganisms invade the cells to reproduce inside them. HIV infection is a relevant example. HIV
infects T4 lymphocytes and appropriates the cell machinery, then the virus becomes dormant during
many years, until it eventually produces AIDS (Marsden and Zack, 2013). Knowing the dynamics of the
disease is very convenient to control it, and it was analyzed using a mathematical model in 1996



(Perelson et al., 1996). It was predicted the average life-span of infected cells, the mean production of
virus and the HIV life cycle in vivo. In another study of the same year it was predicted that the observed
reduction on the viremia during the acute phase of the HIV can be produced without any increase on the
rate of removal of free virions or virus-infected cells (Phillips, 1996), which pointed to the fact that the
decrease in viremia of the acute phase was not produced by the HIV-specific immune response to
control the virus replication. More recently, a mathematical analysis established that the liver damage
previously associated to HIV/HBV coinfection can be caused by a HIV monoinfection (Nampala et al.,
2013). Equally recent is another mathematical model of HIV, but concerning the virus maturation
(Konnyd et al., 2013). It focuses on the Cag-Pol polyproteins processing by the viral protease, which is
needed for its infectivity. This quantitative analysis allowed to identify rate limiting step on the process
as well as the main points to modify which would block the maturation. This is a promising strategy to
focus on for the search of potential molecular target and new antiviral drugs. Finally, it is given an
example of another infectious disease, tuberculosis. A very prevalent infectious disease, affecting
initially lungs but with potential to extend to other tissues (Oliwa et al., 2015). There is a very recent
mathematical analysis of the latency of tuberculosis, responsible of drug and immune resistance
(Magombedze and Mulder, 2013). It combined a bioinformatics approach to analyze microarray gene
expression data with mathematical modelling techniques to propose certain genes responsible to entry
in latency. Targeting these genes is a promising strategy to increase the effectiveness of new therapies
against this pathogen.

Colorectal cancer is one of the most prevalent neoplasms. It occurs as an abnormal growth in
the crypts of the colon (Susman et al., 2012). This tissue has a very high regenerative ability; all the cells
of the crypt are renewed after one week. In order to maintain the equilibrium the number of cells has to
be controlled by a continuous cell death. Increasing the growth rate of the stem cells of the crypt can
promote abnormal growth which can culminate in malignant tumors. A simple mathematical model
which includes the basic processes for cell growth, differentiation and death was able to predict the
observed evolution of the disease, from stable benign tumors to malignant uncontrolled growth
(Johnston et al., 2007). It was formulated as a set of cumulative mutations which increase the growth
rate of cells. A second example on colorectal cancer studied the drug resistance by KRAS mutation
(Sameen et al., 2015). They were able to predict that a small initial population of KRAS mutated cells has
the ability of making all the tumor refractory to the treatment. Also, it was analyzed the effectiveness of
the combination of monoclonal antibody (cetuximab) and chemotherapy (irinotecan) in patients with
KRAS mutations. They predicted that only in patients with high immune strengths it would be
recommended as first-line therapy.

The last examples are going to be on the topic of immune and metabolic diseases. Immune
diseases are produced by the malfunction of the immune system. Chronic inflammation and
autoimmune disease are examples of malfunctions in which immune system increases its activity above
its physiological level. Inflammation is related with the onset of atherosclerosis, by shear stress in the
epithelium (Bryan et al., 2014). A mathematical model of the signaling pathway triggered under shear
stress in endothelial cells was able to predict the biochemical observations (Yin et al., 2010). It was used
to propose the crucial role of the Bone Morphogenic Protein 4 and p47"h°x-dependent NADPH oxidases
in the inflammation of the endothelium. As an example on autoimmune disease, a mathematical
analysis of the multiple sclerosis was made recently (Broome and Coleman, 2011). This is a
neurodegenerative disorder in which immune systems is thought to attack myelin of neurons. It was
studied the role of reactive oxygen and nitrogen species, the permeability transition pore, apoptotic
factors and cell death of oligodendrocytes. The most promising therapy predicted by the model was
preventing the opening of the permeability transition pore. Concerning metabolic diseases, several



approaches have been made to elucidate the complexity of metabolism and its malfunction. The general
methodology to deal with the malfunctioning of one enzyme using systemic methodologies is explained
in the study Vera et al., 2007. It consists on integrating the main metabolic pathways in which this
enzyme is enrolled into a model, and then some mathematical methods, as optimization, point to
promising metabolic processes which would reverse the normal physiology and minimizing the effect on
other processes. This methodology was applied in this work to propose therapies for hyperuricemia. The
results predicted six different therapies involving dietary modifications, one of them coinciding with the
conventional treatment. Finally, another study concerning metabolic abnormalities focused on purine
metabolism and gout (Curto et al., 1998). Gout is a metabolic disease produced by the abnormal
accumulation of uric acid on the blood stream which causes arthritis. In order to uncover the
mechanisms leading gout this mathematical modelling of the metabolism of purines allows to
understand that the accumulation of two substrates of the enzyme adenylosuccinate lyase is enough to
predict the metabolic imbalance observed in the disease.






2. Methodology

The present work is based on the principles of systems biology; specifically it is focused on the
study of the diseases as dynamical networks. The main workflow consists on the following sequence: i)
proposing an objective for the study; ii) integrating the information concerning a disease; iii) selecting
the main elements and processes which intervene in the disease and constructing a conceptual model
for the relationship between elements and processes (network); iv) formalizing the conceptual model
into a mathematical framework which considers the time dimension explicitly; v) use dynamical
experimental information from bibliography to calibrate the model; vi) validating the predictions of the
model using new experimental information not used during the calibration; vii) using the mathematical
model to make predictions and answering the objective. Each of these steps is described in detail below.

Proposing an objective for the study

Based on the knowledge about a biological problem it is proposed an objective which can be
answered with the available knowledge and experimental measurement on the disease. It is formulated
in a way that it can provide quantitative and dynamical new knowledge of the disease. The objective will
be focused on understanding the molecular and cellular mechanisms which drive the disease and
proposing new therapies based on dynamical and integrative knowledge.

Integrating the information concerning a disease

When you are looking for all the systematic information about any disease on the bibliography,
you have to deal with dispersed and contradictory information. Although some opposite results can be
due to errors, most of the time the reason is that the experiments to obtain the information were
displayed in very specific conditions where the interesting process was isolated. Then, incorporating
knowledge into a unique conceptual framework is a hard task in which it is important to reduce the
importance of the details and focusing on the main characteristics of the disease.

From the systematic review of the knowledge about the disease it is understood what the
established hypotheses and the open questions are. It is common that the understanding of the
physiology of the diseases is based on static explanations of the molecular and cellular processes, which
makes the quantitative and dynamical analysis appropriate to deal with very interesting open questions
and for proposing new therapies.



Selecting the main elements and processes which intervene in the disease and constructing a
conceptual model

Simplifying is one of the main concepts in science, especially in biology. Biological organisms are
“noisy” and very complicated, which makes essential to focus on the main elements that play a relevant
role on the phenomena of interest. Simplifying is basically a problem concerning scaling. There are some
processes which are mostly disconnected from others because they occur at different time scale, or
because they are differentially compartmentalized. Also, it is possible that the network of interactions
makes some elements being virtually independent of each other under certain circumstances, or simply
that under specific conditions some processes simply do not occur. When the scaling is not useful any
more to reduce the complexity of the system a second strategy is based on grouping elements or
processes. Under certain circumstances, and focusing on specific phenomena, it is admissible to group
elements and using a representative element of this group, or even to consider the mean value within
the group. Finally, it will be obtained a simplified representation of the real system which would be able
to predict the dynamics at the scale of interest for answering the proposed objective.

Based on the collected information and after the subsequent simplification of the interaction
network it is built a conceptual model. It consists on a structuration of the ideas of the relevant
processes of the disease of interest focused on the proposed objective. This conceptualization, by itself,
is a fundamental piece of knowledge and it is common that in this step many of the previous ideas have
to be reformulated. The next step is to provide to the model a quantitative and dynamical meaning
based on biological measurements, but to do this the conceptual model has to be formalized into a
mathematical framework which explicitly includes the time dimension.

Formalizing the conceptual model into a mathematical framework which considers the time
dimension explicitly

The selection of a proper mathematical formalism to formalize the conceptual model depends
on the objective proposed, the knowledge about the disease and the experimental data available. For a
description of mathematical formalisms used on biology and their main characteristics see the following
review (Machado et al., 2011).

The most extended mathematical formalism for dynamical quantification of biological systems is
based on ordinary differential equations (ODE). These equations explicitly consider the time as the
derivatives are with respect to time. The predictions of the models based on ODE are trajectories of the
changes during time of the elements of the model. ODE models are useful when the biological system
contains a lot of elements, so the random noise can be neglected. ODE equations are deterministic and
they provide the same output for the same conditions, which is almost true in systems with many
elements (Gustafsson and Sternad, 2013). Another important condition to be satisfied is the spatial
homogeneity. This is never true, but can be assumed depending on the spatial scale considered, and
sometimes it can be solved assuming discrete spatial compartments between which the mass is
interchanged (Bielecki et al., 2008).

These equations can be analyzed for finding special biological situations, for example searching
for stationary solutions. This is crucial because many elements of the biological organisms remain
constant, based on the principles of homeostasis. The mathematically procedure consists on doing the
derivatives respecting time to zero, so we are saying that the evolution with respect to time is null for
the elements of our model. In practice this methodology cannot be always applied for two reasons: i)
many biological processes are dynamically active, which means that they are changing during time. For

10



example oscillations, signals, etc. ii) Nonlinearities on the dynamics usually makes very difficult to
obtain a solution for the equations. Instead of searching for stationary behaviors we can focus on the
dynamics. To do that it is needed another mathematical tool to obtain the dynamics from the model. It
is numerical analysis. The derivatives of the model are solved approximately using numerical calculus
which provides the evolution during time of the elements of our model.

Another interesting mathematical method which ODE models provide is sensitivity analysis
(Savageau, 1971). It is used to measure the robustness on the response of the system under changes on
the parameters of the model. Biological systems are robust because they are exposed to continuous
environmental changes and noise and they can keep the internal homeostasis. Because of that,
sensitivity analysis on the mathematical model is a quality measurement which gives information of the
robustness of the model, if the model responds changing a lot after small changes it means that it is not
biologically realistic. But this methodology can also be used for proposing interesting targeting points for
drug design, as the most sensitive processes in the model are the ones which are the most easy to
manipulate to change the output of the system.

Different equations can be used to represent a specific dynamical process depending on the
assumptions and observations on the phenomena. In this review (Voit, 2013) it is presented the most
used mathematical formalisms for ODE models in biology. Here the attention will only be focused on
two forms: i) mass actions; ii) power-law.

Mass action was originally developed in chemistry (Waage and Gulberg, 1986), it considers that
the velocity of the processes are proportional to the elements intervening in it raised to the
corresponding kinetic order, which in a chemical reaction coincides with the stoichiometric index.
Basically it assumes that the velocities are linear dependent on concentration of elements on
monosubstrate processes. This assumption is a good option because of simplicity, and it is commonly
used on the first modelling approaches. Even when the processes involved are non-linearly related we
can assume linearity in some region around certain condition. However, this formalism cannot be able
to reproduce all dynamical behavior of the biological systems, which makes necessary to change to a
more complex formalism when it starts failing.

Power-law formalism is based on the Biochemical Systems Analysis explained above (Voit,
2013). It assumes that the relationship between velocities and elements are linear in a double log
representation. This is equivalent to assume that the elements intervening in one process are raised to
an exponent, which can be a real number, instead of an integer as in mass action formalism. It began as
a way to simulate biochemical reactions using a canonical mathematical representation, which does not
depend on the enzymatic mechanism (Savageau, 2010), as it happens in Michaelis-Menten formulation.
Then it has proved to be useful in many other biological systems out of metabolism (Boykin and Ogle,
2010; Liu et al., 2008; Renton et al., 2005; Smith, 1975; Vera et al., 2008). This is because even being a
linearizable formalism it is able to reproduce most of the non-linear behaviors observed in biological
organisms. It also provides an easy way of making stationary and sensitivity analysis of the models.

Another mathematical formalization different from ODE models is agent based modelling (ABM)
(Marchi and Page, 2014). The main difference is that instead of being based on equations, the elements
are particles which can move and interact with other elements and with the environment. It is defined
creating a framework in which the particles can move, assigning the number and characteristics of the
particles and finally defining a set of rules to be followed by the particles. The advantages are that this
formulation has a resolution of individuals and it considers the spatial dimension. However, due to the
individual definition it is not appropriate to simulate biological systems with many elements. It is a good
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option when it is needed to focus the attention on a specific mechanism produced by the interaction of
few elements, in which is difficult to induce general rules at higher scale.

Use dynamical experimental information from bibliography to calibrate the model

Experimental data is the obliged reference of mathematical models in science, and specifically in
biological systems. Calibration of a mathematical model consists on giving values to the free parameters
of the equations of the model in a way that they are able to reproduce the observed phenomena.

The first step for calibration is looking for experimental data measured during time (for
dynamical models) (Voit and Chou, 2010). It is relevant to consider the quality of the data, not only
concerning the lack of errors, but the fact that data is measured in the proper conditions in which the
model was defined. Frequently data has to be processed and compared with data taken in similar or
even in different conditions. Normalization is a common post-processing task when it is integrated data
from many different works; usually experimental observations are divided by the mean value of the data
set, or even expressed between 0 and 1.

Once the data is formatted to the model, many different mathematical tools can be used to
obtain the value of the free parameters from the data. It can be applied linear or non-linear regression
and optimization techniques. In case we need to obtain the value of many parameters of non-linear
equations it can be used optimization algorithms which can find solutions of the model which predict
data by an extensive and directed way. The objective is that the model is able to predict the dynamical
behavior of the data.

Another option, usually combined with the previous one, is finding kinetic parameters from
bibliography which can be used as parameters of the model. One example is taking measurements of
the half-live (t1/2) of molecules in the organisms which can be transformed into kinetic parameters (k)

by the following expression:
__In(0.5)
ty,

Other kinetic parameters like Michaelis constant or the maximum velocity can also be used in
the model.

k

At the end the model will be able to predict the dynamical response of the biological system of
interest under certain condition. Before using it to answer the objective proposed it is necessary to test
the validity of the mathematical model.

Validating the predictions of the model using new experimental information not used during
the calibration

A mathematical model is basically a hypothesis of the dynamical mechanism of the biological
system of interest. This hypothesis must be validated before using it to obtain new knowledge. In order
to test the validity of the model is needed new experimental data taken in slightly different conditions
that the data used for the calibration. The idea is evaluating the ability of the model of predict
conditions out of its “comfort zone”, that is the condition in which it is able to properly predict the
observed phenomena. Insofar as it is able to predict different conditions it would mean that the
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mathematical model is a good representative of the actual system under the conditions for answering
the objective.

The classical way to verify the model is starting from a set of data which was measured in the
same organism but changing some of the biological conditions. Under this optimal situation a subset of
the data is used for the calibration and the rest serves for validation. But, as not always is possible to
dispose these kinds of data it is necessarily to look for new experimental data from other studies taken
in the same, or very similar, organisms but using different experimental conditions. Finally, a very
interesting approach to verify the model is the following: first a prediction from the model by changing
the conditions is obtained, and then it is designed an experiment which matches the new conditions of
the model and comparing the prediction made by the model with the data from the experiment. This
constitutes verification a posteriori, because the experimental measurement comes later.

Using the mathematical model to make predictions and answering the objective

Once the mathematical model is able to predict different conditions of our biological system it is
ready to be used to answer the objective of the work. One advantage of mathematical models is that is
it very easy, cheap and fast performing experiments in them. This makes mathematical modelling very
attractive to test preliminary experiments before performing them in a wet laboratory.

If we are interested in understanding the behavior of the system in a different condition we only
have to simulate with the model this condition, but it is usually more interesting looking for a specific
condition which would give the output of interest, for example a therapy for a disease. As it was
mentioned before, sensitivity analysis can serve as a preliminary study to propose promising therapies,
as it is pointing to the change in the system which makes the higher change in the response. However a
systematic perturbation of the model is usually performed to find new therapies. It is interesting to
evaluate combinations of few modifications which could be more effective than the sum of the
perturbations alone, based on the synergy of the system. The result of this kind of analysis is a set of
proposals for drug target searching which can be then tested in the laboratory.

The strength of this methodology is that it is able to integrate the disperse information about
one disease in a mathematical framework which can consider the temporal dimension of the problem.
Real understanding of the biological systems comes by the fact that all the processes and their dynamics
are analyzed simultaneously. Based on this approach the therapeutic strategies are proposed
considering the dynamical and complex nature of the organisms. It opens the possibility of finding new
targets which cannot be conceived by reductionist approach alone.
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4. Objective

The objective of the present work is to increase the comprehension of the physiology under
some diseases with high prevalence making use of mathematical analysis which integrates all the
information available about a specific process of interest in a single interaction network and
incorporating the dynamical aspect of the disease. Based on the mathematical modelling concepts it will
be proposed some potential therapeutic strategies on prevalent diseases which would have been
difficult to find by classical reductionist approaches, because they are considered counterintuitive. The
four diseases to be analyzed are malaria, HIV infection, Alzheimer’s disease and melanoma. These four
works are based on the main four publications which constitutes the present thesis. But in this thesis
two first articles are presented as an introduction of mathematical modelling in biosciences. The first
one discuss a general approach of mathematical modelling in biosciences, and the second one presents
a review of mathematical models developed in the topic of malaria infection, focused on modelling the
process occurring inside the human host.

The work about malaria is a mathematical model using ODE equations based on the power-law
formalism. It is focused on the intra-host interactions between the parasite and the immune system of
the patient. The objective is to propose new targets in which the antimalarial drug process to search can
be focused on.

The one about HIV simulates the first steps of the invasion of T4 lymphocytes by HIV; this is an
important process to be controlled to prevent the disease. It is developed a mathematical model on ODE
equations using the mass actions formalism. The objective is to understand the relative importance of all
molecular pathways playing a role during the virus entry and pointing to some molecules which would
be interesting to modify to impede the access of the virus inside T4 lymphocytes.

Another one is about Alzheimer’s disease and it will be focused on the relationship between the
neuron cell membrane lipids composition and dynamics and the production of B-amyloid in the brain.
The objective is to understand the effect of the change in physical properties of lipid domains (lipid
rafts) in the membrane on the evolution of the disease. It will also be proposed dietary therapeutic
strategies to slow the evolutions of Alzheimer’s disease.

One additional article includes the work obtained during the stay in the Laboratory of Systems
Tumor Immunology at FAU Universitét Niirnberg-Erlangen in Germany. The study was focused on the
improvement of an immunotherapy as treatment for melanoma patients. It is based on the analysis of
an ODE mathematical model and numerical analysis. It is used to propose co-adjuvant therapy in
combination with the vaccine to improve the efficacy of the vaccine in patients in which this vaccine has
not effect.
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In this communication, we introduce a general framework and discussion on the role
of models and the modeling process in the field of biosciences. The objective is to
sum up the common procedures during the formalization and analysis of a biclogical
problem from the perspective of Systems Biology, which approaches the study of
biological systems as a whole. We begin by presenting the definitions of (biclogical)
system and model. Particular attention is given to the meaning of mathematical model
within the context of biology. Then, we present the process of modeling and analysis
of biological systems. Three stages are described in detail: conceptualization of the
biological system into a model, mathematical formalization of the previous conceptual
model and optimization and system management derived from the analysis of the
mathematical model. All along this work the main features and shortcomings of the
process are analyzed and a set of rules that could help in the task of modeling any
biological system are presented. Special regard is given to the formative requirements
and the interdisciplinary nature of this approach. We conclude with some general
considerations on the challenges that modeling is posing to current biology.

Keywords: biosciences, biological system, model, math ical model, sy 1s biology

INTRODUCTION

A theory has only the alternative of being right or wrong. A model has a third possibility: it may be right,
but irrelevant.
Manfred Eigen. The Origins of Biological Information.

There are many definitions of science (Popper, 1935; Kuhn, 1962, 1965; Lakatos, 1970), but
all of them refer to a body of knowledge obtained through a particular method based on the
observation of the physical world, linked to systematically structured reasoning, strategies by which
general principles and laws are deduced. That particular method is the “Scientific Method”, defined
by the Oxford English Dictionary as “...the procedure. .., consisting in systematic observation,
measurement, and experiment, and the formulation, testing, and modification of hypotheses.” In the
above statements there are two core ideas which are relevant here and that derive directly from what
science is: the first one is that any scientific activity requires measurements and thus, quantification
of real magnitudes. The second is that any scientific activity makes sense only if it allows us to gain
“knowledge”; that is understanding, predicting and control. In science these goals are achieved
through the building of models and theories. Both serve, with different degrees of generality, to
explain the observed facts and predict with high probability the evolution and behavior of natural
systems.
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Biological Systems and Models
Before describing the modeling process, it is advisable to clarify
the meaning of two key concepts, “biological system” and
“model” that we assume are inextricably linked.

Any biological system is composed of a set of elements,
physical objects, usually numerous and diverse, that influence
each other (i.e., they interact) and that are physically and
functionally separated from their environment. The physical
separation is a frontier, which can be real (e.g., a membrane)
or imaginary, which is permeable to matter, and energy (ie.,
an open system). The functional separation is a consequence
of the fact that biological systems are far from thermodynamic
equilibrium, in contrast with the environment. The interchange
of matter and energy with the environment is indeed a necessary
requisite to sustain the chemical-physical processes that occur
far from equilibrium. Thus defined, a living system involves
a reference to the environment in which it is located and
with which it interacts. It is worth noting here that when
we focus solely on the elements, disregarding the interactions
between them and with the environment, the system disappears,
because a set of entities devoid of interaction is a mere
aggregation of elements. This is the essence of “system”, a
holistic approach to research as opposite to a reductionist
view.

For our purposes here, a model is a conceptual or
mathematical representation of a system that serves to
understand and quantify it. The difference between conceptual
and mathematical resides only on the way the representation
is formulated. A model is always a simplified representation of
the reference system, which the scientist wishes to understand
and quantify. It ultimately serves as a means of systematizing the
available knowledge and understanding of a given phenomenon
and the facts concerning it.

A first step in any model-building attempt is the simple
verbalization of statements about the biological system. Soon
this phase leads to a more productive one, where observations
and hypothesis transform the observations and data into an
organized core, the so-called “conceptual” model. Conceptual
models constitute, thus, a first level of qualitative integration
of the information on the system under scrutiny. Conceptual
models are so ingrained in our everyday life that we usually do not
make a distinction between models and the real thing. Very often,
they come as diagrams, words or physical structures, which deal
with either the structure and/or the function of the real system.
The causal diagrams are examples of suitable tools that help in
dealing with the conceptual models (Voit, 1992; Minegishi and
Thiel, 2000; Allender et al., 2015).

A key feature of the conceptual models is that they only
make a qualitative description of the real system. Examples of
such conceptual models in biology range from the typical plant
or animal cell diagram (one that integrates many observations
of multiple types of cells obtained through a great variety of
techniques) to the models about enzyme action and metabolic
pathways. The enzyme action model describes how the substrate
attaches to the active site of the enzyme, and how the enzyme
structure changes in different molecular environments. Another
ubiquitous conceptual model is that of metabolic pathways;

they represent the coordinated and sequential activities and
regulatory features of many enzymes. The main value of
the conceptual models is that, as the result of the (tough)
complex process involved in its development, it allows the
integration of disperse information obtained from different
sources. However, their origin renders them imprecise, and
conceptual models can be interpreted differently by different
people.

A further refinement in the process of system understanding
is given by the translation of the conceptual model into a form
subject to a quantitative description, evaluation and validation.
This form is the mathematical model. A mathematical model
is the formalized description of the system derived from a
previous conceptual model. Mathematical models may be very
diverse in nature. Dynamical models consider changes in the
elements with time, and can be categorized into deterministic
and stochastic. In the deterministic ones, the velocities only
depend on the concentration of the elements and the parameters
of the model. The opposite are the stochastic ones, in which
the velocities also depend on the random noise of the system,
due to the uncertainty present in systems containing statistically
non-abundant elements. On the other hand, static models try to
understand the structure of the interconnection of the elements,
which remains constant during time under specific conditions
(Voit, 2012).

The mathematical models not only help us to understand
the system, but also are instrumental to yield insight into the
complex processes involved in biological systems by extracting
the essential meaning of the hypotheses (Wimsatt, 1987; Bedau,
1999; Schank, 2008) and allows to study the effects of changes in
its components and/or environmental conditions on the system’s
behavior; that is, they allow the control and optimization of the
system.

Mathematical Models in Biology

The usefulness of mathematical models in physics and
technology is well documented; in fact they can be traced back
to the very origins of physics. Since the days of Galileo, Kepler
and Newton scientists have striven to develop their models by
means of mathematical formalism. What we want to present and
develop here is the tenet that modeling in general, but specifically
mathematical modeling, particularly in biology -as well as in
science in general- is the only way to attain such quantitative
understanding and control. Mathematical modeling should thus
be an essential and inseparable part of any scientific endeavor in
the realm of XXI century bioscience.

It has been claimed that the maturity of a scientific field
correlates positively with how often mathematical models are
developed and used to understand and control the real system
(Weidlich, 2003; Medio, 2006; Brauer and Castillo-Chavez, 2010;
Gunawardena, 2011). In this regard, it has not been until recently
that dynamic mathematical models in biology have become a
common feature. Besides the well-known cases of the Michaelis—
Menten model to describe the dynamics of the enzyme-catalyzed
reactions (Michaelis and Menten, 1913) and its subsequent
development for the case of allosteric enzymes (Monod et al.,
1965), the Hodgkin-Huxley model of the action potentials in
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neurons (Hodkin and Huxley, 1952), the Lotka-Volterra model
about the interaction of species (Lotka, 1920; Volterra, 1926) and
the epidemiological models of epidemics (Ross, 1915; MacDonald
et al,, 1968), the emergence and widespread recognition of the
role and importance of mathematical models in biology is a
recent phenomenon.

It is easy to understand why only until very late in scientific
research mathematical modeling of biological systems has been
put in use. Biological systems, by their nature, are refractory
to precise quantitative and mathematical description. They are
composed by many elements closely interconnected by processes
and interactions that take place at different levels of organization
(molecular, cellular, in tissue, whole animals and ecological).
At the same time, these processes occur in an open system
as a result of the existence of multiple gradients far from
the thermodynamic equilibrium, which in the end produce
very complicated non-linear dynamics between the elements of
the system (Prigogine, 1961). This situation has impaired the
quantitative and dynamic approach to the understanding of
biological systems through the use of mathematical models.

However, two technological advancements that have made
feasible the construction and resolution of mathematical models
for biological systems have been developed in the last decades.
There is a general accessibility and almost universal ubiquity
of the computational power required for the management of
information and the calculation of large systems. On the other
hand, the development of the high throughput techniques and the
emergence of the “omics” sciences (genomics, transcriptomics,
proteomics, signalomics, and metabolomics) have generated a
great deal of dynamic information on the structure and behavior
of the biological systems. This information has become easier and
cheaper to acquire, process and store than ever before.

All the above have been instrumental to the arrival of Systems
Biology, as the XXI century approach to the quantitative and
interdisciplinary study of the complex interactions and the
collective behavior of a cell, an organism or an ecosystem. The
distinctive feature of Systems Biology is the concern with the
organization and biological function. This approach goes beyond
the classical reductionist approach, where the researcher seeks
to understand the systems by breaking them down into their
constituent elements and analyzing them separately or, in a novel
version of the old paradigm facilitated by the high throughput
techniques, by collecting every piece of accessible information.
In the Systems Biology approach, research is focussed not on
the parts considered individually, but on the relationships that
exist between the structural components of biological systems
and their function, and on the characteristics of the interactions
that occur between different sub-systems. This method allows the
detection of emerging higher levels of structural and functional
organization. In contrast with the reductionist approach, Systems
Biology deals with the reconstructive and integrative task upon
the available biological information. And it is here where
models and modeling becomes a central tenet in Systems
Biology.

In the following section we will develop a general framework
where the role of models and the modeling process within the
scientific activity in biosciences is highlighted. Also, a set of rules

that help the modeling activity is presented together with some
general considerations on the challenges that modeling currently
poses.

A MODEL OF THE MODELING PROCESS
IN BIOSCIENCES

The purpose of models is not to fit the data but to sharpen the
questions.
Samuel Karlin

The Figure 1 summarizes the set of activities and elements
involved in the development of models, as organized following
the Scientific Method.

I. Conceptualization

The first stage of the scientific modeling process is the
conceptualization phase. In any research process all activities
are organized around the Real System, which is the compulsory,
continuous reference in the whole process. This central position
is represented in Figure 1 as a circle.

The first step in the conceptualization stage is to formulate,
from the wvery first observations of the phenomenon
(Observation; see Figure 1), generally made in an unsystematic
form, an explanatory hypothesis of it: the first version of the
conceptual model. This is a critical task where it is necessary
to coordinate, to contrast and discuss many issues with the
aim of making the best decisions. Some of the questions that
should be addressed at this stage are: what aspects of the real
system should be incorporated into the model? What features
should/can be ignored? Or, what hypotheses can support the
observations/information rendered by the system?

Given that any model is an instrument designed for a purpose,
the very first question that should be posed at this stage is: what
is the model for? That is, the objective of the model. No model
makes sense or is justified for its own sake. Thus, what first defines
a model is the specific question that it is going to answer.

Trying to develop a model to explain all aspects of a
biological phenomenon will be practically impossible, a very
complex and highly unmanageable task. However, a model
with a limited purpose will be feasible, and easier to be
analyzed and managed. At this stage of modeling, our thinking
process uses the categories of space, time, substance (namely,
material components, and elements), quality, quantity, and
relationship. These categories help us to bring order to the
perceived complexity of the real world. Nevertheless, this act
of classification and identification differ considerably from one
scientific discipline to another.

The meaning and significance of the modeling process is
rooted in the core of the scientific process: from the observation
of some part of the biological world some questions arise, the
model being the tool that eventually would serve to provide an
answer. As can be seen, any modeling exercise forces, from the
very beginning, to define and make explicit the focus of our
research and to keep, all along the way, our attention on the main
objective.
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FIGURE 1 | The modeling process in biosciences. The main activities
involved in this procedure are observation followed by mathematical modeling;
simulation, analysis, optimization and back to observation. In this cycle the
mathematical model occupies, just after the real system, the center position. 1.
Conceptualization. Having chosen the subject of research and after some
initial observations are made, the biologist should reflect on the model to be
built. From the information available and a set of well-founded hypothesis, it
will build a first version of the model that presents a first selection of variables,
processes and interactions considered relevant (conceptual model). The
iteration of this process constitutes the classical version of the scientific
method (light pink arrows). Il. Mathematical formalization. From this
proposal the first mathematical formulation of the model is derived
(Mathematical model). Getting to this point has required an exercise of
integration of hypotheses and information that yields a new, deeper degree of
knowledge about the system not reached before (light blue arrows). lll.
Management and optimization. As a result of these two phases the
information needed to validate the model becomes evident, which in turn
suggests new experimental designs that propitiate a new round of
improvement cycle (purple arrows). As can be seen the process of building a
model, itself determines the path to a greater and coherent understanding of
the system that makes feasible its rational control and management. See text
for more information.

The conceptualization stage is where modeling becomes very
often an art, a subjective task. The choice of the essential
attributes of the real system and the omission of irrelevant
ones requires a selective perception that you cannot specify
through an algorithm. There is some dosage of freedom and
arbitrariness at this stage since different researchers equally
well informed can define different models. As we are educated
in a specific biological scientific discipline, we are trained to

observe the real world in the light of a certain conceptual
framework.

In some instances, the discussion of contrasting opinions
addressed to demarcate the border between the system and
its environment, or to discriminate between different possible
scenarios or to evaluate the importance of the experimental error
associated with the observed values, leads to different versions
of the model. Based on the final selection of hypotheses, the
next step is to carry out experiments (Experimental design;
see Figure 1) devised to obtain experimental data to test
the chosen hypothesis. From the analysis of the experimental
results, the hypothesis can be reformulated or discarded (Model
refinement; see Figure 1), thereby initiating a virtuous cycle
(pink arrows) that leads to an improved conceptual model.
Eventually, this refined model version is expected to answer,
though qualitatively, the questions initially raised. At this stage,
the need to change the initial hypothesis, far from being a failure,
should be understood as progress toward a better understanding
of the behavior of the system. This allows to rule out some
proposals, which will be replaced by new ones that might
be more effective in the building process of the conceptual
model.

The above sequence illustrates the fact that observation and
science are not the same thing. The aim of the scientific
method is not to describe but to explain the observed, to
understand and interpret the observations. It is here where the
collaboration between the modeling part and the field experts
becomes essential. And it is at this stage where interdisciplinarity
occurs. The best version of the modeling task results when
it is a team effort, where the competences and expertise of
different specialists blend. Those with the best knowledge on
the particular subject should be able to communicate with the
modeler. They must be able to understand each other; the expert
presenting the whole picture and selecting from it the elements,
interactions, processes, and values that are deemed relevant in
the light of the model’s objective. At this point the modeler
should translate this selection into a conceptual representation
that usually takes de form of a mechanistic picture where the
elements and their relations are represented. To be useful, this
picture should be explicit enough to be translated into a series
of elementary steps representing the individual mechanisms.
The modeler here is instrumental in defining which are the
magnitudes considered as variables and which are not; this is a
critical distinction that determines to a great extent the model’s
output.

The development of the modeling approach has at this point
one of its great challenges, because it requires that the different
specialists share a common language. There is a need, on the
side of the modeler, to become acquainted with the features and
nuances of the system under scrutiny, and to speak in terms easy
to understand by the non-modeler party. On the other side, the
specialist should adopt an integrative way of thinking and be able
to make explicit his knowledge and express it in the most precise
terms.

More often than not, it is necessary to repeat the
conceptualization stage of discussion and analysis several
times, before the proposed model becomes able to respond
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successfully to all the objections that could be raised by the
experts who come in contact with the model. Once you have
reached an acceptable version you will be able to consider the
next stage: the mathematical formalization.

At this phase of the model building process it could happen
that the modeler may be tempted by the challenge of building
a wholly comprehensive model system, that is, one that takes
into account, if not all, most of the characteristics of the real
system. Besides the misunderstanding of the modeling process
that this shows, this attitude has additional costs, because if two
models serve to give the desired answers, the simpler one is better.
A modeler intending to include all variables and parameters
described would also be faced with the task of analyzing the
influence of all the parameters on all the variables. This in turn
would require an additional, usually non-negligible effort for its
interpretation, making the model more difficult to understand.
In modeling, more and harder is not necessarily better. In fact
it sometimes happens that the largest and most complicated
model may be the poorest in attaining its objectives or expressing
necessary or meaningful details of the reality. A nice illustration
of this point is the very simple model of the signaling pathway
of NF-kB, in which with only three elements it is reproduced
the main dynamical behavior of the original system (Krishna
et al., 2006). In other words, we should try to make the complex
as uncomplicated as possible. Despite this, the discussion of
its results can enrich the conceptual model building when
considering the traits and characteristics that were not initially
included.

Related with this is the fact that the developments of the
conceptual model force the analysis and the systematic review
of available knowledge about the system and its behavior. As a
result of this exercise of verbalization of the knowledge -often
unconscious- that experts have about the system, a new light is
shed on the phenomenon, which very often contributes to a better
understanding of the system.

It may happen that some gaps of information about
interactions or relevant parts that had hitherto gone unnoticed
become evident. This usually suggests new avenues of exploration
and ultimately contributes to a better understanding of the
observed reality. Also, the discussions on the variables or the
processes involved help to change previous assumptions or
facilitates a new view and understanding of some facts that
previously remained without an explanation. As an example,
Cheong et al. (2008) review the contributions of mathematical
modeling on the understanding of the NF-kf pathway. It is
also very common to become aware of contradictions in the
understanding of biological mechanisms. Most of the knowledge
or information about an issue may pass through several authors
undisputed, but when all this is mathematically formalized,
problems to join all in a single framework emerge. Mathematical
thinking forces to reconsider every piece of knowledge.

Finally, there is a modeling principle that should be
commented here: “If the hypotheses of the model are erroneous,
the conclusions raised from it will be wrong too.” As obvious as it
may be, this principle is not less important. This principle should
be taken into account all along the model-building process,
particularly in the mathematical formalization that follows,

because the resulting model should be faithful to the proposed
hypothesis.

Il. The Mathematical Formalization
Mathematical Translation

The first question to be addressed in this new phase is about
which mathematical formalism is best suited to represent the
system (Translation; see Figure 1). There are many formal
modeling approaches, based on differential equations, Bayesian
equations, stochastic systems, agent-based modeling, etc. (for
a review, see ElKalaawy and Wassal, 2015). Each of these has
unique strengths and limitations. The choice heavily depends on
the nature of the model. It often happens that a research group
ends up enslaved by the modeling techniques which it dominates
or prefers. For example, a team with experience in modeling using
differential equations may tend to approach every problem from
the standpoint of this technique, when in fact not all biological
problems are deterministic. It is natural to preferentially use the
methods that are best known and previously proven fruitful. But
the ideal attitude is to adapt the specific modeling technique to
the nature of the problem.

The task of developing a model is a process of approximation
due to the simplifications that must be introduced. These
simplifications should make sense in terms of the physical-
chemical processes being studied, but must also be valid form
a mathematical point of view. The general approach to the
mathematical formulation usually involves the definition of the
key variables and the expression of their functional relationship
with the other variables of the system. Equations are then
derived establishing the actual mathematical relationship among
the variables. This derivation can be done empirically (data-
driven), through the use of statistical methods (curve fitting)
analytically o numerically, or by deriving the equations from
theoretical considerations (model-driven). A classic example of
model-driven is given by Michaelis and Menten (1913) kinetics.
Other common techniques of data-driven modeling are shown
in Janes and Yaffe (2006). In the model we should make
clear the differences among the variables (concentrations of
biochemical compounds of the investigated network: metabolites,
proteins, messenger RNAs, etc.) and the parameters. Variables
can be dependent, being the elements which vary over time
according to the state of the system (also called states); and
independent, being the ones that can be controlled during
the experiment (light, pH, etc.). The parameters set internal
and external constraints on the system. The specific numerical
values for the parameters are determined using prior biological
knowledge, such as information about the basal steady states of
the system (Voit, 2000), or experimental data from dynamical
perturbations (Vera et al., 2007, 2008). Usually the models
integrate kinetic data and other available information about
the elements of the process, as well as fluxes obtained from
experimental observations.

It often happens that an existing model is used to describe
another system. This strategy, although tempting, should be used
with caution. Each new system should be studied in their specific
conditions of environment and structure. It is also necessary to
consider that a model not only depends on the system that it
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represents and the techniques used for its construction, but also
from the motivations and objectives of their creators. Therefore
one must always beware from attributing the motivations and
objectives of others to our own model.

The process of developing a mathematical formulation of the
conceptual model forces the investigator to describe the system
in simple terms. At this stage the research team must take
into account details about the system which might otherwise
go unnoticed, which contribute to the improvement of the
model. Also, a healthy consequence of the formalization process
is that the explanations of the initial, sometimes unexamined
assumptions reveal processes and features that remained
unrecognized under the less precise conceptual formulations.

The interpretation and understanding of the system has an
additional resource in the mathematical expression of it (see
Figure 1). The set of equations of the mathematical model
is likely to be discussed with the plethora of techniques and
mathematical tools that allow the description and analysis of
the complex interrelated processes that occur in the real system;
these techniques can help to elucidate the structure, properties,
and dynamic behavior of the system. These analyses can reveal
details about the behavior of a model such as the occurrence
of oscillations or other complex behaviors that are often the
motivating force for studying these systems.

Parameter Estimation and Quality Assessment
Once the conceptual model has been translated to its
mathematical form, the model should be provided with the
values of its parameters. Parameter estimation or model
calibration is a recurrent issue in the model building process; it
deals with the finding of the numerical values which characterize
the mathematical representation of a given system from
experimental data (Park et al., 1997). A key feature of these
experimental measurements is that they must come from
variables representing their main features both at a given
particular time, as well as along its evolution over time (Polisety
and Voit, 2006; van Riel, 2006; Ashyraliyev et al., 2008; Banga,
2008). In addition, the quality of the model should be tested
through some numerical quality assessments. The quality
assessment of the model includes the evaluation of aspects such
as the stability of steady states, a prerequisite for any model
describing actual biological systems; and the robustness of the
model, a test to evaluate whether the model is able to tolerate
small structural changes (Savageau, 1971; Hsiung et al., 2008) and
the dynamic features that characterize the transient responses
to temporary perturbations or permanent alterations (Wu et al.,
2008). These analyses often pinpoint problems of consistency
and reliability of the mathematical representation (Okamoto and
Savageau, 1984, 1986; Ni and Savageau, 1996a,b); this constitutes
by itself a further cycle of model refinement (Figure 1, light
blue cycle). These changes result in improvements of the initial
conceptual model. The conceptual model so improved will in
turn suggest further experimentation leading to a new refined
version that is enriched from the formalization phase.

At all instances it should be borne in mind that both the
parameters and the structure of real systems change over time.
Therefore, a given model, which can be satisfactory at one time

or certain conditions, may lose its effectiveness at another time
or in other conditions. But the equations by themselves do
not contribute much to the understanding of the system. It is
necessary to solve the equations for some representative values
of the parameters. Accordingly, the model is submitted to the
simulation and validation processes.

Simulation and Prediction

The mathematical model should be programmed in the
computer. The computer program is the translation of the
mathematical model to another language useful for computing
purposes. There are many computer languages and platforms
to deal with this task; advances in computer numerical analysis
have made the solution of complicated systems fast and accurate.
It is at this point where computation becomes critical, since
the equations describing biological processes nearly always
involve control and regulatory mechanisms that have non-
linear components. In contrast with linear differential equations
that often can be solved analytically, non-linearities make it
generally impossible. But through the use of numerical methods
implemented on computers we can obtain good estimates and
model predicted data.

Model Validation

Validation stands here as the correspondence between the real
system and the mathematical model. A model can be considered
good and useful only if its predictions in a given scenario agree
with the experimental observations made on the actual system
setting. As it is shown in the Figure 1, we can accept the model as
aplausible representation of the system under scrutiny only when
the comparison of the predicted outputs with the real ones yields
similar results (and when this occurs in a significant number of
situations).

The validation process can only be based on comparative
observations of the output values and trajectories of the model
and the real system, under certain given experimental conditions.
Asitis shown in the Figure 1, for validation purposes, a first cycle
of calibration and quality assessment is needed, and then a second
one, with new experimental data from a different condition. As
a result, the model might require some modification in order to
minimize the observed discrepancies.

There are several ways to perform the validation process. One
is to compare the evolution of the variables from some, other
initial conditions; with data obtained by different, other research
groups in similar systems. Another way is to use all available data
in some given conditions, not for the development of our own
model, but to use these data for the comparison with our model’s
predictions instead (Santos and Torres, 2013). In some cases,
a useful technique is to vary some model’s parameters within
the range of biologically plausible values, and observe how the
system responds in relation to its actual behavior (Segre et al,
2002). Finally, a technique that can be used in some instances
involves subjecting the model to extreme conditions, deliberately
looking for their failures. The logic behind this is that, if a model
represents the system well in extreme conditions, so it will under
normal conditions. In any instance the observed discrepancies
indicate errors in the assumptions used in the building of the
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mathematical and/or the conceptual model. The discrepancies
may be large enough as to require the revision and change of
the hypothesis of the conceptual model, or the introduction of
only slight modifications in the parameters of the mathematical
version.

It should be recalled that the quality of a model depends
directly on the quality of the information on which it is based.
This statement is just the translation to the modeling context of
the classical motto: “garbage in, garbage out”. A mathematical
model logically processes the information with which it has been
built; it cannot recognize or correct errors in the definitions or
the input information. The model predictions are the result of the
assumptions used, hence the extreme importance of caring for the
conceptualization phase and the quality of the initial information.

Very often the most important results of this phase are
negative: a well-crafted model would serve to discard a particular
mechanism as the explanation for experimental observations.
After sufficient validation, we will eventually arrive to a
mathematical version of the model that can be used to perform
experiments in much the same manner as in the real system.
A model is considered valid in this respect when the decisions
made using the mathematical model are “similar” to those that
would have been made by physically experimenting with the real
system.

This model version and its computer counterpart allow testing
conditions that may be difficult to attain in the laboratory, or
that have not yet been examined in actual experiments. Each
numerical solution of the model provides a simulation of a
real or potential experiment carried out on the Real System.
As an example of mathematical simulations which were useful
to understand the dynamics of the cell membrane, a biological
process elusive under laboratory experiments see Marrink and
Tieleman (2013).

In this phase, starting from a first version of the mathematical
model we come to an improved, validated version, through a
new virtuous cycle (light blue arrows) that sum up to the first
one (light pink arrows). Repeated excursion through this research
loop can result in further improvements in both the mathematical
and the conceptual model that provides an unbiased test of
the hypothesis involved in the conceptual model. This type of
feedback loops, which are an essential part of the process of
developing a model (and indeed of the scientific method), must,
however, stop at some point. The validation phase often leads to
a situation in which a slight increase in the trust of the model
requires a huge effort. In these cases, it is advisable to stop the
process at this point.

Model Refinement and Interpretation

Once we have reached a sound mathematical version of the real
system we can advance in its interpretation and understanding.
At this stage, there is an opportunity to debate and criticize
the validity of the consequences and results of the model. The
ultimate aim should be to achieve plausible associations between
the model and the real system. At this point it should be clear
that, if the conceptualization process was successful, the logical
conclusions are as valid as rigorous the mathematical techniques
employed, given that the model’s results are a direct consequence

of the hypotheses and concepts defined in the conceptualization
phase.

lll. Management and Optimization

A model fulfills its objective if it is useful and fruitful for
the purpose for which it was developed. The availability of
such a model has then additional benefits: it allows informed
management of the system and its optimization. In this vein,
mathematical modeling can be combined with operations
research in order to support bio-scientists in the improvement of
bioprocesses with technological or biomedical purposes (Torres
and Voit, 2002; Vera and Torres, 2003; Vera et al., 2010). These
type of questions can be rationally answered using mathematical
modeling in combination with data mining and operations
research, that have been shown to be a promising approach in
fields such as drug discovery (Vera et al., 2007) and operations
research (Vera et al., 2010).

The optimized model, as any candidate model, should be
evaluated in terms of its numerical quality in the same terms
as presented above, to be a proven suitable representation of a
real system (see the Parameter estimation and quality assessment
section). And, as usual in these cases (see the parameter
estimation and quality assessment section above) these analyses
contribute to the refinement of the model through another
iterative virtuous cycle (purple arrows) that superimposes to the
previous one, leading to a further improved conceptual model.

CONCLUDING REMARKS

Mathematical modeling was made possible as early as the 17th
century, but it is with today’s techniques that it has become
available to natural (and even social) scientists. There is already
an ample evidence of the value and usefulness of the modeling
approach in solving relevant problems in biosciences (Hiibner
et al., 2011; Lanza et al., 2012; Visser et al., 2014). However, in
order to place modeling at the core of biological research it is
necessary for the new generations of bio-scientists to be prepared
to be able to build models. Currently, there are two conditions
that must be met for this trend to accelerate. First, it is a
matter of fact that the ecumenical nature of the training required
by the modeling task in biosciences has impaired this desired
evolution. The paradigm shift that involves the incorporation
of the integrative approach requires shaping and expanding the
training base of the new bioscience graduates with elements
that include a broad and solid background in mathematics,
thermodynamics, and scientific computing, among other new
disciplines, in addition to the classic as chemistry, genetics and
bioinformatics. Mathematical modeling of bioprocesses also has
severe limitations for development and generalization because
of the lack of training in math observed in many bioscience
postgraduates (Watters and Watters, 2006; Koenig, 2011). It is
our view that the best way to overcome this flaw is through the
inclusion of two elements that are, at least not well developed in
the curricula of the biosciences graduates, if not absent. One is the
appropriate, and properly adapted mathematical contents, which
could deal with the normally underdeveloped mathematical

Frontiers in Genetics | www.frontiersin.org

December 2015 | Volume 6 | Article 354



Torres and Santos

The (Mathematical) Modeling Process in Biosciences

thinking of the students. There is some discussion as to what
contents and to what extent the biosciences students should be
exposed to (Voit and Kemp, 2009). But what seems unavoidable
is the fact that the biological scientist of the XXI century
should be fluent not only in mathematics (in statistics and also
in other mathematical concepts such as ordinary differential
equations) but also in modeling techniques. Fortunately, there
is an increasing awareness in this regard and some material is
already available to fill this gap (Voit, 2012; Torres, 2013).

The understanding of the system through the use of the
mathematical tools that allow the description and analysis of
the complex systems can help to deepen the knowledge of
the structure, properties and dynamic behavior of the system.
However, the collaboration with experienced mathematicians
is required for analyses such as the choice of the proper
numerical methods, and the selection of the valid simplifications
of complicated models. This is the area where most of the typical
modeling projects develop: the fertile interface among established
disciplines such as cellular biology, biochemistry, genetics and
mathematics, and others. In this task all parties are benefited from
valuable insight from the interdisciplinary experience. Modeling
implies the definition of the model’s objectives, and the curation
of the available information. It facilitates not only the finding of
previously unsuspected areas of exploration, but the proposition
of new questions that were not at all evident from the reductionist
approach. The systematic practice of modeling in this context
also naturally facilitates the fusion of scientific disciplines; this
unifying tension is felt not only among biological specialties
(e.g., biochemistry, cell biology, microbiology, and genetics) but
also with other (seemingly) distant ones, as operational research,
computer science and mathematical analysis.

Most of the modelers are well between two extreme positions.
On one side lie the idealistic ones who consider model building as
a mental process in which the inductive dimension is not valued.
For them the mathematical structure obtained represents reality.
Opposed to this is the one with a pragmatic view, for whom the
goal is to adjust the model to the actual data but without paying
attention to a better understanding of reality. The right position
would be that in which the model is adjusted to the data, but
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Abstract

Mathematical modelling of intra-host malaria is a relatively recent topic. Although the first
mathematical model related to malaria was proposed by Sir Ronald Ross in 1915, the first attempt
to model the parasite-host interactions was as recent as 1989. Since then, a moderate but steadily
growing number of articles dealing with this topic have been published, including a couple of
reviews. In this review, we aim to sum up the knowledge that this particular mathematical modell-
ing approach has provided with respect to the role played by Plasmodium in infection mechanisms.

Keywords: Malaria, mathematical modeling, intra-host models, antigenic variants, species competition,

erythropoiesis, drug therapy

Introduction

Malaria is one of the most prevalent infectious diseases
worldwide, with about 500 million people affected annually
and almost 1 million deaths per year [1]. There are five
parasite species of malaria affecting humans, Plasmodium
falciparum being the most harmful as it can evolve into
the almost lethal cerebral malaria. A higher prevalence is
seen in the continent of Africa while in some regions of
South East Asia, strains of the parasite resistant to current
drug therapies (artemisinin-combined therapies) are
emerging [2]. Furthermore, there is no effective vaccine.
Since the discovery of the infectious agent of malaria at
the beginning of the twentieth century by Sir Ronald Ross, a
lot of work has been done aiming to understand the
infection mechanism of Plasmodium with the ultimate goal
being control and eventually eradication of the disease.

The malaria life cycle is complex, with many stages
taking place inside the human host. When the mosquito
bites, it introduces parasites in the host in the sporozoite
stage. They migrate to the liver where they reproduce
asexually for 2 weeks. Then, they leave the liver having
entered another stage of the parasite life cycle, the mer-
ozoite, which can invade the blood’s erythrocytes. Mer-
ozoites asexually divide inside the red blood cells,

producing about 16 new merozoites per erythrocyte,
which are then released into the blood stream after
breaking the erythrocyte. This merozoite division process
is itself a complex one, where the merozoite evolves
through different stages. The most characteristic of them
is the ring stage, in which the merozoite adopts an ery-
throcyte shape. Within the red blood cells, some of the
merozoites differentiate to a sexual stage, the gametocyte.
The gametocyte remains in the human host’s red blood
cells. Eventually, another mosquito would take them, thus
closing the parasite life cycle after fecundation in the gut
of the mosquito. From the above, it can be seen that while
the merozoites are responsible for the severity of the
disease, the gametocytes parasite phase stage leads to the
transmission of the disease. One important feature of the
dynamics of the parasitaemia is the optimal very good syn-
chronization of the merozoites, which lets to oscillations
in the parasitaemia. These oscillations lead to recurrent
fevers, one of the characteristic symptoms of malaria.

Mathematical modelling

Mathematical modelling is becoming one of the most
relevant methodologies to design rational therapeutic

http://www.cabi.org/cabreviews



2 CAB Reviews

strategies in biomedical problems. Its increasing pre-
valence in this field comes from the fact that this approach
allows the integration of the interactions between the
components of systems as complex as diseases in
quantitative frameworks. It has also the advantage that it
can benefit from the amount of information already
available in literature and data bases and that, since in silico
testing bench is cheaper and easier to control than animal
and in vitro models, it facilitates the rational explorations
of new therapeutic approaches.

Interestingly enough, Sir Ronald Ross not only dis-
covered the infectious agent of malaria but he was also
the first one to carry out a mathematical analysis of the
epidemiology of malaria [3]. Although since that seminal
paper many other epidemiological models have been
presented [4], the truly first mathematical model of the
intra-host mechanism of infection is dated 21 years later
[5]- This contribution signals the beginning of the use of
mathematical modelling in this field, and it was in 1999
when the first review on this topic was published [6].
The most recent reported reviews were published in
2008 [7, 8].

In this work, taking reviews in the field as the starting
point, we present an up-to-date panorama of the devel-
opments in this area and an evaluation of the knowledge
that the mathematical modelling approach has been able
to provide on parasite-host interactions and malaria
infection mechanisms.

Antecedents and Precursors

Among the previous reviews on the mathematical mod-
elling of intra-host malaria approaches, the most sig-
nificant are that by Molineaux and Dietz, published in
1999 [5] and, more recently, the works by Mideo and Day
and published in 2008 [9].

In the paper by Molineaux and Dietz, the authors
present the first systematic review of intra-host mathe-
matical models of malaria in a moment when this specific
topic was in its early stages. The work is a presentation of
the approach and was instrumental in supporting it up to
the point that it covered not only malaria models, but also
modelling approaches in related diseases like trypanoso-
miasis. They separate malaria models into three cate-
gories. The first one comprises models based on the
precursor of malaria intra-host models ([7], p. 5). This
first attempt was formulated in ordinary differential
equations. A more extended version of the model [10, 11]
considers the invasion of uninfected red blood cells by
merozoites and simulates the dynamics of uninfected,
parasite red blood cells and merozoites, including the
immune response. The authors used the model to eval-
uate the effectiveness of the immune response to the
parasite infection and the effect of parasite infection on
anaemia. They observed that the antigenic variation
may not be the only mechanism responsible for the

recrudescence and that in the presence of immunity, two
clones of parasite can coexist. Finally, they explore some
considerations about the pharmacokinetics and pharma-
codynamics of some drugs aiming to optimize the
prophylactic and therapeutic drug regimens to reduce the
emergence of resistance. Here, we can see how, owing
to its very nature, the model approach leads naturally to
the design of new therapeutic strategies, all based on
the model analysis and thus, leaving behind the classical
‘trial and error’ methodology.

A second family of modelling approaches is represented
by the Kwiatkowski [12, 13] proposal. These are, essen-
tially, discontinuous models of intra-host malaria. They
use finite difference equations and the population of
parasite erythrocytes is categorized by age group. The
main results were the unravelling of some features of the
control of parasitaemia by toxic feedback, as experienced
in the fever response.

The third kind of model within this group was started
by McKenzie and Bossert [10, 11]. Their approach is very
similar to that of Anderson et al. [7], but the objective was
to analyse the gametocytogenesis. They consider the
parasite erythrocytes, gametocyte population and immune
effectors and they established that the gametocyte pro-
duction rate is negatively correlated with the asexual
parasitaemia.

The second contribution to the subject that we would
like to refer to here is that by Mideo and Day ([9], p. 7).
These authors review the outcome of 20 years of math-
ematical modelling on intra-host malaria. They classify the
factors affecting the dynamics of the disease in two
categories; the resource-mediated and the immune-
mediated factors. In another paper, Mideo and Day [9]
illustrate how the availability of erythrocytes (resource-
mediated factors) controls parasitaemia, while in Dietz
[14], it is shown how the immune system leads to the
control of the disease (immune-mediated factors).

The main insights obtained from these modelling stu-
dies correlate well with the evolution and changing focus
of interest in malaria research. In this regard, a first
relevant observation raised by these authors refers to the
immune system as a target for treatments. They con-
cluded that the immune system is more effective against
the parasite erythrocytes than against free merozoites.
Also, they observed that the innate immune response
controls the primary peak of parasitaemia but not the
long-term dynamics. Another relevant finding refers to
the clone interactions. They compiled evidence showing
that inferior clones could overcome superior ones by
arriving first and that the low gametocytaemia then
observed can be explained in terms of competition for
the same immune response. It was also observed that
gametocytogenesis changes during infection. They found
that the dynamics and clinical observation between
Plasmodium species are the result of the varying ery-
throcyte affinity associated to blood-cell age. Finally, they
discredited the idea of the erythropoiesis suppression
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during malaria infection, by showing that in fact it
increases.

As stated before, one of the immediate outputs coming
from these early mathematical modelling exercises is
the rational evaluation of the efficacy of diseases
interventions. Thus, some of these preliminary approa-
ches in the realm of vaccination strategies concluded that
the optimal vaccination programme is strongly host-
dependent. Furthermore, nested models, which combine
intra-host and epidemiologic mechanisms, lead to the
proposal of some mechanistic interventions with effects
on the infected population level.

A third line of mathematical model proposals are the
type presented by Crooks [8]. This author claims that
continuous modelling on intra-host malaria is a bad choice
for describing the actual system dynamics. It is argued
that, since parasite replication occurs in discrete steps of
about 48 h, any continuous growth model is not suitable
to adequately reproduce its dynamics. To support this
statement, a comparative analysis of the results of three
kinds of continuous models that include the asexual
multiplication factor (number of merozoites after one
cycle of division) and the gametocyte production were
considered, and the dynamics of the first peak of para-
sitaemia compared with those obtained from a discrete
model. Of the three type of continuous models, one
group is composed by those where only a single equation
describing the dynamics of the asexual stage of the para-
sites is considered; a second one is that of models
in which the merozoite dynamics (intra- and extra-
erythrocytes) are described. A last group is composed by
the models where the parasite population is divided into
different age groups.

Group one models showed to provide the most
accurate description of the dynamic after a reduction of
the asexual rupture rate, while group two models were
the best after reducing the invasion rate of erythrocytes
by merozoites. But it was the third group that showed
the best performance. Since increasing the number of
age compartments resembles the discrete situation, the
author concluded that any age compartment model is the
best-suited, continuous mode strategy.

Intra-host mathematical models about malaria

Antigenic variants of pathogen

More recently, a new sort of intra-host model has been
presented where the issue of the mechanism and dynamics
of antigenic variants of parasite inside the host have
been addressed. The interest in this issue comes from
the fact that the evolution of malaria parasites inside the
host has accelerated owing to the high variability of the
external receptor. And, although it has been established
that the antigenic variations might not be the only factor
explaining the recrudescence [15], it is, however, clear
that it is a mechanism that plays a significant role.
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Recker et al. in 2004 [16] presented the first model for
antigenic variation of parasite and its relationship with the
immune response. This work was, in some sense, the
precursor of a line of developments presented in a series
of papers [17-20, 24, 25] that discuss and extend some
various mathematical features of that model. In particular,
Blyuss and Gupta [19] carry out a stability and bifurcations
analysis of the antigenic variation in malaria while Mitchell
and Carr [20] show how it model is able to describe the
observed oscillations in an intra-host model of Plasmodium
falciparum in terms of the cross-reactive immune
response.

In 2005, Dodin and Levoir [17], using a model on dif-
ferential equations proposed that the high rate of
Plasmodium evolution can be associated to the low-
complexity genome region changes. Furthermore, this
model predicted that cross-reactive immune response
is a main cause for the recrudescence of the disease.
Accordingly, they suggested that the best parasite evolu-
tionary strategy is to change only one antigen.

In 2007, Adda et al [18] published a differential
equations model of the host—parasite interaction. They
considered the interaction of two strains and con-
cluded that the principle of exclusion operates between
them.

Blyuss and Gupta published in 2009 [19] presented a
model with multiple epitopes. The subsequent stability
analysis showed that when the long-lasting specific
immune response does not decay, the system has two
parameter domains with different stability. This observa-
tion correlates well with the observed divergence on the
parasitaemia phase of different parasite variants. But when
the specific response does not decay, the system exhibits
a large number of fixed points and undergoes the Hopf
bifurcation.

Mitchell and Carr, in 2010 [20], following the proposal
by Recker et al, 2004 [16] and using a simplified version
of its model were able to carry out a linear stability
analysis. They concluded that for very small values of the
variant-specific decay rate, there is still a possibility for
oscillations in parasitaemia not to occur. However, if the
cross-reactive immune response is much slower than
the variant-specific immune response, then oscillations
will occur.

A set of more recent models deal with different issues
of the infection with different approaches. This is the
case of the work by Blyuss and Kyrychko in 2012 [23].
These authors make use of bifurcation theory on delay
differential equations to evaluate the effect of a time delay
of the immune response on variants’ dynamics. They
conclude that enhancing the cross-reactive immune re-
sponse reduces the critical value of the time delay at the
Hopf bifurcation. A new agent-based approach on anti-
genic variants of Plasmodium was presented in 2012 [24]
and more recently in 2012 [25] a hybrid, discrete-
continuous model, dealing with very same topic was
published. This last model represents the infection
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duration, the antigenic profile and the immune response
and serves to conclude that the pre-existing immunity can
both increase or decrease the duration of the infection.
What the final effect would be depended on the profile of
variants and the strength of immunity.

A reverse approach on differential equations using
malaria cohort data dealing with antigenic variations was
presented in 2012 [21]. It shows that the observed
reduction of asymptomatic parasitaemia in older groups
can be attributed to a reduction of the parasite growth at
the blood stage because of immunity. In 2013, two models
relating to the antigenic variants were published [22, 26].
One of them [22], very much in this line, reaches general
conclusions that are applicable to other systems on
immune escape. The other one represents an antigenic
variation on a discrete immune response delay model.
The Hopf bifurcation analysis shows that the disease-free
equilibrium could be stable [26]. However, this result
proved to be controversial because Blyuss and Kyrychko
claimed that these kinds of systems never undergo a Hopf
bifurcation for the disease-free steady state [27]. Their
model on differential equations about antigenic variations
concluded that when variant-specific immunity is higher
than cross-reactive immunity, the system develops asyn-
chronous oscillations, this asynchrony being enhanced by
even a small delay in immune response.

Species competition

Another important topic of interest in the field of malaria
infection is the inter-specific competition between Plas-
modium species and intra-specific competition between
merozoites and gametocytes.

In 2006, Gurarie and McKenzie [28] studied the com-
petition between resistant and sensitive to treatment
strains. The differential equations model considers dif-
ferent treatment inoculation frequency, in absence or
presence of further inoculation of parasites. The results
lead the authors to claim that linear pharmacokinetic
models are not adequate to deal with the competition
between malaria strains. In the same year, another dif-
ferential equations model [29] was used to study the
competition for red blood cells between P. falciparum and
Plasmodium vivax. The conclusion was that the two-species
dynamics differ from that showed by each species indivi-
dually considered. Thus, while in some cases one species
eliminates the other, in other conditions they can coexist.
In 2010, a model able to simulate the interaction between
HIV and malaria was presented; a common case of co-
infection in many countries in Africa [30]. The interest of
this study lies in the fact that each infectious agent has
the opposite effect on the host: malaria stimulates the
immune response, whereas HIV infection suppresses the
immunity. The differential equation model showed that
the outcomes are strongly dependent on the individual.
The relevant conclusion here was that any control strat-
egy in this regard should be evaluated through modelling.
In 2011, a model using a Michaelis—-Menten-Monod

formulation [31] was used to study the interaction
between the immune cells, the infected red blood cells
and the merozoites. It was concluded that there are two
kinds of infection equilibria, with and without the specific
immune response. In 2014, an age-structured model [32]
was presented where the regular oscillations synchroni-
zation between parasites was observed. The Hopf bifur-
cation analysis showed that the regular oscillations are
attained as the growth rate increases.

Tewa et al. [33], in a differential equation model, found
that the immune response increases as the disease per-
sists, being more effective against parasite red blood cells
than against free merozoites. In 2013, Xiao and Zou [34]
presented a differential equation model to study the
coexistence of two species. They presented different
findings from those in [29], but concluded that it is pos-
sible for different species to coexist only in a region, not
in an individual. In the same vein, an age-structured model,
presented in terms of a partial differential equation dealing
with the multi-strain interactions [35] was presented. In
this work, the principle of exclusion where only the
strongest variant survives was established. Finally, in 2014,
a work by Santhanam et al. [36] analysed the competition
between the virulent and a non-virulent strains in a time-
discrete, Bayesian inference model. The conclusion was
that the ratio between the background loss rate of mer-
ozoites and invasion rate of mature erythrocytes should
be clone-specific in order to predict the competence
between these strains.

Erythropoiesis

Erythropoiesis is another important issue on malaria
that has been studied with modelling techniques. As the
infected persons develop severe anaemia, the effects of
the malaria parasite on erythropoiesis and the control of
erythropoiesis become critical.

A compartmentalized differential equation model deal-
ing with this matter was published in 2008 [37]. The
authors considered the different stages of erythrocytes to
evaluate the effect of dyserythropoiesis on parasitaemia.
It was seen that dyserythropoiesis decreases parasitaemia
and increases anaemia but in contrast, compensatory
erythropoiesis improves anaemia but increases para-
sitaemia. The model was also used to compare the
evading capacity of P. falciparum and P. vivax. Plasmodium
falciparum was shown to be better than P. vivax in evading
immune response. In the same line, Cromer et al. [38]
presented an adaptation of a mouse model to humans and
concluded that increasing erythropoiesis does not alle-
viate the disease severity, but increases anaemia and
parasitaemia. These topics were later addressed in two
papers published in 2010. The first one, based on partial
differential equations, evaluated the effect of malaria on
erythropoiesis [39] and considered the effect of haemo-
zoine on the precursor population. The authors observed
that removing the haemozoine helps in recovering healthy
levels of erythropoiesis in later stages. The other work is
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a Bayesian differential equation model that is fitted to
mice data [40]. It is proposed that the immune response
controls the initial parasitaemia peak by acting against the
parasite red blood cells and the healthy red blood cells.
It is also established that the immune system is acting
against healthy red blood cells on anaemia. Finally, in 2013,
Ackleh et al. [41] proposed a finite-difference equation
model in partial differential equations to analyse a
malaria scenario with erythropoiesis. As a result, they
proposed some model-based treatments for malaria: to
decrease the infection rate; to increase the death rate of
the parasite and to decrease the number of the parasite
released.

Drug therapy

The ultimate aim of any mathematical model on malaria
is to be an effective contribution in the search of drugs
and strategies to control or to eradicate malaria. In this
regard, as the available information grows and more
knowledge on the processes involved is generated,
madelling approaches become more apt for providing
novel, rational and promising strategies, and recent pub-
lications support this view.

In 2008, Chiyaka et al. [42], based on a previous model
proposal by Anderson et al. [7] presented a differential
equation model to analyse the effect of a therapy against
malaria. They concluded that any drug action based on
inhibiting parasite production is better than those based
on inhibiting merozoite invasion of red blood cells. In
2010, Saralamba et al. [43] presented a finite difference
equations model analysing the resistance against artemi-
sinin. The main finding was that the increase in resistance
occurs in the ring stage of the parasite. A partial differ-
ential equations model published in 2011 by Thibodeaux
and Schlittenhardt [44] proposed an optimal treatment
for malaria infection consisting on a periodic drug
administration in synchronization with the burst of para-
sites from the erythrocytes. A stochastic model, based on
difference equations [45], was proposed as a testing bench
to find treatments to decrease the transmission of the
disease. Another optimized artemisinin combined treat-
ment was designed based on a model presented in 2014
[46]. Using this model, a protocol was proposed to era-
dicate malaria from regions of South East Asia. Finally,
in 2013, Santos and Torres [47] presented a differential
equations model that was able to identify new targets
against malaria. Following a previously presented optimi-
zation methodologies [48, 49] these authors were able to
identify five targets for minimizing the parasite load; four
of them never having been taken into account in drug
design. The identified targets included increasing the
death rate of the gametocytes, which is already used in
current therapies. But also it was found that decreasing
the invasion rate of the red blood cells by the merozoites,
increasing the transformation of merozoites into gameto-
cytes, decreasing the activation of the immune system by
the gametocytes and combining the previously-identified

Guido Santos and Néstor V. Torres 5

target with decreasing the recycling rate of the red blood
cells were also effective in eliminating the disease.

Concluding Remarks

There are already a significant number of mathematical
models in the field of intra-host dynamics of malaria
infection, although this number is still relatively scarce
when compared with the use of this approach in other
fields. Since the first model presented in 1989 [5], a great
deal of somewhat diverse information on many aspects of
the infection process has been integrated in models of
different kinds. In these models, where the specific
mechanisms are well-known, it is possible to set up pre-
cise mechanistic models. However, in many instances,
as is particularly the case with the role of the immune
response, such a precise mechanistic representation
remains to be done. In these circumstances, a plausible
strategy is the so-called phenomenological approach. In
this approach, although we are explicitly ignoring the
exact mechanisms, the simplification so attained facilitates
the integration of the available information and thus the
proposal of control strategies.

It is our view that the modelling of the processes
involved in the intra-host interactions in malaria as well as
other related infectious diseases is already contributing
to the understanding of these processes. Through the
understanding so gained and the further integration of the
new information in new model, we will be in a position to
find new target processes, drugs and control strategies.
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Abstract

A mathematical model which predicts the intraerythrocytic stages of Plasmodium falciparum infection was developed using
data from malaria-infected mice. Variables selected accounted for levels of healthy red blood cells, merozoite (Plasmodium
asexual phase) infected red blood cells, gametocyte (Plasmodium sexual phase) infected red blood cells and a
phenomenological variable which accounts for the mean activity of the immune system of the host. The model built was
able to reproduce the behavior of three different scenarios of malaria. It predicts the later dynamics of malaria-infected
humans well after the first peak of parasitemia, the qualitative response of malaria-infected monkeys to vaccination and the
changes observed in malaria-infected mice when they are treated with antimalarial drugs. The mathematical model was
used to identify new targets to be focused on drug design. Optimization methodologies were applied to identify five
targets for minimizing the parasite load; four of the targets thus identified have never before been taken into account in
drug design. The potential targets include: 1) increasing the death rate of the gametocytes, 2) decreasing the invasion rate
of the red blood cells by the merozoites, 3) increasing the transformation of merozoites into gametocytes, 4) decreasing the
activation of the immune system by the gametocytes, and finally 5) a combination of the previous target with decreasing
the recycling rate of the red blood cells. The first target is already used in current therapies, whereas the remainders are
proposals for potential new targets. Furthermore, the combined target (the simultaneous decrease of the activation of IS by
gRBC and the decrease of the influence of IS on the recycling of hRBC) is interesting, since this combination does not affect
the parasite directly. Thus, it is not expected to generate selective pressure on the parasites, which means that it would not

produce resistance in Plasmodium.
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Introduction

According to the World Health Organization [1], malaria
affects more than 500 million people worldwide, killing between 1
and 2.5 million people annually, most of whom are children under
the age of five. It is caused by Plasmodium genus parasites
(Plasmodium vivax, P. ovale, P. malariae, P. knowlesi and P. falciparum),
P. falciparum being the most lethal. The parasites multiply inside
human erythrocytes, killing the cells in the process, and are
transmitted by female Anopheles mosquitoes. The area most affected
by malaria is sub-Saharan Africa.

There is currently no effective vaccine against malaria. Some
promising preliminary results have been seen, but no solution to
this issue is expected over the next few years [2]. To make the
situation even worse, the efficacy of transmission control by means
of insecticide-treated nets and indoor residual spraying is
dropping, because resistance to insecticides is increasing among
mosquitoes in Africa [3]. Because of that malaria control is
becoming totally dependent on pharmacological treatments.

There are several classes of drugs used to treat malaria. All share
the feature of targeting the merozoites [4,5], while some target
gametocytes as well. These drugs include quinolines, antifolates
and artemisinin, administered alone or in combination. Quino-
lines are thought to affect the polymerization of hemozoin, which
is toxic to the parasite. Antifolates inhibit the synthesis of folic acid
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by blocking the dihydrofolate reductase and dihydropteroate
synthetase enzymes of the parasite. Although the mechanism of
action of artemisinin is not known, the most accepted one is
interference with the plasmodial sarcoplasmic/endoplasmic calci-
um ATPase [4]. Resistance to all these antimalarial drugs has been
widely reported [5], even in the case of what the World Health
Organization has identified as the most eflective treatments, the
artemisinin combined therapies. In particular, some resistance to
the artemisinin combined therapies has been detected in South-
East Asia. This poses a potentially dangerous and severe scenario,
if’ the resistance spreads to endemic areas in Africa [6,7] since, to
our knowledge, no other effective antimalarial treatments are in
sight.

This situation can be attributed, at least in part, to the classical,
reductionist pharmacological approach to finding new drugs. This
approach is mainly based on reducing the disease to a small set of
defined targets for which new drugs can be sought. In the case of
malaria, it is evident that this approach has shown little success, a
trend also observed in other complex diseases [8].

Wells 2010 divides all current drug discovery strategies into two
groups: “whole parasite screening” and ‘“‘rational design ap-
proaches™ [9]. Whole parasite screening strategies are based on
testing compounds i vitro and selecting those which affect a
Plasmodum culture. The rational design approach strategies try to
inhibit specific pathways of the parasite. Screening approaches
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have the limitation that they are non-directed; there are a huge
number of possible compounds to test and the entire screening
process is conducted with the parasite isolated from the host
system in in vitro conditions. Rational design is directed, but it
depends on the knowledge of the mechanisms of the parasite [9]
and is thus very reductionist in focus. Furthermore, none of these
methods can deal with the existing pharmacological targets which
only work in vivo.

While due credit must be given to these reductionist approaches
for their contribution to the development of the drugs currently
available, it is not equally clear that this strategy has proven
sufficiently effective in providing a number of relevant drug
solutions [10].

Accordingly, a third line of approach has been proposed to
direct drug discovery [11]. This strategy, known as quantitative
and systems pharmacology, aims to understand how drugs
influence cellular networks in space and time and determine
how they affect human pathophysiology. This approach follows
the tenets of systems biology, and is based on the development of
mathematical models that incorporate data at several temporal
and spatial scales and are able to predict the dynamic behavior of
the main variables involved in the parasite infection and the
therapeutic effects of drugs. The principles of system biology thus
provide the methodological framework and perspective needed for
modeling system behavior in vive, establishing the basis for a
genuinely rational target identification and drug design. In this
context, the defining feature of system biology is the combined use
of mathematical and computable models and quantitative
experimental data as a means to unravel the network-based
(“emergent”’) properties which cannot be deduced in any way from
the knowledge of their components [12].

Such models, which lead to an educated and informed
hypothesis, can then be used to identify the most sensitive
processes of the system with a view to reducing the parasitemia (see
Linger et al, 2012; [13]). The present work is in line with this
approach, and with the current view that in order to identify new
and better targets for antimalarial drug-based treatments, a model-
based approach is needed [11].

In the present case, a model system constructed in this way will
represent Plasmodium infection in vive, and thus it is to be expected
that well-selected interventions in some of these processes in the
real system will lead to a recovery in the patient. The results thus
obtained will be correlated and compared with current therapies
against malaria.

Results

In order to analyze the dynamics of the infection process by
Plasmodium and to propose new targets with potential for drug
discovery against malaria, an ordinary differential equations
mathematical model was developed (see Material and Methods).
In the present study, we used the General Mass Action within the
Power Law formalism [14]. This formalism has been used as the
framework for modeling other infectious diseases [13]. Regarding
other diseases, the range of pathologies that have been addressed
using the Power Law formalism, either in the GMA or in the S-
system version, goes from the analysis of the purine metabolism in
human [15,16] to inflammation and preconditioning [17,18],
mental disorders [19] and cancer [20].

The model so constructed is a phenomenological one, where
some aspects of the physiological processes are lumped together
and represented by a single process. The proposed model is
focused on a critical phase of the Plasmodium faleiparum life cycle
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within the host, namely the processes involved after the release of
liver cell merozoites into the bloodstream.

As is well known, once they are in the bloodstream, the
merozoites infect red blood cells, which in turn produce further
merozoites. Subsequently, sexual forms (gametocytes) are pro-
duced which eventually, if taken up by a mosquito, will infect the
insect and will continue the parasite life cycle. Figure 1 shows the
simplified representation of these processes. The selected variables
include the healthy erythrocyte population (hRBC) and the
merozoite-parasitized erythrocyte cell density (mRBC). This latter
variable represents all red blood cells infected at whatever stage of
the asexual cycle of the merozoite. Another variable is the
gametocyte-parasitized erythrocytes (gRBC), which represents all
red blood cells containing a Plasmedium gametocyte. These three
variables are all expressed as units per volume of blood (uL). A
final variable accounts for the overall activity of the immune
system (IS). The IS is a phenomenological variable measuring the
mean response of the immune system against Plasmodium infection.
The mouse IgG1 (immunoglobulin G1) measured in absorbance
units is taken to represent the activity status of the immune system.

In the figure, black continuous arrows represent processes
actually occurring during this stage of the infection, while blue
dashed arrows stand for positive regulatory influences of the
variables on different processes. In our model, the different stages
of the intraerythrocytic cycle of parasite are represented by
(mRBC; merozoites) and (gRBC; gametocytes). The processes
represented in the model include the synthesis of hRBC by the
host (V1), balanced by a rate that integrates the natural processes
leading to erythrocyte decay (V2); the immune system (IS) has an
influence on this rate [21]. Healthy erythrocytes are infected by
Plasmodium merozoites, a process that is stimulated by the growing
population of infected erythrocytes (mRBC) (V3) [22]. The
transformation of mRBC into gRBC is also considered (V5). This
process 1s assumed to be influenced by the IS (a representative
component of the parasite stress in the model; see Material and
Methods section), as has been shown [23]. The elimination of the
infected red blood cells (mRBC and gRBC) is included (V4 and
V6, respectively); this elimination is promoted by the IS. The
model integrates all processes related to the activation of the
immune components controlling the malaria parasite inside the
host through the activation of the variable IS (V7). Finally, the
inactivation of the IS is included (V8). In the model, we assume
that the process leading to the growth of the free parasite
population mside the liver does not affect its dynamics at the
intraerythrocytic level.

Model Validation

Figure 2 shows the comparison between the model’s fitting and
the experimental data. Experimental measures were taken from
the bibliography [24,25] and consist of measures from Plasmodium
chabaudi-infected mice of different malaria-related components
(healthy red blood cells, merozoite and gametocyte-infected red
blood cells and IgG1l). The mitial conditions for the variables
hRBC and IS, since they should represent the system condition
before infection, were taken from the first experimental values in
Figure 2. For all validations the values of the parameters were kept
fixed.

Before the model is utilized for our intended purposes, it should
be diagnosed for internal robustness. Accordingly, we identified
and evaluated the stability of the initial and final steady states and
carried out the sensitivity analysis (see Figure S1). Moreover, given
the dynamic nature of the process, we calculated the dynamic
sensitivities that serve to assess how changes i initial values affect
the transient responses of a system (see Figure $2). Furthermore,

March 2013 | Volume 8 | Issue 3 | 59968



Model Based Discovery of Anti Malaria Drug Targets

Figure 1. Erythrocyte infection model representation. In the picture, red circles represent the red blood cells, blue drops represent merozoites,
blue ovals represent gametocytes and the blue “Y" represents the immune system. The variable acronyms are the healthy red blood cells (hRBC), the
merozoite-infected red blood cells (MRBC), the gametocyte-infected red blood cells (gRBC) and the immune system (1S). Black continuous arrows
represent processes while blue dashed arrows represent regulatory influences of the variables on processes.
doi:10.1371/journal.pone.0059968.9001

for a model to be reliable and useful, its predictions should be and conditions. First, we compared the model’s predictions with
validated against the performance of the actual system in different data on the dynamics of Plasmodium falciparum parasitemia in
experimental conditions. For this purpose, we used three different human hosts; secondly, experimental time series data of Plasmodium

sets of experimental data obtained in diverse experimental settings falciparum parasitemia in vaccinated and non-vaccinated monkeys
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Figure 2. Model fitting. In all panels, continuous lines represent the model’s prediction while dots represent the experimental data obtained from
Plasmodium chabaudi [24,25]. Variable values are normalized.
doi:10.1371/journal.pone.0059968.g002
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were evaluated against the model’s predictions in correlative i
stlico scenarios; and thirdly, the observed dynamics of Plasmodium
chabaud: n groups of drug-treated mice were contrasted with the
model’s expectations. It should be stressed that in all cases, the
experimental data used were obtained in different conditions and
settings from those used when constructing the model.

Dynamics of Plasmodium falciparum in human
host. The first line of model validation was obtained from the
comparison of the model’s predictions with the experimental data
obtained by Diebner et al. 2000 [26]. These authors measured the
dynamics of the concentration of P. faleiparum merozoites and
gametocytes in infected, non-treated humans. We compared their
results with the model’s predictions (see Figure 3). From the
observation of Panels A and B in Figure 3, a number of features
emerge that merit further comment. The first observation is that
the oscillating dynamics of the experimental parasitemia are
reproduced by the model. More specifically, it should be noted
that, although the experimental system (P. falciparum in infected,
non-treated humans) differs from the one used to construct the
model (Plasmodium chabaudi infection in mice), the model’s
prediction of the merozoite and gametocyte population dynamics
correlates well with the experimental measures in terms of both the
magnitude of the period and the relative amplitude of the
oscillations. Moreover, the model reproduces the later attenuation
of the parasitemia. It can be observed, however, that although the
first peaks of merozoites and gametocytes are reproduced well by
the model, the second peak of merozoites occurs between the
gametocyte peaks, which are not the case in the model predictions.
Regarding this point, we should stress here that since our model is
a phenomenological one, we do not expect to see a quantitative
reproduction of the data. On the contrary, we should take into
account the fact that, in spite of the fact that the model is based on
observations made in mice infected with P. chabaudi, it is able to
qualitatively reproduce the dynamics observed in a different host
(human) infected with a different pathogen (P. falciparum). Since the
kinetics of the life cycle differs in the new conditions, we consider
that the dynamic qualitative pattern reproduction was good
enough for our objective.

2. Resp to vaccination. Additional evidence of the
model’s quality comes from the comparison of the model’s
predictions with experimental time series data obtained in a study
carried out in vaccinated and non-vaccinated monkeys (Mako-
bongo et al. [27]). Figure 4 compares the model’s predictions with
the data on parasitemia dynamics obtained from non-vaccinated
and vaccinated monkeys. Panel A shows the changes observed
experimentally in parasitemia (merozoites) after vaccination,
reflecting a delay in the maximum peak of parasitemia. In Panel
B, the vaccinated condition was represented in the model by
increasing the initial value of the variable IS, thus mimicking an
improved immunological status. It can be seen that in spite of the
fact that we are using a model based on the observed infection by
P. chabaudi in CBA to predict the P. faletparum parasitemia dynamic
in monkeys, the model is still able to reproduce both the general
trend observed in the actual data and the specific features of the
observed dynamics, such as the delay in the onset of the parasites
and the time course of the parasitemia towards zero after 23 days.
The difference in the % of parasitemia between Panels A and B
can thus be attributed to the different experimental set-ups and to
the well-known differences in the life cycle lengths of the parasite
i monkeys and mice.

Taken together, these observations, based on different exper-
imental set-ups and host types, lend support to the reliability of the
model for its use as a testing bench in the search for effective
antimalarial targets.
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Model Extension: Effect of Different Modes of Drug
Administration

The model presented above can be extended in order to give a
better interpretation of how the different modes of administration
of a current drug alffect the infection dynamics. The case is
illustrated by the comparison of the model’s predictions with the
course observed following certain antimalarial treatments. Chi-
manuka et al. [28] published the parasitemia time data series
obtained following treatment of infected mice with the antimalar-
ial drug B-artemether, which is known to enhance the death rate of
the merozoites (MRBC). They studied the time course under two
conditions: direct injection of the drug into the bloodstream and
also when liposomes were used as a means for slowing drug
delivery, which has been shown to vield better results measured as
longer elimination half-lives.

Equations 5 in the Material and Methods section shows the
model changes made to represent the two drug delivery systems
used by Chimanuka et al. [28] (see Figure 5). It is considered that
B-artemether concentration linearly eliminates the parasite at the
level of mRBC, through a process represented by Vg. It can be
argued that P-artemether would also affect Vi In fact, we
explored this mechanism of action, but the best correlation with
the experimental data by Chimanuka (data not shown) was
obtained instead when a different process (V) was assumed. This
finding constitutes in itself a model prediction and suggests that the
drug acts by eliminating the mRCB through a process different
from its natural decay.

The comparison with the model’s parasitemia predictions is
shown in Figure 6. Panel A shows the results of the simulation of
the direct, free drug inoculation into the mouse’s bloodstream
(right panel) compared with the experimental data (left panel).
Panel B shows the simulation corresponding to drug delivery
through the inoculation of liposomes carrying the drug into the
bloodstream (right panel) compared with the experimental
measures (left panel). In both cases the non-treated situation is
shown in black. The temporal differences from Figures 6B with
respect 6A are due to the different drug inoculation methods used
in each case. Since the liposome drug release to the blood stream is
slower, the dynamics takes more time.

In this figure it can be seen that the model’s predictions of the
pattern dynamics of the infection correlate well with all three sets
of experimental data. In the non-treated mice, the model
reproduces, for the two conditions assayed (panels A and B) the
experimentally observed iitial peak of parasitemia. Also, the
model reproduces the experimental observations of a low and
delayed peak of parasitemia when the mice are treated by direct
inoculation of the drug (panel A). Finally, the model’s prediction in
conditions of intra-liposome drug inoculation (panel B) shows, in
agreement with the experimental observations, a reduced initial
peak of parasitemia followed by another, lower peak. In all cases,
the model shows the oscillatory behavior as well as the relative
decrease in the amplitude of the oscillations and the temporal
delay between each. However, some discrepancies relative to the
magnitude of the parasitemia in both panels, and the time scale in
the Panel B are also evident. These differences can nevertheless be
attributed to the fact that we are using a model based on the
observed infection by P. chabaudi adami DK, a slow-growing strain
[24] compared with the P. chabaudi chabaudi strain used for the
verification data.

Model-guided Search for New Drug Action Targets
Using this model as a basis, we applied various search routines

(see Material and Methods) to identify antimalarial targets for the

minimization of parasite load and response time after infection
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Figure 5. Model adaptation to treatment with antimalarial drug according with Chimanuka et al. [28]. A. The antimalarial drug is
inoculated directly into the bloodstream. B. The drug is inoculated inside liposomes, which delays release into the bloodstream.

doi:10.1371/journal.pone.0059968.g005

[29]. We carried out this search in two phases. We searched for
“single-target solutions™ first, and then for combinations of “two-
target solutions”. The former aim at single targets, or processes
that after modulation of their rate (either positively or negatively)
by any means (e.g. by a drug) will cause the desired effect of
reducing the parasite load and/or system response time. The latter
target the same effects, but with consideration for the simultaneous
modulation of two processes.

The results obtained are summarized in Figure 7. It can be seen
that there are four single-target processes (Panel A) and only one
combmation of two-target processes (Panel B) where modifications
through the action of any drug or other agent can achieve a
significant reduction in the parasitemia of the host.

In Panel A, we sec a first (single) target, which consists of
decreasing on the invasion rate of the red blood cells by
merozoitos. The mvasion of red blood cells mvolves the
participation of a moving junction formed between the erythrocyte
and the parasite membranes [30,31]. The predicted effective
intervention leading to a parasitemia reduction should be a
reduction of this process. The other single targets detected involve
the increase of the transformation rate of the merozoites into
gametocytes (transformation of mRBC), the increase of the
elimination of the gametocytes (death of gRBC) and the reduction
of the influence of gametocytes on the synthesis and activation of
the immune system (activation of IS by gRBC). In Panel B, we see
the combined target predicted by the model, which consists of
reducing the influence of gametocytes on the activation of the
immune system (activation of IS by gRBC) while at the same time
decreasing the elimination of healthy red blood cells by the
immune system (recycling of hRBC).

The results of the above interventions are summarized in
Figure 8. Figure 8A shows the effects of reducing the invasion of
hRBC (dividing by 25 the basal, reference value of ys), thus
mimicking the action of an antimalarial drug. It can be seen that
the host variables hRBC and IS recover quickly and completely to
healthy values, while mRBC: and gRBC disappear quickly. There
is already some experimental evidence of this prediction from the
model [32,33]. In 1991, Beuria & Das [32] studied the therapeutic
effect of dextran sulfate on the dynamics of parasitemia in mice.
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Dextran sulfate is a molecule that acts by inhibiting the erythrocyte
infection rate of the merozoites without killing the parasites [34].
The authors demonstrated a significant reduction of the parasit-
emia and better survival rates when infected mice were treated
with this chemical. Although dextran sulfate cannot be used to
treat human infection due to its high toxicity [32], this result
supports the inhibition of the invasion of hRBC as an antimalarial
target, strongly suggesting that if another substance could be
identified with this effect on erythrocyte infection, but with fewer
or no side effects, it could prove to be an effective antimalarial
drug. Even more interestingly, Vulliez-Le Normand et al. [33]
recently suggested that any therapeutic strategies aimed at
inhibiting the invasion mechanism should be effective in treating
malaria. These author’s findings support the idea that the
mterruption of the Apical Membrane Antigen 1 association with
its receptor, the Rhoptry Neck Protein 2, is a target for the design
and development of inhibitors. Their observations are further
supported by the observation that the invasion-inhibitory peptide
R1 [35,36] blocks the interaction between the Apical Membrane
Antigen | and the Rhoptry Neck Protein complex in P. falciparum
[37].

The effect of increasing the death rate of gRBC, V (dividing by
three the basal, reference value of yg) is shown also in Figure 8
(Panel B). As a result of this intervention, it is observed that the
gametocytemia is reduced and that the oscillations disappear,
albeit at the expense of a small increase in merozoite load.

Figure 8C shows the result of an intervention on the third single
effective target: the decrease of the activation of IS by gRBC
(twofold decrease in g73). The aim of this intervention is to impair
the stimulus exerted by the gametocytes on the immune system
activation. This intervention causes a small decrease in both
parasite forms (MRBC, gRBC) and an almost negligible effect on
the host response (hRBC and IS).

Figure 8D shows the dynamics observed after an increase of the
rate of transformation of the merozoites into gametocytes, V.
This was simulated through an 80-fold increase in 5. What is
observed are decays in mRBC and gRBC, and also a significant
recovery of hRBC and IS.
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inoculated directly into the bloodstream (Figure 5A), the left panel shows the experimental measure of merozoite parasitemia while the right panel
shows the prediction of the merozoite parasitemia. Black line, parasitemia without treatment; red line, parasitemia under drug inoculation. B. When
the drug is inoculated inside liposomes, the left panel shows the experimental measure of merozoite parasitemia while the right panel shows the
prediction of the merozoite parasitemia. Black line, parasitemia without treatment; red line, parasitemia under drug inoculation. Data from

Chimanuka et al. [28].
doi:10.1371/journal pone.0059968.9g006

Finally, Figure 8E presents the effects of the only double,
simultaneous target intervention found that yielded a general
improvement of the infection status. This combination involves the
simultaneous decrease of the activation (dividing by two the basal,
reference value of g73) of the rate synthesis of IS by gRBC (V;; the
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exponential effect of gRBC on IS) and the decrease (dividing by
200 the basal, reference value of go4) of the effect of IS over hRBC
(Vo) of the influence of IS on the recycling of hRBC. It is
interesting to note that the final output is quantitatively rather
similar to that observed with the single target “decreasing
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Figure 7. Single and combined targets for antimalarial drugs. A. Single targets (from top to bottom): decreasing invasion of hRBC (thick red
arrow); increasing transformation of mRBC (thick green arrow); increasing death of gRBC (thick green arrow) and decreasing activation of IS by gRBC
(dashed red arrow). B. Combined target: decreasing activation of IS by gRBC combined with decreasing recycling of hRBC (dashed red arrows).

doi:10.1371/journal.pone.0059968.g007

o3

activation of IS by gRBC
dynamics.

(Panel C) but showing different

Discussion

The objective of this study was to identify new targets with
potential for drug discovery against malaria. Since malaria is a
complex disease with plenty of host-parasite interactions, the
disease’s dynamics and symptoms (the system emergent properties)
can only be understood through an integrated view of parasite
infection and host responses. By acting on these targets, including
those that only work i w0, we aim to reduce the parasitemia of
the two species ol the parasite inside the host.

The proposed model focuses on the modeling of the underlying
processes within the host-parasite dynamics of Plasmodium invasion
of red blood cells. Its main objective is to allow for the systematic
search, by means of an optimization approach, for the most
interesting targets for drug research. Given the high number of
processes involved and the model’s inherent complexity, we opted
for a phenomenological representation that is simple enough to
permit the proposed search but at the same time rich enough to
provide valuable insight into suitable targets. Based on the results
of this search, we would set up the necessary conditions to find, or
help to define, therapeutic strategies, including some which are
counter-intuitive. These strategies will not necessarily impede
infection but will reduce parasitemia and the risk of severe
symptoms as well as diminish the risk of drug resistance and
selective pressure for resistant Plasmodium strains. The model
considered a set of relevant components, processes and interac-
tions. Variables selected for the model were the two phases of the
parasite inside the host erythrocytes (mRBC, merozoites, and
gRBC, gametocytes), the healthy erythrocytes of the host, hRBC,
and the immune activity of the host against the parasite, IS (see
Figure 1). All the variables of the model were measured in terms of
their concentration inside the bloodstream. The values of the
variable IS are given by the concentration of IgG 1, which serves as
the representative component of the mean immune response
against the parasite.

We are aware of the fact that we are extrapolating the P.
chabaud: model dynamics built from mouse data to the same
process with P. falciparum in monkeys and humans and that

PLOS ONE | www.plosone.org

Plasmodium life cycle lengths differ between hosts and within the
erythrocyte between Plasmodium species. But since our approach is
phenomenological, we were able to obtain a qualitative verifica-
tion of the observed general pattern of behavior in monkeys and
humans. The approach serves to provide information about the
basic mechanism that operates in this type of infection as well as
some guidance for new targets for therapeutic drugs.

The proposed model is able to describe the dynamics of the
infection by Plasmodium chabaudi in mice. In addition, the model’s
predictions were successfully compared with different experimen-
tal scenarios (Figures 3, 4 and 5). Figure 3 shows how the model
reproduces the dynamics of the infection in humans after the first
peak of parasitemia, predicting the attenuated oscillations and the
delay observed between the phases; it also reproduces the final
maintenance of the parasite load. The model’s results also
correlate well with the observed response to the infection of a
vaccinated host (Figure 4). The model shows the observed
retardation and maximum value of the first peak of parasitemia
when the host is vaccinated. Since the model is able to reproduce
the disease in a third host, it can be concluded that it has captured
the essentials of the host-parasite interactions. A further confir-
mation of the model’s reliability was obtained by comparing its
predictions with the experimental measures of merozoite parasit-
emia in B-artemether treatment of mice infected with Plasmodium
chabaudi [28] (Figure 5) using two different methods of inoculation
of the drug. When P-artemether was injected directly into the
bloodstream, the observed delayed and lower peak of parasitemia
was predicted by the model (Figure 6A). Also, when the drug was
inoculated through liposomes, the observed early, reduced peak of
parasitemia followed by a second, lower peak was also forecast by
the model (Figure 6B). Thus, the ability of the model to reproduce
very different malaria infection scenarios (involving different
species ol Plasmodium as well as distinct hosts and various treatment
methods) makes us confident enough to use it as a reliable tool in
the search for effective pharmacological targets.

A set of such targets (single or combined) are presented in the
Results section (see Figure 7). A first target would consist on
decreasing the invasion rate of the erythrocytes by the merozoites;
such an intervention would lead to the full recovery of the host
(Figure 8A). Decreasing this rate means that free merozoites are
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Figure 8, Model-based time course of the system variables after intervention on the selected target rate process. A, After a decrease
of V3 (y3, 25 times the initial, reference steady state value). B. After an increase of Vg (ye, 3 times). C. Decrease of the influence of gRBC on V7 (g3, 2
times). D. Increase of Vs (vs, 80 times). E. Simultaneous decrease of the influence of gRBC on V5 (g73, 2 times) and of the influence of IS on V5 (ga4, 200
times). Continuous lines represent the prediction of the model in control conditions (no intervention on the target rate processes), while red
continuous lines represent the prediction of the model after the corresponding interventions.

doi:10.1371/journal.pone.0059968.g008

less effective in invading red blood cells; thus they will be more
exposed to the immune system [38]. Although this strategy has
already been partially evaluated as a vaccination strategy [2, see
also 33], our results suggest that it could also be effective as a
pharmacological treatment. In fact, such an approach has been
tested through the treatment of infected mice with dextran sulfate
[32], a molecule that impairs the invasion of red blood cells by
merozoites [34]. These authors [32] showed the effects of this
substance on reducing the parasitemia and the parallel increase in
the survival rate of the mice. More recently, Vulliez et al. [33]

PLOS ONE | www.plosone.org

showed, through the use of structural methods, that impairment of
the malaria parasite moving junction complex (decreasing the
invasion rate of merozoites) is effective as antimalarial treatment.
To sum up, our results indicate that decreasing the invasion rate of
the red blood cells by merozoites is a target where some drug
treatments can be effective against malaria.

The second single target proposed by the model works by
increasing the death rate of the gametocytes. This intervention
produces a decrease in gametocyte load but an increase in
merozoite load, although the maximum peak will be attenuated
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(Figure 8B). A weatment along these lines will reduce the
transmission rate during the initial stages of the disease and can
be combined with traditional treatments targeting the asexual
phase. Such a strategy has been already used (artemisinin
combined treatments, [39]), with the predicted effects of a lower
transmission rate for the disease.

A third target was to decrease the ability of the gametocytes to
activate the immune system. Its effect is to reduce the maximum
peaks of both parasite species (Figure 8C), and so it is expected that
it would alleviate the symptoms of non-complicated malaria and
reduce the transmission rate during the initial stages of the
infection. This target also has additional convenient characteris-
tics. Since it does not directly affect the parasites, there is no
selective pressure on them and thus the emergence of drug
resistance is avoided. Also, if combined with traditional treatments,
the doses could be reduced, thereby also reducing the emergence
of drug resistance (see [40]). Since this target refers to a parasite-
host interaction, the only chance to observe its effects would be in
in vivo conditions. Of equal importance is the fact that it is a very
counterintuitive solution. All this could explain why this strategy
has never been explored. In addition, we are aware of the
technical difficulties involved in the design and implementation of
such a strategy, where the sensitivity of the immune system
towards the presence of one of the parasite forms is to be impaired.

The last single target identified operates by increasing the
transformation rate of merozoites into envisaged gametocytes. The
effect of this increase is to produce a significant decrease in
merozoite load and also a decrease in gametocyte load (see
Figure 8D). Although it is not surprising that increasing the
merozoite transformation rate would produce a decrease in
merozoite load, what is not so intuitive is the model’s prediction
of a decrease in the gametocyte load. This is a good illustration of
how the integration into a mathematical representation of the
many non-linear interactions among the variables involved in the
relevant processes can lead to the emergence of certain
counterintuitive conclusions that cannot be derived from the
consideration of the local changes only. This type of intervention
has been shown to relax the symptomatology of non-complicated
malaria [41] and reduce transmission during the initial stages of
the infection [42]. It is interesting to observe that the activation of
the transformation of merozoites into gametocytes has the effect of
impairing the pathogen load. A higher gametocyte growth rate
vields an initial increase in its population, but this is followed by a
greater decrease in such a way that, as a whole, more parasites are
eliminated earlier. This behavior has been observed in other
parasitic diseases [13] and can be explained by stating that a
pathogen that proliferates rapidly is more likely to be detected by
the immune system. Increasing the gametocytogenesis is a strategy
that has never been evaluated by structural drug design methods,
and our results propose this target as a promising process where
these techniques can be applied for drug design.

Our exploration of the effective combinations of two targets
showed that reducing the influence of gametocytes on the
activation of the immune system while at the same time decreasing
the effect of the immune system on the death rate of the red blood
cells (see Figure 7B) would cause a reduction in both of the parasite
forms (Figure 8E). The latter action can be interpreted as making
the immune system less efficient in removing old erythrocytes, thus
enhancing their half-life. This therapeutic strategy is optimal in
order to prevent the emergence of drug resistance in the parasite.
These two proposed targets have never been evaluated by
structural methods. There should be great interest in examining
these two processes in order to design new drugs, because affecting
these processes does not generate selective pressure on the
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parasites; thus, effective drugs will have a low probability of
leading to the emergence of resistance, thereby extending their life
span. Here we can see again how the systemic approach might
shed new light on a well-studied process and help propose a novel
combination of targets, none of which aims to directly kill the
parasites, but which could reduce the parasitemia. In all these
explorations, the magnitudes of target-related parameter changes,
although related with the corresponding processes, do not have a
direct translation into a particular process. Accordingly, they have
to be interpreted as an indication of the magnitude and sense of
the intervention that would lead to the desired eflect.

The new, potential antimalarial targets proposed here were
identified through the use of a mathematical model that reliably
reproduces the infection dynamics under diflerent i vizo scenarios
of the disease. This model-based strategy can be of assistance in
key phases of the drug discovery process, such as the identification
of the right targets, since these targets allow us to guide drug
design at the molecular level through the systematic use of other
means such as structural methods (molecular docking) or data-
mining of inhibitor databases. A best-case illustration is provided
by the proposed target consisting of decreasing the invasion of red
blood cells by merozoites, which relates to the interruption of the
interaction between the Apical Membrane Antigen | associations
with its receptor, the Rhoptry Neck Protein 2. In fact, the
structural details of the specific Apical Membrane Antigen | with
the Rhoptry Neck Protein 2 interaction involved in the invasion
mechanism  enables the design of molecules with optimal
inhibitory properties to treat malarial infection. However, due to
the phenomenological character of the model, the proposed
targets do not have a direct translation into a concrete, well-
defined process. On the contrary, it should be stressed that the
contribution of this work is to propose certain processes of the
intraerythrocytic cycle of Plasmodium as targets for a more detailed
analysis that would eventually lead to the determination of a set of
concrete processes where the activity of some drugs will cause the
desired global effect. This second iteration would be the natural
next step in this project.

Our results suggest that the invasion of erythrocytes by
merozoites 1s a key point where any impairment intervention
would cause a decrease in parasitemia. In this case, some work has
already been done with respect to structural methods of drug
design [33]. Furthermore, comparison of the effect on a known
drug target (B-artemether administration through liposomes;
Figure 5) with the new drug target of increasing gametocytogenesis
(Figure 8D) shows that both reduce the peak of parasitemia
(Figure 6, panel B). When B-artemether is inoculated directly, the
same peak of parasitemia is observed, but with several days’ delay
(Figure 6, panel A). Chimanuka et al. [28] showed that the
liposome inoculation allowed the mice to survive, in contrast with
the direct inoculation. We can thus conclude that a drug which
increases gametocytogenesis would produce the same effects on
parasitemia (which permit survival in mice) as the B-artemether
administration through liposomes.

We conclude that focusing on cellular function as a system
rather than on the level of the single process or molecule will
facilitate the discovery of novel classes of drugs. Through the
integration into a model of the i vive host-pathogen interactions,
we can achieve an integrated view of parasite infection and host
responses that will allow for an understanding of the host—
parasite—drug interactions and the selection of drug combination
strategies of therapeutic value, and for controlling the transmission
of malaria by anopheline mosquitoes. In addition, the insight
obtained from this work already suggests future extensions and
refinements. In particular, models with a greater resolution in
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terms of the mechanisms involved in the novel targets such as
those represented by the Vi (v, elimination of gRBC), Vs, (v;,
gametocytogenesis), V5 (g4, activation of the immune system by
the gametocytes) or Vo (gos, recycling of the erythrocytes) would
lead to more mechanistically detailed versions of the model that
would suggest more precise targets for drug action. We are aware
of the difficulties of translating the proposed targets nto precise
therapies; the aim of this work is to propose targets that would
direct the drug search toward certain processes of the mntraeryth-
rocytic cycle of Plasmodium.

Moreover, since the systemic approach used here is a general
methodology, it can be used in the selection of strategies for
controlling a plethora of parasitic diseases. In each case, the
specific processes and their corresponding variables and param-
eters should be considered, but the application of the model to
other forms of parasitemia would benefit from the fact that there
are many common features shared by all.

Materials and Methods

Experimental Data

The parameters of the model were fitted using published
experimental data from non-treated animal model individuals.
The modelization task refers to the initial stages of the infection
dynamics.

Data for the variables hRBC, mRBC and gRBC were taken
from [24]. In this work, CBA/Ca mice were inoculated with 10°
parasitized red blood cells (Plasmodium chabaudi) and during the first
32 days after infection, measures were taken of the erythrocyte
titer (units per pl. of blood) and the parasitemia (mRBC and
gRBC per pL). Data for the IS variable were taken from [25]. In
this case, CBA/Ca mice were inoculated with 5-10* parasitized
red blood cells (Plasmodium chabaudi); the parasitemia dynamics of
this study were compared to the parasitemia measured in [24] in
order to ensure the same infection dynamics (data not shown).
IgG1 from infected mice was measured during the first 17 days
post infection (absorbance units). Since the dynamics of the initial
stages of the variables IgG1 and IgG2A (immunoglobulin G1 and
G2A) in these infected mice were almost the same (see Mota et al.
98 [25]), the IgG1 data were used to infer the mean response of
the immune system against Plasmoduum.

Model Design

The dynamics of the ifection process by Plasmodium were
represented as a mathematical model in ordinary differential
equations in the power-law formalism. In this formalism [14],
which allows for non-integer kinetic orders, the processes that
conforms the networks are modelled using power-law expansions
in the variables of the system and are then included in non-linear
ordinary differential equations with the following structure, called
Generalized Mass Action (GMA):

Q.
[X,’ !
T

g=1 i=12,....N (1)

Ry ’
Vo=vy T (X

In the above expression, X; (for i equals 1 to N) represents the
variables of the model. ¥, represents each of the processes affecting
the variation of X, while X, represents the variables which
influence the corresponding process V. 7y, and g,, are the
parameters of the model. 7, is the rate constant related to the
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process V. g, is the kinetic order which quantifies the effect of the

variable X, on the process V. (); and E; are the total number of
uxes and variables, respectively.

fl d bl pectively

Model Equations
The model derived from the scheme in Figure 1 is given by:

dhRBC
% =W

P 1= —W3
dm[ljBC R,
t[gRlBC @
——— =V5—V
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dIS

—=V—V
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where the corresponding rate equations in power law form
corresponding to the different fluxes are:

Vi=n

Vy =7, hRBC®21 - [§%24

V3 =73-hRBCS31 -mRBC#32

Vy =7, mRBCH2 - [S544

Vs =15 mRBCE2-[S854

Ve =76 gRBC*63-[S%64

V7 =y;mRBC*72-gRBCAT3

Vs =g 15884
Table 1 shows the values of the model parameters: This set of
value corresponds to the only solution which fitted the data and

verifies new experimental conditions (see results). Figure 2 presents
the corresponding model data fitting.

Parameter Estimation and Model Fitting

Model parameters were determined by fitting the model to
experimental data from infected mice during the first month of the
disease after infection [24,25] (see Figure 2). The fitting was
attained through the use of a heuristic optimization algorithm
(Modified Genetic Algorithm) previously used and presented by us

Table 1. Model parameter values.

Rate constants Kinetic orders

Name Value Name  Value Name  Value
1 097 921 3.00 9e3 0.84
Y2 0.94 a4 1.73 Jes 0.83
Y3 0.51 931 1.52 972 0.22
Ya 0.73 [- ™ 101 [-7H 0.63
s 026 [-7% 0.84 Jsa 4.29
e 0.49 Gas 2.98

Y7 0.15 Os2 1.80

Ts 0.09 954 2.98
doi:10.1371/journal.pone.0059968.t001
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elsewhere [43]. The objective function (Fofj) is minimized in the
process:

N [ [ (Xie=h)—Xite=h))*

5 Igl h=0 Y,([: h)
Fobj= N T 4)

In this equation, Xj(r=/h) is the X; variable value at the time
point /i and X;(z=h) is the corresponding experimental value at
the same time point A The stopping criterion is the maximum
number of iterations of the algorithm (1000), which in this model
satisfy the convergence of the majority of the solutions. The best
minimum  reached is expected to reproduce the qualitative
dynamic behavior of the measured data. Table 2 shows the value
of the objective function of all the solutions presented. Values
much higher than one (in days units) for y parameters in a cellular
scale would correspond to an excessive fast processes, furthermore
values of g’s higher than 3 represent strong sensitivities of the
processes by the variables. Because of that, the parameter search
boundaries were [0, 1] for the v’s, [0, 3] for the g’s and [0, 6] for
gg4. In this last case, this was due to the fact that gg, represents the
combined influence on Vy of IS as substrate and effector.

Model Validation

Any useful model is expected to reproduce the observed
responses against different experimental scenarios and treatments.
To do so here, we used other experimental data obtained in
conditions of pharmacological treatment or from vaccinated
mdividuals.

The first model validation comes from the comparison of the
model dynamics of the parasite variables with the corresponding
experimental values in malaria-affected humans [26]. A second set
of comparisons was obtained from data taken from vaccinated and
non-vaccinated infected monkeys [27]. In this case, the parasit-
emia course observed after the vaccination was used to verify the
model response under a simulated vaccination. This last condition
was performed in the model by increasing the initial value of the
IS variable. The last verification test was realized by comparing
the model’s results against experimental data obtained from
treated and non-treated mice infected with Plasmodium [28]. Two
different forms of drug administration were considered: direct drug
injection ({ree drug) and administration through liposomes (Lip

Model Based Discovery of Anti Malaria Drug Targets

Direct drug injectionLiposome drug administration.

dm‘.';’BC =Vi—Vy—Vs—Vy

dEd Y,

<IJ!J£B(':V37V47V57V9 &:_
dgfi ==Va " “
! Vo =Kq-Fd
e Rt Vg KoL (5)
Vo =Ky-mRBC-Fd A=
V9=Kg'mRBC'Fd
=1 Bl
Ky =0.1 2
Ka1=0.1
K =0.02

In these equations, Fd represents the variable Free drug (drug in
the bloodstream), Ld represents the variable Liposome drug (drug
inside liposomes), and ¥, is the drug clearance from the body in
both the free drug and liposome drug administration models. &,
and Ay, are the corresponding rate constants and Vs is the drug
diffusion from the liposomes. The parameter values Kq, Kg; and
Kgo were estimated in order to fit the time scale and the relative
decrease of the peak of parasitemia.

Search for Pharmacological Targets

In order to select the targets, each model parameter linked to a
potential target was changed either one at a time or in combination
with another, in an attempt to identify solutions showing reduced
objective function. The objective function considers the relative
difference of the mean healthy red blood cells with respect to the
initial non-infected condition and the relative increase in the
maximum parasite peak and the mean parasite load with respect to
the initial value of parasites. So the search consists of looking for
solutions with low values of objective function, which will be closer
to the healthy situation. This set of parameter values was selected as
the proposed target. For the combined targets, we chose those
which were better than the worst of the single targets. The objective
functions used during the scarch are displayed in Equation 6.

1
Foptyom= -

(hRBC —hRBC(1 :0)) k ( max (mRBC) ) i
5

hRBC(1=0) max (mRBCy)

drug). Equation 5 presents the model equations corresponding to
these two modes of drug administration (see Figures 6A and 6B).

Table 2. Objective functions.

Foptyuoin Fopt,
S0l 0.408 Sol,s 0.202 S0lyy 0.490
Sol,3 0023 Solgs 0289 Solgsges  0.202

Sol, 0271

S0, is the value of the objective function of the solution represented in
Figure 2. Sol,3, Sol.s, Sol.s S0l73, and Soluyz3424 are the values of the objective
functions for the solutions corresponding to the pharmacological treatment in
Y3 Vs Yer 973 and the combination of g;3 and g,4 respectively (see Figure 7).
Fobj,orn and Fobj, are described in Material and Methods (equations 6).
doi:10.1371/journal.pone.0059968.t002
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(max(gRBC))2+ (m—RBC)3+ GRBC)Z
max (gRBC)) mRBC, RBC, ©)
Fony.— L ( (ARBC—hRBC(1=0) ?  /max(¢RBC) >
= hRBC(1=0) max (gRBCy)

3
gRBC)2
(gRBC(,
Foply,y, is the objective function used to select solutions having
low levels in both forms of the parasite and healthy levels of
erythrocytemia. The first term of this equation represents the
relative squared difference between the mean value of the hRBC
variable (#RBC) of the solution and the value of this variable
under healthy conditions (ARRBC{t = 0)), which has to be minimized
for obtaining solutions with healthy levels of non-infected red
blood cells. The second and third terms represent the relative
value of the maximum level of parasitemia with respect to the
initial value of the parasitemia; minimizing these allows us to
obtain solutions with attenuated peaks of parasitemia. Finally, the
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fourth and fifth terms represent the relative value of the mean level
of parasitemia during the infection with respect to the initial value
of parasitemia; minimizing these allows us to obtain solutions with
low levels of parasitemia. Fopt, was used to find solutions with low
gametocytemia. As can be seen in this equation, the three terms
used correspond to those terms of the previous equations that are
related to the gRBC species, because this objective function only
considers the minimization of the gametocyte. Overlined variables
represent the mean value of the corresponding variables over time;
the subscript 0 represent the initial value, before the optimization.
In both cases, the sum is divided by the number of summands (5
and 3 respectively) in order to compare the values of the objective
function. Table 2 shows the value of the objective function for all
the proposed targets.

Supporting Information

Figure S1 Absolute values of the steady state sensitiv-
ities at the healthy condition.

(TIF)
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Information S1. Steady State Stability and Sensitivity Analysis.

Any mathematical model of a biological system has to be stable and robust if it is to be considered a
reliable representation of the real system. The model was thus submitted to a stability and sensitivity
analysis. We determined that the healthy host steady state is stable (see Supporting Information,
Section 3). At the same time, in order to check the model’s robustness, we evaluated two types of
system sensitivities: the steady state sensitivities, which refer to the normal, healthy steady state, and
the dynamic system sensitivities parameters, which identify the parameters with major influence on the
transient dynamics (see Supporting Information, Section 4). From this analysis we concluded that the
model is robust enough to represent the biological system.

Stability Analysis

The stability of the healthy, reference steady state can be found in the model shown in Equations S1
that corresponds to the not infected, healthy host steady state through the evaluation of eigenvalues of
the corresponding jacobian matrix:

Vi=n
V,=y, -hRBC*" . [S**
Vs =y 1S
Vis =0
Equations S1

where hRBC and IS are the same as in the original model (Equations 2 and 3 in the article), and Vs is the
rate associated with the host variable IS in the absence of infection.

Sensitivity Analysis

Sensitivity analysis enables the identification of parameters that exert a major influence on system
response. Since we depart from and aim to reach a steady state where the variable values are stable at
normal, healthy values, we should evaluate the robustness of this reference steady state. But our model
is a dynamic one, too; therefore, it is also necessary to identify the parameters with a major influence on
the transient dynamics.

Steady state sensitivities. Steady state sensitivities were calculated at the healthy, not infected steady
state (Voit, E.O., 2000; Siljak, D.D., 1969; Frank, P.M., 1978). Steady state sensitivities measure the
relative change to the value of variables with respect to an infinitesimal change in the parameters
(kinetic orders and rate constants) or in the initial conditions. These sensitivities were calculated in
accordance with Equation S2.
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log(sX,) — log(sX,)

log(sh;) —log(sP,)
log(sX,) - log(sX,)

log(X ,(t = 0)) ~log(X (¢ = 0))

SS(X,.B,) =

i=12,...,N;k=12,....M

SS(X,, X;(t=0))= i,j=12,...,N

Equations S2

In the above expressions, S5(X; P) and S5(X;, Xj(t=0)) are the sensitivities of the variable X; with respect to
changes in parameter P, and initial condition X(t=0), respectively; sX; is the steady state value of the
variable Xj; Xj(t=0) is the initial condition value of the variable X; and Py is the value of the parameter k.
Carets are displayed over the variables and parameters which correspond to the perturbed situation.
Figure S1 shows the values of the steady state sensitivity at the healthy condition when the variables
mRBC and gRBC are not present. In all cases, the maximum absolute value of sensitivities is about 1.2.

hRBC Is
gammai 1
0.8
gammaz2
0.6
gammas 04
0.2
g21
0
g24 0.2
0.4
gé4
-0.6

Figure S1. Dynamic sensitivities 1. Dynamic sensitivities measure the relative change on the value of the area
under the curve of all the variables with respect to an infinitesimal change in the parameters (kinetic orders and
rate constants) or in the initial conditions (see Hormiga, J., 2010). For this purpose we used the following
equations:

Tm A Tm
log( j " X dr)~log( j " X,di)

DS(X.,P)= =
(% 5) log(B,) - log(P,)

i=12,...,N;k=12,....M

log([ TO £,dr)~ log([ TO X dr)
log(X, (1 = 0)) ~log(X, (1 = 0))

DS(X,, X, (t=0))= i=12,...,N;k=12,....M

Equations S3

In the above expressions, DS(X, P) and DS(X; X(t=0)) are the dynamic sensitivities of the variable X;
Tm

with respect to changes in parameter P, and initial condition X(t=0), respectively; J- X,dt represents
t=0

the area under the curve of the variable X; during the time between 0 and final time Tm. Carets are
displayed over the variables and parameters which correspond to the perturbed situation. Figure S2
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shows the values of the dynamic sensitivities. In all cases the maximum absolute value of sensitivities is
about 1.2.
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Figure S2. Dynamic sensitivities 2. Dynamic sensitivities measure the relative change on the value of the area
under the curve of all the variables with respect to an infinitesimal change in the parameters (kinetic orders and
rate constants) or in the initial conditions (see Hormiga, J., 2010). For this purpose we used the following
equations:

References

Voit, E.O. (2000) Computational analysis of biochemical systems. Cambridge University Press.

Siljak, D.D. (1969) Nonlinear system: The parameter analysis and design. New York: Wiley.

Frank PM (1978) Introduction to systems sensitivity theory. New York: Academic Press.

Hormiga, J. (2010) Quantitative analysis of the dynamic signaling pathway involved in the cAMP
mediated induction of L-carnitine biosynthesis in E. coli cultures. Molecular Biosystems 6(4): 699-710.

63






0.

VIH - PLOS ONE

DOI: 10.1371/J0URNAL.PONE.0103845

65






OPEN 8 ACCESS Freely available online

B-PLOS | on

Quantitative Analysis of the Processes and Signaling
Events Involved in Early HIV-1 Infection of T Cells

Guido Santos™?, Agustin Valenzuela-Fernandez?*, Néstor V. Torres'>*

1 Grupo de Biologia de Sistemas y Modelizacion Matematica, Departamento de Bioguimica, Microbiologia, Biologia Celular y Genética, Facultad de Biologia, Universidad
de La Laguna, San Cristobal de La Laguna, Tenerife, Espana, 2 Laboratorio de Inmunologia Celular y Viral, Departamento de Medicina Fisica y Farmacologia, Facultad de
Medicina, Universidad de La Laguna, San Cristobal de La Laguna, Tenerife, Espania, 3 Instituto de Tecnologia Biomédica, Universidad de La Laguna, San Cristébal de La

Laguna, Tenerife, Spain

Abstract

Lymphocyte invasion by HIV-1 is a complex, highly regulated process involving many different types of molecules that is
prompted by the virus's association with viral receptors located at the cell-surface membrane that culminates in the
formation of a fusion pore through which the virus enters the cell. A great deal of work has been done to identify the key
actors in the process and determine the regulatory interactions; however, there have been no reports to date of attempts
being made to fully understand the system dynamics through a systemic, quantitative modeling approach. In this paper, we
introduce a dynamic mathematical model that integrates the available information on the molecular events involved in
lymphocyte invasion. Our model shows that moesin activation is induced by virus signaling, while filamin-A is mobilized by
the receptor capping. Actin disaggregation from the cap is facilitated by cofilin. Cofilin is inactivated by HIV-1 signaling in
activated lymphocytes, while in resting lymphocytes another signal is required to activate cofilin in the later stages in order
to accelerate the decay of the aggregated actin as a restriction factor for the viral entry. Furthermore, stopping the
activation signaling of moesin is sufficient to liberate the actin filaments from the cap. The model also shows the positive
effect of gelsolin on actin capping by means of the nucleation effect. These findings allow us to propose novel approaches
in the search for new therapeutic strategies. In particular, gelsolin inhibition is seen as a promising target for preventing HIV-
1 entry into lymphocytes, due to its role in facilitating the capping needed for the invasion. Also it is shown that HIV-1
should overcome the cortical actin barrier during early infection and predicts the different susceptibility of CD4+ T cells to
be infected in terms of actin cytoskeleton dynamics driven by associated cellular factors.
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Introduction

The invasion and infection of CD4+ T lymphocytes by human
immunodeficiency virus type 1 (HIV-1) is a complex process
involving many cellular events that have been the subject of many
studies [1]. The accumulated evidence indicates that the actin
mobilization that occurs before the formation of the fusion pore
plays a central role in this process. In fact, the actin cytoskeleton is
deeply involved in the capping of cell-surface receptors for viral
infection, which facilitates the interaction with the viral envelope
(Env) complex and the subsequent fusion pore formation.
However, this is not the only cellular component of importance
in the viral infection process. Another main character in this plot is
the HIV-1 Env-gpl120 viral-surface protein. This element, located
in the virus’s outer coat, docks with high affinity at the
lymphocyte’s surface CD4 receptor. As a consequence of this
mteraction, HIV-1 Env-gp120 changes its conformation, exposing

PLOS ONE | www.plosone.org

other regions of the viral protein responsible for its binding to a
second co-receptor, either CCR5 or CXCR4. These bindings
trigger a signaling pathway inside the lymphocyte that culminates
with the formation of an actin cap in a pole of the cell (hereinafter
‘cap’), driving CD4 and co-receptor co-localization and direct
interaction, in an actin-dependent manner. These HIV-1 Env-
gpl120/CD4-mediated actin and receptor reorganization and
capping events have been shown to correlate with the infectivity
of the virus [2]. This fact will be a central issue the present study,
since we will choose a cap indicator as a measure of HIV-1
infectivity.

Another observed fact is that activated CD4+ T lymphocytes,
due to its active cell cycling, are continuously remodeling their

actin cytoskeleton. There is ample evidence that the inhibition of

the signal transduction or the removal of the intracellular signaling
domain of CXCR4/CCR5, did not affect HIV infection [3-6].
However, in resting CD4+ T lymphocytes such inhibition
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CrossMark

67



diminishes HIV infection [7]. In the same vein it has been shown
that resting T cells are more sensitive to actin inhibitors than
transformed T cells [8]. All these evidences point out to the fact
that while the viral requirement for actin dynamics are universal,
the HIV-mediated signaling pathways to the actin activity are cell-
line dependent. These facts have been taken into account in this
modelling exercise.

The actin mobilization required for cap formation is in turn
influenced by other elements. This is the case of moesin, for
example, an HIV-1-activated protein that acts as a reversible link
between the lymphocyte membrane and the actin filaments [9].
HIV-1-triggered moesin activation promotes the reorganization of
cortical F-actin and its subsequent anchoring to the membrane at
HIV-1-cell contact points [10]; through this interaction, it
facilitates the receptor/co-receptor direct mteraction and co-
localization. Furthermore, moesin also promotes the polymeriza-
tion of actin filaments as a nucleation factor [10-12]. Moreover,
experimental results show that increasing the total moesin
available at the lymphocyte enhances HIV-1 infectivity, while a
decrease in the activity of moesin negatively aflects the invasion
process [10]. During fusion pore formation, moesin has to be
deactivated to allow F-actin depolymerization and viral entry [13].

Other key players in these processes are gelsolin, filamin-A and
cofilin. Gelsolin is an actin-binding protein with a severing activity
on actin filaments, which thus also has an effect on actin
mobilization. It is assumed that this severing activity is what
underlies the protein’s observed influence on virus infectivity, by
driving HIV-I-mediated cortical actin reorganization [14].
Gelsolin acts as a basal restrictive barrier for HIV-1 infection by
severing actin to control the appropriate amount of cortical actin
to be reorganized together with CD4-CXCR4/CCRS3 redistribu-
tion to one pole of the cell. Both events are required for limiting
early viral infection [14]. In the case of filamin-A, this protein
participates in the invasion by linking membrane receptors to the
actin cytoskeleton [15]. It has been shown too, that changes in
filamin-A activity affects the invasion process of HIV-1 [15].

Finally, the last element to be considered is the actin-severing
factor cofilin. This protein is regulated by virus signaling through
the CXCR4 co-receptor and LIMK activation that leads to cofilin
phosphorylation and inactivation [7,16], thus assuring an intact
actin cortex before fusion pore formation. However, the mecha-
nism involved in the activation of cofilin, just at the instant where
the fusion pore is formed to allow cortical actin destruction and
viral capsid entry, is not well understood. It has been observed that
increasing the activity of cofilin enhances the infectivity of HIV-1
on resting lymphocytes, but that this does not have any effect on
active lymphocytes [7]. In order to explain these observations, it
has been hypothesized that cofilin facilitates cortical actin
remodeling after fusion pore formation in resting lymphocytes
only; this effect is caused by the impairment of the viral restriction
factor at the static cortical actin in resting cells at later stages of the
invasion [7,17].

Furthermore, the complexity of this scenario is growing, as
recently other actin-associated factors appear to alter early HIV-1
infection. Hence, RNA silencing of debrin decreases F-actin
polymerization allowing HIV-1 infection [18], while syntenin-1
depolymerises F-actin in a post-fusion step [19]. Although the
HIV-1 Env-mediated signaling that activates LIMK-cofilin
appears to be more clear after the involvement of PAK1/2 and
the role of LIMK in viral-induced actin capping, the factors that
lies upstream the RhoA/Racl-PAK1/2-LIMK-cofilin and synte-
nin-1 pathways remain poorly understood [19-23]. Similarly, the
identity of the kinase that phosphorylates moesin in the ERM-F-
actin/receptor complex is unknown [10]. The cap itself; together
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with the processes described above that lead to its formation,
emerges in many studies [1,2,7,10,14,15,24] as one of the main
system responses prompted by the HIV-1 signaling.

From this observation it can naturally be derived that any
insight into this fairly complex dynamic phenomenon is of
foremost interest. Consequently, a great deal of information has
been accumulated on the factors influencing the cap formation
[7,10,14,15]. The approach followed when gathering the bulk of
this information has been determined by the need to isolate the
influence of each element considered relevant from that of the
others participating in the process. In our view, these attempts to
understand cap formation can be complemented by taking an
integrated approach, where the activities of most of the key factors
already described are simultaneously considered in a quantitative
and dynamic framework. This integrated approach is not new in
the field, since it has been used to unravel different aspects of HIV-
1 infection [25-28]. However, to our knowledge, the present work
is the first integrated exercise on the mvasion of lymphocytes by
HIV-1 during the first stages of the viral cycle.

Following this line of reasoning, the aim of this work is to
integrate all available information on the molecules, mechanisms
and regulatory features involved in the early lymphocyte invasion
process into a dynamic mathematical model. By means of this
approach, we aim to achieve a better understanding of the
dynamics of the process and the role played by the various
molecular components. The model is based on a plethora of
experimental observations already made on the functional role of a
number of cytoskeleton elements (receptors, enzymes, proteins,
ete.) that participate in cytoskeleton reorganization and plasma
membrane dynamics. It is this systemic approach that will allow us
to model and evaluate the dynamics of the plasma membrane, as
well as the role and relative importance of the different cortical
structures and signal transduction through the CD#4 receptor and
CXCR4 or CCR5 co-receptors, which are the viral receptors
involved in the generation of the membrane fluidity to promote
fusion pore formation, entry and infection.

Results and Discussion

The signaling structure mvolved in the actin mobilization
observed throughout the first stages of lymphocyte invasion by
HIV-1 has recently been elucidated in great detail (see Liu et al.
2009, [1]). Key actors in these series of events are the CD4 and
CXCR4 (or CCR5) membrane receptors, filamin-A and the ERM
protein moesin, actin and the severing factor cofilin, as well as
gelsolin, another actin-severing factor. In order to unravel the role
of each one of these molecules in the process, they have been
studied separately [7,10,14,15]. As a result, we have a considerable
body of information offering a great deal of insight into the series
of coordinated events involved in lymphocyte invasion by HIV-1.

However, the existing descriptions and interpretations are in
many cases ‘“‘element biased”, since there is currently no
integrated picture of the process where all the system components
are simultaneously considered in a dynamic and quantitative way.
In this work, we have tried to fill this gap by proposing a
mathematical model where a great deal of the available
information about the elements and the interactions among them
is organized and integrated in a dynamic fashion (Figure 1).

The model thus obtained has been shown to be a robust and
reliable representation of the system under consideration (see
Material and Methods). Based on this model and on its subsequent
analysis, we have been able to quantify the relative importance of
each component for the system.
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Figure 1. Representation of the molecular events simulated in the mathematical model. Molecules included in the model as variables are
the following: HIV, REC (CD4 and CXCR4 or CCR5 receptors for HIV-1 infection on lymphocyte cell-surface), FILAMIN, MOESIN (phosphorylated and
active; dephosphorylated and non-active), COFILIN (a, active; i, inactive), and ACTIN. Molecules recruited at the HIV-1-triggered capping regions are
indicated by the c subscript, while non-capped molecules outside this region are indicated by the nc subscript. As it is assumed that gelsolin remains
constant during the whole process, it is not incorporated as a variable in the model. Numbered arrows (from 1 to 13) are the processes included in
the model, and dashed arrows are the interactions from the molecules to the processes (black are positive, red are negative). Gelsolin acts by
remodeling the amount and size of actin filaments, so the total amount of actin and its reorganization is reduced by higher expression of gelsolin
(negative influence of GELSOLIN on processes 4 and 10, see Material and Methods for details); furthermore, appropriate levels of gelsolin facilitate,
through the orchestrated severing and remodeling of actin filaments, the capping of actin filaments at viral entry regions (positive effect of GELSOLIN
on process 6). Continuous arrows serve as an additional explanation of molecular events taking place during the invasion. Thus, red arrows represent
depolymerization of actin filaments, blue arrows represent components which assist the depolymerization of actin filaments (e.g., active cofilin and
inactivation of moesin in fusion pore formation), the green arrow indicates actin monomer incorporation to the growing actin filaments, and the
purple arrow represents the actin severing and remodeling by gelsolin, thereby controlling the size of actin filaments and the amount of filaments
reorganized to the viral entry regions on the plasma membrane of target cells.

doi:10.1371/journal.pone.0103845.9001

Relevant processes influence of cofilin as being determinant of subsequent stages of

Valuable information can be obtained from the values of the the invasion process.
processes’ rate constants (K,). Their values tell us about the Another process which would appear o be of litde, if any,
relative velocity of the processes. In Figure 2 it can be seen that the relevance is process 9, which describes the activation of moesin by

values of the constants for processes 3, 5, 8, 9, and 13 are almost
negligible. This implies that the system dynamics is virtually
independent of them.

Processes 3 and 5 represent the spontaneous aggregation and
disaggregation, respectively, of filamin to the cap. It thus seems
that the dynamics of filamin comes mostly from the induced eflect
of the receptor capping (process 4).

Process 8 represents the spontancous disaggregation of actin
from the cap. We must therefore conclude that the disaggregation
of the cap is due only to the positive signaling from the HIV-1-
induced molecules. This model prediction is supported by the
observations of Yoder et al. 2008 [7], where they established the

PLOS ONE | www.plosone.org

causes other than the HIV-1 induction. Instead, it is the HIV-1-
induced activation of moesin which is of foremost importance, as
stated by Barrero-Villar et al. 2009 [10].

The last of the processes that would appear to bear little
relevance to the system dynamics is the activation of cofilin
(process 13). The conclusion to be drawn here is that HIV-1
infection is not due to the activation of cofilin, but rather to the
induced inactivation of cofilin (process 12). It should be noted that
this 1s the situation observed in the active lymphocytes. The
importance of this process in resting lymphocytes will be analyzed
below.

The value of the rate constant of process 11 (the inactivation of
moesin) deserves some attention. This constant has the larger of
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Figure 4. Model verification of the moesin role on the HIV-1
viral entry process. Panel A shows the total amount of functional
moesin on the peak of activated moesin (at 90 minutes after infection)

as determined by Barrero-Villar et al. 2009 [10]. Panel B shows the result
of the MOESINratio value obtained from the model by modifying the
parameter rate Kg (related with the total amount of moesin). The red
color refers to N-Moe (a dominant negative N-terminal fragment of the
protein which impedes the physiological function of the intact moesin);
the black refers to the control conditions and the green to the FL-Moe
(an intact form of the protein which increases the total amount of

K1 K2 K3 K& K5 K6 K7 K8 K9 K10 K11 K12 K13

Figure 2. Rate constant values of the model processes. Rate
constants from 1 to 13 correspond to the processes named from 1 to 13
in Figure 1. Mean values for the 12 selected solutions (see Material and
Methods) are represented by the bars; standard deviation measures are

included. soreai

A : moesin inside the lymphocyte).
doi:10.1371/journal.pone.0103845.9002 doi:10.1371/journal.pone.0103845.9004
the low values (see Figure 2) of the rate constant. Some authors lymphocyte membrane at the point of the HIV-1 mfection. It has

have claimed that the inactivation of moesin is necessary for the
relaxation of the tension in the cap, which allows the virus to enter
[10]. Our result shows that intense moesin inactivation is not a
requisite for virus entry. Instead, stopping the moesin activation
signaling is enough to lead to the disassembling of the actin cap
(see Figure 3).

been shown that this process is of foremost importance [10].
Our model was able to reproduce the observation made by
Barrero-Villar et al. 2009 [10] regarding the role of moesin during
the invasion. This work evaluates the effect of changing the total
amount of functional moesin (or overexpressing a dominant
negative mutant of moesin) on the peak of activated moesin. As
stated above [see the Mathematical Model section], these
experiments can be simulated in our model by proportionally
modifying the corresponding rate parameter K, which gives the

Moesin
The actin mobilization that occurs after activation is mediated
by moesin, which activates the association of actin filaments to the
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Figure 3. Model fitting and parameter estimation. These panels represent the 12 solutions - one for each of the predicted dynamics - which
best predict the experimental ratio between total actin and total moesin as measured by Barrero-Villar et al. 2009 [10] (black solid circles). REC, o
receptor ratio inside the cap; FILAMIN .o: filamin-A ratio inside the cap; MOESIN ,440+ACTIN a0 ratio of moesin within the cap over the total
amount of actin and moesin, plus ratio of actin within the cap over the total amount of actin and moesin; ACTIN 0 proportion of actin in the cap;
MOESIN 0 proportion of moesin in the cap; COFILIN;: inactive cofilin ratio with respect to the total amount of cofilin; COFILIN,: proportion of active
cofilin over the total amount of cofilin; HIV: virus units per lymphocyte. The HIV variable correlates with the intensity of the signal inside the
lymphocyte triggered by the virus.

doi:10.1371/journal.pone.0103845.g003
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Figure 5. Comparison of the model predictions for two
alternative roles of gelsolin in the cap formation. Red bars
represent the experimental measurements of actin capping in a control
situation or after over-expressing gelsolin. Blue bars represent the
model prediction with the standard deviation of all solutions selected
(see Material and Methods). A. A set of scenarios is evaluated in the
model assuming different actin capping influences of gelsolin. In “a” K,
was increased by 50%, assuming that gelsolin has a negative effect on
actin capping. In “b", K was increased to mimic a gelsolin activation on
the actin capping by increasing the actin remodeling dynamics. B.
Model verification of scenario “b” shown in panel A. The measured and
the predicted maximum peak of the capping of receptors on the
gelsolin over-expressed cell lines are shown. C. In “a” Kg, the parameter
that models gelsolin stimulation of actin capping, takes the value of
0.75 times the value in Control; in “b" this figure is 0.5 times.
doi:10.1371/journal.pone.0103845.9005

total amount of functional moesin (see Supporting Information).
The agreement of the model predictions regarding the moesin
ratio value (Figure 4B) with the experimental maximum of the
peak of activated moesin [Figure 4A] supports the reliability of our
model as an integrated representation of the role of moesin in the
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process. We are thus provided with a suitable framework to assess
the relative importance of the components of the system under
different conditions.

Gelsolin

Gelsolin, an actin-severing protemn related to actin cytoskeleton
reorganization, plays a role in the cortical actin reorganization
during HIV-1 invasion of lymphocytes.

Although gelsolin is not explicitly represented in the model, it is
possible to use the model to predict how changes in gelsolin
activity will affect the dynamics of the system. This can be
achieved by translating the modified values of gelsolin into the
kinetic rate parameter values and observing the predicted system
behavior.

To do so, two types of changes should be made simultaneously
in the model. First, we should increase the amount of gelsolin. Tt
has been proposed that gelsolin has an actin-severing activity [29],
and so this increase can be mimicked in our model by increasing
the kinetic rate parameter of the actin disaggregation process 7
(K5; see Figure 1). As an alternative to this proposed role of
gelsolin, we also explored another mechanism proposed by
Garcia-Exposito et al. [14], which attributes to gelsolin a positive
influence on the aggregation rate of actin to the cap. This was
represented by an increase in K.

At the same time, based on the observations by Garcia-Exposito
et al. [14], where it is shown that the over-expression of gelsolin
decreases the total actin expression by 30%, we changed the total
actin activity in the model by reducing by 30% the rate constants
of processes 4 and 10, which are the processes activated by actin
(see the Mathematical Model section).

In Figure 5, the red bars show the actin capping measurements
[14], while the blue bars correspond to the model predictions.
Figure 5A shows the results obtained in K;, Kg, Ky and Ko
tollowing the changes described above.

The “control” condition shows that the model prediction is well
within the observed range of values. In scenario “a” the values of
K, and K, have been lowered by 30% and at the same time K;
has been raised by 50%. In scenario “b” K, and K, have been
lowered by 30% as before, but in this case, instead of K, the other
simultaneous change was in Kg, which was increased by 27%.
What can easily be observed is that there is a poor correlation
between the experimental data and the data predicted by the
model in scenario “‘a”, but that both sets of results match in
scenario “b”. From these observations it can be concluded that
our model supports the proposed role of gelsolin as an activator of
the actin capping [14,29]. Accordingly, it also supports the actin-
severing activity of gelsolin as instrumental in facilitating the
aggregation of actin by producing actin filaments of optimum sizes
and the appropriate amount of these filaments to be co-localized at
virus-cell contact and entry regions.

In the same vein, other evidence provided in Garcia-Expdsito et
al [14] offers additional support for the model’s insights into the
proposed role for gelsolin. It measures the maximum peak of the
capping of receptors on the gelsolin over-expressed cell lines.
When the experimental data (Figure 5B) are compared with the
model predictions as described above (scenario “b” of Figure 5A),
a good correlation between the experimental and model results
can be observed. This model verification lends additional support
to the proposed effect of gelsolin on the actin capping. As a whole,
we can conclude from our model that gelsolin has two direct
effects on actin: one by decreasing the total amount of actin in the
lymphocyte and another through promoting the aggregation of
actin in the cap.
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In the same work [14], it is reported that the inhibition of
gelsolin negatively affects the efficiency of the virus-lymphocyte
contact, and consequently impedes viral invasion. At the same
time, it has been established that the amount of actin present in the
cap correlates positively with infectivity [2]. In the following, we
will use the actin in the cap as an indicator of the infectivity of the
virus to evaluate the effect of inhibiting gelsolin in the model. As in
the previous analysis, we will translate a decrease in gelsolin onto
the parameters of the model in order to predict the impact of these
changes on the actin capping.

Based in our previous conclusion, we can assume that a
decrease in gelsolin activity will increase total actin expression
(parameters Ky and Kg) and reduce the rate of aggregation of
actin filaments to the cap (process 6; Figure 1). In Garcia-Exposito
etal. 2013 [14], it is shown that specific knockdown of endogenous
gelsolin (represented in our model as an inhibition of gelsolin
function) increases the total actin expression by about 30%.
Accordingly, we increased parameters K; and K, by 30%.
Figure 5C shows the actin capping prediction after these changes.
The “control” bar is the predicted actin capping level before
parameter changes. In scenario “a” we see the actin capping
prediction when K and K are raised by 30% and K is lowered
by 25%, while in scenario “b” Ky and K remain the same as in
“a” but Kg is lowered by 50%. It can be interpreted that when the
effect of gelsolin inhibition on the velocity of aggregation of actin
(process 6) is above 25%, the infectivity is lower than in the
physiological reference conditions, a finding that correlates well
with observations [14].

Filamin-A

Filamin-A is an actin-crosslinking protein that binds to the CD4
and CXCR4 receptors after being induced by the signaling
triggered by the association of the virus [15]. Interesting for the
objectives of this study is the observation that the down-regulation
of filamin impairs the infectivity of the virus (Jiménez-Baranda et
al. 2007 [15]). Our model provides us with a ool to explore and
explain this observation; for this purpose we will use, as before, the
actin capping as an indicator of the infectivity. It is straightforward
to simulate a decrease of the total amount of filamin-A
(FILAMIN,) in our model. This can be done through a
simultaneous decrease in the rate constants of processes 1 and 6
(K, and K respectively), which are regulated by FILAMIN, (see
Figure 1).
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Figure 6 shows the model prediction after simultaneous
reduction in the values of K and Kg. Figure 6A shows a decrease
in the actin capping that correlates fairly well with the
experimental observations (Figure 6B).

These facts constitute a mechanistic explanation, through the
regulatory interactions measured by K, and Kg, of the observed
reduction in the infectivity. This observation points to these
regulatory interactions as potential therapeutic targets.

Cofilin

Cofilin is another of the key players in the HIV-1 infection
process. This protein initially appears in its active form
(COFILIN,). COFILIN, stimulates the disaggregation of the actin
from the cap through process 7 [see Figure 1] [7,16], thus
contributing to the clearance of the cortical actin cap [7,16]. It is
only after the pore formation that the inactive [phosphorylated]
form is activated (dephosphorylated) (COFILIN;) [7]. The
inactivation of cofilin by the LIMKI signaling pathway is
represented in our model by a signal coming from HIV (process
12; Figure 1), but since this interaction has a limited temporal
span, cofilin will be back in its active form at the later stages of the
invasion (see panel G in Figure 3).

The model prediction on the behavior of the cofilin during the
virus invasion can give us some insight into the role of this protein
in the pore formation and the enhancement of HIV-1 infectivity.

Vorster et al. 2011 [22] have studied the LIMKI signaling
pathway leading to an early inactivation of cofilin, which promotes
actin polymerization (see Figure 1). In the Figure 3G is repre-
sented the model predicted dynamics of the active cofilin. It can be
seen the early inactivation of cofilin that rapidly falls from 1 to
close to zero; behavior that tightly correlates with the sudden
increase of the inactive of cofilin (Figure 3F).

Another work showed that knockdown of this LIMK 1 signaling
pathway decreased actin cap [23]. Again our model was able to
reproduce this effect. Figure 7A and 7B displays the dynamics of
the active cofilin and actin, respectively, before (black line) and
after (red line) a 50% decrease in the strength of the LIMKI
signaling pathway. The model predicts a very slight decrease in the
inactivation of cofilin, which, however, is enough to cause a
decrease the actin cap to a third of the previous value. This
prediction correlates very well with the results of Xu et al. 2012
[23] since it reproduces not only the observed fall in the peak of
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Figure 7. Model prediction and experimental verification of the
LIMK1 signaling pathway knockdown and the actin polymer-
ization inhibitor Lat-A on the virus infectivity. A. Black line
displays the original solution showed in Figure 1 while the red line
represents the model prediction of the COFILINa variable after
inhibition of the LIMK signaling pathway by a 50%. B. Black line
displays the original solution showed in Figure 1; red line represents the
model prediction of the ACTIN variable after inhibition of the LIMK
signaling pathway by a 50%. C. The black lines (control condition where
cofilin is active before infection) show the model’s predicted dynamics
of the actin capping. Pink lines show the solutions obtained when the
initial state of cofilin, just before infection, was inactive. Dark blue lines
represent the predicted dynamics of the actin capping after the
activation of virus signaling on the cofilin. Light blue lines represent an
increase of the intensity of the activation signaling of cofilin by the virus
D. Experimental measurements of infectivity of the virus in increased
initial concentrations of the actin-severing factor Lat-A (Yoder et al.
2008, [7]). E. Black line displays the original solution showed in Figure 1
while the red line represents the model prediction of the COFILINa
variable after inhibition of the WAVE2 signaling pathway by a 50%. F.
Black line displays the original solution showed in Figure 1; red line
represents the model prediction of the ACTIN variable after inhibition of
the WAVE2 signaling pathway by a 50%.

doi:10.1371/journal pone.0103845.9007

actin cap but also the observation of the almost neghgible change
in the ratio of activation of cofilin.

Yoder et al. 2008 [7], working with resting infected lympho-
cytes, have shown that there is a virus signaling triggered by the
co-receptor that activates cofilin (process 13 in Figure 1). The
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same authors claim that this interaction is not present in active
infected lymphocytes. In order to explain these observations, the
same authors have proposed that the resting lymphocyte has a far
more static cortical actin shell than the active lymphocyte [7].
Accordingly, this would be the cause of the impairment of the virus
infectivity, since this cortical rigidity would impede the entry of the
virus in the later stages of the invasion. In order to test this
hypothesis in our model, which was built using information from
experiments carried out with active infected lymphocytes [10], we
have simulated a scenario in which the cortical actin situation
mimics that of the resting lymphocyte. In the current model of the
activated lymphocyte, it is assumed that all cofilin remains active,
which also implies a very low rate of process 13. Thus, in order to
test the hypothesis of Yoder et al. 2008 [7] in our model, we have
to change the initial state of cofilin from active to inactive and, at
the same time, to introduce a process allowing for the inactivation
of cofilin in the absence of the virus. After making these changes
(see Introducing an inactivation of cofilin process in Text S1), we
set the rate of the new process to be 2% of the initial rate of
activation of cofilin (process 13) in the activated lymphocytes in
response to the virus signal. This value yields an initial inactivated
cofilin of about 55% of the total actin.

Figure 7 shows the results of this exploration. In Figure 7C we
sce dynamics predicted by the model of the actin capping in
different initial activation states of cofilin. It is observed that in
conditions where cofilin remains inactive, thereby simulating a
situation closer to that of a resting lymphocyte (pink curves in
Figure 7C), the maximum peak of the actin present in the cap is
higher than in the activated lymphocytes (black curves in
Figure 7C). Also, the trend of the decay of this peak is slower
when the colfilin is initially inactive as compared with the activated
lymphocytes. There is additional evidence [17] that indicates that
the virus invasion is less effective in resting lymphocytes than in
active ones. Altogether these observations allow us to conclude
that in spite of the higher peak of actin in the cap, it is the slower
decay mn the later stages of the invasion that serves as the
restriction factor for the entry of the virus. This constitutes an “a
posteriori”, pragmatic experimental verification of the model.

Based on the above, we made additional explorations of the
effects of the co-receptor signaling on the activation of cofilin. We
included in the model the activation signal on the cofilin in the
case of resting lymphocytes and subsequently evaluated the effects
on the dynamics of the cap of increasing values of the rate constant
K3 (rate constant of the activation of cofilin; see Figure 1). It was
observed (Figure 7C) that the delay in the actin capping decay
becomes less pronounced, thus making the virus invasion more
effective (dark blue lines in Figure 7C).

This observation supports the hypothesis presented by different
authors [7,22] about the role of co-receptor signaling and serves to
clarify and quantify the role and importance of this signal. Also
these model results correlate well with the above commented
observations about the different actin dynamics and cortical I*-
actin amounts between non-cycling resting and cycling cell lines
[8,14,30,31]. In this concern, chemokine-induced actin cytoskel-
eton reorganization has been associated to the establishment of
HIV-1 latency in infected restng CD4+ T cells [32]. An
observation reinforced by the fact that inhibition of chemokine
receptor-associated ability to promote intracellular signals dimin-
ishes HIV-1 infection of resting CD4+ T cells [7].

The predicted effect of actin polymerization and/or the co-
receptor signals on HIV-1 infection could be verified experimen-
tally using related published data. For example, analyzing the
effect of the actin-severing activity factor latrunculin A (Lat-A) on
the virus infectivity. These results, which are shown in Figure 7D
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Figure 8. Model verification of the cofilin activity decay. Red
dots and line represent the dynamics of the active cofilin during the
invasion of HIV-1 as determined by Yoder et al. 2008 [7]. These
observations are compared with the predicted dynamics (blue line) of
the same model variable (Cof,).
doi:10.1371/journal.pone.0103845.g008

(taken from Yoder et al. 2008, [7]), indicate that, in conditions of
increasing dosages of the Lat-A factor, the infectivity of the virus
increases after a later decay. This trend is in agreement with that
predicted by our model (Figure 7C), since the increasing signal
implemented in the model correlates with the increasing dosages
of Lat-A: the initial increase in infectivity after a slight increase of
the signal strength corresponds to a lesser delay of the actin cap.
However, when the signaling intensity increases further, the model
predicts a steeper decay of the actin in the cap (see light blue
curves in Figure 7C), which negatively affects the invasion process
and thus makes the virus infection less eflective.

Considering the role of actin cytoskeleton, later after viral fusion
and entry, it has been recently described that HIV-1 anchoring to
CD4/CXCR#4 or/CCRS5 promotes transient actin polymerization
in a WAVE2-Arp2/3-dependent manner, thereby favoring
intracellular viral migration to the nucleus and therefore HIV-1
infection [33-35]. Hence, RNA interference of endogenous Arp2/
3 perturbs actin nucleation and filament branching thereby
diminishing viral intracellular trafficking to the nucleus and
HIV-1 infection [21,35]. These events related to Arp2/3-mediated
actin dynamics on HIV-1 infection occurs later after viral entry,
and merit to be analyzed in a different piece of work that could be
of relevance to engage with a recently reported work that
highlights the importance of the intracellular traveling of intact
viral capsides for HIV-1 infection and immune escape [36].
However, it is possible with the current modelling approach, to
simulate the effect on the HIV infection of the inhibition of the
WAVE2 signaling. As previously indicated process 12 represents
the LIMK signaling that inactivates cofilin. In fact, the WAVE2
signal bifurcates from the LIMK one, although the WAVE2
signaling activates Arp2/3 instead [35]. Process 10 is activated
from the same inputs as process 12 but can also be independently
activated without inactivating cofilin. On the other hand, this
same process 10 activates moesin and thus, induces the
aggregation of actin filaments. Since this is a similar effect that
the caused by Arp2/3 we could assume that the WAVEZ2 signaling
is represented by this process. Figure 7F shows the model
prediction of the effect of reducing the WAVEZ2 signaling by a
50%. It can be seen that this inhibition causes a reduction of the
actin aggregation, an indicator in our model of the HIV infectivity.
Furthermore, Figure 7A also shows that the inactive cofilin is not
altered by the WAVEZ inhibition. This result constitutes a further
validation of the model reliability. We are aware that these are
preliminary results which are based on assumed suppositions.
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Future modeling exercises on this field through the use of new data
not currently available will provide further insight of the role and
importance of the WAVE2 signaling.

Finally, we compared the model predictions regarding the
dynamics of the inactive cofilin with the experimental observations
provided by Yoder et al. 2008 [7]. In Figure 8 it can be seen that
there is a decay of this protein as the invasion progresses. Here, the
model prediction is close to the experimental data only in the very
first moments, after which it deviates significantly. Soon after the
first 10 hours the predicted cofilin is above the experimental
measurements. But it turns out that, in the light of the model
hypothesis, these discrepancies help us gain a better comprehen-
sion of the role of the cellular factors that are operating in the
invasion process. In our simplified model, it was assumed that
cofilin is the only actin-severing factor which is regulated by HIV.
However, it has been proposed that another actin-severing [actor
such as gelsolin might play a significant role in this process [14]. It
is thus suggested that the observed discrepancies could be
attributed to the role that these, somewhat neglected, actin-
severing HIV-1 regulated factors play during invasion.

Our results and model integrate, and also appear to predict
some reported evidences that indicate that the virus invasion is less
effective in resting lymphocytes than in active ones [7,8,17].
Moreover and considering resting lymphocytes, memory CD4+ T
cells appear to be more susceptible to be infected by HIV-1
compared to naive cells [19,37-41]. Resting CD4+ T cells
represent a major reservoir of HIV-1 [39,40], being responsible
for viremia when antiretroviral therapy is stopped [40]. All these
data could be explained in terms of actin dynamics and cortical I-
actin amount, which is different between non-cycling resting and
active primary cells or cycling cell lines, with a less or a highly
dynamic actin cytoskeleton, respectively [14,30,31]. Therefore,
HIV-1-triggered actin signaling seems critical for the infection of
primary CD4+ T cells.

Altogether these data and our results prompted us to propose
that the our model integrates and quantifies the processes and
signaling events involved in early HIV-1 infection of T cells, and
supports the role and importance of HIV-1 to overcome the
cortical actin barrier for efficiently fuse and infect target cells. The
model also predicts the observed different susceptibility of CD4+ T
cells to be infected by HIV-1 in terms of their actin cytoskeleton
dynamics and the amount of cortical actin reorganized.

Materials and Methods

Model Design

We used the findings and observations on the processes involved
in early viral entry referred to above to construct a mathematical
model of these processes. This representation integrates most of
the available information on the components, pathways and
regulatory interactions involved in the actin rearrangements and
movements during lymphocyte invasion by HIV-1. Figure 1
shows, in a schematic form, the selection of variables, processes
and signaling features used.

Regarding the variables, we distinguish between those compo-
nents that are integrated within the cap (denoted with subscript c)
and those that are outside the cap (subscript nc). The data for the
HIV variable (from now HIV without the number 1 refers to the
variable of the model) have been taken from cultures of
lymphocytes [10]; accordingly, this variable is expressed in units
of multiplicity of infection (MOI). Tt should be noted that the HTV
is measured as the decay of the effective virus density; thus, this
variable represents the intensity of the wvirus signaling in a
lymphocyte culture. Accordingly, the model represents the
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invasion at population level. Another relevant observation refers to
cofilin. This protein, present in either its active or inactive form
(COFILIN, and COFILIN;, respectively), is measured in our
model as the ratio of each form with respect to the total amount of
cofilin present (COFILIN, and COFILIN;).

In Figure 1, the wide arrows (numbered from 1 to 13) represent
processes, while the black dashed arrows represent the referenced
interactions, all of which are positive, among variables and
processes.

The aggregation and disaggregation of the different forms of
receptors and co-receptors (REC,,. and REC,) during the HIV-1
junction is represented by processes 1 and 2, respectively.
Aggregation process | is activated by the cap-aggregated
filamin-A (FILAMIN,) [15]. Processes 3 and 4 represent two
different mobilization mechanisms of filamin-A to the cap. The
former represents the non-regulated aggregation of filamin-A into
the receptors assumed to be important, while the latter represents
the aggregation of filamin-A influenced by the clustered receptors
[15]. It has been shown [2,15] that the actin form (ACTIN,)
enhances aggregation process 4, through the interaction of filamin-
A with the actin filaments. Process 5 represents the disaggregation
of filamin-A from the cap.

The actin aggregation in the cap (process 6) is stimulated by
filamin-A (FILAMIN,) [15] and moesin [10]. We assume that the
inverse process, the disaggregation of the actin from the cap, can
occur cither spontancously (process 8) or be promoted by active
cofilin (cofilin,) through process 7 [7]. The spontaneous processes
of association/disassociation of moesin with actin [10] are
represented by processes 9 and 11. The activation of moesin by
HIV-1 allows the actin to reorganize into the cell pole where the
virus-cell contacts occur. This is where moesin anchors actin to the
plasma membrane (this process is referred to as aggregation of
moesin). In doing so, it facilitates the reorganization of CD4/
CXCR4 or CCR5 receptors and the generation of the membrane
tension needed for the virus-cell contacts and the fusion pore
formation. During the formation of the fusion pore, moesin is
inactivated, which relaxes the interaction of actin with the
membrane and allows for the entry of the viral capsid. Process
10 represents the induced activation of moesin (MOESIN,,.) with
actin to become MOESIN.. This process is subject to two
influences. One is the well-known effect of the virus on the
activation process of the moesin to the cap [10]. This is
represented through the interaction originating from the variable
COFILIN;, which in turn is activated by the HIV signaling.
Although this interaction has not been reported at the intracellular
level, it has been observed [7,10] that the accumulation of inactive
cofilin in a culture occurs earlier than the accumulation of
activated moesin. In addition, through this interaction the model is
able to represent the observed time delay from the inactivation of
cofilin to the activation of moesin.

On the other hand, it has been observed that, as the aggregated
actin accumulates, its interaction with MOESIN, intensifies, thus
exerting a positive influence on the moesin association [2,10].

Process 12 has a more complex meaning. It serves to represent
the changes in the virus signaling (measured as a decay of the HIV)
as well as the inactivation of COFILINa by the LIMK signaling
pathway. We have chosen this form of representation since we
want to illustrate the transmission of the signaling from the HIV-1
to the lymphocyte, represented as the inactivation of cofilin.
Finally, process 13 represents the spontaneous transformation of
the inactive cofilin (COFILIN;) into its active form (COFILIN,,)
[7].
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The Mathematical Model

The dynamics of the invasion process of lymphocytes by HIV-1
was represented as a set of General Mass Action [42] ordinary
differential equations in a mathematical model developed within
the Power Law formalism [43]. This formalism allows for non-
integer kinetic orders [42,43], but all rates were assumed to be
linear. This assumption gives the formulation a mass action shape.
A description of how the model equation was derived can be found
in the Supporting Information (see equations S1 and S2 in Text
S1).

Each of the processes described above (Figure 1; 1 to 13) has a
rate kinetic constant parameter; these have been named K to K 3.
Figure 3 shows the corresponding values of the selected solutions
for the model equations (mean value and standard deviation).

The regulatory interactions of a given variable on a given
process (the red, dashed lines in Figure 1) are implemented in the
model as having a linear effect on the corresponding rate process
(see Text S1); that is, any change in the variable’s value will
translate proportionately to the rate of the regulated process.
Accordingly, the eflect of a change in the total amount ol a given
component in the model will be simulated in the model by
changing the corresponding rate constants of the processes
mvolved.

Experimental Data

The modeling task refers to the initial stages of the infection
dynamics just before the virus capsid is introduced inside the
lymphocyte. In a culture of lymphocytes this process lasts, on
average, 90 minutes [10]. However, it should be noted that the
entire process can be completed in just a few seconds in an isolated
lymphocyte [10]; thus the rates here have to be interpreted as
population rates.

The experimental data were drawn from the work done by
Barrero-Villar et al. 2009 [10]. These authors used human
activated CD4+/CXCR4+ T cells to be infected by HIV-1. They
collected a series of temporal data of co-localization measurements
of the CD4 and CXCR# receptors, actin and moesin. Data of the
CD4 and CXCR4 receptors were used to fit the REC, variable of
the model, while those of actin and the ERM proteins were used to
fit the sum of the variables ACTIN. and MOESIN,. In this
calculation it is assumed that moesin is a representative component
of the ERM proteins [9,10] (see Figure 3).

Parameter Estimation

As indicated above, the model parameters were determined by
fitting the model to the experimental data drawn from Barrero-
Villar et al. 2009 [10] (see Figure 3). Parameters were estimated
using a heuristic evolutionary optimization algorithm (Modified
Genetic Algorithm), run in Matlab, previously used and presented
by us elsewhere [44-47]. Once the maximum allowed difference
between data and simulation was determined (see Parameter
estimation in Text S1), a set of 12 solutions that best predicted the
experimental ratio between total actin and total moesin [10] were
chosen (see Figure 3). The means of the parameter values for the
12 solutions are presented in Figure 3.

Sensitivity Analysis

Sensitivities represent the quantitative response of the model to
small perturbations of physiological parameters; thus, sensitivity
analysis is a powerful tool that provides a valuable indication of the
robustness of a given model of system mathematical representation
[48,49]. Robustness is a general property of biological systems.
Since any actual biological system is permanently exposed to
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perturbations from the environment, well-adapted systems should
be able to conserve homeostasis. Accordingly, any useful biological
model has to exhibit this property. A rule of thumb is that any
sensitivity value under 1 means that the response of the system to
perturbations is adequately controlled and biologically acceptable.

The sensitivity analysis yielded mean values below 0.1 for the
sensitivities (see Sensitivity analysis in Text S1), which means that
the model is robust enough to be considered an acceptable
representation of the system.

Conclusions

The present work is, to our knowledge, the first attempt to
model and quantify the complex molecular mechanisms and the
dynamics of the key variables involved in early HIV-1 infection of
lymphocytes. The model, based on recent findings about these
mechanisms, integrates different experimental measurements into
a mathematical framework that is able to compress all considered
processes simultancously. The model’s reliability was tested against
new sets of experimental data not used for its calibration and
parameter estimation and was submitted to sensitivity analysis for
assessment of its robustness.

In spite of the data limitations, the verifications carried out on
some of the model’s predictions allow us to answer some key
questions about the infection process and the role of the
interactions involved. The results of the model confirm the
important role of moesin in mobilizing and concentrating actin
filaments to the contact region of the virus, by linking them to the
membrane in response to virus signaling. This means that stopping
moesin activation signaling is sufficient for the release of the actin
filaments from the cap. Moreover, the model confirms the
hypothesis proposed by Garcia-Expdsito et al. 2013 [14] by which
gelsolin, as an actin-severing factor, can improve the co-
localization of actin during the invasion process, thus identfying
gelsolin as a promising target to impede the invasion. We also
confirmed the role of filamin-A in the actin capping by linking it to
the receptors influenced by the receptor capping. It is also
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Model equations

Equations S4 and S5 show the mathematical model (see also Equations S7, in the Model equation
derivation section).

Rec represents the component receptors (CD4 and CXCR4 or CCR5) while Fil, Act and Moe stand for
filamin-A, F-actin and moesin, respectively.

Since the experimental data (Barrero-Villar et al. 2009; 4) used for the parameter estimation (see the
Parameter estimation section) are given as amount of each component present in the cap over the total
amount of the component, the model variables are expressed also in relative values. In these cases this
is denoted by the subscript r. The additional subscript AM in the case of Act and Moe indicates that
these variables are the ratio of each component in the cap over the total amount of actin and moesin.
Cof, and Cof; represent active and inactive cofilin, repectively. Subscript r means here that its value is the
ratio of active or inactive cofilin over to the total amount of cofilin.

The Cofilin inactivation rate depends on Cof,, and is activated by the virus signaling (Ky,-HIV-Cof,,). It
is thus assumed that, during the invasion, the activation of cofilin only depends on the Cof; (K3-Cof;,).

HIV represents the signaling intensity of the virus on the lymphocyte. It is measured as the proportion
of lymphocytes that triggers the signal in response of virus. The model assumes that the HIV signaling
inactivates cofilin and turn the signal off.

Process 12 in Figure 1 (Ky,-HIV-Cof,,) represents both, the inactivation of cofilin and the decrease in
the intensity of HIV.

dRec, . A
P K,'-Fil, — K," - Fil, - Rec, — K; - Rec,
dFil, , , . . ;
- K, - Rec, - Actyqy — K4' - Rec, - Acty gy - Fil, + K3 — K3 - Fil, — K5 - Fil,
dActyam A R
T = (1 - KT) . Kﬁ . Fllr . MoerAM - Kﬁ . Fll-r . MoerAM . ACtTAM -
—K7" - Cofar  Actray — Kg + Actram
dMoerAM ,
T = KT' . Kg - Kg . MoeTAM + KT' . K10 . COfl‘r . ACtT‘AM -
—Kiyo' - Cofiy - Actray - Moeray — Kqg - Moeypy
dCof,,
T K13 - Cofiyr — K12 - HIV - Cofyr
dHIV

T = —K12 -HIV - Cofar

Equations S$4
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Xne = X¢ — X¢

ax, 1 dX.
dt X, dt
dAct,aum Act; dAct,
dt Acty + Mor, T dt
dMoe,,y ~ Moe; dMoe,
dt  Act, + Mor,  dt
Moe,

K=———
" Moe; + Act,
dCofyy  —dCofg,

dt — dt
K1’=K1'Filt
K4,:K4'1_Kr'ReCt'ACtt

1
K6,:K6'K_'Filt'Moet
T

K7, = K7 . Coft

Klol = Kl() . . COft . ACtt

1—-K,
Equations S5

Parameter estimation

The model parameters (K; to Ki3 and K;; K, being the model parameter used to predict the ratio
between total actin and total moesin) were with data from Barrero-Villar et al. 2009 (4). Data were
presented as co-localization ratio of the components over the total amount in the cell (ERM proteins
with actin, ERM proteins with CD4, REM proteins with CXCR4 and CD4 with CXCR4) during HIV invasion,
measured at 0, 15, 30, 45 and 60 minutes after inoculation of the virus. Rec, aggregates both CD4 and
CXCR4 receptors. In this case the measurement of the co-localization of CD4 and CXCR4 was compared
with the prediction of the variable Rec, in the model. Moesin was used as a the representative
component of the ERM proteins (Barrero-Villar et al. 2009; 4); thus co-localization data of actin and ERM
proteins were used for comparison purposes with the prediction of the sum of the variables Moe,y and
Act v (see Figure 1).

Equation S6 shows the objective function used.

Fppy = 2Dy 1; M; ;)?)

Equation S6

In this equation D;; represents the experimental data for time(i)=[0, 15, 30, 45, 60] (minutes), being
j=1 the co-localization measure of CD4 and CXCR4 and j=2 the co-localization measure of actin and ERM
proteins. M;; represents the model prediction of the variable Rec for j=1 and the sum of Moew and
Actav for j=2. N is the number of elements of the matrix D;;.

In the process, the first stage was to find a model solution close enough in order to define the
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maximum value of the objective function. Then, one hundred solutions with objective function values
lower than the previous solution were chosen. Only those solutions that best predict the experimental
value of the ratio of total actin and moesin (taken from confocal imaging in Barrero-Villar et al. 2009, 4)
were selected.

In order to select the solutions best predicting the ratio between total actin and total moesin we
randomly sampled 10 solutions from the total and determined if the confidence interval of K, for the
sample includes the experimental measure of the ratio of moesin over the total actin and moesin. Those
solutions whose K, confidence interval includes the experimental measure was primed and after 1000
samplings the solutions with the best scoring were selected. Only 12 solutions of the total of 100 were
selected by this procedure that were used for the subsequent analysis (see Figure 2).

Sensitivity analysis

Figures S1 and S2 show the dynamic sensitivity values for the initial conditions and parameters,
respectively.

Introducing an inactivation of cofilin process

To make the model able to simulate a resting lymphocyte we changed the model in order to
represent that condition present of the resting lymphocyte which is relevant for the scope of the model,
namely the mostly inactivated state of the cofilin (10). The model is initially in a steady situation, where
cofilin is activated (see Figure 2), but when the HIV triggers the signaling, cofilin begins to decrease. To
change the initial steady value of active cofilin, process 13, which denotes the rate of activation of
cofilin, has to be decreased since this change will cause the initial steady value of active cofilin decrease.
We set up the value of 55% of activated cofilin at the beginning; a value that can be obtained by
decreasing the rate of process 13 down to 2% of the initial value.

Model derivation

Equations S7 show the first mathematical model presentation that results from the direct translation
of the mechanistic model represented in Figure 1 to the Generalized Mass Action formalism (18).

In this representation variables not belonging to the cap are represented as the difference between
total minus the amount in the cap (see Equations S8).

dRec, )
P K; - Fil. - Rec,. — K, - Rec,
dFil, . . .
prai K4 - Rec. - Act, - Fil,. + K3 - Fil,. — K5 - Fil,
dAct, ]
P K - Fil. - Moe, - Actyc — K7 - Co - Act, — Kg - Act,
dMoe,
P Kg - Moey,. + Ky - Cof; - Act, - Moe,. — K11 - Moe,
dCof,
dt =K13'COE—K12'HIV'COfa
dHIV
T = —K12 -HIV - COfa

Equations S7
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dRec, ]
= K, - Fil. - (Rec; — Rec.;) — K, - Rec,

dt
dFil, . . . . .
prai K4 - Rec, - Act, - (Fil, — Fil.) + K3 - (Fil, — Fil.) — K5 - Fil,
dAct, .
T Kg - Fil. - Moe, - (Act; — Act,) — K, - Cof, - Act, — Kg - Act,
dMoe,
P Kq - (Moe; — Moe.) + Ky - Cof; - Act. - (Moe; — Moe.) — K11 - Moe,
dCof,
dt =K13'C0fi_K12'HIV'COfa
dHIV
T = —K12 -HIV - COfa

Equations S8

In order to represents the variables in relative values each variable is divided by the total amount of

each component (Equations S9).

dRec, Fil, . Fil;
It =K1-Flt~Fllc—K1 F_lt Fil. - Rec, — K, - Rec,
aril, Rec; R Act, Act.— K Rec; R Act, Act. - Fil +
dt ~ * Rec, ecc Act, Cte = %a Re . ece Act, Cle " Fitr
+K3—K3'Filr—K5 Fllr
dAct, Fil, Fil Moe, u K Fllt Fil Moet M Act
dt OTFL Y Moe, V0% T Re TR, e Moe, T 0% A
Cof;
—-K; - Cof, -Cof, - Act, — Kg - Act,
t
dMoe, Coft Act,
dt =K _Kg Moer+K10 C f C fl ﬂ ACt -
Co
—Kio - ? Co ﬁ ¢ Moe, — K1 - Moe,
dCo
dtf”=K13-Coﬂr—K12-HIV-Cofar
dHIV
_=_K12'HIV'COfa-r

dt
Equations S9

By substitution of the variables as indicated in the Model equations paragraph we obtain Equations

S10.
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dRec,

= K, - Fil, - Fil, — K, - Fil, - Fil, - Rec, — K, - Rec,

dt
dFil, .
Prai K, - Rec; - Act; - Rec, - Act, — K4 - Rec; - Act, - Rec,. - Act,. - Fil, +
+K3 —K3 'Filr—K5 'Filr
dAct, . . . .
P K - Fil; - Moe; - Fil, - Moe, — K¢ - Fil, - Moe; - Fil,. - Moe, - Act, —
—K; - Cof; - Cof,, - Act, — Kg - Act,
dMoe,
dt =Kg—Kg'MO€r+K10'Coft'ACtt'COfir'ACtr—
—Kio - Cof; - Act, - Cofyy - Act, - Moe, — Kq41 - Moe,
dCofar
dt =K13'C0ﬁT_K12'HIV'COfar
dHIV
7 = _KIZ -HIV - COfar

Equations S10

Due to the nature of the experimental data used (4) variables Moe and Act are normalized by dividing
by the summation of Moe and Act. Equation S11, S12 and S13 show the procedure followed.

dRec, I oL
i = K, - Fil; - Fil, — K; - Fil; - Fil, - Rec, — K, - Rec,
dFil, .
Prai K, - Rec, - Act; - Rec, - Act, — K4 - Rec; - Act, - Rec, - Act, - Fil, +

+K; — K5 - Fil, — K5 - Fil,

Act, dAct, Act,
Acty + Mory, Tdr Acty + Mory
—Kg - Fil, - Moe, - Fil, - Moe, - Act, —
—K; - Cof; - Cof,, - Act, — Kg - Act,.)

Moe, dMoe, Moe,
Acty + Mor, Tdr Acty + Mory, .
—Kjo - Cof; - Acty - Cofiy - Act, - Moe, — Ky - Moe,)

- (Kg - Fil; - Moe, - Fil, - Moe, —

(Kg - Kg * Moe-r + K].O * COft * ACtt * Coﬁr * ACtr -

dCofar
T K13 - Cofiyr — K1z - HIV - Cofyr
dHIV
T = _K12 -HIV - Cofar

Equations S11
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dRec,

= K, - Fil, - Fil, — K, - Fil, - Fil, - Rec, — K, - Rec,

dt
dFil, Act, + Mory
Frak K, - Rec; - Act; - Rec, Ttt cActiam —
Act, + Mor, . . .
—K, - Rec; - Act; - Rec, T At Actypgy - Fil, + K3 — K3 - Fil, — K - Fil,
t
dAct,am Act, Moe, + Mor;
= - (K. - Fil. - Moe, - Fil.. - —+— "t —
dt Acty + Mor, (Ko - Fil, - Moe, - Fil, Act; Ofram
. . Moe; + Mory Acty + Mor
—Kg - Fil, - Moe, - Fil, R Pr—— Moe, 4y P Clram —
t t
Acty + Mory, Acty + Mory,
—K7 - Cofy - Cofyr T Act. Acty gy — Kg T Act. Actray)
t t
dMoe, 4y Moe; Moe; + Mory
= “(Kg—Kg —— M +
dt Act, + Mor, (Ko = Ko Act, Oram
Acty + Mory
+K10 * Coft * ACtt * COﬁT * Ttt * ACtTAM -
Acty + Mory Moe; + Mory
—Kio - Cof; - Acty - Cofyy T Actpam P —— Moe, 4y —
t t
Moe; + Mory
—Ki1 -T-MoemM)
dCo
dtf” = K3 - Cofyy — K1z - HIV - Cofyy
dHIV
T = —K12 -HIV - Cofar

Equations S12
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dRec, I R
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K: is a model constant representing the constant ratio value of total moesin over the summation of
total moesin and actin.
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The total amount of each variable, that also remains constant are grouped all together in the

constant (K,).
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A connection between lipid rafts and Alzheimer’s disease has been studied during the
last decades. Mathematical modeling approaches have recently been used to correlate
the effects of lipid composition changes in the physicochemical properties of raft-like
membranes. Here we propose an agent based model to assess the effect of lipid changes
in lipid rafts on the evolution and progression of Alzheimer’s disease using lipid profile data
obtained in an established model of familial Alzheimer’s disease. We have observed that
lipid raft size and lipid mobility in non-raft domains are two main factors that increase
during age and are accelerated in the transgenic Alzheimer’s disease mouse model. The
consequences of these changes are discussed in the context of neurotoxic amyloid f
production. Our agent based model predicts that increasing sterols (mainly cholesterol)
and long-chain polyunsaturated fatty acids (LCPUFA) (mainly DHA, docosahexaenoic
acid) proportions in the membrane composition might delay the onset and progression
of the disease.

Keywords: Alzheimer’s disease, lipid rafts, membrane domains, lipid composition, mathematical modeling, agent
based model, DHA, cholesterol

INTRODUCTION

Alzheimer’s disease (AD) is the most frequent dementia worldwide, affecting more than 40 million
people worldwide, with a prevalence of around 10% of the population above 65 years, which doubles
every 10 years (Han and Han, 2014). AD is a degenerating irreversible disease that impairs memory
and cognitive abilities and, at present, has no cure. AD occurs in two forms: the familial and
the sporadic. Although the familial type is known to be associated to several well-defined genetic
alterations (Tanzi, 2012; Loy et al., 2014), it does only explain <1% of AD cases currently diagnosed.

Abbreviations: i,pp, apparent microviscosity; AD, Alzheimer’s disease; APP, amyloid precursor protein; APP/PSI, double
transgenic mice model of AD carrying mutated forms of APP and PSEN1; ARA, arachidonic acid; DHA, docosahexaenoic
acid; DPH, 1,6-diphenyl-1,3,5-hexatriene. LCPUFA, long-chain polyunsaturated fatty acids; W, wild-type littermates.
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Conversely, in the sporadic AD, the most common
neurodegenerative form (99% of all cases, Holtzman et al,
2011), the causes are largely unknown, and most evidence
indicate that the genome has only a partial contribution on the
onset of the disease.

One of the neuropathological hallmarks in AD is the
occurrence of senile plaques in neuronal tissue, caused by the
accumulation of the neurotoxic amyloid f (Af) proteins. Af
peptides result from the sequential activity of two enzymes,
namely B-secretase and y-secretase (Blennow et al., 2006), which
cleavage the transmembrane amyloid precursor protein (APP).
According to the amyloidogenic hypothesis of AD, this is a
major responsible cause of AD. A peptides become pathological
because the 1-40 and 1-42 fragments have a trend to oligomerize
and fibrillate, and eventually to precipitate generating neurotoxic
aggregates (Rushworth and Hooper, 2010; Claeysen et al., 2012;
Hicks et al.,, 2012) designated as senile plaques. Alternatively,
APP protein may be processed in a non-amyloidogenic manner
by the a-secretase instead of B-secretase, which release non-
amyloidogenic peptides, whose exact function in the normal
brain has not been completely elucidated (Claeysen et al., 2012;
Postina, 2012).

Furthermore, several recent reports have demonstrated a
clear relationship between lipid rafts and amyloidogenic APP
processing (reviewed in Rushworth and Hooper, 2010; Vetrivel
and Thinakaran, 2010; Hicks et al., 2012). This relationship
appears to be tightly linked to the lipid composition and
physicochemical properties of lipid rafts (Martin et al., 2010),
and is present even at the earliest stages of the disease (Fabelo
et al, 2014; Diaz et al, 2015). Lipid rafts are membrane
microdomains characterized by a differentiated lipid and protein
composition that segregate within the plasma membrane (Brown
and London, 2000; Simons and Ehehalt, 2002; Hicks et al.,
2012). These chemical features, confer them some particular
physicochemical properties including closer lipid packing, rather
restricted lateral movement, higher viscosity, and differential
thermodynamic properties, compared to the surrounding non-
raft regions (Brown and London, 2000; Pike, 2006; Klymchenko
and Kreder, 2014). Lipid composition of lipid rafts is the most
important biochemical parameter in determining their structure
and physicochemical properties (Sonnino and Prinetti, 2013). In
particular, the proportion of cholesterol, a key element regarding
their maintenance and stability is higher in these domains than in
their surroundings. In addition, sphingolipids and saturated fatty
acids are notably augmented compared to non-raft membrane
domains, these contributing to the higher density, and degree
of packing of lipid rafts (Simons and Ehehalt, 2002; Rog and
Vattulainen, 2014). Further, long-chain polyunsaturated fatty
acids (LCPUFA), including docosahexaenoic acid (DHA), and
arachidonic acid (ARA) have been found to be present in lipid
raft from nerve cells in the brain of both animal models and
humans, yet to much lower amounts than in non-raft domains
(Martin et al., 2010; Fabelo et al., 2012), but still they are essential
to allow a degree of freedom required for protein-protein and
lipid-protein interactions within lipid rafts.

In the context of AD, it is known that the molecules involved
in the production of AP are segregated inside and outside lipid

rafts. In particular, APP is mainly, but not exclusively, located
outside the lipid rafts, while the B-secretase and y-secretase
predominantly reside inside (Rushworth and Hooper, 2010;
Vetrivel and Thinakaran, 2010; Fabelo et al., 2014). These
observations make lipid rafts principal actors in the study of the
evolution of AD, since under non-pathological situations, APP
is cut outside lipid rafts by the a-secretase and then inside by y-
secretase, while in the pathological condition, APP is sequentially
cleavage inside raft domains by p- and y-secretases (Vetrivel and
Thinakaran, 2010; Hicks et al., 2012) This issue have been the
subject of many studies aimed to elucidate the role of lipid rafts
on the emergence of AD (Rushworth and Hooper, 2010; Zhou
et al,, 2014), although the precise role of lipid environment in the
evolution of AD remains largely misunderstood.

One of the recent findings that pinpoint to lipid rafts as critical
elements in the development of AD, has been the demonstration
that lipid rafts are subjected to age-dependent changes, which has
been coined as “lipid raft aging hypothesis” (Fabelo et al., 2012).
Aging is known to be the main risk factor in the development
of AD, and the available evidence have demonstrated that the
time-course of lipid raft alterations are more pronounced and
accelerated in APP/PSI brains, a familial model of AD (Fabelo
et al., 2012). Further, in line with these observations, we have
recently demonstrated the presence of altered lipid rafts in
human brains, even at the earliest stages of the disease (stages
I/II of Braak and Braak). It has also been demonstrated that
changes in lipid composition may alter the thermodynamic and
physicochemical properties of lipid rafts (Miiller et al., 2001;
Wood et al., 2002; Diaz et al., 2012), which, on their own, can
influence the evolution of AD. Interestingly, in animal models
of familial AD, the induced increase in the production of AP
provokes, in turn, changes in the observed lipid composition
(Miiller et al., 2001; Wood et al., 2002). Thus, it seems that the
system is positively fed back to increase AD neuropathology. In
this work we aim to elucidate how changes in lipid composition
influence the biophysical properties of lipid rafts and non-raft
domains, and how the alterations in lipid rafts might affect the
rate of production of AP and plaque formation in the evolution
of AD. How changes in lipid composition influence?

The experimental analysis of the structure, biophysical
properties, dynamic behavior and composition of lipids rafts
encompass many difficulties and require different, independent
methodological approaches. In this regard the mathematical
approach represents a valid and potentially useful alternative
to the study of the physicochemical properties and dynamic
behavior of lipid rafts and their relation with its composition
under normal and pathological conditions. In recent years,
several studies have been published using in silico approaches
(Nicolau et al., 2006, 2007; Burrage et al., 2007; Richardson et al.,
2007; Zhang et al., 2008; Herrera and Pantano, 2012; Soula et al.,
2012). In some of these contributions, coarse grain models of cell
membranes and lipid rafts have been reported (Marrink et al.,
2008; Risselada and Marrink, 2008; Perlmutter and Sachs, 2009,
2011; Kucerka et al., 2010; Schifer and Marrink, 2010; de Joannis
et al., 2011; Risselada et al., 2011; Rosetti and Pastorino, 2011,
2012; Baoukina et al., 2012; Fischer et al., 2012; Muddana et al,,
2012; Bennett and Tieleman, 2013; Davis et al., 2013; Hakobyan
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and Heuer, 2013; Marrink and Tieleman, 2013; Barnoud et al.,
2014). These studies have allowed unraveling the effects and
roles of different types of lipids on the structure of these lipid
domains, some of which were confirmed in vitro and verified
experimentally using artificial membrane vesicles (Barenholz and
Thompson, 1980; Finegold, 1993; Maulik and Shipley, 1996).
However, at present, there has been no attempt to model the
formation of lipid rafts and relate this to the pathogenesis of AD
using real nerve cell membranes based on in vivo data, thereby
using real nerve cell membranes. In this article, we propose a
mathematical model to deal with this issue. We ask ourselves
here on how the lipid composition of these domains influence
the biophysical properties of lipid rafts (measured in terms of
size, number, viscosity, and proportion of membrane lipid rafts)
during normal aging and also along the evolution of senile
plaque formation in animal models of AD. We also inquired
on the effect of these biophysical changes on the emergence of
AD neuropathology. Finally, based in the mathematical model
predictions on the evolution of the physicochemical properties
of these domains in AD, we were able to assess how changes in
the lipid composition of raft and non-raft microdomains might
restore membrane stability and modify AD-like pathogenic
processes in an animal model of AD. Our findings lead us to
sketch out potential therapies aiming to delay the pathological
evolution of AD.

MATERIALS AND METHODS

Experimental Data

Isolation of Lipid Rafts and Non-raft Fractions

WT and APP/PSI mice were sacrificed using carbon dioxide.
All experimental manipulations were performed following the
procedures authorized by the Ethics Committee for manipulation
of laboratory animals at University of La Laguna (Spain).
Frontal cortices of four animals from each age and genotype
were dissected out and rapidly immersed in liquid nitrogen
until membrane domains purification. Lipid raft and non-
raft fractions were isolated by ultracentrifugation in sucrose
gradients following the protocols described in detail in Diaz et al.
(2012) and Fabelo et al. (2012). After differential centrifugation,
fractions were collected from top to bottom. The first 2mL
fractions, contained the lipid rafts fractions, while the last fraction
of the gradient and the pellet were collected and designated as
non-raft fractions. Both fractions were routinely tested for purity
in Western blot assays using different lipid raft and non-raft
protein markers (i.e., anti-flotillin 1 for lipid rafts and anti-al
subunit of the Na® /K" ATPase for non-raft plasma membrane)
following Fabelo et al. (2012).

Microviscosity Estimates of Lipid Rafts and Non-raft
Domains

For this purpose we determined the steady-state fluorescence
anisotropy of the non-polar 1,6-diphenyl-1,3,5-hexatriene
(DPH) following the methodology described in detail in
Diaz et al. (2012). Fluorescence polarization spectroscopy
was performed using 355nm excitation filter and 420nm
emission filter in an Appliskan multiplate reader (Thermo

Scientific), equipped with appropriate polarizers. Controls
containing the fluorophores alone were concurrently examined
to correct for light scattering and intrinsic fluorescence.
Microviscosity estimates () were derived from DPH steady-
state anisotropy values using an adaptation of the Perrin equation
(Lakowicz, 1999) for rotational depolarization of nonspherical
fluorophore as described previously for DPH (de Laat et al,
1977).

Lipid Raft Lipid Composition

The lipid composition data (including lipid classes and fatty acids
composition) from cortical lipid rafts, non-raft domains, and
whole nerve cell membranes both in WT and APP/PS1 animals
at the different ages (3, 6, 9, and 14 months) used here, have been
recently published by our group (Diaz et al., 2012; Fabelo et al.,
2012). Further, based on these data we have also delved into some
relevant biophysical and thermodynamic properties of lipid rafts
in these same genotypes and ages and reported them in Diaz et al.
(2012).

Mathematical Model

According to our previous findings, the nerve cell membrane of
cortical tissue in mouse and human brain has the form of an agent
based model, as stated in the approaches previously presented
elsewhere (Wurthner et al., 2000; Jicha and Markesbery, 2010).
Here, we have considered each element representing a lipid
group. Based on previous findings by our group on the
involvement and importance of lipids in the development and
progression of Alzheimer’s disease in humans and transgenic
mice models (Martin et al., 2010; Fabelo et al., 2012, 2014) we
simplified the membrane lipid matrix and defined five groups of
lipids: sterols (cholesterol and sterol esters); n-3 LCPUFA DHA
and n-6 LCPUFA (mainly arachidonic acid, ARA); monoenoic
fatty acids and saturated fatty acids. Although phospholipids
in the plasma membrane are esterified by two fatty acids, we
assumed that they move rather independently, which could be
a reasonable assumption if there is no much segregation of
fatty acids between LCPUFA-containing phospholipid (which
in the brain are mainly esterifying phosphatydylethanolamine,
phosphatydylserine, and phosphatidylinositol) (Farooqui et al.,
2000).

The model represents a fragment of membrane semi-layer
(200 x 200 units) with a torus-like topology. In this system,
each lipid can interact with four neighbors (up, down, left,
and right). There is a given interaction between each pair
of neighboring lipids that are calculated based on the non-
retarded and additive London-Van der Waals (LVW) attraction
(Hamaker, 1937; Israelachvili, 2011). We can assume this type of
interactions because forces between lipids within the semilayer
occurs between lipid molecules which are very close to each other
and because the medium is highly enriched in membrane lipids
(see the recent updated review by Nicolson, 2014).

A key feature in the present agent model is the quantification
of the interaction between and amongst lipid groups. In this
model, each lipid is represented as the minimum cylinder that
can contain it (see Figure 1). This approach has been proven to
be useful to predict the behavior of lipids in the cell membrane

Frontiers in Physiology | www.frontiersin.org

March 2016 | Volume 7 | Article 90



Santos et al.

Mathematical Modeling of Membrane Microdomains

FIGURE 1 | Lipid groups representation. Lipid molecules are simplified as the cylinder that best fits their volume and then are parametrized by their radiuses (R;,
Rj), lengths (L) and mean distance between them (D). Finally they are disposed in a matrix to simulate the cell membrane.

(Kumar, 1991). Accordingly, the LVW interaction between them
is given by Equation 1 (Israelachvili, 2011).

VW, AL Rik; "2 )
YT 122D32 \Ri + R

In this Equation, A is the Hamaker constant, with a value between
10720 and 107" J (in vacuum). L represents the length of each
lipid. Its magnitude (in A) corresponds to the length of the lower
interacting lipid. D is the distance between lipids (in A) while R;
and R; represent the radiuses (A) of the different lipid groups.
In the case of saturated fatty acids, its length and width were
determined by using Equations (2) and (3) (Israclachvili, 2011):

length = 0.154 4 0.1265n nm (2)
volume = 27.4 +26.9n - 10 >nm’ (3)

where n is the number of carbons; this value being the mean
number of carbons in the fatty acids in each lipid group. In
the case of unsaturated fatty acids the double bonds increase
the volume of the minimum cylinder, as double bonds increase
the width of the fatty acids. We have calculated their width
based in the number of double bonds and their physicochemical
parameters (see Prediction of lipids rafts section). Using Equation
1 and the physicochemical parameters for each lipid, the
matrix of interaction forces between pairs of lipids (LVW; ;)
was determined. Here, it is worth noting that these physical
parameters do not represent the actual dimensions of the
molecules, but describe the dimension of the cylinder which best
represent the interaction of a lipid group in the context of the cell
membrane,

In our model, two adjacent lipids can exchange their positions,
the direction of any movement being random. Based in the values
of the matrix of interaction (LVW; ;) we were able to assign a
probability of movement for each lipid group. For the calculation
of this probability we took into account the force keeping each
lipid in its current position, this being the sum of all forces acting
on the exchanging lipids of the four surrounding molecules. In
the case of sphingolipids an additional parameter is required
since it is necessary to consider the interdigitation between the
two membrane leaflets demonstrated for this lipid class (Maulik
et al., 1986) (see later).

The above procedure provides two values of force, which are
the corresponding energies that keep each lipid in its current
position. In any instance switch movements will occur if both
values are lower than a given threshold defined by a uniform
probability distribution. This procedure lets more interchanges
between pairs of lipids that have lower interacting forces in their
current state. Further, each lipid-lipid interaction have a chance
to switch, being the lipid to be switched selected randomly.

Model Mobility and Lipid Rafts

The proposed model was designed to predict the occurrence of
lipid rafts, the influence of the membrane lipid composition on
this process, the time-course of the changes associated with aging
and genotype, and the potential changes in their physicochemical
parameters.

We define mobility within the lipid rafts as the quotient
number of switching movements observed in each lipid in a
50 times iterations set over 100. Lipids with no movement’s
restrictions will have 100 switching movements in average
(2 movements in each iteration), so values of mobility close to
one represent free moving lipids. Accordingly, a mobility value of
1 indicates that the molecule is free to move through, while values
lower than 1 indicate the existence of some sort of switching
restrictions. This mobility model based measurements can be
easily compared with the observed membrane microviscosities
measured in nerve cells from animal models, using anisotropy
fluorescence spectroscopy (de Laat et al., 1977; Lakowicz, 1999).
Repeated model runs showed that a mobility value of 0.36 well
describes those regions that can be considered as lipid rafts.
Accordingly, regions with mobility values below this threshold
will be considered as lipid rafts and values above this value as
non-raft regions.

We were able to estimate the model physicochemical
parameters (longitude and width) for each group of the model
lipids to be used in our model. For this purpose we make use of
published data of the membrane lipid composition of neocortex
in WT and APP/PS1 mice (Fabelo et al., 2012). Also, based
on these data we determined the threshold mobility value to
define lipid rafts. For this determination, we used the above
indicated initial parameters values. In the case of cholesterol, the
physicochemical parameters were estimated using the language
of molecular structure modeling Jmol. These parameters, which
were refined within intervals, were: (1) the dependence of lipid
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width on the number of double bonds and (2) the width and
length of the sterol group. First, an initial search of a 50% above
and below the initial value of all parameters let us to restrict
the search to intervals where lipid rafts were observed. The best
solution predicting the lipid composition of lipid rafts under all
conditions found in 2000 solutions was selected.

Estimation of the Number and Size of Lipid
Rafts

In order to obtain a measure of the mean size and the
approximate number of lipid rafts predicted by the model under
each situation. Some properties in the domains must be assumed,
these are: (1) Membrane domains are round-shaped, and (2) All
lipid raft domains would have the same size.

These assumptions are not very far from the actual situation
(see Figure 3). Under assumption 1, the area and the perimeter
of each domain can be estimated using circle geometry functions,
as follows:

Area (A) = 7 - radius® (4)

Perimeter (P) = 27 - radius (5)

On the other hand, under assumption 2, the total perimeter of raft
domains as well as their total area can be obtained by counting the
number of domains (n), and applying the following equations:

Total area = area (A) - n (6)
Total perimeter = perimeter (P) - n (7)

Total area and total perimeter can be calculated from data on
Figure 3. Total area is just the number of spots on the matrix
which have a mobility value lower than a previously defined
threshold value. The total perimeter was calculated by summing
the outcomes of differential function applied to the data of lipid
raft identification matrix from left to right and from up to down.
The lipid rafts identification matrix was obtained transforming
the data of Figure 3 on a matrix of the same dimension, in which
a value of one is assigned when the mobility was under the
defined threshold value and zero when it did not.

Once the total perimeter and total area were obtained,
Equations (6) and (7) can be replaced on Equations (4) and
(5), providing a system of two equations with two unknowns
variables (number and radius), which can be easily solved.
These number (n) and radius (r) values correspond to the
estimations of the number and size of lipid raft membrane
domains, respectively.

— P (8
"= 4.7-A )
_2A 9
=7 .

In these equations, A and P represent the area and perimeter of
the lipid rafts, respectively. Estimates of changes in surface area
of non-rafts regions can be obtained by following the changes in
radius size of lipid domains (r), as we are considering a piece of
membrane of constant surface. Increasing values of lipid rafts size
(r) result in decreasing value of surface area of non-rafts regions.

The Possibility that AD-like Pathology can
be Modified

Based in the model, it was possible to propose a set of changes
in the lipid composition of cell membrane microdomains
which could eventually displace the parameters obtained for old
transgenic APP/PS1 animals toward the values corresponding to
those of young Wild-type animals.

The initial pathological condition chosen was that of 9
months old transgenic APP/PS1 mice, which corresponds to a
pathological but, not irreversible condition (Diaz et al., 2012;
Fabelo et al,, 2012). The final, healthy condition, we wanted to
move to, was that of 3 months Wild-type mice. To accomplish
this, we changed in the mathematical model the composition
of each lipid group on the cell membrane domains of the 9
months transgenic mice by 50% in the direction opposing the
pathological change in lipid rafts from transgenic mice.

RESULTS
Insights into Lipid Raft Composition

The comparison of some observed and model-predicted
membrane features are shown in Figure 2. Figures 2B,C
compare the experimentally observed data and the predicted
model composition for lipid rafts in WT and APP/PS1 mice
(Fabelo et al., 2012), respectively. In addition, it can be seen
(Figure 2A) the differences between the observed composition
of selected groups of lipids in the whole membrane (Diaz et al.,
2012) and the model-predicted composition of the lipid raft
(Figure 2C).

Based in the model, we have also assessed the predicted
membrane lipid structure in WT and APP/PS1 mice under
different experimental conditions, including the changes that are
found in aging animals. The results are shown in Figure 3.

As it can be seen, the model was able to predict some of the
experimental observations. First, there was a good agreement
with the observed decrease in the concentration of sterols in lipid
rafts with respect to the whole nerve cell membrane. Also, the
model reproduced well the observed increase of saturated fatty
acids and sphingolipids within the lipid rafts. Finally, the model
also showed that the composition of monoenoic fatty acids, DHA,
and n-6 LCPUFA on rafts domains and total membrane followed
the changes demonstrated experimentally in both Wild-type and
APP/PS1 mice (Fabelo et al., 2012).

Sphingolipids are essential and characteristic components
of lipid rafts, and partly responsible for the higher degree of
lateral packing of lipid within these domains endowing them
with a limited lateral mobility (Maulik et al., 1986). Compared
with other phospholipids, i.e., phosphatidylcholine, the main
structural dissimilarity is chain length in sphingomyelins,
where the N-acyl group (usually highly saturated) can be up
to 10 carbons longer than the sphingosine (Barenholz and
Thompson, 1980). Such a chain disparity give sphingomyelins
the unique ability to form both intra- and intermolecular
hydrogen bonding and increases the hydrophobic interaction
with other membrane components within the membrane plane,
and more importantly this property enables sphingomyelins to
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FIGURE 2 | Comparison of experimental and model predicted membrane features. (A) Lipid groups composition in cell membrane in different conditions (data
on Table S1). (B) Lipid groups composition in lipid rafts in different conditions (data on Table S2). (€) Model predicted lipid rafts composition (data on Table S3). (D)
Comparison between model based values of mobility (dashed line) and experimental values of microviscosity (continuous line) in the membrane domain (data on Table
S4). (E) Model predicted number (continuous line) and size (dashed line, as measured by the mean radius) of lipid rafts (data on Table S5). (F) Model prediction rafts
proportion in membrane. W3; W6; W3; W14: Wild-type mice at 3, 6, 9, and 14 months of age. A3; A6; A9; A14: APP/PS1 transgenic mice of 3, 6, 9, and 14 months
of age, respectively. Vertical red lines separate Wild-type and AD induced conditions (data on Table S6). All the experimental data in this figure were taken from Fabelo
etal. (2012).

participate in transbilayer hydrocarbon interdigitation (Slotte,
1999; Sonnino and Prinetti, 2010). In order to characterize and
represent this feature we defined the interdigitating parameter
and introduced a parameter that decrease its switching between
the membrane leaflets, as most sphingomyelin is located in the
external leaflets of the membrane. We found that the model
predicts that the sphingolipids probability of switching is ~10%
lower than for the other lipid groups.

Lipid Shape Parameters and Van der Waals

Forces

Table 1 shows the estimated parameters of the set of cylinders
that better encase the membrane lipids considered in this study,
these including length, width, mean intermolecular distance, and
the Hamaker constant.

Other relevant parameters for the model are the interaction
forces between the same lipid molecules. These interaction values
were calculated as indicated by Equation 1 and are shown in
Table 2. It can be seen that the strongest interactions occur for
saturated fatty acids and sphingolipids, and the weakest for n-6
LCPUFA.

Also relevant are the interactions amongst different lipid
groups (Table 3). In this case, the strongest interactions are
observed for sphingolipids and saturated fatty acids. On the
other hand, the n-6 LCPUFA group displays the lowest

interaction values. Overall, these estimates indicate that lipid
raft domains exhibit stronger interaction forces because their
particular enrichment in sphingolipids, saturates, and sterols,
which is in agreement the restricted lateral mobility and higher
compressibility compared to non-raft regions, which, in turn, are
depleted of sphingolipids but enriched in polyunsaturated (n-
3 and n-6 LCPUFA) whose pair interacting forces are weakest.
Therefore, based on the biochemical composition of the model
can predict phase segregation and domain formation in nerve cell
membranes.

Microviscosity Quantification in Rafts and

Non-rafts Fractions Membranes

The experimentally determined values of apparent
microviscosity (napp) in lipid rafts and non-raft fractions
(see Section Materials and Methods) are shown in Table 4.
Microviscosity is a membrane environmental property that
measures the difficulty for a probe to move in the membrane.
We have used the DPH probe as a hydrophobic probe that
buries within the membrane core. As it can be seen in Table 4,
lipid rafts display higher values of 1., compared to non-
raft fractions in all groups of animals irrespective of their
genotype. However, these values tend to be higher in lipid
rafts from APP/PSI transgenic AD mice. Moreover, paralleling
these observations it can be observed that in both genotypes,
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FIGURE 3 | Simulation of cell membrane lipid composition under different conditions. W, Wild-type mice; A, APP/PS1 transgenic mice; ages, 3, 6, 9, and 14
months. Color scale indicates mobility. Panels (A-H) corresponds to conditions: wild-type 3, 6, 9, and 14 months, APP/PS1 3, 6, 9, and 14 months, respectively.
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TABLE 1 | Data based estimation (Diaz et al., 2012) of the cylinders
representing the modeled lipid membrane.

Width (radius A) Length (&)

Sterols 594 19.99
DHA 6.74 19.01
n-6 LCPUFA 5.84 17.70
Monoenoic fatty acids 5.30 22.59
Saturated fatty acids 6.14 22.44
Sphingolipids 6.18 22.44
Intermolecular distante (A) 15

Hamaker constant 9.70 x 10~19

Sterols include cholesterol and sterol esters. The Hamaker constant comes from the
non-retarded and additive London-Van der Waals (LVW) atfraction (Hamaker, 1937;
Israglachvili, 2011).

increased age leads to more viscous domains. It can also be
observed that experimental extraction of cholesterol using
methyl-B-cyclodextrine (MBCD) brought about a considerable
reduction of 7,pp in all fractions, which was more dramatic
and severe in lipid rafts, therefore reinforcing the notion that
cholesterol (and sterols) and critical components particularly
enriched in lipid rafts and largely responsible for their higher
viscosity.

Based in our mathematical representation we can calculate a
closely microviscosity related magnitude, the mobility. Mobility
is also a medium property, which measures the facility of
movements of molecule in the membrane. It is thus the

TABLE 2 | Mean force of interaction between lipid groups.

Lipid groups Mean forces (N)
Sterols 1.05 x 10~18
DHA 1.04 x 10718
n-6 LCPUFA 9.48 x 10-19
Monoenoic fatty acids 1.08 x 10718
Saturated fatty acids 1.12 x 1018
Sphingolipids 112 x 1018

Forces are measured in Newtons (N). Sterols include cholesterol and sterol esters.

inverse of the microviscosity. As can be seen in Figure 2D
the model predicted mobility values correlates with the
experimental microviscosity data. This constitutes a posteriori
model verification.

Proportion, Number, and Size of Lipid Raft

Based in our model we could determine the ratio of lipid
rafts/total membrane and the number and mean size of lipid
rafts. Results are show in Figures 2E,D. Figure 2E it can be seen
that in Wild-type mice the number of lipid rafts increase until
the age of 6 months and then decrease. The observed pattern
in APP/PSI mice is different since the decrease of the number
of domains after 6 months is initially sharper than in Wild-type
animals and then remains stable. Regarding the mean size of lipid
rafts, we find striking differences as well. Thus, in Wild-type mice,
the mean radius remained constant until the age of 6 months,
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TABLE 3 | Pairs mean force interactions amongst the different lipid groups measured in Newtons (N).

Foreas Lipid Sterols DHA n-6 LCPUFA Monoenoic fatty acids Saturates fatty acids Sphingolipids
Sterols 1.07 x 10718 1.05 x 10718 9.45 x 1019 1.04 x 10718 1.08 x 10~ 18 1.08 x 1018
DHA 1.09 x 10718 9.74x10°19 1.02x 10718 1.06 x 1018 1.06 x 10718
n-6 LCPUFA 9.41 x10719 9.18 x 10719 9.53 x 10719 9.55 x 10719
Monoenoic fatty acids 1.14 x 10~18 1.18 x 10~ 18 1.18 x 10718
Saturated fatty acids 1.22 x 10~18 1.23 x 10718
Sphingolipids 1.23 x 10~18
Sterols include cholesterol and sterol esters.

TABLE 4 | Microviscosity values (yapp) of lipid rafts (LR) and non-rafts (NR) domains proved with DPH.
wWé A6 w14 Al4
NR LR NR LR NR LR NR LR

Microviscosity app (napp) 0.847 1.409 0.711 1.937 0.732 1.448 0.691 1.822
Microviscosity appumpcp(app) 0.645 0.691 0.602 0.644 0.698 0.748 0.531 0.809
Percent reduction -23.813 —14.825 -15.329 —42.168 —4.629 —-10.206 —23.244 —22.859
Microviscosity ctrl (38°C) 8.525 14.193 7.157 19.508 7.374 14.578 6.962 18.345
Microviscosity MBCD (38°C) 3.416 7.672 3.188 9.722 3.700 6.887 2.811 12.198
APP/WT (6 months old) 83.950 137.412
APP/WT (14 months old) 94.412 125.834
MPBCD, methyl-p-cyclodextrine.
but then decreased and lastly the size increased at 14 months. In s

pid raft size

contrast, in APP/PS1 mice, lipid rafts sizes were smaller than in
the Wild-type strain in the youngest animals and then increased
significantly after the age of 6 months. Moreover, the evolution
of the proportion of lipid rafts on the membrane (Figure 2F)
followed the same pattern than the domain size in both Wild-
type and APP/PS1 mice. Since the proportion of raft depends on
both, the raft size and number, the model thus indicates that the
relevant factor here is the size. Interestingly, for both parameters,
the time-course of age-related changes in the number and size of
lipid rafts, appear to be accelerated in APP/PS1 mice compared
to Wild-type animals.

The Possibility that AD-like Pathology can
be Modified

Provided with a reliable model representation we decided to
explore what sort of conditions could delay the onset of AD-
related lipid alterations, as assessed by the size of lipid rafts
being the variable which best correlates with raft proportion (see
Figures 2E,F). We explored this in the 9-month APP/PS1 mice.
We chose this condition because animal group is older enough
to display the pathological changes measured in brain cortex raft
membranes (Aso et al., 2012; Fabelo et al., 2012) but at the same
time younger enough to allow a reversion of membrane lipids
alterations.

Figure 4 shows the results obtained after a 50% change
(increase or decrease) in each lipid group and compared
with the 3 months old Wild-type mice. It can be seen

A9 increase

A9 decrease

DHA n6 LCPUFA  Monoenes  Saturates  Sphingolipids

FIGURE 4 | Changing lipid composition. Lipid raft size after increasing
each lipid proportion by 50% in the 9 months APP/PS1 transgenic mice (third
row) or decreasing it (fourth row). First row displays the data from 3 months old
Wild-type mice and second row the data from 9 months old APP/PS1
transgenic mice (data on Table S7). All the experimental data in this figure were
taken from Fabelo et al. (2012).

that there are three lipid groups (sterols, DHA, and n-6
LCPUFA) showing a significant decrease of lipid raft size
after an increase of their proportions by comparing first row
(3 months Wild-type) and third row (9 months APP/PS1).
The other three lipid groups (monoenoic, saturates, and
sphingolipids) drive an improvement in raft size when they
are reduced (first and fourth rows for WT and APP/PS1 mice,
respectively).
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DISCUSSION

In this work we present, the first attempt to quantify the evolution
of lipid rafts in Alzheimer’s disease by means an agent based
mathematical model supported by in vivo lipid data composition
of nerve cell membranes and their integrated domains, namely
lipid rafts and non-raft domains in Wild-type and APP/PS1
transgenic mice at 3, 6, 9, and 14 months. As mentioned
before, the original, in vivo data used here, derives from our
previous work on the detailed analyses of the lipid composition
of cortical lipid rafts and whole membrane fractions in these
same genotypes and determined at the same ages considered
here (Diaz et al., 2012; Fabelo et al., 2012). Moreover, some
biophysical and thermodynamic consequences of lipid changes
associated with aging have been experimentally determined,
particularly in cortical lipid rafts from APP/PS1 animals (Diaz
etal, 2012). However, at present there have no modeling attempts
to modify lipid compositions and lipid domain formation in vivo
in order to modify nerve cell membranes in the central nervous
system in animal models of AD. The objective of this work
was to build up a mathematical model aiming at delving into
how molecular alterations in the lipid composition of these
domains (raft and non-raft) influence not only their biophysical
properties but also their formation and stability. To strength
the significance of the predictions, the present agent based
mathematical model was calibrated with the real experimental
data.

As it has been shown in Figure 2, the model was able to predict
the lipid composition of lipid rafts. Lipid rafts microdomains,
defined as nanoscopic membrane regions involved in a
number signaling processes, with specific lipid composition
and differential physicochemical properties compared to
their surrounding (non-raft) membrane domains (Brown
and London, 2000; Pike, 2006), show mobility values around
30% lower than in the whole membrane or non-raft domains.
The model also showed that the presence of sphingolipids
provides interdigitation between the two membrane leaflets.
The occurrence of this mechanism is responsible of about 10%
mobility reduction of sphingolipids, which, in turn, is reinforced
by its interaction with saturates and sterols (Barenholz and
Thompson, 1980). In addition, since interdigitation influences
lateral mobility and compressibility (Maulik et al., 1986), this
observation could also explain its stability and higher lipid
density within raft domains.

The evaluation of interaction forces between each lipid group
and amongst distinct lipid groups (Table 2) show that highly
unsaturated lipids (DHA and n-6 LCPUFA groups) exhibit
weak interactions between them as well as with sterols, while
monoenes, display intermediate interaction force values. At
the other end, saturated fatty acids and sphingolipids are the
lipid groups showing the strongest interactions. This graduation
correlates well with the molecular structures, from the weakest
interacting (corresponding to the more twisted molecules, the
polyunsaturated fatty acids) to the strongest (the linear; saturated
fatty acid).

In addition to this, we have observed that cholesterol strongly
interacts with saturated lipids and sphingolipids, which is

in agreement with the umbrella effect (Rég and Vattulainen,
2014) (see Table 3). Another model verification comes from the
observation that DHA molecules interact more strongly amongst
them than with other lipids; an observation in accordance with
the role of DHA as dissociating structures in cell domains
(Jicha and Markesbery, 2010) which largely contribute to phase
separation within the membrane hemilayer (Shaikh et al., 2009;
Sonnino and Prinetti, 2010; Georgieva et al., 2015), and likely
give rise to the generation of DHA-rich domains bordering (and
stabilizing) lipid rafts within nerve cell membranes (Wassall and
Stillwell, 2008).

Microviscosity was experimentally determined in lipid rafts
and also in non-raft regions surrounding the membrane rafts in
Wild-type and AD transgenic mice at different ages (Table 4).
The obtained values were found to correlate with the model based
mobility values; being these results, at least in part, a sort of
experimental model verification.

Furthermore, these observations give new insights regarding
the evolution of AD, at least in this transgenic model of familial
AD. Thus, we have observed that mobility outside lipid raft
domains in AD mice of 6 and 14 months is greater than
in Wild-type mice of the same age (Figure 2D). This entails
that in the AD conditions lipids and proteins in non-raft
regions might move more freely than in lipid rafts, which, in
turn, appear to be more viscous, with lipid and protein lateral
movements being more restricted in the APP/PS1 mice. In
fact, experimental microviscosity values agree with the model
predictions.

Based in these observations we propose a mechanism to
explain whereby there is an increased production of B-amyloid
in AD brain cortex. Since there is a greater molecular mobility
outside lipid rafts in these conditions, the entry rate of APP
into lipid rafts would be augmented and therefore the rate of
amyloidogenic reactions catalyzed within the domain the by -
and y-secretases would be expected to increase, to the detriment
of APP processing in non-raft domains by the a-secretase. This
trend increase with aging in WT and APP/PS1 brains, but in
AD mice it is of higher magnitude. Since WT mice do not
exhibit senile plaques and very low levels of amyloid peptides
throughout their lifespan (Aso et al,, 2012), there should exist
a lipid alteration threshold (probably determined by the level
of DHA depletion) above which lipid mobility around lipid
rafts would favor the incorporation of APP into lipid rafts. We
thus suggest that the increased molecular mobility in non-raft
domains is a condition that exacerbates during aging and plays
a central role in the observed increase of amyloid B-production
in AD patients. In agreement, we have recently demonstrated
in human brains that the accumulation of APP and p-secretase
in lipid raft is a determinant factor in amyloidogenic APP
processing, and that this is an early event in the development
of the disease (Fabelo et al, 2014). Also in line with our
hypothesis, Das et al. (2013) have demonstrated that convergence
of APP and BACE-1 within lipid rafts via an endocytic-dependent
pathway triggers the increase of B-secretase cleavage activity,
which eventually favors the generation of senile plaques. In
addition, the aberrant organization of lipid rafts predicted here in
AD brains might be related to the disarrangement of degradative
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autophagic-lysosomal pathway of f-amyloid peptides observed
in AD (Zhou et al., 2014), which, in turn, would facilitate its
accumulation.

We have been able also to predict the time-course of age-
associated changes in the number, mean size and proportion
of lipid raft domains both in Wild-type and APP/PS1 mice
(shown in Figures 2E,F). In both genotypes, the number of rafts
decreases with aging, but in APP/PS1 mice this occurs earlier and
more abruptly, which is in agreement with previous experimental
data. However, the good correlation between rafts proportion
and raft sizes indicates that the determinant factor to explain
the surface increase of rafts is the increase in radius, not its
number. Regarding lipid raft sizes and proportion there is an
opposite trend with respect to the number of rafts, since the
mean radius and proportion increase with age. But, again, the
change is sharper in APP/PS1 mice. These results point to the
fact that, since we should expect to find a bigger area in the cell
membrane as lipid rafts in older individuals, there would exist
an increased amount of lipid rafts-associated signaling molecules
interacting and likely higher molecular activity in these cases,
as suggested by Marin et al. (2013). This situation leads to an
unbalanced physiological condition that can be cause and, at
the same time, consequence of the aging process. We suggest
that homeostatic mechanisms should be operating to control the
lipid rafts proportion (in terms of size and number). Perhaps, the
reduction of lipid rafts proportion observed in Wild-type mice
between 6 and 9 months might be a cellular response to these
mechanisms, which appear disrupted in APP/PS1 mice. In the
AD mice model the situation becomes somewhat extreme: the
increase in rafts proportion occurs earlier and are exacerbated
compared to WT. This prediction supports the hypothesis of
accelerated “lipid raft aging” that we have previously postulated
for this same transgenic mice model of AD (Fabelo et al., 2012).
Furthermore, raft proportion in 3 months-old AD mice was
predicted to be smaller than in Wild-type animals at the same
age. Since in these mice, f-amyloid is produced since the first
months of age (Aso et al, 2012), it is suggested that this is
an early effect on homeostatic mechanisms controlling the size
and proportion of these microdomains. The increase in lipid
domains observed later may well reflect the disarrangement of
this controlling mechanism. In the same vein as the production
of p-amyloid occurs inside lipid rafts, any increase of the
raft area during aging would increase the accumulation of all
components of amyloidogenic machinery, eventually leading
to increased production of p-amyloid. We propose that the
increased proportion of lipid rafts is one of the consequences of
aging, and that this trend is accelerated in AD patients, which can
positively feedback the production of p-amyloid. Interestingly,
the prediction that lipid rafts sizes increase prematurely might be
extrapolated to human AD patients at early stages of the disease,
where not only alterations in the lipid matrix and biophysical
properties occur (Diaz et al,, 2015), but also the accumulation
of APP and y- and B-secretases as well as their association are
increased (Fabelo et al., 2014).

What sort of changes in the lipid matrix could delay or prevent
these age-related events? As we stated in the last paragraph,
the parameter of domains which best correlates aging and AD

evolution is the domain size. This measure was used here as an
indicator of the restoring, by comparing for each lipid species
the original situation with the situation after modifying one lipid
group each time. Taking as reference of the healthy state the 3
month-old Wild-type mice, and the pathological condition to be
restored that of the 9 month-old AD mice, we explored different
scenarios and found out that the best strategies to partially restore
a healthy condition were either, increasing the amount of sterols
(mainly cholesterol), DHA, and n-6 LCPUFA or decreasing
monoenoic, saturates, and sphingolipids, separately. Figure 4
displays some of these results. It is interesting to note that the
healthy effects of the DHA intake on the evolution of AD has
been already stablished by a number of epidemiological studies
(Jicha and Markesbery, 2010), which constitutes an additional,
a posteriori, model validation. The other strategy was increasing
sterols in lipid rafts. However, the role of cholesterol in the
onset and progression of AD remains controversial (Ledesma
and Dotti, 2005; Martins et al., 2009; Gamba et al., 2012; Martin
et al, 2014) and most studies has not yet been proved to
have a positive effect on AD. In fact, most epidemiological
and experimental studies on cholesterol have shown a negative
effect on AD progression (Martins et al., 2009; Gamba et al.,
2012; Maulik et al,, 2013). The controversy about the role of
cholesterol in AD remains unsolved, however, we have recently
postulated a reconciling hypothesis according to which it is
the balance between cholesterol and DHA in lipid raft (which
affect membrane viscosity of opposite ways), rather than their
individual contents, what mostly affect the physicochemical
and thermodynamic properties of these domains, eventually
impacting the rate of amyloidogenic processing of APP (Diaz
etal., 2015).

CONCLUSIONS

The mathematical, agent based model, presented here is able
to provide a quantitative assessment of the effect of lipid rafts
alterations on some aspects of the progression of AD in relation
to the progress of aging. The model was based on previous
experimental data of lipid composition and biophysical analyses
in whole membrane and lipid domains obtained from Wild-type
mice and in a familial model of AD at different ages.

The outcomes indicate that changes in the proportion of
lipid rafts (and lipid rafts radius) occur naturally along aging
and that this process is accelerated in AD mice, which can
positively feedback the production of B-amyloid. We suggest
that the mechanisms controlling the domain size are critical
in AD evolution. Also, we found increased lipid mobility
in non-raft domains associated with aging; this phenomena
being even greater in AD. We speculate that both factors,
i.e,, larger raft domains and higher non-raft lipid mobility
would favor amyloidogenic machinery to increase p-amyloid
production.

Based on our findings we propose to claim about the
importance of sterols and LCPUFA present in the cell membrane
domains on the progression of AD and on the potential benefits
of these lipid species in delaying the onset of AD.
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Table S1. Data of Figure 2A.

Membrane proportion

data W3 W6 W9 w14 A3 A6 A9 Al4

Sterols 0.44 0.46 0.45 0.41 0.5 0.49 0.41 0.41

DHA 0.07 0.07 0.08 0.08 0.07 0.07 0.08 0.08

n-6 LCPUFA 0.07 0.06 0.07 0.07 0.06 0.06 0.07 0.07

Monoenes 0.18 0.18 0.18 0.2 0.16 0.17 0.19 0.2

Saturates 0.16 0.14 0.14 0.14 0.14 0.14 0.14 0.13

Sphingolipids 0.08 0.09 0.09 0.11 0.07 0.07 0.11 0.11
Table S2. Data of Figure 2B.

Raft proportion data w3 W6 W9 w14 A3 A6 A9 Al4

Sterols 0.32 0.33 0.33 0.27 0.33 0.32 0.28 0.24

DHA 0.04 0.05 0.06 0.04 0.05 0.04 0.05 0.03

n-6 LCPUFA 0.05 0.06 0.05 0.04 0.06 0.05 0.05 0.03

Monoenes 0.18 0.2 0.18 0.18 0.18 0.17 0.18 0.19

Saturates 0.24 0.19 0.21 0.25 0.21 0.23 0.25 0.29

Sphingolipids 0.17 0.17 0.17 0.21 0.16 0.19 0.2 0.22
Table S3. Data of Figure 2C.

Predicted proportion

data W3 W6 W9 W14 A3 A6 A9 Al4

Sterols 0.3272 | 0.3444 | 0.3515 | 0.3057 | 0.3691 | 0.3660 | 0.3059 | 0.3070

DHA 0.0480 | 0.0516 | 0.0570 | 0.0571 | 0.0547 | 0.0533 | 0.0555 | 0.0534

n-6 LCPUFA 0.0431 | 0.0371 | 0.0392 | 0.0421 | 0.0381 | 0.0383 | 0.0382 | 0.0432

Monoenes 0.1788 | 0.1797 | 0.1917 | 0.2002 | 0.1646 | 0.1815 | 0.1946 | 0.2099

Saturates 0.2669 | 0.2333 | 0.2275 | 0.2282 | 0.2433 | 0.2341 | 0.2214 | 0.2036

Sphingolipids 0.1360 | 0.1539 | 0.1331 | 0.1667 | 0.1302 | 0.1268 | 0.1843 | 0.1829
Table S4. Data of Figure 2D.

Mobility
Mobility outside
Microviscosity | outside model
outside data model (s.d.)
W6 8.5250 0.4821 0.0004
w14 7.3740 0.4855 0.0004
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A6 7.1570 0.4848 0.0004
Al4 6.9620 0.4858 0.0003
Table S5. Data of Figure 2E.
Number of | Radius of Radius of
Number of | lipd rafts the lipid the lipid
lipd rafts (s.d.) rafts rafts (s.d.)
W3 1,859.0311 11.1610 1.3727 0.0065
W6 1,888.3124 13.6461 1.3841 0.0051
W9 1,847.2337 15.3095 1.2984 0.0062
W14 1,812.7992 15.8212 1.4885 0.0091
A3 1,863.4189 14.1870 1.2182 0.0058
A6 1,871.0945 12.0621 1.2309 0.0057
A9 1,790.2199 11.7272 1.5437 0.0076
Al4 1,793.1793 11.3204 1.5215 0.0082
Table S6. Data of Figure 2F.
Raft
Raft proportion
proportion | (s.d.)
W3 0.2751 0.0021
W6 0.2841 0.0018
W9 0.2445 0.0022
W14 0.3153 0.0023
A3 0.2172 0.0015
A6 0.2226 0.0015
A9 0.3350 0.0018
Al4 0.3260 0.0023
Table S7. Data of Figure 4.
n-6
Lipid raft size | Sterols DHA LCPUFA Monoenes | Saturates | Sphingolipids
W3 1.3860 1.3763 1.3746 1.3736 1.3890 1.3921
A9 1.5197 1.5376 1.5526 1.5527 1.5466 1.5776
A9 increase 1.2649 1.4564 1.4649 1.5563 1.6963 1.8425
A9 decrease 2.0282 1.6409 1.6078 1.4991 1.3824 1.2015
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Model-based genotype-phenotype
mapping used to investigate gene
signatures of immune sensitivity
and resistance in melanoma
micrometastasis

Guido Santos23, Svetoslav Nikolov'**, Xin Lai%?, Martin Eberhardt'?, FlorianS. Dreyer’?,
Sushmita Paul'?, Gerold Schuler? & Julio Vera'?

In this paper, we combine kinetic modelling and patient gene expression data analysis to elucidate
biological mechanisms by which melanoma becomes resistant to the immune system and to
immunotherapy. To this end, we systematically perturbed the parameters in a kinetic model and
performed a mathematical analysis of theirimpact, thereby obtaining signatures associated with the

: emergence of phenotypes of melanoma immune sensitivity and resistance. Our phenotypic signatures
: were compared with published clinical data on pretreatment tumor gene expression in patients

: subjected to immunotherapy against metastatic melanoma. To this end, the differentially expressed

. genes were annotated with standard gene ontology terms and aggregated into metagenes. Our

method sheds light on putative mechanisms by which melanoma may develop immunoresistance.
Precisely, our results and the clinical data point to the existence of a signature of intermediate

. expression levels for genes related to antigen presentation that constitutes an intriguing resistance

mechanism, whereby micrometastases are able to minimize the combined anti-tumor activity of

¢ complementary responses mediated by cytotoxic T cells and natural killer cells, respectively. Finally, we
: computationally explored the efficacy of cytokines used as low-dose co-adjuvants for the therapeutic

anticancer vaccine to overcome tumor immunoresistance.

In many solid cancer types, the interaction between the tumor and the immune system is a key element governing

¢ critical steps in the tumor progression path'; its deep understanding is necessary to design efficient anticancer

immunotherapies. In recent times, a number of published works suggest the use of a systemic approach com-

¢ bining quantitative experimental data and mathematical modeling to dissect the tumor-immune system inter-
. action?’. However, most of these modelling efforts focus on representing and simulating cell-to-cell processes
: and do not consider the intracellular networks controlling immune and tumor cells, thereby losing the chance to

integrate and analyze omics data on the molecular events underlying the tumor-immunity interaction and the
immune-based therapies.

The immune system is by definition multi-scale because it involves complex biochemical networks that
regulate cell fate across cell boundaries?, and also because immune cells communicate with each other by

- direct contact or through secretion of local or systemic signals**%. Moreover, immune cells and cancer cells

interact, and these interactions are affected by the tumor microenvironment. The complex nature of this

tumor-immunity-microenvironment interaction favors and sometimes requires a systemic approach in its

analysis®.
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A systemic approach is able to combine quantitative experimental data, mathematical modeling and other
methods from computational biology 7. In recent literature, several contributions have made use of this approach
to dissect the tumor-immunity interaction”'’. The interplay between the tumor, the immune system and different
types of therapies has been modelled in the last decade>**!!, including a study that employed model simulations
and patient data to predict the optimal timing and dosage for a therapeutic anticancer vaccination'?. Although
these models in some cases incorporate detailed descriptions of the underlying cell-to-cell communication, they
do not take into account the intracellular networks governing immune or tumor cells. Thus, these models by
design cannot take advantage of the large amount of omics data produced nowadays to provide molecular-level
insights into immunotherapies and their assessment or re-engineering®. One option to overcome these limitations
is to perform a model-based genotype-phenotype mapping in which model parameters are associated to gene
ontology terms'>. When trying to reconcile simulation results with experimental and clinical data, aggregation of
the differentially expressed genes into metagenes will provide a means to connect omics data with model predic-
tions. This is the approach we propose and explore in this paper.

High-throughput data can be combined with mathematical modelling to assess the efficacy of anticancer
therapies. For example, Hector et al.'* quantified apoptosis-regulating proteins in samples of colorectal carci-
nomas (stage I and I1I) and normal colonic tissue, and simulated apoptosis signaling to predict the efficacy
of apoptosis-inducing therapeutics. Systems approaches have also been used for patient-data-based assessment
of experimental immunotherapies. For example, Ulloa-Montoya et al.'® analyzed biopsy samples from meta-
static melanoma patients and identified a pretreatment gene expression signature that can be used to predict the
response to immunotherapy.

In this paper we set up and characterized a kinetic model accounting for the interaction of the immune sys-
tem with melanoma micrometastases as well as for the role of an immunotherapy in controlling and depleting
them. It is important to highlight that the work will be focused on the simulation of distributed micrometastases
instead of the dynamics of primary melanoma tumors. Here, the immunotherapy refers to treatments stimulat-
ing the adaptive immune response, like therapeutic vaccines which are based on melanoma antigens, or patient
monocyte-derived dendritic cells loaded with antigens from primary tumor cells'®.

We combined mathematical analysis, systematic model simulations and statistical techniques to generate
phenotypic signatures accounting for melanoma sensitivity and resistance to the inherent immune response
and immunotherapy. In the context of this study, the term inherent immune response refers to the patient’s
natural immune reactions without any artificial stimulus, while the immunotherapy refers to treatments like
dendritic-cell or melanoma antigen vaccination. The phenotypic signatures were compared with metagene sig-
natures derived from clinical data. The comparison not only confirmed the correlation of model predictions
with clinical data, but it also allowed the mechanistic interpretation of the clinically derived metagene signatures
underlying various biological processes. Furthermore, improvements in the therapeutic anticancer vaccination
were proposed based on the model analysis.

Taken together, our results highlight that mathematical models are useful tools for the assessment of tumor
immunogenicity, and also that high-throughput data can be employed to detect key genes involved in the
tumor-immune system interaction.

Materials and Methods

Overview of the methodology. The presented method makes use of mathematical modeling to a) infer
biological mechanisms explaining gene expression signatures obtained from clinical data and b) propose simula-
tion result -based improvements in existing therapies. The workflow used was as follows (see Fig. 1 for a graphical
illustration):

1. A mathematical model describing the biological system under investigation is derived and characterized

using published data, and, when possible, model-driven experiments'’;

2. The model parameters are systematically perturbed and simulations are performed for relevant biomedical

scenarios;

According to the resulting simulated biological behavior, the model parameter sets are classified into

groups. A statistical analysis of the model parameter sets extracted from those groups is used to obtain

phenotypic signatures (e.g., patterns in the perturbed model parameter sets for each defined group);

4. Subsequently, clustering analysis is performed to obtain fine-grained signatures of subpopulations within
each group. The features of these signatures are linked to the (de)regulation of given biological processes
defined in the mathematical model;

. Mathematical analysis is used to further investigate and define the gene signatures;

The genes in clinical signatures are annotated and grouped into metagenes. These metagenes represent

genes with a similar gene ontology annotation in terms of the biochemical processes described in the

model;

. The clinical signatures are aggregated using the described metagenes;

. Phenotypic signatures from the model are compared to metagene signatures from clinical data. Agreement

between them allows a biological interpretation of the clinical signatures based on the identification of

disrupted or deregulated biological processes. The derivation and calculation of the metagenes is presented
in Gene annotation and Metagene grouping sections;

Analysis of additional simulation results are used to propose therapy improvements which must be validat-

ed in further experimental and clinical setups.

o

% = o wn

b

In the following, the different elements of the procedure are discussed in detail.
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Figure 1. Workflow of the study. Our goal was to generate phenotypic signatures and to compare them with
signatures derived from patient data.

Mathematical model derivation. We used published knowledge and preexisting mathematical models
describing the interaction between the tumor and the immune system to derive a new simplified kinetic model
based on nonlinear ordinary differential equations with time delay>®!# (Fig. 2). The model reflects the dynamics
of cytotoxic T cells and tumor cells during the growth of melanoma micrometastases, as well as some features
associated with the inherent and immunotherapy-induced immune response. It has the following structure:

i Ky - M+ V()|
d_ = kapc : (1 o kgl‘r : Vc(f)) T - ]g £
i kb + [kag - M + V(0]
k.. - M)
+ katc m e % - kdrc[T3 + kx : TOAI : T(t - Tdtc)O'g]
kiate + (kurg . M) (1]

an Koy - M HLA™')™
B e M = M) — Ky T gy A

- — — s
P 1tk M (kg ' + (HLATY™ 2]

where T'accounts for the population of cytotoxic T cells and M for the population of melanoma cells that compose
a micrometastasis. In case of cytotoxic T cells, Equation [1] includes the first term accounting for the activation of

SCIENTIFIC REPORTS |6:24967 | DOI: 10.1038/srep24967 3



www.nature.com/scientificreports/

A

uy)

Cytotoxic t E
Melanoma ¢ Teels (T) -~ ' g
cells (M) : L & ; s
{ R 8.
ke % a4 3.
0—> “ Ik, K e
* i - -~ time (days)
\ ! [~ =P K
~_7 +-=-- C
: Q"
¢ [ (|- 180 days |
4 1k Vaccine T I
. it =
s 4 {t) E
. Natural Killer ‘ |
® colis (NK) o | L
L time (days)
L days

Figure 2. (A) Sketch representing the structure of the mathematical model derived to represent the interaction
between a melanoma micrometastasis and the natural or therapy-mediated immune response. Parameters:

ke — tumor proliferation rate; k;,, - antitumor cytotoxic efficiency; k,,, - antigen presentation efficiency; ki, -
immune evasion efficiency; k,;, — global immune response efficiency; k,, — depletion rate of activated cytotoxic
T cells (fixed value) k. — inherent immune response; tdtc - time delay; (B) The model can be used to simulate
the kinetics of cytotoxic T cells (T) in a time-dependent manner and the growth of melanoma cells (M) under
the corresponding immune stress (7(0) = 0; M(0) = 0.00081; nominal values for the model parameters).

(C) Sketch of the immune therapy simulation used as described in Material and Methods section.

cytotoxic T cells by antigen-presenting cells as a result of a) the inherent immune response (k,,.) or b) an immu-
notherapy, for example dendritic cell or antigen vaccination. The immunotherapy-mediated activation of naive T
cells is represented by a time-dependent input variable, V(1) (for details, see “Simulation of vaccine administra-
tion” below). An additional feature associated with the immunotherapy is the ability to promote a global unspe-
cific immune response, which amplifies the process of cytotoxic cell activation (k). The efficacy of the cytotoxic
T cell activation process is dependent on the amount of antigens (k,,) presented by tumor cells (M) and follows
a saturation dynamics represented by a Hill function with a Michaelis-Menten like parameter (k,,,.)'* with expo-
nent g;. The equation also includes a term accounting for the self-expansion of activated cytotoxic T cells upon
interaction with tumor cells (k,,.) which follows a Hill function, with the corresponding Michaelis-Menten like
parameter (k) with exponent g,, and is proportional to the amount of antigens (k) produced by the tumor cells
(M). Finally, the equation includes a summand accounting for a biphasic depletion of activated cytotoxic T cells
(k). In this term, we included a fast third-order depletion term together with a slower, time-delayed one which
accounts for the small fraction of activated cytotoxic T cells that have a longer lifespan (and represent memory
T cells in a phenomenological fashion; for time delay estimation and previous kinetic model see'?). By using this
structure for the T cell depletion rate, our model is able to reproduce the basic features of the short-term and
memory cytotoxic T cells dynamics with a single differential equation (Supp. Fig. $1).

For the melanoma cells, Equation [2], the first rate term includes a logistic equation accounting for the
self-limiting growth of the melanoma cell population (k,,,): we introduced this rate term under the assump-
tion that the melanoma cells in the micrometastasis have not yet broken the blood vessel barrier and therefore
achieve a maximum size represented by M;*°. In addition, the model includes a term accounting for the T cell
and NKC-mediated killing of melanoma cells on the second and third term respectively (k;;~ 0.02-k,,,). In our
model, the strength of this process is proportional to the level of antigen presentation (k) of the tumor cells M.
In addition, we also consider the possibility that the melanoma cells could evolve an immune evasion strategy,
thereby reducing the efficiency of T cell-mediated recognition and killing (k;,,). The final Hill kinetics term, which
features the Michaelis like constant k,; and the exponent g, accounts for the activation of natural killer cells
(NKCs) by tumor cells that exhibit low levels of human leukocyte antigen (HLA) complexes on the cell surface,
and for the ability of activated NKCs to target the tumor cells for killing. HLA accounts for the plasma membrane
levels of HLA complexes, which is assimilated for simplicity into the model parameter k,,, (HLA = k,,,). This
model can be used to simulate the evolution of specific cytotoxic T cell (T) populations in a time dependent man-
ner and the behavior of melanoma cells (M) under distinct immune-related scenarios (Fig. 2B).

We point out that the derived kinetic model features a combination of mass-action, Hill kinetics and
power-law terms, a strategy previously used to model complex regulatory processes in simplified model equa-
tions'*?%2, The values of the rate parameters were assigned by surveying published information. For example, the
half-life of cytotoxic T cells was used to characterize k. Also, k,,,. and g, were estimated to induce a sigmoidal
APC (antigen presenting cell)-mediated cytotoxic T cell response within the interval of feasible values of the
model variables. Alternatively, we reduced some parameters by normalization (e.g., normalizing the expression
level of melanoma antigen presentation such that it is equal to 1 in the nominal version of the model). Model
parameter values and further explanations are provided in Supplementary Table S1.
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Model simulations. To search for phenotypic signatures accounting for sensitivity or resistance of mela-
noma cells to inherent and immunotherapy-supported immune responses, we randomly perturbed the values
of biologically relevant model parameters using the Latin hypercube sampling method in the logarithmic space.
The parameters chosen account for tumor cell proliferation, antigen presentation, efficiency of T cell-mediated
killing of melanoma cells, tumor immune escape, and the intensity of systemic immune responses induced by
the immunotherapy (respectively ky,.c» kup Kigps Kiei» and ky,). The parameter k. was perturbed in the interval
[1, 5]. The upper bound corresponds to with a duplication time of approx. 12 hours for an nominal popula-
tion M= 0.3. The lower bound was fixed to 1: preliminary simulations indicated that values of k. below initial

-pimc
value did not satisfy the conditions for tumor growth. The parameters k., kisp» kierr and ky;, account for a rather

aly ap? r

complex aggregation of biological parameters and therefore they were pefgiurbped in the wider interval [0.02 50].
Thereby, we generated 10* solutions, each one with a distinct set of parameter values. For each combination, we
performed simulations in three scenarios relevant for describing the interaction between the tumor micrometas-
tasis and the immune system: scenario 1) non-immunogenic tumor growth conditions (M(0) = 0.00081, which
represents an initiating tumor cell cluster of 30 cells, T(0) = 0, no pre-existing T cell response, k.= 0, V(t)= 0);
scenario 2) inherent antitumor immune response (M(0) = 0.00081, T(0) = 0, k,,. = 0.04, V(t) = 0); and scenario
3) immunotherapy-supported (vaccine) antitumor immune response (M(0)= 0.00081, T(0)= 0, k,,. = 0.04,
V(t)=F,,.(t)). Based on exploratory clinical results (data not shown), vaccine administration was simulated by
introducing a step-like time-dependent function F,,,.(f) simulated during six subsequent periods of 180 days, with
the following structure: F,,(t)=1if 0 <t < 5; F, . (t) = 0if 5< t < 180 (see Fig. 2C).

We investigated phenotypic signatures providing resistance to inherent and vaccine-mediated immune
responses by simulating the response of the model to the described scenarios. According to the simulation results,
the model parameter combinations were classified into the following biologically relevant groups:

(a) Tumor: parameter combinations for which the melanoma cell population is bigger than 90% of the maximum
tumor population size (M > 0.9 n.u.) after 30 days of non-immunogenic tumor growth conditions (see sce-
nario 1 above). The subsequent groups (b-d) are subclasses of this group;

(b) Immune-sensitive: parameter combinations that generate a growing melanoma micrometastasis in scenario 1,
but they are depleted or controlled by the inherent immune response in scenario 2 (M < 0.05n.u. 1500 days
after starting of the wild-type immune response);

(c) Vaccine-sensitive: parameter combinations that generate a growing melanoma micrometastasis in scenario 1,
are resistant to the inherent immune response in scenario 2, and are depleted or controlled by the immuno-
therapy-mediated immune response in scenario 3 (M < 0.05 n.u. 1500 days after starting the immunotherapy
treatment);

(d) Vaccine-resistant: parameter combinations that generate a growing melanoma micrometastasis in scenario 1
and are resistant to both the inherent (scenario 2) and immunotherapy-supported (scenario 3) immune
response.

With the criteria chosen, groups b, ¢, and d do not overlap because our intention was to define “extreme
cases’, in a way clear phenotypic signatures could be found. Thus, we are able to unambiguosly assign each solu-
tion to one of the groups above. It could be possible to find solutions that do not belong to any of the groups
defined, and that may account for intermediate cases (not found in our current results). In this case, the subset of
non-allocated solutions maybe further analysed independently.

Determining phenotypic subpopulation signatures. In order to investigate the potential existence
of subpopulations of solutions with a clear-cut distinction in the values of the model parameters, the solutions
belonging to each population were examined using hierarchical clustering analysis. The dendrogram and heat
map of the solutions were obtained in MATLAB 2014 using the function ‘clustergram’ which performs hierar-
chical clustering with the Euclidean distance metric, average linkage and optimal leaf ordering by clustering first
along the columns®. For visualizing the heat map, we used a customized color map (red for high values and cyan
for low values). In the heat map, we classified the solutions in subpopulations that: a) are as large as possible, b)
correspond to a division (cluster) in the dendrogram, and c) at least 75 % of the solutions have similar color codes
for each model parameter (i.e., the cluster must predominantly be either red or cyan for each model parameter).

Gene annotation. The 84 genes identified in Ulloa-Montoya et al.'* were manually annotated with empha-
sis on classifying them into one of the following categories according to their established role in the immune
response: 1) antigen presentation machinery, 2) immune-mediated tumor apoptosis/cytotoxic T cell-mediated
killing of tumor cells, 3) tumor immune evasion mechanisms, 4) general immune response and 5) none/
unknown. Gene annotation was carried out using the information contained in Ensembl and UniProt databases.
In case that the gene function was not or only partially described in context of the phenotypes in question, we
searched literature for complementing its annotation using NCBI's MEDLINE database. The results of the gene
annotation procedure can be found in Supplementary Figure S3.

Metagene definition and estimation. The metagenes defined here represent the averaged expression
of the genes that belong to categories 1-4 as defined above. Hierarchical clustering with complete linkage and
Euclidean distance was performed on the patient samples using the heatmap.2 function of the gplots package
in R. Both margin clusters of the generated heat map had a consistent pattern. These two clusters were used for
further analysis. The genes present in the heat map were further assigned to one of the four immune-related
metagenes (s. above) and the metagene expression values estimated by taking the arithmetic average of the corre-
sponding genes. Interestingly, we obtained similar values using both arithmetic and geometric mean.
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Comparison between in silico and patient signatures. In order to make possible a comparison, the
solutions from the in silico clusters were logl0-transformed and normalized to the interval [—1, 1]. For every
cluster, we calculated the average value for each parameter. The average values for the metagenes in the patient
clusters of clinical and no clinical benefit were also log10-transformed and normalized to the interval [ -1, 1]. We
created a matrix by merging in silico clusters for vaccine resistant and the two patient signatures and performed
hierarchical clustering using the MATLAB 2014 function ‘clustergram, which performs hierarchical clustering
with the Euclidean distance metric, average linkage and optimal leaf ordering by clustering first along the col-
umns. Next, for every in silico cluster we calculated the Euclidean distance between its average (X) and the average
for the patient clusters (Xyp, and Xp,, for non-benefit and benefit respectively) using the following equations:

Distance to non-benefit patient cluster: D (X yy,,,, X) = Z?ZI(X;H,,, - X?

Distance to benefit patient cluster: D(Xpgn, X) = Z:Ll(xg,! — X")2

We followed a similar procedure for in silico vaccine sensitive clusters. In this case, we also merged into the
matrix two representative clusters from the in silico immune sensitive solutions.

Computing of solutions and analysis. Computational simulations and data analysis were performed
using MATLAB 2014 running on a Dell Precision T7600 with 2 Intel Xeon E5-2687W 3.1 GHz processors and
64 GB RAM. The computing time for the 10* simulations was in the order of hours.

Results

A kinetic model of the interaction between melanoma micrometastasis and theimmune system.
To investigate the interactions of the tumor with the immune system in the context of melanoma micrometasta-
ses and immunotherapy, we set up, characterized and analyzed a kinetic model in nonlinear ordinary differential
equations (see Fig. 2). To construct the model, we used published data and mathematical models on the interac-
tion between the tumor and the immune system™>®'%*!, The model accounts for the interaction between the local
immune system and tumor cells during the growth of melanoma micrometastases. In the model, the variable M
accounts for the population size of melanoma cells, while T accounts for the local population size of specific cyto-
toxic T cells. The latter one is used as a surrogate for an efficient antitumor response of the adaptive immune system.

Our model for the dynamics of cytotoxic T cells contains terms representing a) the activation of naive T cells
by antigen-presenting cells from the inherent immune system (k,,.); b) the self-expansion of activated cytotoxic
T cells upon detection of tumor cells (k,,) and c) the depletion of active cytotoxic T cells (k). In addition, the
model includes a term for the immunotherapy-mediated activation of naive T cells, here represented by the
time-dependent input model variable V,(1). In our model, the strength of the activation process is modulated by
a model parameter (k). This parameter accounts for the patient-to-patient variability of the therapy to promote
a systemic immune response which amplifies the process of cytotoxic cell activation'®.

Our model for melanoma cell dynamics contains equations accounting for: a) the growth of the tumor cell
population in micrometastases (k,,,.); b) killing of melanoma cells by cytotoxic T cells (k,-,,p); and c) biological
functions attributed to the antigen presentation machinery by linking its downregulation to the activation of
natural killer cells (k,,). In our model, the cytotoxicity of T cells depends positively on the amount of specific
antigens presented by the tumor cells, and negatively on the ability of the tumor cells to evade immune response.
Both aspects are represented by the tunable parameters k,, and k;,, (see respectively Parmiani, G. et al.”* and
Umansky, V. & Sevko, A.%).

To answer the question which parameter ranges confer immunoresistance to the micrometastasis, we used
systematic model simulations to identify regulatory patterns in the tumor-immunity interaction.

Detection of phenotypic signatures providing immune resistance in melanoma.  Recent exper-
imental and clinical data have shown that metastatic melanoma has the ability to evade immunotherapies that
are based on antibodies and therapeutic anticancer vaccination'>*?, In order to detect putative phenotypic sig-
natures promoting immunoresistance of melanoma micrometastases, we generated a set of 10* model parameter
configurations through random systematic perturbation. Parameter sensitivity analysis was performed on the
solutions to ensure robustness of the simulations (see Figure S4). The solutions of the model parameter combina-
tions were grouped in the following biologically relevant groups (see Fig. 3A and Material and Methods section
Detection of phenotypic signatures): i) tumor, those for which the melanoma cell population shows fast growth;
ii) immune-sensitive, those combinations for which the inherent immune system can eliminate melanoma micro-
metastasis; iii) vaccine-sensitive, parameter combinations for which immunotherapy results in effective killing of
melanoma cells that were resistant to the inherent immunity; and iv) vaccine-resistant, those model parameter
values for which melanoma micrometastasis are resistant to both inherent immunity and to immunotherapy.
Fig. 3B-D show model simulations for the scenarios 2 (red) and 3 (blue) in a sample of ten solutions for the
groups immune-sensitive, vaccine-sensitive and vaccine-resistant.

According to our simulations, vaccine-sensitivity micrometastases can cope with low T cell-mediated cyto-
toxicity against tumor cells (k;,,) due to the high levels of tumor antigen expression and presentation (k) (see
Fig. 3A). The results also suggest that the micrometastases, although they express low levels of tumor antigens
(Kyg), could be sensitive to immunotherapy in case the therapy induces a high systemic immune response and
if there is an efficient T cell-mediated cytotoxicity (kj,,) (see Fig. 3A). In the case of vaccine-resistant solutions,
the genotypic-phenotypic constitution of the tumor in combination with features of the patient’s immune system
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Figure 3. Simulation-result-based detection of signatures responsible for immune resistance or immune
sensitivity in melanoma. (A) Phenotypic signatures obtained for the four sets of solutions (randomly generated
set of parameters). In each boxplot the inner horizontal line is the median, the lower and upper edges are the
25t and 75% percentiles, respectively, and the whiskers extend to the most extreme data points. The ordinate
axis origin in the plot accounts for the values in the nominal immune sensitive signature (that is, the model

with all the parameters as table S1). Outliers are denoted as dots. See text or caption of Fig. 2 for parameter
definitions. (B-D) Random sample of 10 solutions from each of the groups immune-sensitive, vaccine-sensitive,
and vaccine-resistant, respectively. Red lines correspond to simulation scenario 2 and blue ones to simulation
scenario 3. Color bar indicates the number of solutions on overlapping regions.

permits micrometastases to become and remain resistant to both the inherent response and the immunother-
apy. Our simulations indicate that lower levels of tumor antigen expression (k) in combination with a weak
T cell-mediated cytotoxicity (k;,,) can render micrometastases refractory to anticancer immunotherapy (see
Fig. 3A).

Elucidation of finer phenotypic signatures using data clustering techniques. The previous anal-
ysis gave us a rough classification for the model populations. For example, the vaccine-sensitive group extends
still across most of the available parameter space accounting for the strength of the immunotherapy-mediated
systemic immune response (kg Fig. 3A). This revealed the need for additional data analysis techniques to extract
subpopulations with a clearer distinction of parameter values. To this end, the solutions belonging to each pop-
ulation were clustered using hierarchical clustering and visualized using heat maps (Fig. 4; see Material and
Methods for details). The heat maps were scrutinized to detect finer subpopulations. We here further discuss the
results for the vaccine-sensitive and vaccine-resistant solutions, while the analysis of the immune-sensitive solu-
tions is included in the Supplementary Material.

In case of the vaccine-sensitive population, we detected three subpopulations of solutions displaying distinct
phenotypic signatures (Fig. 4A,B; subpopulations a, b and c, highlighted with dendrogram lines in grey, blue and
orange, respectively). All of them had inefficient T cell-mediated killing of melanoma and high tumor antigen
expression and presentation in common (i.e., the value of k;,, is low, and the value of k,,, is high). The differences
resulted in two groups:

group a) low values of immune evasion (k) with high values of immune response (k;,), so a micrometastasis
without evasion mechanisms cannot survive in a context of high antigen presentation and vaccination;

group b/c) solutions with high values of immune evasion (k;,,), either high or low values of immune response
(k). so high antigen presentation in combination with immunotherapy is enough to counteract the immune
evasion mechanisms of the micrometastases. For the purpose of better visualization of the results, every sub-
population is shown connected to a customized illustration of the mathematical model in which the parameters
and their associated biological process are colored according to their observed value (Fig. 4A). This allows an
understanding of the mechanisms modulating the interactions of the tumor with the immune system in each
subpopulation.
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Figure 4. Phenotypic signatures for the subpopulations of vaccine-sensitive (top) and vaccine-resistant
(bottom) solutions. Log10 of the nominal parameters in Supplementary Table 1 value is shown (A,C). Hierarchical
clustering of the solutions in each population with dendrograms and sketches of the regulatory pattern they elicit
(B,D). Original overall phenotypic signature for each population of solutions.

In case of the vaccine-resistant solutions we obtained four subpopulations (Fig. 4C,D; subpopulations a, b,
cand d, highlighted with dendrogram lines in grey, black, blue and orange, respectively). Our analysis revealed
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multiple phenotypic signatures, all of them having intermediate levels of antigen presentation in common (k,):

group a/b) solutions with either high or low values of immune response (k,;), low values of immune evasion
(ki) and T cell-mediated killing of melanoma (k;,,), meaning that even micrometastases without evasion mech-
anisms can survive in a context of low cytotoxic effect of T cells and intermediate levels of antigen presentation
machinery even under immunotherapy;

group c/d) solutions with high value of immune evasion (k,,,) with either high or low values of immune
response (k,;) and low values of T cell-mediated killing of melanoma (k;,,), so the micrometastases survive with
high immune evasion mechanisms in the context of intermediate levels of antigen presentation even under
immunotherapy.

Taken together, our detailed analysis indicates that each of the three classes (vaccine-sensitive,
vaccine-resistant and immune-sensitive, last one presented in Supp. Mat.) can arise through multiple phenotypic
signatures.

Interpretation of phenotypic signatures by mathematical model analysis. In order to further
understand the phenotypic signatures, the model was examined to determine the relationship between the
parameter values that promote sustained, immunoresistant tumor growth. The condition for tumor resistance
and maintenance is the presence of a minimal amount of persistent melanoma cells (existence of a non-zero
steady state of M and instability on M = 0, see Supp. Mat.). Because the equation for T is highly non-linear, a
complete definition of the steady state cannot be obtained; instead, we will examine the dynamic behavior of the
melanoma cells while the T cell population size remains transiently stable.

Equation [3] represents the parameter dependency that is mathematically defining the condition for a sus-
tained tumor growth (see Supplementary Material for derivation). It considers the relation between the following
parameters: the tumor growth rate (k,,,.), strength of the T cell mediated killing of melanoma cells (k;,,), the level
of specific antigens presented by the tumor cells (k,,,), the steady amount of T cells (T,), the Hill exponent (g,)
and kinetic parameter of the NKC interaction (k,;):

—k‘;g"k +k,..T
= o
ab kg [3]

pme > kxap'

The right part of the inequality can be interpreted as the ability of the patient’s immune system, whether by
itself or after therapy, to efliciently counteract micrometastasis growth. Our analysis indicates that when this
function is lower than the tumor growth rate (k,,,.), the tumor resists the anticancer immunotherapy. In Fig. 5,

. k ok . .
the factor F,,sis equal to ﬁ + kg T, and accounts for the efficiency of the immune response. Next,
ke + alg”r
for simplicity we considered only the effect of k,, (level of antigen presentation by the tumor cells) and T, on the
values of F, . (Fig. 5). The minimum values for F,,,(the blue region in Fig. 5) are reached under intermediate
values of k., and low values of T,. This blue region corresponds to solutions in which the efficiency of the immune
response should be lower than the tumor growth rate (k,,,.), so the micrometastasis can resist the immune ther-

apy. This region in which the micrometastasis resists the anticancer immunotherapy can be escaped when the
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strength of T cell-mediated killing of melanoma cells (k;,,) increases, thereby restoring the competence of the
patient’s immune system to counteract the tumor. As it was to be expected, for low values of T, the range in which
F;yehas minimum values widens and the patient’s immune system remains unable to suppress tumor growth for
a larger region of k,, values.

In summary, the model-derived analysis indicates that patients who are not competent to eliminate the micro-
metastasis even in the presence of vaccination (as these results do not depend on the vaccine parameters) are
those with a signature of a) low steady-state levels of T cells, which cannot be rescued even by high amounts
of antigens presented by the tumor cells (k,,fg) or b) high levels of T cells with an intermediate level of antigen
presentation (k). Furthermore, the benefit of the immune response is proportional to the strength of the T
cell-mediated killing of melanoma cells (k;,,) and inversely correlated with the tumor growth rate (k). These
results are consistent with the numerical analysis of vaccine resistance (Fig. 4C, four signatures present inter-
mediate levels of k,,, and low levels of k;,,). Furthermore, the equation [3] shows the different combination of
parameter values favor tumor cells in vaccine resistance.

Comparison of mathematical model predictions with molecular data. To test our model pre-
dictions, we retrieved data from a recently published paper in which biopsy samples of metastatic-melanoma
patients were analyzed to define a pretreatment gene expression signature for the prediction of the response to an
anticancer immunotherapy'®. To compare the data with our model predictions, the 84 genes in Ulloa-Montoya
et al.'* were manually annotated and classified into one of the following categories according to their poten-
tial role in interactions of the immune system with the tumor: 1) antigen presentation machinery (correspond-
ing to parameter k), 2) immune-mediated tumor apoptosis/cytotoxic T cell mediated killing of tumor cells
(corresponding to parameter k;,,), 3) tumor immune evasion mechanisms (corresponding to parameter k,,),
4) immune response (corresponding to parameter kg;,) and 5) none/unknown (see Material and Methods, and
Supp. Mat. Table $3). For the categories with productive annotation (1-4), we averaged the expression values of
the assigned genes in each patient to come up with one metagene per category. We then aggregated the average
relative expression values for these metagenes in clusters of patients with and without clinical benefit (Fig. 6,
see also SM figure S3). In order to make possible a comparison, the solutions from the in silico and the patient
clusters were logl0 transformed, normalized and averaged following the procedure explained in Material and
methods. We displayed side-by-side the in silico phenotypic vaccine-resistant and vaccine-sensitive signatures
to make a comparison with the patient groups'® and employed hierarchical clustering to generate a heat map
grouping in silico and patient signatures together (see Material and Methods). As seen in the heat map (Fig. 6), in
case of resistant solutions the agreement between the non benefit patient cluster (Nbn) and the in silico cluster b
is good and is further supported by the small Euclidean distance (highligthed in red). In addition both solutions
are qualitatively similar, that is metagenes and parameters keep the same trend of up/down regulation. We notice
that, in case of vaccine-resistant solutions, the hierarchical clustering puts aside the benefit patient cluster (Bn). In
case of sensitive solutions, none of the three in silico clusters conserves the same trend in the up/down regulation
of all the parameters compared to the Bn cluster. To further extend our analysis we merged two representative
clusters from the in silico immune sensitive solutions (aj;, accounting for immune sensitive solution solutions of
high antigen presenting machinery and b, accounting for solutions with low antigen presenting machinery; see
Figure $2). Our analysis indicates that cluster a, is similar to the Bn patient cluster. We notice that the hierarchical
clustering puts aside the Nbn cluster, clustered together with the b;.

Taken together, pairing the phenotypic signatures with those derived from patient data offers a possible means
for understanding the biological mechanisms behind the stratification of patients into groups with and without
clinical benefit. We think the procedure described can have an application when stratifying patients for therapy
or when redesigning immunotherapies.

Model-predicted co-adjuvants to therapeutic vaccine. We next looked for a way to capitalize on the
in silico phenotypic signatures obtained in this study. As adjuvant therapies have been proposed and studied in
anticancer vaccinations®**, we speculated that extension of the model to account for co-adjuvants might provide
insights on how to improve the vaccine efficacy in less immunocompetent patients. Based on published results,
we decided to explore the combination of immunotherapy with cytokines IL-2 and IFN-« used as co-adjuvants.
In our model, we assumed that IL-2 can alter the cytotoxic effect of T cells and T cell proliferation (kigp and ks
respectively), while IFN-o increases the presentation of antigens via upregulation of HLAs (k). We display sim-
ulations of the vaccine-resistant set of solutions either under immunotherapy alone, or in combination with IL-2,
IFN-a or both cytokines (Fig. 7). For the treatment with IL-2, the parameters related to T cell proliferation (k)
and the cytotoxic effect of T cells (k;,,) were increased by a factor of 10. For the treatment with INF-a, the param-
eter for the presentation of antigens (k,,) was increased by a factor of 15. The therapy was simulated during the
first 30 days. Afterwards, the simulation was run until day 100. It can be seen that only the combination of both
co-adjuvants in conjunction with the immunotherapy is able to deplete the micrometastasis in the high majority
of the vaccine-resistant solutions (Fig. 7B,C compared to Fig. 7D).

There is experimental evidence of the benefits of IL-2 or IFN-« supplementation, whether as monotherapy or
combined with DC vaccine?®-**, Concerning targeted cytostatic therapies, a cytostatic drug (cetuximab) in combi-
nation with vaccination against epidermal growth factor receptor has been shown to be efficacious™. Our analysis
suggests an improvement of the DC vaccine therapy through the co-administration of both cytokines in patients
who do not respond to the vaccine alone, together with targeted cytostatic drugs (reduce k,,,,.). However, this is an
outcome of our modelling exercise and therefore it would in any case require extensive experimental validation.
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Figure 6. Comparison between the model-based phenotypic signatures and the pretreatment gene
expression signature. (A) Vaccine-resistant signatures vs. patient clusters. Columns named a, b, cand d
correspond to the in silico signatures, while columns named Nbn and Bn correspond to the patient clusters
without and with clinical benefit, respectively. The phenotypic signatures were clustered using hierarchical
clustering (see Material and methods for further details). The table below the heat map displays the Euclidian
distances between the average of the in silico signatures and the average of the benefit and non-benefit patient
clusters. (B) Vaccine-sensitive signatures vs. patient clusters. For the purpose of further analysis and discussion,
we also included two representative clusters from the in silico immune-sensitive solutions (named a; and

b,) (C) Our analysis revealed the need for a tight balance in antigen presentation in the tumor. The total rate
of melanoma cell killing (ordinate) was computed and displayed for different expression values of antigen
presentation proteins (k,, abscissa HLA). The total killing rate includes both the contributions of NK and
cytotoxic T cells. k,,,g € [0.01 100]; M= I; T= 1, nominal values for other model parameters.

Discussion

In this paper, we set up and characterized a kinetic model accounting for the interactions of a tumor with the
immune system in the context of melanoma micrometastases. The model reflects the interplay between the
inherent immune response, the micrometastases and the anticancer immunotherapies stimulating the adaptive
immune response against the tumor. Although the model builds on and is able to mimic many basic features of
the tumor-immunity interaction, it is far from being a complete description of the system. Modifications that can
improve the model are: a) a more detailed description of the local interactions between the micrometastasis and
the immune system, including additional key immune cell populations, cytokines and growth factors which can
mediate immune responses and immunosuppression (see models containing this feature in Robertson-Tessi, M.
et al.'® and de Pillis, L. G. et al.?); and b) a more precise description of the dynamics associated with immuno-
therapies''*, or the addition of clinical data sets'%. Moreover, the critical signaling and transcriptional pathways
controlling the regulation of key phenotypic features in the tumor-immunity interaction could be modelled in
detail, providing means for defining more precise gene signatures and hence more accurate model predictions'.
In line with this, it will be interesting to improve the resolution of the pathways controlling the antigen-mediated
dendritic-cell activation and their role in optimizing anticancer vaccination®. The model can be expanded to
provide more accurate, clinically relevant predictions in accordance with the obtained results. However, the aim
of the present work was not to generate a comprehensive model of the interactions of the tumor with the immune
system in a melanoma micrometastasis, but to present, describe and illustrate with a case study a methodol-
ogy that is able to 1) generate phenotypic signatures of the tumor-immunity interaction using kinetic model
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Figure 7. Numerical simulation of the co-adjuvant (IL-2 and IFN-o) therapy. (A) A time profile for the
vaccine-resistant solutions. (B) IFN-« co-adjuvant therapy applied to the solutions from A for 30 days from
initial condition. (C) IL-2 co-adjuvant therapy applied to the solutions from A for 30 days from initial condition.
(D) Both co-adjuvants applied in combination to the solutions froms A for 30 days from initial condition. Color
bar indicates the number of solutions on overlapping regions. (E) Sketch of the immune therapy simulation.

(F) Sketch of the co-adjuvant therapy simulation (IL-2 and IFN-«), red line is a simplification of the actual
dynamics of co-adjuvant therapy, representing the mean value.

simulations and mathematical analysis; 2) to compare in silico gene signatures with patient data; and 3) to propose
model-based co-adjuvants for existing immunotherapies.

We combined systematic model simulations, statistical techniques and mathematical analysis to generate
phenotypic signatures accounting for the sensitivity or resistance of melanoma micrometastases to the inherent
immune response of individual patients and to the application of immunotherapies. We recently used a similar
method to obtain and validate gene signatures of chemoresistance in malignant melanoma'?, but to the best of our
knowledge similar approaches have not been used in the context of interactions of the tumor with the immune
system and the assessment of anticancer immunotherapies.

The obtained phenotypic signatures were compared to published data on pretreatment gene expression signa-
tures able to predict the response to immunotherapy in melanoma'*. To this end, the gene signatures derived from
clinical data sets were aggregated by defining and using metagenes which match the features of the biological
mechanisms investigated and the mathematical model constructed. This provides a strategy to compare clinical
data model predictions, which we think can be applied to other case studies for the assessment of anticancer
therapies. Through our analysis, phenotypic signatures identified from model simulations are in agreement with
those obtained from patient data sets, but our results also show the existence of additional more fine-grained
signatures that can promote immune sensitivity or resistance. This comparison provides support for the inter-
pretation of the predictive signatures obtained in reference 15. Concerning vaccine-resistant signatures, our
results and the clinical data indicate that patient immuno-resistant signatures share intermediate (rather than
low) expression levels for the genes related to antigen presentation. Our simulations suggest that this tight balance
in the expression levels of these genes constitutes a resistance mechanism through which metastatic melanoma
cells minimize the effect of immune responses mediated by cytotoxic T cells and natural killer cells, respectively
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(Fig. 6C). Concerning vaccine-sensitive results, our analysis preferentially grouped the patients with clinical ben-
efit together with an i silico signature corresponding to a cluster of immune-sensitive solutions displaying high
levels for all the parameters sampled (Figure S2, the cluster a;,). These results are consistent with previously exper-
imental observations from several cancer immunotherapy trials, in which immunotherapies proved to work in
immunocompetent individuals®”.

Based on the phenotypic signatures, we computationally analyzed the effect of cytokines used as
co-adjuvants and proposed potential treatment improvements, in any case require further in vitro/
in vivo experimental validation. The development of a more detailed mathematical model could help improving
the predictive and explanatory capabilities of the obtained phenotypic signatures, and hopefully suggest more
detailed adjuvant strategies to improve the efficacy of the therapy in patients with a resistant signature. A possible
extension of the model could be an adaptation to include the effect of the recently approved immune checkpoint
inhibitors™ (e.g. anti-CTLA4 and anti-PD1 antibodies) in combination with cellular-based immunotherapies like
dendritic cell vaccination.

In the literature, some methodologies have been described to generate regulatory network patterns in the con-
text of biomedicine and biotechnology, which are based on the use of systematic parameter sampling in kinetic
model simulations®-*!, The distinctive features of our methodology are that a) it puts primary emphasis on the
detailed definition of the biological scenarios that are simulated and analyzed; and b) we design the model in a
way that makes the generated phenotypic signatures comparable with high-throughput data. The ultimate goal
of our method is to integrate high-throughput data analysis with model simulations in for the assessment of
cancer immunotherapies. Moreover, we think that it will be useful to other immune-related diseases, including
infectious ones.
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Derivation of analytic gene signature

For a persistent tumor, the existence of a stable non-zero solution of melanoma cell number (M)
and instability on its zero solution are prerequisites. First we test the stability of the zero solution.
As the steady state for both variables cannot be analytically obtained because of the high non-
linearity of the T cell equation (7), we will analyze the dynamic behavior of melanoma cells
while maintaining T constant (75). Under this assumption, the stability of the zero solution of
melanoma cells (S.1.1) can be analyzed as the partial derivative of the zero steady state

respecting changes on melanoma cells, under the restrictions (S1.2), i.e.

k,, .M L je
. _ ke MM, —M)—k,, T.—"5——Fk, .M. (L4 ) (SL.1)
dt Ltk -M (kS + (HLA™
nkc
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According to (35), the steady state at M =0 is unstable if equation (S1.3) is greater than zero. In

(S1.4) and (S1.5) are given these conditions for the instability of the zero solution, i.e.

k, k&
e — e =k K T, > 0, (S1.4)
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Now we will consider the conditions for the existence of stable solutions for M different from
zero. First, as values of M are bounded between 0 and Mt, the solutions for M have to be either
oscillating or steady for all initial values between these magnitudes. On the other hand, under the

assumption that 7 remains constant, M cannot oscillate, as the restriction reduces the model to
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only one variable, so the only possibility for M under these conditions is to reach a stable steady
state. We are going to consider the solutions which satisfy equation (S1.5), so there is no stable
zero solution and, under our reasoning, there must be at least one steady positive solution for M.

This will be proven now. We solve equation S1.1 under the restrictions (S1.2) and (S2.1)

dM:Q

— S2.1
” (82.1)
Thus, we obtain equation (S2.2), i.e.
k M k—gnk
ke, M(O0-M)-k, T.——f M—% =0, (S2.2)
! : 1 + kiev‘M ’ kfkrzf + katgnk

This equation can be solved analytically, and we obtain three different solutions, one of them is
the zero solution, which is going to be instable under assumption (S1.5). Of solutions ]\72’3 ,at

least one must be positive for all values of the parameters satisfying S2.2.

M =0, (S3.1)
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Applying condition (S1.5) for (S3.2) makes the right term inside the root positive. Because the
left term in the root is equal to the one in front of the root before squaring, the root itself will
have a higher value than the term in front of it. That means that the sign of the solutions will be
the sign of the root term. In this condition, there is going to be one positive and one negative
solution, so there is at least one positive solution that will always exist when the zero steady

solution is instable.
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Summing up, when equation (S1.5) is satisfied, at least one positive solution for M exists and the

zero steady solution will be instable.

Figure S1. Biphasic depletion of active cytotoxic T cells
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Figure S1. Biphasic depletion of active cytotoxic T cells. Upon the introduction of a slower, time-delayed T
cell depletion term, our model can account for a small fraction of activated cytotoxic T cells (approx. 10 %)
that have a longer lifespan and act as a phenomenological representation of memory T cells [19]. (7(0)=1;

M{(0)= 0; nominal values for the model parameters ).



Table S1. Model parameter definition and values

lie APC-mediated initiation of cytotoxic T cell response 0.04 day PMID:9182685
Ui Vaccine mediated global immune response lau. Normalized
k,”g Expression of melanoma specific antigen 1 a.u. Normalized
kiape Threshold APC-mediated initiation of cytotoxic T cell response 0.2605 a.u. Fitted to normalization'
g Hill-coefficient DC-mediated initiation of cytotoxic T cell response 2.784 Fitted to normalization’
ke Expansion of active cytotoxic T cells 2.0791 day'l PMID:14530309
Kiae Threshold expansion of active cytotoxic T cells 0.2605 a.u. Fitted to normalization™
2 Hill-coefficient expansion of active cytotoxic T cells 2.784 Fitted to normalization”
Kese Main (linear) depletion of effector cytotoxic T cells 0.3466 day'l PMID:14530309
k, Fraction of memory T cells 0.1 au PMID:14530309
Tie Half-life of memory T cells 500 days PMID:14530309
leme Proliferation of melanoma cells 0.5545 day™ PMID:20406486
Kiap Cytotoxic T cell-mediated melanoma cell apoptosis 5.4931 day’! PMID: 15725959
My Maximum size of micrometastasis 1au. Normalized'
Kiey Melanoma-elicited immune evasion mechanism 1 Normalized
M, Initial condition melanoma micrometastasis 0.00081 a.u. Normalized"
Sk Hill exponent for NKC interaction 3.9913 Fitted to normalization'
ke Kinetic parameter for NKC interaction 3.1623 Fitted to normalizationT

Notes to the table: ™. The values of Hill equation coefficients were calculated such that the APC-mediated initiation of cytotoxic

T cell response reaches 95 % of the saturation value for a tumor population size of 75 % of the maximum micrometastasis size

and normal expression level of melanoma specific antigens. A similar assumption was used to calculate£. ¥. PMID:12794026,

PMID:16968875, PMC:2922988




Figure S2. In silico signatures for immune-sensitive subpopulations from the model. A.
Hierarchical clustering of the solutions in each population, with dendrograms. B. Original overall
phenotypic signature for the each population of solutions.
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Figure S3. Grouping of patient data into clusters of clinical benefit vs. no clinical benefit.
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Figure S4. Sensitivity analysis for the four groups of solutions: tumor, immune-sensitive,
vaccine-sensitive and vaccine-resistant. The sensitivities are calculated dynamically, they
measure the ratio of the log change in the integral of the simulation of the variables over the log
change in the parameters. The panels show histograms for the mean value of parameter
sensitivities of each solution. The vast majority of the solutions have a mean value of sensitivity
less than one, which means that changes in parameters affects very little to the dynamical
behavior of the solutions.
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Table S2. Numerical data of the Figure 7 in the text.

Data are normalized between 0 and 1.

Resistant a b Nbn d o Bn
Kiap -0.97 -1.00 -0.50 -0.89 -0.91 0.30
katg 0.05 0.11 0.20 0.17 0.17 1.00
Kiev -0.71 -0.54 -0.30 0.63 0.61 0.50
kgir 0.60 -0.42 -1.00 -0.59 0.53 0.50

Sensitive a Bn s b c Nbn bis
Kiap -0.65 0.30 0.41 -0.74 -0.83 -0.50 0.53
katg 0.60 1.00 0.54 0.55 0.66 0.20 0.66
Kiev -0.33 0.50 0.67 0.93 1.00 -0.30 -0.70
kgir 0.93 0.50 0.48 0.53 -0.76 -1.00 -0.47
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15. General results and discussion

Mathematical modelling has been applied to biomedical problems during the last and present
century, but it has increased the interest in the last two decades. The main procedures in the
formalization and analysis of mathematical models in biosciences are discussed in the first article of the
present collection. Any mathematical approach in biosciences can be categorized into three different
stages: i) conceptualization of the biological system, ii) mathematical formalization and iii) optimization
and system management from the analysis.

As an example of the application of systems biology to biomedical problems it is reviewed in the
next section a collection of articles in which it has been used mathematical models in the topic of
malaria-host interactions. Malaria research has a strong connection with mathematical models in
biology because epidemiological models were proposed by Sir Ronald Ross for the study of the life cycle
of this disease. It also was one of the first mathematical modelling exercises in biosciences. Following
the history of modelling approaches in malaria is a representative way to analyze the evolution of
mathematical modelling in biosciences.

Four mathematical modelling approaches in biosciences have been developed for this present
work. These models previously presented focused on different diseases and the methodology and
characteristics of the models are different, but they have in common the systemic approach and the
quantitative and dynamical analysis of the diseases. The first work about malaria used an ODE
mathematical model on the power-law formalism; this gives many parameters to be calibrated in the
model but more power to predict non-linear dynamics of the relationship between the parasite and the
host. To deal with many parameters it was needed to use many data from bibliography and also a lot of
verification with new data to be sure that the prediction of the model is biologically accurate. The model
of HIV infection was also based on ODE equations, but the formalism used was mass action. In this case
it was more appropriate assuming linear relationship between velocities and the concentration of the
molecules. Since the linear assumption cannot be realistic in many biological situations, it is a key point
providing a very good verification of the model, so we can be sure about the linear assumption in the
interesting conditions for the objective proposed. For the model of Alzheimer’s disease it was used a
different mathematical framework, instead of being formulated by an equation based model it was used
an agent based model. The reason to have chosen that is because the main hypothesis for the cause of
the disease is focused on the cell membrane of the neurons. It is assumed that there is a relationship
between the lipid dynamics in the membrane and the production of B-amyloid, but it is not an easy way
to formalize what the specific mechanism behind is. By contrast, they are known the interactions
between lipids in the membrane which explain the mobility and fluidity. This kind of situation is optimal
for applying agents based models; in this case the agents are the lipids interacting in the membrane.
Finally, a simple mathematical model was made using ODE equations; it was used a mix of formalism
between mass action and Hill equation. In this case it was a starting exercise to find promising
improvements of immunotherapy against melanoma using mathematical analysis.
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The objective of the malaria work was to propose new targets on which to focus the antimalarial
drug search. The advantage of using mathematical modelling is that the therapeutic strategies are based
on a model which integrates a lot of information coming from different studies and also because it
considers the dynamical relationship between the parasite and the host. It was included the amount of
red blood cells of the patient, the parasitemia as the amount of erythrocytes infected by two different
phases of the parasite (asexual and sexual phase) and also it was considered an element which
represents the state of activation of the immune system. The model was calibrated using data from
bibliography, specifically measures of parasitemia, the red blood cells count and the concentration of
immunoglobulin IgG1 in mice infected with malaria during time. In order to verify the model it was used
new experimental data taken in different condition. First, to validate the use of the model in humans it
was compared the long term dynamics (more than 200 days) of the model with the long term evolution
of patients with malaria without any treatment. The model reproduces the damped oscillations in
parasitemia and the delay in the peaks between both species of the parasite in the bloodstream. Then
new data taken in different conditions was collected, it was measured the first peak of parasitemia in
monkeys with malaria with and without vaccination. The vaccination was simulated in the model
increasing the initial condition of the immune variable of the model. The model was able to reproduce
the decrease and the delay of the first peak of parasitemia when the vaccine was given. Finally, to
analyze the validity of the model after applying a treatment, experimental data taken from mice with
malaria was used, two different formats of treatment were applied: i) an injection and ii) a slow
releasing drug vesicle. The parasitemia observed on mice was different depending on the way the drug
was applied. The model was modified to consider these treatments and the predictions of the model
were very accurate comparing them with the experimental data. Based on the model it was proposed a
set of four single targets for drug searching and one additional combination of two simultaneously
modifications which could serve as a strategy to give two drugs instead of only one. The best strategy
was decreasing the invasion of erythrocytes by the parasites. Another strategy consist on killing the
asexual phase of the parasite which is also a current treatment used in malaria. Other proposals were
killing the sexual phase of the parasites, increasing the transformation of the asexual phase into the
sexual one and decreasing the activation of the immune system promoted only by the sexual phase. The
combined strategy was decreasing the activation of the immune system promoted only by the sexual
phase and increasing the clearance of erythrocytes from the bloodstream simultaneously.

The work on HIV infection was focused on the invasion of T4 lymphocytes by HIV, which is a key
part of the process, as the virus reproduce inside them. The objective was to understand the relative
importance of the molecular pathways activated during the viral entry and pointing to interesting
molecular targets for designing drugs which can prevent the invasion of T4 lymphocytes by the virus.
The model considered many pathways of interacting molecules which are known to play a role during
the invasion: i) the activation of moesin, which joins the actin filaments to the invasion point of the
membrane; ii) the activation of filamin, joining actin filaments to the CD4 receptor in which the virus
triggers the signal; iii) action of gelsolin, which cuts actin filaments into smaller pieces; iv) cofilin
inactivation, so stopping its actin severing activity. The final result of the modification of these pathways
by the HIV is producing an accumulation of actin filaments and other molecules at the point of viral
contact in the membrane, called cap. This structure facilitates the opening of a pore through which the
virus can enter in the cell. The cap is a dynamic structure built by changes in a complex network of
molecule interactions. Because of that it is necessary to integrate the information in a quantitative
model which considers the time dimension to understand the relative importance of each pathway in
the process. For the calibration of the model it was used experimental data in vitro of HIV invading
lymphocytes. This data contains dynamical quantification of the clustering of CD4 receptors, moesin and
actin in the point of invasion. The model was able to reproduce the clustering dynamics observed in
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vitro. Due to the lack of data the model was subjected to many verification exercises. First, the response
of the model after changing (increasing and decreasing) the total amount of moesin was compared with
experimental modifications of this protein in vitro. The model prediction of the behavior of the
experiment was accurate. Then data from another experiment was used, the amount of gelsolin was
increased and decreased in the lymphocytes and it was simulated in the model. The prediction of the
model fitted the data when it was assumed that gelsolin had a positive effect on the construction of the
cap, this is interesting because it points to a potential benefit on inhibiting gelsolin to prevent the
invasion of HIV. It was also experimentally analyzed the decrease in filamin and compared with the
model prediction of this reduction, and the model was able to reproduce the effect of that on the
infectivity. Finally, increasing the severing of the actin filaments introducing the effector Lat-A on the
cells affects the infectivity of the virus. The change in infectivity after different doses of Lat-A was
verified by the model simulating these different doses. Based on the model it was established that the
main factors to reduce the invasion of the lymphocytes by HIV is decreasing the cap structure and
extending the time to release the cap after the pore is formed. As it was mentioned, the cap is a
dynamical structure and its physiology can only be understood in a dynamical way. Long before the first
contact of the virus with the immune cell the cap has to be formed with a minimal amount of actin
filaments to facilitate the tensional forces to open the pore. But, as the virus has to enter inside, the cap
structure has to be cleared just before the pore is open. Increasing the amount of the actin severing
molecule cofilin has been observed to affect the production of the cap, so our model proposes that even
inhibiting its actin severing activity it can decrease the invasion ability of the virus because it could
extend the time to clear the cap structure allowing the entry through the pore.

The study of Alzheimer’s disease was focused on the lateral movements of the lipids in the cell
membrane of neurons. In the cell membrane there exist lipid domains with differential physical
characteristics and composition from the rest of the membrane, they are called lipid rafts. Inside lipid
rafts the lateral movement is lower than outside. The relationship of lipid rafts with the disease is that
inside these domains it is produced the aberrant peptide B-amyloid. The objective of the work is finding
a correlation between the changes of the physical properties of the lipid rafts and the evolution of the
disease. The model of Alzheimer’s disease was built using agent based modelling; this mathematical
framework defines a set of elements which interact in a defined landscape following a set of rules. All
lipids were aggregated into six groups attending to the common molecular structure: i) sterols; ii)
docosahexaenoic acid (DHA); iii) n-6 long chain polyunsaturated fatty acids; iv) monoenes; v) saturates
fatty acids; vi) sphingolipids. The landscape of interaction is a lattice organized by rows and columns; the
elements (lipid groups) were located in the lattice and they could interact with their four neighbours.
The probability of one lipid interchanging its position with one neighbour is inversely proportional to the
force by which it is detained in its position. This force comes from the sum of the forces of pairwise
interactions with the other three neighbours, and each pair force depends on the molecular structure of
the groups. This molecular structure was initially given by averaging the width and the length of the
lipids inside each group using a molecular visualization program (Jmol), so each group was fitted to a
cylinder with a width and a length similar to the elements of the corresponding group. As this
characterization of the molecular structure using cylinders is a gross approximation it was made a
refinement of the structural parameters for the cylinders using experimental measurements of the lipid
compositions of the cell membrane and of the isolated lipid rafts. These experimental measurements of
the lipid composition were made in mice of 3, 6, 9 and 14 months of two groups: i) wild type (WT); ii)
Alzheimer’s disease induced mice model (AD). The initial assigned width and length was slightly changed
in order to predict the lipid composition of lipid rafts after giving to the model the lipid composition of
the whole cell membrane. The model reproduced the experimental lipid composition in all conditions.
Then, the model was verified using experimental data taken a posteriori, first the lateral mobility of the
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lipids outside lipid rafts was predicted on four different conditions: i) 6 months WT; ii) 14 months WT; iii)
6 months AD; iv) 14 months AD. The experimental microviscosity (as an experimental measurement of
lateral movement) was measured in these four conditions. The changes in microviscosity observed in
the experiments through the different conditions were the same than the ones predicted by the model.
The model predicted that the increase in the lipid rafts size and in the lateral mobility outside these
domains are the main factors which correlate with the disease evolution. In order to find dietary
treatment strategies, the condition of 3 months WT in the model was assumed to be the healthy
situation of the membrane and the 9 months AD condition is considered as a pathological but reversible
condition. The proportion of each lipid group on the membrane was systematically increased and
decreased to follow the effect on the lipid raft composition of the 9 months AD condition respecting the
lipid rafts composition of the 3 months condition. Increasing the proportion of sterols or DHA was
promising dietary strategies to revert the physical modification on the lipid rafts during the Alzheimer’s
disease evolution.

Finally, a mathematical model using ODE equations was proposed to simulate the interaction
between melanoma cells and the immune response of the patients. Immunotherapy is a very recent
strategy to treat cancer, and specifically in melanoma. Additional improvements on the therapy are
needed to make it effective in patients in whom it is not working. Mathematical analysis on the
proposed model was made to unravel the hidden mechanisms of tumor cells resistance to
immunotherapy. First, based in the known mechanisms of interaction between tumor cells and the
immune system, it is proposed a simple mathematical model. It considers the T cell activation and
proliferation in response to tumor cells, the response promoted by the immunotherapy, the T cell
inactivation and memory cell long term action, the tumor cell growth, the tumor cell death by T cells and
NK cells and the immune evasion mechanisms of the tumor. The results of the mathematical analysis of
the model give a gene signature for the tumor resistance. This gene signature is a relationship between
the parameters of the models that explains the tumor cell resistance to the therapy. This gene signature
proposes that intermediate levels of antigen presentation machinery and low amounts of T cells in the
patients are hallmarks that can explain the melanoma tumor resistance. Numerical analysis based on
this signature points to potential improvements on the immunotherapy against melanoma in resistant
patients. Increasing T cell amount and T cell activity against melanoma cells using IL-2 and increasing the
presentation of tumor cell antigens by INF-a is the best strategy to combine with vaccine
immunotherapy. These co-adjuvant therapies have been individually proved in previously studies, but
the combined strategy is, under our knowledge, to be proven.
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16. Conclusions

Mathematical modelling in biosciences

i)
i)

The theoretical principles of mathematical modelling are available since the XVII century, but only
in the last century it was possible to apply them to actual problems in biology.

The new paradigm of systems biology proposes a new way to analyse the biological systems,
integrating many elements in a single framework and considering the dynamics of the processes.

Review of mathematical models in malaria

i)

Mathematical modelling of malaria-host interactions has increased the knowledge of the disease
and it has been used to propose potential molecular targets for the design of new therapies.

iv) The interaction between the malaria parasite and the immune system elements of the host has
been clarified using mathematical approaches, it is highlighted the non-linear, dynamical and
complex nature of these interactions.

Malaria

v) The best therapeutic strategy predicted by the mathematical model of malaria is impeding the
invasion of erythrocytes by the parasite; this option is being evaluated in current antimalarial drug
searching protocols.

vi) Another interesting target to reduce the infectivity of the disease is focusing on killing the sexual
phase of the parasite. This strategy is currently used in the effective antimalarial drugs.

vii) One new target never evaluated to find new efficient drugs, which could replace the current ones
when they lose efficacy, is increasing the transformation of the asexual phase into its sexual phase.

viii) One last unique target on which to focus the search of drugs is decreasing the activation of the
immune system by the sexual phase of the parasite. This strategy is not only a never evaluated
target, but it is also interesting to potentially decrease the emergence of resistance by the parasite,
as it does not affect directly the parasite.

ix) One combination of two targets which would increase the efficacy of the therapy is decreasing the
activation of the immune system by the sexual phase of the parasite and increasing the clearance of
red blood cells by the organism.

VIH

X)  The virulence factors which increase the invasion of lymphocytes by HIV are a strong actin structure

at the invasion point and a fast clearance of this structure just after the pore is formed.
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xi) Gelsolin is a molecule which increases the infectivity by favouring the formation of the actin
structure; even though it is a severing factor. It is an interesting target in which focus on the search
of drugs to cure HIV.

xii) Although cofilin is a severing factor which completely destroys actin filaments and it has been
proved that increasing cofilin the actin structure is destabilized, cofilin inactivation can also be an
interesting target against HIV as doing it would delay the clearance of the actin structure which
impedes the entry of the virus.

Alzheimer’s disease

xiii) A lipid grouping into six categories: sterols, DHA, n-6 long chain polyunsaturated fatty acids,
monoenes, saturates and sphingolipids; is able to predict the observed lipid domains in the
membrane.

xiv) Increasing the lateral mobility outside the lipid domains and increasing the size of the lipid domains
are the main membrane factors which explain the evolution of Alzheimer’s disease.

xv) These membrane factors are observed in healthy individuals during aging, and Alzheimer’s disease
makes these factors occurring before in time.

xvi) Increasing the amount of sterols and DHA composition in the cell membrane of neurons are the
best dietary strategies to delay the evolution of the Alzheimer’s disease.

Immunotherapy against melanoma

xvii) Intermediate level of antigen presentation on dendritic cells is a hallmark of melanoma patients
presenting resistance against immunotherapy.

xviii)Cytokine co-adjuvation therapies for patients resistant to immunotherapy could improve the
outcome of the therapy; based on the model it is proposed increasing the antigen presentation
together with increasing the proliferation of lymphocytes combined with immunotherapy and
cytostatic chemotherapy.

Common conclusions

xix) Mathematical modelling is an approach which let us integrate spread information about relevant
diseases improving the knowledge about the physiology of these diseases.

xx) Looking for new targets for drug development can be accelerated by proposing targets based on
the entire system physiology of the disease by mathematical modelling approaches.

142









7
B .
A

= "

S
=

G

N
e

i

L

- .

.

S e
e S
R S
S e
S e
e L
s S
e o
- o
o G
s e
# e

i

e



