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ABSTRACT

Inhaled corticosteroids (ICS) are the most commonly prescribed and effective medication to control
asthma symptoms in children and young adults. High variability in the response to this treatment has been
described among individuals and populations. These differences have been suggested to be the result of the
interaction of several factors, including an important contribution of the individual’s genetic composition.
However, the genetic markers of ICS response identified to date are not able to predict the responsiveness
to this medication in clinical practice. This doctoral thesis aimed to identify genetic variants involved in the
response to asthma treatment with ICS through genomic approaches. A systematic review of the main
findings of the genomic studies of asthma susceptibility and treatment response published between 2016
and 2018 was performed, identifying the genetic markers to be followed up for replication. Two genome-wide
association studies of asthma exacerbations despite ICS use in admixed and European populations were
also completed, revealing two suggestive novel associations. Additionally, a gene-set enrichment analysis in
asthma patients of European descent revealed a potential novel drug for asthma. Genetic associations with
the change in lung function after a short period of ICS therapy were assessed, suggesting a novel
association of a locus that could be involved in the response to this medication. Finally, the combination of
transcriptomic data from different cell types with genomic information from asthma patients treated with ICS
led to the identification of an additional potential novel locus for ICS response. The findings of this doctoral
thesis suggest the existence of genetic markers of asthma treatment response specific to certain ancestry
groups and shared among different populations. Moreover, the information about asthma exacerbations was
evidenced as a good predictor of the response to this medication through the validation of previous
associations described for different measures of ICS response.
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1. INTRODUCTION

1.1. Description of asthma

Asthma is a complex disease of the respiratory system characterized by chronic inflammation and
variable obstruction of the airways that can be partially or completely reversible (Global Initiative for Asthma
2020). This disease can lead to diverse and non-specific symptoms, including wheezing, cough, chest
tightness, breathlessness, and airflow limitation, among others. Additionally, asthma has been related to
allergic sensitization (atopy), increased levels of blood eosinophils, and bronchial hyperresponsiveness
(Global Initiative for Asthma 2020).

1.2. Epidemiology of asthma

Asthma affects approximately 350 million people worldwide and causes around 350 thousand deaths
per year (Masoli et al. 2004; Lozano et al. 2013), and it has been estimated that a further 100 million people
will be affected by 2025 (Global Asthma Network 2018). A substantial social and economic burden has been
attributed to asthma globally (Ferkol and Schraufnagel 2014), representing 1.8% of the total disease
morbidity worldwide (Vos et al. 2012). Specifically, this condition causes an important direct economic impact
on health care systems due to the numerous hospital admissions, therapies, specialist visits, and emergency
care required by patients with uncontrolled asthma (Ferreira de Magalhaes et al. 2017; Nunes et al. 2017).
Additionally, asthma causes important indirect financial effects driven by the loss of working days and/or
absenteeism from school together with a substantial detriment of the quality of life of patients with severe
asthma (Williams et al. 2009; Global Initiative for Asthma 2020), including limitation of physical activities and
psychological consequences (Gibson et al. 2013). In this respect, asthma is considered one of the most

important pulmonary diseases (Ferrante and La Grutta 2018).

Wide differences in asthma prevalence have been found among countries and populations, ranging
from approximately 1.5% to 20.0% (Van Wonderen et al. 2010; Baiz and Annesi-Maesano 2012; Sears
2014), and also among different ethnic groups (Akinbami et al. 2014; Enilari and Sinha 2019). Interestingly,
recent studies have evidenced that genetically admixed populations with African ancestry such as
Latinos/Hispanics and African Americans are more affected by asthma than Europeans, showing from two to
three-fold higher rates of asthma-related complications and deaths (Akinbami et al. 2012; Akinbami et al.

2014; Hernandez-Pacheco et al. 2016; Centers for Disease Control and Prevention 2018).

Different patterns of incidence and prevalence have also been described among age groups
(Dharmage et al. 2019). Although asthma symptoms onset can occur at any lifetime, they usually begin
during childhood (Dharmage et al. 2019). Nonetheless, remission of childhood asthma sometimes occurs
during adolescence (Trivedi and Denton 2019). Asthma is considered the most common chronic disease in
children and young adults (Global Initiative for Asthma 2020), where the most severe form of this disorder is
usually presented (Akdis and Agache 2013). Interestingly, adult-onset asthma often results to be difficult to
differentiate from other respiratory conditions, such as chronic obstructive pulmonary disease (COPD), since
the substantial overlap between both diseases (Global Initiative for Asthma 2020). Thus, incidence and

prevalence rates are increased in children even though the utilization of healthcare resources and mortality
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rates are considerably higher among adults (Centers for Disease Control and Prevention 2018; Dharmage et
al. 2019). Additionally, differences driven by gender have also been described, which have been evidenced

to vary across the lifespan (Centers for Disease Control and Prevention 2018; Dharmage et al. 2019).

Variability in asthma incidence and prevalence evidence the complex etiology of this disease, being
the result of the interaction of several factors such as environmental exposures, individual’s genetic
composition, sex hormones, immune response, obesity, and socioeconomic status, among others
(Nishimura et al. 2013; Oh et al. 2016; Shah and Newcomb 2018; Dharmage et al. 2019). Nonetheless, the
important contribution of genetic factors in asthma has been evidenced (Fagnani et al. 2008; Yang et al.
2010; Wang et al. 2017a). Specifically, asthma heritability estimates demonstrate that 55-74% of asthma
susceptibility could be explained by the genetic composition in adults (Thomsen et al. 2006; Ober and Yao
2011). Genetic twin studies have estimated asthma heritability in 50-90% (Fagnani et al. 2008; Ullemar et al.
2016), whereas lower estimates (30%) have been revealed by analyzing non-related individuals (Pividori et
al. 2019).

1.3. Pathogeny and pathophysiology of asthma

Asthma is a heterogeneous disease driven by diverse events leading to a common clinical expression
(King et al. 2019). The main pathogenic effects of asthma take place in the bronchial tree, involved in the
distribution of air through the lungs until reaching the alveoli. Bronchi walls are composed of smooth muscle
and elastic fibers, which are the components involved in the contraction and relaxation induced by

endogenous or exogenous mediators (Grinnan and Truwit 2005; Amador and Varacallo 2020).

In patients with asthma, complex interactions between several cell types and molecules acting as
mediators are responsible for several physiological processes that lead to the bronchial obstruction,
characterized by the reduction of the diameter of the airways and its ability to distend (Grinnan and Truwit
2005; Amador and Varacallo 2020). Although inflammation plays a central role in the pathophysiology of
asthma (Global Initiative for Asthma 2020), important structural changes through the airway and lung
parenchyma remodeling also take place (Al-Muhsen et al. 2011; Gelb et al. 2018), which can occur as a
consequence of the repair response to chronic inflammation or independently of this process (Grainge et al.
2011).

Inflammation of the airways is mainly caused by bronchoconstriction or contraction of the bronchial
smooth muscle in response to several stimuli, resulting in airway narrowing, which can be spontaneously
relieved or may need the action of medication (National Heart, Lung, and Blood Institute 2007). Exposure to
different stimuli can trigger the immune response driving inflammation patterns similar to the induced in
allergic reactions, though the most severe airflow limitation episodes are triggered by viral infections of the
respiratory system (Jackson and Johnston 2010). This process causes the activation and production of
higher levels of several inflammatory cell types in the airways, including lymphocytes T, predominantly T
helper 2 (Th2) cells, which produce specific cytokines (interleukin (IL)-4, IL-5, IL-9, IL-13) (Barnes 2002,
Cohn et al. 2004). These inflammatory mediators induce the overproduction of immunoglobulin E (IgE)
(Rosenberg et al. 2013), the main antibody involved in allergic reactions, and also the activation of

eosinophils in some patients (Williams 2004). Interestingly, reduced regulatory T cells together with
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increased activation of natural killer (NK) and dendritic cells are characteristic of patients with asthma, which
promote the production of proinflammatory Th2 cytokines (Lambrecht and Hammad 2010; Lloyd and Hessel
2010). High levels of these inflammatory mediators are correlated with asthma severity (Barnes 2011).
Indeed, increased activation of neutrophils and macrophages has been related to an enhanced inflammatory

response (Macdowell and Peters 2007; Yang et al. 2012).

Osmotic changes induced by physical exercise, allergens, or neuronal stimuli can cause acute
bronchoconstriction, driven by high levels of mast cells in bronchial epithelium and airway smooth muscle
(ASM) after infiltration (Galli and Tsai 2012). Mast cells release pro-inflammatory and bronchoconstrictor
mediators (histamine, tryptase, leukotrienes, prostaglandins, and cytokines), which directly act on ASM (Galli
and Tsai 2012). This has been demonstrated to be a process triggered by the production of IgE, although
acute airway obstruction can also be caused by means of IgE-independent processes in response to non-
steroidal anti-inflammatory drugs (NSAIDs) (Stevenson and Szczeklik 2006). In patients with progressive
inflammation underlying persistent asthma symptoms, other events including airway edema and mucus
hypersecretion lead to the formation of mucus plugs, which also contribute to airflow limitation (National
Heart, Lung, and Blood Institute 2007).

Airway hyperresponsiveness or exaggerated bronchoconstrictor response to endogenous and
exogenous stimuli that seem to be innocuous in healthy individuals is one of the main characteristics of
asthma pathophysiology (National Heart, Lung, and Blood Institute 2007). This reaction is mainly triggered
by inflammation, which causes airflow limitation and intermittent symptoms. For this reason, airway
hyperresponsiveness is considered a good indicator of asthma severity (National Heart, Lung, and Blood
Institute 2007).

Remodeling of the airways through structural changes is also one of the main processes underlying
asthma symptoms (National Heart, Lung, and Blood Institute 2007). Several types of structural cells are
activated causing permanent changes that increase the airflow limitation and airway hyperresponsiveness,
hampering a proper response to asthma therapies (Holgate and Polosa 2006). Nonetheless, both
inflammatory and structural processes have been demonstrated to be highly correlated. The migration of
inflammatory cells from blood vessels to the airways is mediated by endothelial cells through the expression
of adhesion molecules (National Heart, Lung, and Blood Institute 2007). Additionally, bronchial epithelial
cells are highly sensitive to physical modifications, viral infections, and pollutants, promoting inflammation
and epithelium injury through chemokines and nitric oxide production (National Heart, Lung, and Blood
Institute 2007). These cells are also involved in epithelium reparation after damage, a process that occurs
very frequently in asthma patients (Lambrecht and Hammad 2012). Bronchial smooth muscle cells show
increased proliferation and growth rates, processes known as hyperplasia and hypertrophy, respectively,
leading to the production of high levels of proinflammatory mediators (Koziol-White and Panettieri 2011).
Fibroblasts and myofibroblasts are also involved in the structural changes that take place in asthma through
the production of components of the connective tissue. Furthermore, airway cholinergic nerves are
implicated in the stimulation of the airflow obstruction and mucus production in response to neural reflexes
(National Heart, Lung, and Blood Institute 2007).
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Airway remodeling can also include tissue modifications, such as thickening of the reticular basement
membrane, subepithelial fibrosis, ASM hypertrophy and hyperplasia, dilation and proliferation of airway blood
vessels, and hypersecretion and hyperplasia of mucous glands (Cookson 2004). These changes have been
associated with a progressive loss of lung function, which involves a reduced capacity to take oxygen into
the lungs and distribute it across the body and a decreased ability to breathe out the carbon dioxide. Indeed,
it has been demonstrated that the detriment of pulmonary capacity cannot be completely reversible by the
therapies available to date (Cookson 2004; National Heart, Lung, and Blood Institute 2007).

Lastly, one of the main characteristics of asthma is the high variability and progression of symptoms
and lung function over time, even during the day, independently of the physiologic changes driven by the

circadian rhythm (Global Initiative for Asthma 2020).

1.4. Diagnosis of asthma and subtype classification

1.4.1. Clinical diagnosis

Most asthma symptoms might be confused with other chronic respiratory disorders so that precise
clinical examination is crucial to avoid misdiagnosis and ensure appropriate treatment (Levy et al. 2009). In
clinical practice, the diagnosis of asthma is mainly established based on the presence of respiratory
symptoms and airflow limitation. This is commonly detected using standard questionnaires, physical
examination, measurement of nitric oxide levels, evaluation of blood eosinophils count, and the assessment
of the lung function, among others. The latter is considered the most easily accessible approach used to
support the diagnosis of asthma (Saglani and Menzie-Gow 2019). Lung function is evaluated throughout
different measurements, mainly forced expiratory volume in one second (FEV:1) and forced vital capacity
(FVC) using standard spirometry approaches, which are compared to reference values established for
different age, gender, and ethnic groups (Quanjer et al. 2012; Chhabra 2015; Global Initiative for Asthma
2020). FEV1 measures how the air flows through the lung, whereas FVC represents the total volume of air
held in the lungs (Bailey 2012).

The airflow limitation is quantified as the ratio between FEV: and FVC (FEV1/FVC). According to
international guidelines, asthma patients with airway obstruction should show FEV1/FVC values lower than
0.90 in children and 0.70-0.80 in adults (National Institute for Health and Care Excellence 2017; Global
Initiative for Asthma 2020). Additionally, obstruction reversibility is often measured through the improvement
in FEV1 a few minutes after the administration of bronchodilators (bronchodilator response or BDR). Most of
these parameters are not only used for the diagnosis but also for monitoring disease progression (Gallucci et
al. 2019). Indeed, FEV1<60% has been related to an increased risk to experience future episodes of

symptoms worsening in children (Gallucci et al. 2019).

The practical application of spirometry to diagnose asthma in children can be challenging due to the
difficulty to measure it (Brand et al. 2008; Saglani and Menzie-Gow 2019) and also the fact that some
patients can show normal lung function measurement despite suffering severe symptoms (Bush et al. 2017;
Global Initiative for Asthma 2020). Therefore, standard guidelines for the clinical diagnosis of childhood
asthma are mostly based on the presence of wheezing (Brand et al. 2008), although allergic rhinitis or

eczema symptoms, and family history of asthma or atopy, are also considered (Burke et al. 2003; Global
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Initiative for Asthma 2020). Furthermore, the diagnosis of asthma in children younger than six years old can
be even more difficult (Chu and Bajaj 2020), where a history of recurrent wheezing episodes, cough, and
breathlessness are important criteria considered for the initial diagnosis of asthma (van Aalderen 2012).
Nonetheless, these can be sometimes due to acute respiratory infections or congenital airway anomalies
instead of asthma (Ng and How 2014; Trivedi and Denton 2019). Thus, the measurement of the fractional
concentration of nitric oxide (FeNO) in exhaled air is often carried out, which is a non-invasive and
inexpensive technique especially recommended for this age group (van der Valk et al. 2014; Kaplan et al.
2019; Pijnenburg et al. 2019). Nitric oxide is a reactive gas produced in the airway epithelium in response to
pro-inflammatory mediators (Pijnenburg and De Jongste 2008), leading to hyperresponsiveness (Ricciardolo
2003). High FeNO levels have been detected in asthma patients even in mild stages of the disease (Lane et
al. 2004) and they have been correlated with a higher risk of lung function decline, future exacerbations, and
worsening of asthma symptoms (Stern et al. 2011; van der Valk et al. 2012; Pijnenburg et al. 2019).
Therefore, the evaluation of FeNO levels can provide a picture of the inflammatory patterns in the airways,
supporting asthma diagnosis, mostly in children (Kaplan et al. 2019; Pijnenburg et al. 2019). However, the

added value of this technique over other clinical examinations is still under debate (Pijnenburg et al. 2019).

1.4.2. Asthma phenotypes

Asthma is a heterogeneous disease that consists of different recognizable clinical, demographic, and
pathological characteristics, known as phenotypes or endotypes (Pembrey et al. 2018; Global Initiative for
Asthma 2020). These have been classically categorized based on clinical and physiological characteristics
(age at onset, disease severity, presence of severe exacerbations, obesity, treatment response, and
temporal symptoms patterns), symptoms triggers (allergy, atopy, physical exercise, viral infections,
menstruation, NSAIDs, air pollution, and cigarette smoking), and inflammatory biomarkers (eosinophilic,
neutrophilic, and paucigranulocytic) (Fuchs et al. 2017). The importance of the definition of endotypes or
asthma subtypes based on different pathological and inflammatory mechanisms has been demonstrated
(Bush 2019), although the clinical utility of this phenotypic classification is still limited (Global Initiative for
Asthma 2020).

In this sense, the increasing development of novel techniques for sample collection and multi-
dimensional analytic methods have opened new research opportunities for accurate classification of different
asthma phenotypes. This could provide additional insights into the causes and underlying mechanisms of
asthma and improve prevention and management approaches, including therapeutic strategies (Pembrey et
al. 2018).

1.4.3. Exacerbations: an important asthma-related trait

Different asthma-related traits have been described, although severe exacerbations, commonly known
as asthma attacks, are considered the most important outcome in childhood asthma (Jorgensen et al. 2003).
Severe asthma exacerbations are clinically identified as acute episodes outside the patient’s usual range of
day-to-day disease that occur with a rapid onset (less than three hours), even though they can gradually
develop in adults (several days or weeks) (Reddel et al. 2009). The European Respiratory Society (ERS)

and the American Thoracic Society (ATS) have defined them as events that require unscheduled and urgent
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medical interventions to prevent severe or fatal outcomes. Hospital admissions or emergency room (ER)
visits because of asthma that could imply the systemic administration of corticosteroids are often required
(Reddel et al. 2009).

These events are considered the major determinant of the global burden in childhood asthma
(Bateman et al. 2004) with a substantial economic impact on healthcare systems (Bai et al. 2007).
Additionally, severe exacerbations have an important negative impact on the quality of life and education of
uncontrolled asthma patients, enhancing the progressive loss of pulmonary capacity in some individuals (Bai
et al. 2007). Interestingly, severe exacerbations can trigger future events independently of clinical and
demographic characteristics of the patient and increase the risk of asthma-derived death (Miller et al. 2007;
Levy and Winter 2015). Therefore, prevention of asthma exacerbations should be a crucial consideration in
pediatric asthma management and treatment guidelines (Puranik et al. 2017; Global Initiative for Asthma
2020). For that, protocols of personalized medicine to prevent severe asthma exacerbations should be

designed based on the identification of patients at higher risk (Puranik et al. 2017).

Substantial inter and intraindividual variability in asthma exacerbations incidence and intensity has
been described so that, these events can occur from mild to highly severe symptoms that may be fatal for
the patient. Furthermore, differences among countries and populations have also been found (Park and
Tantisira 2017), with African Americans and Latinos/Hispanics showing the highest exacerbation rates
(Akinbami et al. 2012; Akinbami et al. 2014; Centers for Disease Control and Prevention 2018). These
differences are associated with genetic and non-genetic components such as clinical and demographic
characteristics, besides the exposure to asthma risk factors, including viral infections of the respiratory tract
(Reddel et al. 2009). The important implication of the individual’'s genetic composition has been proposed
(Ortega and Meyers 2014b; Park and Tantisira 2017). However, the genetic factors involved in asthma

exacerbations have not been completely disentangled (Ortega et al. 2013; Herrera-Luis et al. 2019).

1.5. Asthma treatment

Given that there is no cure for asthma yet, the main goals of standard strategies for the management
of childhood asthma are to ensure the correct lung development and function, control asthma symptoms,
maintain normal activity levels, and to reduce the risk of future exacerbations, asthma-related mortality, and
treatment side effects. This is usually carried out employing a multi-layer approach including self-
management education, monitoring of clinical parameters, and control of environmental exposures.
Nonetheless, pharmacological therapies play a central role in the management of this disease (Chu and
Bajaj 2020; Global Initiative for Asthma 2020).

1.5.1. Types of asthma medications

Asthma treatments can be classified into two main groups based on the duration of time taken to
make any effects upon administration: controllers and relievers. Controller treatment consists of regular-use
maintenance medications to decrease airway inflammation, control asthma symptoms, prevent future
exacerbations, and reduce the risk of lung function decline through long-term mechanisms of action (Global
Initiative for Asthma 2020). These are prescribed in the presence of frequent symptoms and any risk factors

to suffer exacerbations (Tesse et al. 2018). The main medications currently used for asthma control in the
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clinical practice are inhaled corticosteroids (ICS), leukotriene receptor antagonists (LTRA), and long-acting
beta-2 agonists (LABA), although the latter are only recommended for 6-year-old children and older (Sharma
and Chakraborty 2018; Tesse et al. 2018; Global Initiative for Asthma 2020) (Table 1).

Severe asthma might also require the addition of further medications, such as monoclonal antibodies
(Tesse et al. 2018; Global Initiative for Asthma 2020). These act towards components of the Th2
inflammatory response (Busse 2018), such as IgE, inhibiting its binding to specific receptors on basophils,
mast, and dendritic cells (Chang et al. 2007). Anti-IgE antibodies have been recommended for persistent
severe allergic asthma patients (>6 years old) with elevated serum IgE levels (Delimpoura et al. 2018).
Another main type of monoclonal antibodies is designed to specifically inhibit the activity of IL-5 (Delimpoura
et al. 2018), which is the major cytokine involved in increasing eosinophil levels in asthma patients
(Sanderson 1992). These are indicated for severe asthma patients with a history of exacerbations and blood
eosinophilia (Delimpoura et al. 2018). Long-term anticholinergic agents can be also added to conventional
controller medications to treat severe asthma in children, adolescents, and adults (Gosens and Gross 2018).
Specifically, these antagonist muscarinic receptors, inhibiting the effects on ASM contraction and mucus
secretion triggered by acetylcholine (Gosens and Gross 2018). Additionally, low daily doses of systemic
corticosteroids (OCS) might be effective for patients aged >6 years old with severe asthma. Nonetheless,
these should be exceptionally considered when symptoms are poorly controlled, and exacerbations occur
frequently despite the treatment with standard and additional controller medications given their several
potential side effects (Haktanir Abul and Phipatanakul 2019; Global Initiative for Asthma 2020) (Table 1).

Reliever or rescue medications are used to ameliorate asthma symptoms a few minutes upon
administration during episodes of symptoms worsening or exacerbations (Tesse et al. 2018). They are also
used to prevent bronchoconstriction induced by physical exercise (Tesse et al. 2018). Short-acting beta-2
agonists (SABA) are the most effective short-term rescue therapy, which are recommended to be used as
needed (van Aalderen 2012; Chu and Bajaj 2020). Nonetheless, the last updates of the international
guidelines for the management of asthma include low doses of the combination of ICS and LABA,
specifically budesonide and formoterol, as the preferred reliever option for adults and adolescents, given the
long-lasting but short time needed for formoterol to act. This is also recommended when needed in patients
with mild asthma to relieve symptoms or to prevent them before the exposure to risk factors, such as
physical exercise (Global Initiative for Asthma 2020). Additionally, OCS are frequently used as a rescue
treatment, which must be promptly administered to patients suffering severe episodes of asthma
exacerbations (Global Initiative for Asthma 2020). Short-term anticholinergics have also been suggested to
be alternative asthma relievers for patients shown not to properly respond to SABA (British Thoracic Society
2016) (Table 1).

Most asthma medications are commonly used with inhaler devices, except for OCS, which are
administered via oral tablets, enteric-coated tablets, oral solution, intramuscular or intravenous injections.
Although SABA are commonly inhaled, injections and different forms for oral administration are also
available. Moreover, anticholinergic agents can be systematically administered, and LTRA are also available
in intravenous injections or different forms of oral tablets or solutions, which are specially indicated for young
children (Sharma and Chakraborty 2018).
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1.5.2. Stepwise pharmacological management of asthma

International guidelines for asthma management recommend that pharmacological therapies should
be applied following specific stepwise strategies for each age group, whose main goal is to efficiently
alleviate asthma symptoms and optimize pulmonary capacity (British Thoracic Society and the Scottish
Intercollegiate Guidelines Network 2014; Sharma and Chakraborty 2018; Tesse et al. 2018; Global Initiative
for Asthma 2020). Therefore, therapies should start at the most appropriate step according to the initial level
of symptoms control and disease severity so that, if disease control is not achieved after three months, it
should be stepped up. Moreover, regular assessment of risk factors, medication side effects, treatment
adherence, inhaler technique, comorbidities, and patient/parents’ satisfaction are key in the management of
asthma and should be considered before adding further medication. Nonetheless, treatment should be
stepped down once disease control is achieved (British Thoracic Society and the Scottish Intercollegiate
Guidelines Network 2014).

Although there are updated guidelines from the pharmacological management of asthma at the time of
writing (Global Initiative for Asthma 2020), patients participating in each of the asthma studies included in
this doctoral thesis had been treated following the recommendations established by the British Thoracic
Society and the Scottish Intercollegiate Guidelines Network (BTS/SIGN) in 2014 (British Thoracic Society
and the Scottish Intercollegiate Guidelines Network 2014) (Figure 1). Based on these guidelines, the first
level of standard asthma therapeutic strategies (Step 1) mainly consists of administering only SABA as
needed, recommended for mild asthma patients with occasional symptoms (British Thoracic Society and the
Scottish Intercollegiate Guidelines Network 2014). Other alternatives have also been proposed as short-term
relievers, although SABA is the first preferred option for patients with intermittent asthma symptoms from all
age groups (British Thoracic Society and the Scottish Intercollegiate Guidelines Network 2014) (Figure 1).
The presence of frequent symptoms three times a week or more, night awakenings because of asthma once
a week, and/or a history of asthma exacerbations in the last two years indicate the need to step up the
treatment and addition of regular preventer therapy. Daily low doses of ICS according to disease severity are
the most common Step 2 approach indicated for all age groups. Alternatively, the daily use of low doses of
LTRA can be also considered for young children when ICS are not appropriate (Figure 1). Patients with
persistent symptoms not adequately controlled at Step 2 may require the addition of further controller
medications as part of Step 3, whose composition depends on the age of the patients. While the addition of
LABA is the most commonly accepted approach in children older than 5 years and adults, daily low doses of
ICS and LTRA are the preferred option in young children (<5 years old) since these are not prevented from
severe exacerbations by LABA treatment (Chung and Paton 2019; Global Initiative for Asthma 2020).
However, asthma control must be evaluated in response to LABA, considering increasing the ICS dose
and/or interruption of LABA, and the addition of LTRA in case of inadequate response to LABA therapy.
Assessment by a pediatric respiratory specialist is also recommended for children under 2 years that are
poorly controlled (British Thoracic Society and the Scottish Intercollegiate Guidelines Network 2014) (Figure
1). Non-achievement of disease control and decline of lung function requires stepping up, increasing
controller medications, or referring young children patients for specialist assessment to avoid possible

medication side effects (Step 4). Nonetheless, if symptoms persist or exacerbations are recurrent, evaluation
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of adherence to treatment, reassessment of asthma phenotypes, identification, and management of risk
factors is needed. Further maintenance treatment options may be required in patients older than 5 years old,
which may include the administration of daily low doses of OCS in patients with severe uncontrolled asthma
(Step 5) (Figure 1) (British Thoracic Society and the Scottish Intercollegiate Guidelines Network 2014).

1+ Systemic
corticosteroids
4 1CS + LABA? tics
Specialist
assessment!
+1CS + LABA? Specialist
} ICS + LTRA! 41CS + LABA + assessment
Specialist LTRAS
ment?
}1cs ~|CS + LABAZ# Long-term
1CS25 anticholinergic Monoclonal
= ] a L
CONTROLLER | LTRA!  LRpcs agents antibodies
SABA SABA SABA SABA SABA
Step 1 Step 2 Step 3 Step 4 Step 52
Mild intermittent Mild persistent Moderate persistent Severe persistent Severe uncontrolled
asthma asthma asthma asthma asthma

Figure 1. Stepwise pharmacological approach to control asthma symptoms and prevent exacerbations. Steps
1-5 indicate the most common pharmacological strategies used to treat asthma patients. Medications are indicated for
all asthma patients or particular age groups, if specified. Low, medium or high doses are represented by down arrows,
tilde symbols or up arrows, respectively. Preferred controller strategies are in boldface. Reliever or rescue medications
to be used as needed are indicated in yellow, whereas controllers of daily use are in blue.

IChildren <5 years old; 2Children 25 years old and adults;3Children <2 years old; “Patients who benefit from LABA but
disease control is still inadequate; SNon-responders to LABA therapy; éChildren >12 years old and adults.

Based on the British Thoracic Society and the Scottish Intercollegiate Guidelines Network (BTS/SIGN) guidelines
(2014).

ICS: inhaled corticosteroids; LABA: long-acting B2 agonists; LTRA: leukotriene receptor antagonists; SABA: short-
acting 2 agonists.

1.5.3. Inhaled corticosteroids: the most prescribed and effective asthma treatment

Despite the increasing amount of novel asthma therapies developed in the last years, ICS are still the
most commonly prescribed drugs to control asthma symptoms and decrease the risk of future severe
exacerbations in patients with persistent and chronic symptoms, as recommended by international guidelines
for asthma management (Scelfo et al. 2018; Global Initiative for Asthma 2020). Interestingly, ICS are used as

the first-line asthma controller medication in children and adults (Global Initiative for Asthma 2020).
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Several benefits have been attributed to the use of ICS as a maintenance medication, including
improvement of symptoms and lung function measurements, and a substantial reduction of the
exacerbations and asthma-related mortality rates (Sharma and Chakraborty 2018; Ramadan et al. 2019).
Corticosteroids are preferably inhaled administered, minimizing side effects related to systemic
administration (Derendorf et al. 2006). Briefly, 80-90% of the ICS inhaled are deposited in the oropharyngeal
cavity and lower airways, whereas 10-20% of the total ICS dose is delivered in the lungs, where it exerts the
desired pharmacological effects after their activation (Derendorf et al. 2006), including the reduction of
airway inflammation, hyperresponsiveness, and bronchoconstriction through numerous molecular and
cellular mechanisms of action (Sharma and Chakraborty 2018; Ramadan et al. 2019) (Figure 2). However, a
fraction of the ICS deposited in the lungs can also reach the bloodstream, triggering potential side effects
(Derendorf, Nave et al. 2006). Moreover, part of the medication is retained in the mouth and pharynx after
inhalation, which is gastrointestinally absorbed, and then, enters into the systemic circulation after
metabolism in the liver. After this, ICS can also reach the lungs through the pulmonary vasculature, although
this route can cause potential side effects. Nonetheless, the use of auxiliary devices, such as spacers or
holding chambers, or mouth rinsing after administration, can reduce the fraction deposited in the oropharynx

or swallowed, increasing the proportion of ICS delivered in the lungs (Figure 2).

Therefore, the efficacy and adverse effects of this medication depend on the balance between the
dose absorbed pulmonary and orally, receptor-binding affinity, drug activation, and retention time in the
lungs. The latter is correlated with lipophilicity, lipid conjugation, and protein-binding capacities (Barnes et al.
1998; Derendorf et al. 2006). Additionally, ICS side effects depend on their metabolism and elimination from
the body, which is primarily carried out through hepatic oxidation and urinary excretion, although multiple

organs can be also involved (Barnes et al. 1998; Derendorf et al. 2006; Barnes 2010) (Figure 2).

ICS’s effects are triggered by their binding to the glucocorticosteroid receptor (GR), which is widely
expressed in almost all cell types, although asthma beneficial effects of ICS occur mainly in the airways
(Derendorf et al. 2006) (Figure 3). ICS bind GR located in the cytoplasm after passing through the cell
membrane and then, the drug-receptor complex migrates to the nucleus where they bind to specific DNA
regions or interact with transcription factors, directly or indirectly regulating gene transcription at inflammatory
and airway structural cells and elements, including mucous glands, fibroblasts, epithelial, endothelial, and
ASM cells (Barnes and Adcock 2003; Ramadan et al. 2019). Nonetheless, there is some evidence
suggesting that ASM cells are the major targets of ICS (Reddy et al. 2009). Although ICS can broadly
regulate the transcriptional activity, this medication mostly regulates the expression of genes involved in the
transcriptional suppression of pro-inflammatory genes (Barnes 2010) and the enhancement of anti-

inflammatory protein synthesis (Barnes and Adcock 2003) (Figure 3).

ICS are considered the most effective controllers in the management of asthma (Barnes 2010). The
response to asthma medications is commonly measured in clinical practice using different methods based on
the control of asthma symptoms (Al Moamary et al. 2012), information about the presence of exacerbations
despite treatment (Fuhlbrigge et al. 2012), measurement of lung function (Global Initiative for Asthma 2020),
sputum levels of inflammatory cells or skin allergen sensitization tests (Global Initiative for Asthma 2020),
and FeNO levels (Smith et al. 2005; Petsky et al. 2018), among others.
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Figure 2. Schematic representation of the pharmacokinetics of ICS. Solid blue arrows show the preferred route,
while dashed blue arrows represent alternative routes of ICS. The process taking place in each organ is indicated in
green boxes. Potential side effects are shown in red bold face. ICS pharmacological effects in the lungs are labeled
into the orange box. Based on Barnes 2010 and Derendorf et al. 2006.

Nonetheless, strong interindividual differences in the response to this treatment have been reported,
where 30-40% of the asthmatic children treated with ICS do not show any improvement of their symptoms
and 10-15% of them might experience disease worsening despite the regular use of this therapy or can even
suffer adverse effects (Szefler et al. 2005). For this reason, the evaluation of ICS response is quite important
to identify groups of responders or non-responders to ICS therapy (Ramadan et al. 2019). Childhood-onset
asthma patients tend to show a better response to ICS therapy compared to adulthood-onset asthma
patients (Kaditis et al. 2007). Moreover, high variability in ICS response has also been described among
different ethnic groups and populations (Szefler et al. 2005; Mersha 2015). According to asthma mortality,
morbidity, and exacerbation rates, admixed populations have been shown to have decreased ICS response.
Indeed, African American patients with asthma experience substantially poorer effectiveness and increased
adverse effects of ICS treatment compared to other populations (Ortega and Meyers 2014b). These strong
differences in response to ICS therapy have been suggested to be the result of complex interactions among

clinical asthma characteristics, comorbidities, environmental exposures, and the genetic composition of each
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individual (Ramadan et al. 2019). Nonetheless, the important contribution of genetic factors has been
evidenced by means of heritability estimates, suggesting that approximately 60-80% of the total variation in
the response to asthma treatment might be explained by genetic components (Drazen et al. 2000; Park et al.
2015; Duong-Thi-Ly et al. 2017).
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EXTRACELLULAR

CELL et ettt atataratated Mo tarerarateraratatatetaratetaratoraratataratararaterd - RTaCataratataratetara etatetel
MEMBRANE ()1J()() 1) |) 1 Uyuy UUUUUUUUU) JUUUUWLYLUYLULLUULLU PUUULULUULLULLLLUUULLLULUULU UUUUULULLUUIUY
) GR - ) : S Cytokine receptor CYTOPLASM

Anti-inflammatory
protein

NF-xB

/ [ Cisroprossion | m /

MM~ MM

BOOC OO N
GREL 5 L_“_, NF-xB-BE Lx_)
Anti-inflammatory Steroid-sensitive Inflammatory NUCLEUS
gene target gene gene

N - 5

| A2$1 | pome | Cytokines
DUSP1 CRHR1 Chemokines
NFKBIA Osteocalcin Adhesion molecules
GiLZz Keratin Inflammatory proteins
Anti-inflammatory = Anti-inflammatory
effects e Stece effects
GRE-mediated Non-GRE-mediated

Figure 3. Molecular mechanisms of action of glucocorticosteroids. Glucocorticoid (GC) molecules diffuse across
the plasmatic membrane, reaching and binding to the glucocorticosteroid receptor (GR) in the cytoplasm, which causes
the dissociation of GR from inhibitory proteins, such as chaperones. This allows the GC-GR complex to translocate into
the nucleus through nuclear pores, where it regulates the transcription by means of trans-activation, cis-repression, or
trans-repression mechanisms. Once into the nucleus, GC-GR dimerizes and specifically binds to glucocorticosteroid-
response elements (GRE) in the promoter region of genes encoding proteins with anti-inflammatory functions,
increasing their expression levels. GC-GR homodimers can also repress gene expression through interaction with
GRE, but to a lesser extent, which can be related to the side effects of GCs. Moreover, GCs can repress the
expression of activated genes encoding pro-inflammatory proteins through non-GRE mediated mechanisms.
Inflammatory stimuli activate transcription factors such as, nuclear factor-kB (NF-«kB), which translocates to the
nucleus, binding to NF-kB-binding elements (NF-kB-BE) and coactivators (e.g., CREB-binding protein (CBP)),
promoting the transcription of proteins involved in inflammatory processes. Nonetheless, GC-GR monomers can
interact with NF-kB through coactivators, suppressing the expression of pro-inflammatory genes. Green plus or red
minus symbols represent the transcription activation or repression, respectively. Decreased or increased levels of
proteins encoded are shown by down or up arrows within the light blue boxes, respectively.

ANXA1: annexin-1; CRHRZ1: corticotropin-releasing hormone receptor 1; DUSP1: dual specificity phosphatase 1; GILZ:
glucocorticoid-induced leucine zipper protein; NFkBIA: NF-kB inhibitor alpha; POMC: proopiomelanocortin; SLPI:
secretory leukocyte peptidase inhibitor.

Based on Barnes and Adcock 2003 and, Barnes 2010.
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1.6. Pharmacogenomics of ICS response

Pharmacogenomics is the discipline focused on the study of the genetic variability across the entire
genome that affects the individual’s response to drugs, modulating the way the medications are absorbed,
distributed, metabolized, and excreted (pharmacokinetics) (Turfus et al. 2017), but also the beneficial and
adverse effects according to the drug exposure (pharmacodynamics) (Marian and Seghezzi 2013; Park et al.
2015; Alfirevic and Pirmohamed 2016). However, the former definition of pharmacogenetics consists of the
search for the variation in nucleotide sequences of individual genes influencing the drug response (Bardal et
al. 2011; Park et al. 2015). Although pharmacogenetics is considered a subset of pharmacogenomics (Park
et al. 2015), both can be used interchangeably (Pirmohamed 2001). Pharmacogenomics is the term most

commonly used referring to this field (Bardal et al. 2011), which will be used from this point forward.

Specifically, pharmacogenomics of ICS response aims to identify multiple genetic markers involved in
the response to ICS treatment that could help in the future to determine the responsiveness to ICS therapy
and identify those patients who are not able to respond properly to such medication (Pirmohamed 2001).
Additionally, the usage of pharmacogenomic information has the potential to contribute to personalizing drug
selection and dosage, maximizing their efficacy, and reducing adverse effects (Pirmohamed 2001; Ortega et
al. 2015).

Pharmacogenomic research of ICS response has been mainly carried out through association studies,
which attempt to correlate the genetic variation and information about ICS-responsiveness to identify genetic
variants involved in the response to this asthma treatment. Single nucleotide polymorphisms (SNPs), which
represent the vast majority of human genetic variability, are the most widely assessed variation in genetic
association studies (Lewis and Knight 2012; Chaudhary et al. 2015). These are sequence positions where
the substitution of one nucleotide has occurred so that, two or more possible alleles can be found at a single
site for a certain population, although biallelic SNPs with two possible alleles are the most common (Arias et
al. 1991). Therefore, the main basis of these studies consists of comparing the frequency of SNP allele or
genotype between ICS responders and non-responders (Lewis and Knight 2012), evaluating the association
or correlation between the genotypes at single SNPs and the measure of ICS response using statistical
models (Sul et al. 2018).

1.6.1. Candidate-gene association studies

For the last decades, most pharmacogenomic studies of ICS response have been performed through
approaches based on the evaluation of small sets of SNPs located within or near a single candidate gene
with prior knowledge of their implication in asthma pathogenesis or the metabolism or mechanisms of action
of this drug (Vijverberg et al. 2018; Keskin et al. 2019). Candidate-gene association studies have been
performed analyzing different definitions of ICS response and have allowed the identification of the
association of genes encoding proteins involved in processes such as regulation of the immune response
(i,e., CRHR1 and TBX21), including the lymphocyte B growth and IgE production (FCER2), blood
eosinophils levels (ILIRL1) and, apoptosis of inflammatory cells induced by glucocorticosteroids (GCs)
(GLCCI1), in addition to the regulation of the GC signaling pathway (NR3C1) (Farzan et al. 2017b; Dijk et al.

2019; Karimi et al. 2019; Keskin et al. 2019). Moreover, some authors have proposed the role of several
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genes located at the 17921 locus in the response to ICS treatment (Keskin et al. 2019). Nonetheless, these
studies have been lately regarded as inaccurate and outdated (Vijverberg et al. 2013; Vijverberg et al. 2015)
given the numerous limitations attributed to them (Vijverberg et al. 2018). These include a reduced statistical
power to detect significant association signals due to limited sample sizes and the number of genetic

variants tested in association, in addition to the scarce evidence of replication in independent populations.

1.6.2. Genome-wide association studies

The limitations of the candidate-gene association studies together with the rapid development of
genotyping platforms designed for the capture of large amounts of genetic markers across the genome have
dramatically decreased the use of this approach in the last years. This has opened the doors for the
emerging of genome-wide association studies (GWAS) (Foulkes 2009; Vijverberg et al. 2018). This approach
simultaneously assesses the association for millions of SNPs across the genome with no prior knowledge
about the functional implication of the genes near their location, which is the main advantage of these
studies (Vijverberg et al. 2018; Willis-Owen et al. 2018).

The first GWAS of ICS response was published in 2011 (Tantisira, Lasky-Su et al. 2011) and since
then, a total of nine additional studies that are not part of this thesis have been performed until December
2020 (Tantisira et al. 2012; Park et al. 2014a; Park et al. 2014b; Wu et al. 2014; Dahlin et al. 2015; Wang et
al. 2015; Leusink et al. 2016; Mosteller et al. 2017; Levin et al. 2019). Given the variability in the asthma
pathophysiological processes and phenotypes described between childhood and adulthood asthma (Wang
et al. 2011), most pharmacogenomic studies published to date have focused only on either children or
adults. Additionally, a few GWAS of ICS response have explored the existence of shared genetic variants

across different age groups (Tantisira et al. 2012; Dahlin et al. 2015).

These studies have identified a total of 26 variants at 15 loci associated with different definitions of
ICS response, although the improvement in lung function after ICS treatment has been widely assessed.
This has been proposed to be an objective measure of treatment responsiveness, although it strongly
depends on the patient’s characteristics (Ortega and Kumar 2015) and factors inherent to the measurement
approach (Cooper 2005; Tepper et al. 2012). A total of six studies explored the association with the
difference in the percentage of FEV1 between the beginning of the ICS therapy and a short-time period later
(Tantisira et al. 2011; Tantisira et al. 2012; Park et al. 2014b; Wang et al. 2015; Leusink et al. 2016;
Mosteller et al. 2017). These identified a total of 15 variants associated with ICS response in children and/or
adults of Asian (Park et al. 2014b) or European descent (Tantisira et al. 2011; Tantisira et al. 2012; Wang et
al. 2015) within the ALLC gene (Park et al. 2014b), and the intergenic regions of UMAD1-GLCCI1 (Tantisira
et al. 2011), PDE10A-T, HRH4-ZNF521 (Tantisira et al. 2012), MMS22L-FBXL4, and NAV2-HTATIP2 (Wang
et al. 2015).

The role of GLCCI1 in ICS response in European children was revealed by Tantisira et al. (2011),
which has been attempted for replication in several candidate-gene association studies (Hosking et al. 2014;
Izuhara et al. 2014; Vijverberg et al. 2014; Salhi et al. 2019). Although the function of the protein encoded by
this gene is still unknown, this has been demonstrated to be targeted by GCs, inducing the apoptosis of cells

involved in inflammatory response underlying asthma (Chapman et al. 1995). In fact, in vitro experiments
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have demonstrated that GCs increase the expression levels of GLCCI1, which correlates with improved lung

function measures in asthma patients treated with ICS (Tantisira et al. 2011).

The same authors explored in another study genetic associations with the change in lung function
after ICS treatment both in children and adults with asthma (Tantisira et al. 2012), revealing the association
of variants near genes with different functions related to inflammation and allergic responses (HRH4)
(Nakamura et al. 2000), regulation of gene expression (ZNF521) (Matsubara et al. 2009; Hesse et al. 2010),
signal transduction (PDE10A) (Fujishige et al. 1999), and developmental processes (T) (Herrmann et al.
1990). Among these, the T gene seems to be a promising locus for ICS response, which had not been
previously associated with any asthma-related traits or mechanisms of action of GCs. The protein encoded
by this gene plays a well-known central role in the development of vertebrates, although the T gene is also
expressed in adult pulmonary tissues. This evidence, together with the fact that it inhibits the development of
cartilage mediated by a receptor implicated in GCs resistance, supports the potential role of the T gene in
the response to asthma treatment with ICS (Tantisira et al. 2012). ALLC was associated with the response to
ICS treatment in Asian adults with asthma (Park et al. 2014b). This gene encodes an enzyme whose
function in humans is unclear since its capacity to participate in the degradation of uric acid seems to have
been lost through evolution (Keskin et al. 2019). Although little is known about its potential role in asthma
treatment response, some authors have suggested its implication in respiratory processes (van der Plaat et
al. 2018). MMS22L and FBXL4 activities are involved in DNA repair and control of the cell cycle (Duro et al.
2010; Gai et al. 2013), and from these, high levels of MMS22L have been detected in individuals with
pulmonary diseases (Nguyen et al. 2012), suggesting its plausible implication in asthma. NAV2 and
HTATIP2 encode proteins implicated in cellular growth, migration, apoptosis, and autophagy (Tong et al.
2009; Wang et al. 2017b), which have been associated with changes in lung function dependent on ICS
doses (Wang et al. 2015).

Leusink et al. (2016) assessed the association of genetic variants across the genome with the change
in FEV1 and also airway hyperresponsiveness after methacholine administration as measures of ICS
response in childhood asthma patients. In that study, variants at the 17q12-21 locus were nominally (p<0.05)
associated with ICS response, but none of these remained statistically significant after adjusting by multiple
testing. Interestingly, this locus is the most widely associated with childhood-onset asthma and severity
(Moffatt et al. 2010; Torgerson et al. 2011; Demenais et al. 2018; Stein et al. 2018; Pividori et al. 2019). The
17912-21 locus was linked to asthma for the first time in 2007 by Moffatt et al. (2007) and, since then, it has
been highly replicated in independent studies through candidate-gene or GWAS approaches focused on

different asthma-related phenotypes (Stein et al. 2018), including the ICS response (Farzan et al. 2018).

One additional study also explored the genomic variation involved in the change in lung function in
response to ICS therapy in adults with asthma of diverse populations, although no evidence of significant
associations was found. Nonetheless, this study had several advantages, such as the fact that this was the
first GWAS of ICS response analyzing multiple populations and it had the largest sample size at the time it
was published (Mosteller et al. 2017).

On the other hand, several associations of other spirometric measurements, such as BDR as an

indicator of ICS responsiveness, have been reported in European children with asthma (Wu et al. 2014).
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Specifically, variants at the ZNF432 and ZNF841 genes were associated with BDR after the administration of
SABA while on ICS therapy (Wu et al. 2014). These findings suggest the implication of these loci in the

reversibility of airflow limitation in response to ICS (Wu et al. 2014).

Nonetheless, definitions of ICS response independent of spirometry measurements have also been
tested as a proxy of ICS response. On one hand, Park et al. evaluated the responsiveness to ICS treatment
through asthma scores based on self-reported symptoms, identifying the association of the G allele of
rs10044254, located at FBXL7, with worsening of symptoms despite ICS therapy (Park et al. 2014a). This
gene encodes one of the members of the F-box protein family involved in the ubiquitination of proteins,
promoting cell apoptosis and tissue injury (Coon et al. 2012; Liu et al. 2015). However, further studies are
needed to elucidate the role of FBXL7 in the response to ICS in patients with asthma. On the other hand,
before the completion of this thesis, only one GWAS had evaluated the association with the presence of
asthma exacerbations despite ICS use (Dahlin et al. 2015), although its significant value as an indicator of
treatment response in asthma patients had been evidenced (Fuhlbrigge et al. 2012; Park et al. 2017). This
was performed in children and adults from European populations by Dahlin et al. (2015), revealing the
association of several genetic variants with the risk for asthma exacerbations despite ICS treatment. These
were located at genes involved in different functions, such as protection against viral infections (CMTR1)
(Kato et al. 2003), regulation of cell proliferation and apoptosis (TRIM24) (Thenot et al. 1997), regulation of
transcription (L3MBTL4, ZNF334) (Kimura et al. 2006; Liu et al. 2016b), and cytoskeletal rearrangements
(ELMO2) (Gumienny et al. 2001). Furthermore, evidence of association with the protection against asthma
exacerbations under ICS therapy was found for genetic variants located at MAGI2 and SHB-ALDH1B1
(Dahlin et al. 2015). From these, CMTR1 was found to be the strongest association signal. Interestingly, this
gene showed increased expression levels in bronchoalveolar lavage (BAL) samples from patients suffering
from episodes of asthma exacerbations. Upregulation of this gene could trigger enhanced protective activity
against viral infections (Dahlin et al. 2015), which have been demonstrated to be one of the main risk factors

to suffer asthma exacerbations (Duenas Meza et al. 2016).

The first GWAS of ICS response focused on admixed populations was recently published by Levin et
al. (2019). The EDDM3B was found to be associated with the change in asthma symptoms control in African
American and European American adults, and Hispanic/Latino and African American children and young
adults treated with ICS. Specifically, the C allele of the SNP rs3827907 was associated with the
improvement in asthma control after ICS treatment, which was found to regulate the expression of genes
encoding biomarkers of inflammation in African Americans. These findings suggest that this variant could be

a biomarker of the ICS responsiveness in admixed populations (Levin et al. 2019).

1.6.3. Challenges of pharmacogenomic studies of ICS response

Despite the large advantages of GWAS compared to candidate-gene association studies, the
associations identified do not explain the response to ICS treatment. As a consequence, these have not
provided yet real improvements in the clinical management of asthma (Garcia-Menaya et al. 2019) and
additional genetic variants are expected to be involved in the response to this asthma medication (Park et al.
2015).
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Some potential explanations of the difficulty in identifying genetic markers involved in the response to
asthma treatment have been proposed. The main reason could be the reduced statistical power to detect
genetic associations of the GWAS of ICS response performed until December 2020. Most of them have
included relatively reduced sample sizes (N<1,000) (Park et al. 2015; Vijverberg et al. 2018), given the
difficulty to gather samples fulfilling adequate phenotypic and genotypic criteria. Additionally, Europeans
have been the most represented populations in the pharmacogenomic research of ICS response followed by
Asians, as in the GWAS of other traits (Ortega and Meyers 2014b; Sirugo et al. 2019). Nonetheless, the
strong power of combining genetically and ethnically diverse populations on these studies compared to
analyzing populations of European descent alone has been widely postulated (Bien et al. 2019; Sirugo et al.
2019). Indeed, single populations only contain a subset of the total human genetic variation so, they do not
seem to be sufficient to disentangle the genetic variants underlying a specific outcome (Bien et al. 2019;
Sirugo et al. 2019). Moreover, including diverse populations in GWAS of complex traits such as ICS
response can be enriching due to potential discrepancies in disease prevalence and substantial differences
in terms of allele frequencies, association effect sizes, and patterns correlation among genetic variants
across the genome, known as linkage disequilibrium (LD) (Hernandez-Pacheco et al. 2016; Sirugo et al.
2019).

Specifically, the numerous advantages of recently-admixed populations in the genetic research of
asthma-related traits, including the response to medications, have been evidenced (Ortega and Meyers
2014a; Ortega and Meyers 2014b; Hernandez-Pacheco et al. 2016; Levin et al. 2019). There are different
populations around the world where the admixture process has occurred at a relatively recent point of their
evolutionary history, resulting in the transmission of genes between ancestral populations that were
previously genetically isolated (Soares-Souza et al. 2018). Among them, African Americans and
Latinos/Hispanics show higher prevalence and complications of asthma (Akinbami et al. 2012; Akinbami et
al. 2014; Centers for Disease Control and Prevention 2018; Enilari and Sinha 2019) and poorer response to
asthma medications (Ortega and Meyers 2014b; Hernandez-Pacheco et al. 2016) in addition to a particular
genetic composition (Hernandez-Pacheco et al. 2016). These are the major admixed populations with
African ancestry in the United States, which are the result of the admixture among different continental
populations such as Europeans and Africans, though current Latinos/Hispanics also show an important
Native American component (Bryc at al. 2015, Soares-Souza et al. 2018). As a result of this process,
individuals from current admixed populations show variable proportions of the genetic ancestry of each of the
parental populations (Mersha 2015). At chromosome level, they are characterized by large regions where
genetic variants are in high LD and mosaics of segments of the genetic ancestry of each of the parental
populations (Rosenberg et al. 2010; Hernandez-Pacheco et al. 2016). Additionally, African ancestry in some
of these populations has been associated with higher asthma susceptibility and risk to suffer exacerbations
(Choudhry et al. 2006; Vergara et al. 2009; Kumar et al. 2010; Flores et al. 2012; Vergara et al. 2013; Pino-
Yanes et al. 2015; Rosas-Salazar et al. 2016; da Silva et al. 2019; Grossman et al. 2019b). These
characteristics make them an excellent scenario to explore the genetic variation involved in asthma-related
traits, although these have been historically poorly represented in GWAS (Mersha 2015; Hernandez-
Pacheco et al. 2016; Levin et al. 2019).

19



Introduction

In addition to the reduced sample sizes and narrow diversity of the GWAS of ICS response performed
until December 2020, a limited number of genetic variants has been tested in association, contributing to the
aforementioned reduced statistical power of these studies. This could be mainly explained by the fact that
most studies have only analyzed genetic variants captured by genotyping platforms. Although commercial
high-throughput genotyping platforms have highly increased the number of genetic markers compared to
alternative genotyping methods, these are designed to simultaneously capture between 100 thousand and
2.5 million genetic variants across the genome, which still represent a small fraction of the human genetic
variation (Schurz et al. 2019). Nonetheless, this problem can be partially solved through a method known as
genotype imputation. Briefly, this consists of the prediction of the genotype for many of those positions not
captured in patient samples by genotyping platforms through a statistical inference approach based on LD
patterns with nearby variants that are directly genotyped (Marchini and Howie 2010). For that, comparisons
between the genotypes available for the sample individuals and a publicly available reference panel are
carried out, which contains information about variants from the whole genome obtained by next-generation
sequencing (NGS) of representative individuals from populations around the world (Marchini and Howie
2010; Bai et al. 2019).

Imputation allows to notably increase the number of genetic variants that can be tested to around 3-16
million variants, incrementing the statistical power to detect significant associations (Bai et al. 2019).
However, the number of imputed variants highly depends on the coverage capacity of the genotyping
platform, genetic ancestry correspondence between the sample population and the reference panel, and the
haplotype sizes and sequencing quality of the population taken as reference, among others (Bai et al. 2019).
It is important to note that current genotyping platforms and reference panels are mostly designed for
capturing common variation with a minor allele frequency higher or equal than 1-5%, whereas low frequency

or rare variants are unlikely to be captured by GWAS approaches (Willis-Owen et al. 2018).

Additionally, imputation facilitates the combination of the association effects obtained from GWAS
performed in different studies in a meta-analysis. Although this is a powerful technique to detect significant
associations with a certain trait, it can be challenging since discrepancies in coverage from different
platforms used for genotyping of samples from each study. Therefore, imputation can help to attenuate this
limitation, allowing to increase the overlap between variants assessed in each study, which results in a

significant increase of the statistical power (Marchini and Howie 2010; Bai et al. 2019).

Apart from the studies included in this thesis, only two of the GWAS of ICS response performed until
December 2020 have used imputation approaches (Mosteller et al. 2017; Levin et al. 2019) with data from
the 1,000 Genomes Project (1KGP) as reference panel (Abecasis et al. 2012). This was the first public large
catalog of human genetic variants from different populations around the world based on whole-genome
sequencing (WGS) data, which has been widely used in many association studies (Birney and Soranzo
2015). The third phase of 1KGP includes data for 88 million variants across the genomes obtained from
2,504 individuals from 26 different worldwide populations (Auton et al. 2015). Nonetheless, several additional
reference panels have been recently released, worth highlighting the resource created by the Haplotype
Reference Consortium (HRC). At the time of initiating this thesis, this was the largest catalog of human

variation publicly available, and it had not been used in any GWAS of asthma treatment response with ICS.
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This reference panel contains haplotype information at 39 million sites obtained from WGS of 32,488
individuals from different populations, although with an important representation of Europeans (McCarthy et
al. 2016).

All the facts commented above evidence the need for studies simultaneously exploring a high number
of variants across the genome from a larger number of individuals from diverse populations. This would
enable increasing the knowledge about the genetic factors underlying responsiveness to asthma treatment
with ICS. For this reason, there are emerging collaborative and international initiatives gathering efforts from
different research groups to perform large GWAS meta-analyses (Vijverberg et al. 2015), such as the
Pharmacogenomics in Childhood of Asthma (PiCA) consortium (Farzan et al. 2017a). This was initiated in
2014 with the aim of collecting genetic and clinical data from more than 14,000 children and young adults
with asthma participating in 21 independent asthma studies from different countries worldwide, including
European, Hispanic/Latino, African American, and Asian populations (Farzan et al. 2017a). The PIiCA
consortium includes patients from newborns to young adults aged 25 years old with a diagnosis of mild to
severe asthma and available information about the use of different controller and reliever asthma
medications, environmental exposures, clinical outcomes measuring treatment response, and genotype
data. The main aim of this consortium is to identify novel genetic markers involved in uncontrolled asthma
despite treatment use through candidate-gene and GWAS approaches. The ultimate goal of the PIiCA
consortium is to contribute to guiding asthma therapeutic strategies that ensure the adequate control of

asthma symptoms and prevent the occurrence of severe exacerbations (Farzan et al. 2017a).

1.7. Other omics studies of ICS response

Although there is still a long way to completely understand the molecular mechanisms underlying the
responsiveness to asthma medications, the main findings of the research of ICS response over the last
decades can be attributed to genetic association studies. Only a few studies focused on data obtained from
other omics approaches have been performed until now, despite they have been evidenced to be promising
strategies for the identification of novel markers of asthma treatment response (Galeone et al. 2018; Tyler
and Bunyavanich 2019). To the best of our knowledge, a total of 18 studies of ICS response focused on
different single omics sources based on approaches different from association studies have been published
until December 2020.

Transcriptomics or the study of the structure and function of the complete set of RNA molecules
product of genomic DNA transcription in a specific cell type or tissue (Abdel-Aziz et al. 2020; Golebski et al.
2020) has been the second most used approach to investigate biomarkers underlying asthma treatment
response to ICS. A total of eight studies have explored the transcriptome of inflammatory and ASM cells in
response to ICS (Misior et al. 2009; Masuno et al. 2011; Himes et al. 2014; Sasse et al. 2017; Qiu et al.
2018; Su et al. 2018; Yeh et al. 2018; Kan et al. 2019), which have been suggested to be the main targets of
GCs (Hakonarson et al. 2001; Misior et al. 2009), using high-throughput technologies, such as gene
expression platforms or NGS. Most of them have analyzed cell cultures obtained from asthmatic or non-
asthmatic individuals exposed to GCs or control solutions in vitro. As a result, GCs were found to play a
central role in the regulation of the activation of inflammatory cells and the production of pro-inflammatory

mediators such as cytokines (Misior et al. 2009; Himes et al. 2014). Yeh et al. proposed that specific gene
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expression profiles in peripheral blood mononuclear cells (PBMCs) are correlated with the regulation of the
GC signaling and inflammatory response in patients with poor asthma control despite ICS therapy (Yeh et al.
2018). Additionally, evidence of differential expression levels in response to GCs was found for several
genes (e.g., BACH1, SOCS3, CRISPLD2, and KLF15) (Masuno et al. 2011; Himes et al. 2014; Sasse et al.
2017; Qiu et al. 2018; Kan et al. 2019), although it has been proposed that the variability in response to
asthma treatment with ICS could be explained by different connectivity patterns between transcription factors
and genes (Qiu et al. 2018).

Some authors have assessed the potential changes in the microbiome or genetic composition of
commensal and pathogenic microorganisms in different human biological samples (metagenomics) (Abdel-
Aziz et al. 2020) that could be due to the ICS use (Durack et al. 2017; Turturice et al. 2017; Zhou et al.
2019). They have explored the variation in microbial communities in samples from the respiratory system
from asthma patients treated with ICS, such as BAL (Turturice et al. 2017), bronchial brushing (Durack et al.
2017), or nasal swabs (Zhou et al. 2019). Interestingly, these have been predominantly performed in youth
or adults, except for the work by Zhou et al. (2019), which could be explained by the fact that invasive
technigues are needed for sampling in the lower respiratory system (Sinha et al. 2017). The main findings of
these studies suggest the enrichment of bacteria involved in the degradation of xenobiotic and synthetical
chemical compounds in those patients who do not respond properly to the treatment with ICS (Durack et al.
2017). Additionally, it has been suggested that ICS use alters the correlation between specific pro-
inflammatory mediators and several bacterial species, highlighting the decrease of inflammatory cytokines
and Streptococcus pneumoniae abundancy, which has been proposed to be a potential biomarker of lower
response to ICS therapy (Turturice et al. 2017). Nonetheless, the evaluation of the nasal microbiome
revealed that asthma patients with profiles dominated by bacteria from the Corynebacterium and
Dolosigranulum genera could be linked to a lower frequency of asthma exacerbation events while on ICS
treatment (Zhou et al. 2019).

Proteomic studies have used large-scale quantification methods to evaluate protein levels and their
chemical modifications (Golebski et al. 2020) in response to GCs in lung tissue from mouse models of
asthma (Roh et al. 2004; Liu et al. 2013). These have suggested that therapies with GCs in asthma patients
reduce cytokine levels and therefore, IgE production and airway inflammation (Roh et al. 2004). Moreover,
this medication might decrease proteolysis and alter expression patterns of proteins involved in main cellular

processes such as cytoskeleton restructuration (Roh et al. 2004; Liu et al. 2013).

Detection methods such as nuclear magnetic resonance and mass spectrometry have been used for
the detection of levels and interactions of low molecular weight endogenous and exogenous metabolites in
metabolomic studies of ICS response (Abdel-Aziz et al. 2020; Golebski et al. 2020). The evaluation of urine
and serum samples from asthmatic children under ICS treatment has revealed changes in products from the
metabolism of glutathione, proposed as the main pathway implicated in ICS resistance (Park et al. 2017).
Additionally, combined therapy of ICS and SABA was found to interact with arginine metabolism, reducing

asthma symptoms (Quan-Jun et al. 2017).

Three studies published until December 2020 have assessed genomic modifications that regulate the
transcription (epigenomics) (Abdel-Aziz et al. 2020; Golebski et al. 2020) driven by the ICS treatment in
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asthma patients (Kho et al. 2018; Wang et al. 2019a; Wang et al. 2019b). Kho et al. evaluated the
association of circulating miRNAs with the presence or absence of asthma exacerbations in children treated
with ICS (Kho et al. 2018). A total of 12 miRNAs were associated with the future risk to suffer asthma
exacerbations in patients under ICS therapy and two of them (Kho et al. 2018), previously linked to asthma-
related traits (Bentley et al. 2009; Collison et al. 2013; Comer et al. 2014; Kho et al. 2016), showed a
predictive capacity of the occurrence of asthma exacerbations despite ICS use (Kho et al. 2018). On the
other hand, two works published by Wang et al. compared the methylation status at sites enriched in in
peripheral blood cells from children with asthma showing different patterns of ICS responsiveness (Wang et
al. 2019a; Wang et al. 2019b). In the first study, hypermethylation of CpG sites was associated with the
improvement of lung function and increased BOLA2 expression levels (Wang et al. 2019b). The second
study found evidence of correlation of the hypomethylation or hypermethylation of two different CpG sites
with the absence of severe asthma exacerbations in childhood asthma patients treated with ICS from
different populations. These were also associated with the downregulation of IL12B and upregulation of
CORT, respectively (Wang et al. 2019a). These findings suggest that the evaluation of DNA methylation
could help to detect ICS sensitivity or resistance in patients with asthma (Wang et al. 2019a).

Integration of information from different omics layers, clinical features, and environmental exposures
has been proposed as a powerful strategy to disentangle the molecular and cellular mechanisms underlying
asthma (Pecak et al. 2018; Abdel-Aziz et al. 2020), although they have not been extensively applied to the
research of ICS response (McGeachie et al. 2018; Levin et al. 2019). Therefore, there is a need for large
studies combining data from different omics sources to better understand the processes involved in
sensitivity and resistance to ICS treatment to optimize strategies of asthma management and reduce the
burden of this disease.
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Hypothesis and objectives

The general hypothesis of this work is that the response to ICS treatment in asthma patients is partly
affected by the individual’'s genetic composition. The identification of genetic variants involved in the
response to this medication requires the validation of associations described by previous studies, exhaustive
genome-wide explorations, the analysis of a larger number of individuals from diverse populations, the
evaluation of different definitions of ICS response, and the combination of data from different omics layers.
Therefore, the main objective of this doctoral thesis is to attempt to identify novel associations of ICS

response and to assess the replication of the association of variants identified by previous studies.

The specific objectives of this doctoral thesis are:

1. To perform a systematic review of the genomic studies of asthma susceptibility and treatment

response to validate the proposed genetic variants.

2. Toidentify genetic variants associated with asthma exacerbations despite ICS use in genetically

admixed populations with African ancestry.

3. To detect genetic polymorphisms associated with asthma exacerbations in European patients
treated with ICS.

4. To evaluate the association of genetic variants with the change in FEV1 after ICS treatment as

an additional measure of the response to this medication.

5. To integrate genomic and transcriptomic data from different cell types in response to GCs in

order to identify novel genes involved in ICS response.

To achieve these aims, this dissertation is structured into five chapters that address each of the

objectives.
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3.1. A systematic review of
genomics of asthma-related traits




Chapter 1

This Chapter includes a systematic review of the main findings of the published genomic studies of
different asthma-related traits to identify associations to be followed up for replication in independent studies.
We also aimed to give a perspective about the directions of the asthma research towards integrative

approaches including data from different omics sources.

We attempted to complete the review of the main findings of the GWAS of asthma susceptibility
published by Vicente et al. (2017), also including studies focused on associations with the response to the
main asthma medications, interactions between genetic and environmental factors, and the genetic overlap
of asthma and other allergic diseases. For that, the GWAS published between May 2016 and September
2018 in NHGRI-EBI GWAS Catalog (Buniello et al. 2019) were searched for using the words ‘asthma risk’
and ‘asthma’. PubMed was used to search for Original Research articles focused on different omics
approaches and admixture mapping analyses. All references were manually revised and those reporting
results from non-omics approaches were excluded. This literature review revealed the validation of genes
previously identified and novel association with different asthma-related traits. Despite the large efforts of the
genomic studies of asthma, genes identified to date only represent a small proportion of the total heritability.
There is a trend towards the use of integrative approaches that combine data from different biological
sources. These are promising and powerful strategies to increase the knowledge about the mechanisms
underlying asthma that will allow predicting clinical outcomes in the future. Nonetheless, its application has
still been limited in the research of response to asthma medications.

This Chapter was published as a review entitled ‘Genomic Predictors of Asthma Phenotypes and Treatment
Response’ as part of the Early Detection of Asthma Research Topic in Frontiers in Pediatrics in 2019
(doi.org/10.3389/fped.2019.00006). This is an Open Access article, and it is reproduced under the terms of the
Creative Commons Attribution License (CC-BY version 4.0).
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Asthma is a complex respiratory disease considered as the most common chronic
condition in children. A large genetic contribution to asthma suscepitibility is predicted by
the clustering of asthma and allergy symptoms among relatives and the large disease
heritability estimated from twin studies, ranging from 55 to 90%. Genetic basis of
asthma has been extensively investigated in the past 40 years using linkage analysis
and candidate-gene association studies. However, the development of dense arrays for
polymorphism genotyping has enabled the transition toward genome-wide association
studies (GWAS), which have led the discovery of several unanticipated asthma genes
in the last 11 years. Despite this, currently known risk variants identified using many
thousand samples from distinct ethnicities only explain a small proportion of asthma
heritability. This review examines the main findings of the last 2 years in genomic studies
of asthma using GWAS and admixture mapping studies, as well as the direction of
studies fostering integrative perspectives involving omics data. Additionally, we discuss
the need for assessing the whole spectrum of genetic variation in association studies
of asthma susceptibility, severity, and treatment response in order to further improve
our knowledge of asthma genes and predictive biomarkers. Leveraging the individual’'s
genetic information will allow a better understanding of asthma pathogenesis and will
facilitate the transition toward a more precise diagnosis and treatment.

Keywords: admixture mapping, asthma, genomics, genome-wide association study, multiomics, personalized
medicine

INTRODUCTION

Asthma is a complex respiratory disease characterized by inflammation and reversible obstruction
of the airways (1) that can lead to diverse symptoms such as wheeze, breathlessness, chest tightness,
and cough (2). Asthma affects approximately 350 million people from all age groups worldwide (3)
and causes around 350,000 deaths per year (4). Although asthma is a lifelong disease, it is considered
the most common chronic condition in children and young adults (5, 6), where symptoms are
usually more severe (7, 8).

A significant global burden has been attributed to asthma, which is mostly driven by direct
economic costs on health care systems (9) and indirect social and economic consequences due
to substantial productivity loss (10). In this regard, asthma represents one of the most important
pulmonary diseases (11). However, wide differences in asthma prevalence have been estimated
among countries and populations, ranging from 1.5 to 15.6% (12, 13), and also among ethnic
groups within countries (14). These differences could be a result of complex interactions among
environmental and genetic factors (15, 16).
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Several studies support a large genetic contribution to asthma
predisposition, known as heritability (17, 18), with estimates
of as much as 55-74% in adults (19, 20), and almost reaching
90% in children (21). In order to elucidate the genes underlying
asthma pathogenesis, several genetic approximations have been
performed (22). The initial studies were linkage analyses, which
are based on small panels of informative markers across the
genome that were determined in multigenerational families with
multiple affected individuals to allow the identification of the
markers that were more frequently co-inherited with the disease
(23). After a genomic region is linked to a disease, this could
be followed-up using positional cloning, or the genes contained
therein might serve as candidate regions for association studies
in outbred population samples (23). Although the use of this
approach for over 20 years allowed the identification of as few
as eight asthma genes [reviewed in (24-26)], it was recognized a
lack of power of this approach for detecting small effect sizes of
the risk variants (27).

The use of linkage analysis decreased as it was a progressive
development and use of candidate-gene association studies (23,
27). The latter were extensively used during the last two decades,
mostly to refute or confirm the implication of a single biological
candidate gene at a time (28), mainly by comparing the allele
frequencies of a small set of single nucleotide polymorphisms
(SNPs) near or within the gene of interest among asthma cases
and control subjects without the disease (29).

Although candidate-gene association studies largely increased
the resolution of genetic studies of asthma compared to linkage
analyses, they also complicated the interpretation of overall
results. The main reasons for that were that most studies have
included small sample sizes and have tested a reduced number
of genetic variants, which greatly decreases the power to detect
significant associations. Most importantly, replication of findings
in, at least, an independent study was not a standard practice.
As a consequence, failure in the attempt to consistently replicate
the findings in independent populations was common (23,
29). Given these criticisms, its use has progressively decreased
while advances in high-throughput polymorphism genotyping
platforms were occurring, leading to continuous reductions in
costs and the development of key analysis methods to allow
much denser genomic scans (29). These advances opened the
way for genome-wide association studies (GWAS), which now
allow a simultaneous exploration of hundreds of thousands of
SNPs across the genome, most commonly determined in samples
from unrelated cases and controls (23, 29). The main advantage
of this hypothesis-free approach is the ability to detect mild
effects of disease genes without any previous knowledge of the
condition (23, 29). On the other side, performing GWAS could
be challenging as they usually require large sample sizes and the
coverage of the largest number of variants as possible to reach

Abbreviations: BDR, bronchodilator response; CNVs, copy number variations;
GWAS, genome-wide association study; GWIS, genome-wide interaction study;
1CS, inhaled corticosteroids; IL-5, interleukin 5; miRNA, microRNA; NGS, next-
generation sequencing; OR, odds ratio; pLoF, predicted loss-of-function; PRS,
polygenic risk score; SABA, short-acting P2 agonists; SNP, single nucleotide
polymorphism.
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enough statistical power to detect significant associations with
asthma (29).

Vicente et al. recently discussed the GWAS that were
published from the first one in 2007 (30) until the end of
2016 (31), revealing a total of 39 common SNPs independently
associated with asthma risk (22). In this review, we aimed to
update the main findings of the genomic studies of asthma,
treatment response and the overlap of this disease with
other allergic conditions performed between 2016 and 2018.
Additionally, we discuss the direction of the new generation
of genetic studies of asthma to cover the unexplored variation
and the forthcoming integrative omics approaches to continue
disentangling the genetic predictors of asthma.

GENOME-WIDE ASSOCIATION STUDIES

A search on the NHGRI-EBI GWAS Catalog (32) and on
PubMed records revealed that 15 GWAS of asthma and related
traits had been published after the period reviewed by Vicente
et al. (22), between 1st May 2016 and 19th September 2018
(Supplementary Table 1).

Asthma was defined by a physician diagnosis in most of the
studies. However, some GWAS also considered other asthma
definitions, such as the presence of symptoms or the prescription
of any asthma medication, among others. Four GWAS focused
on children (33-36) and five on adults (37-41), whereas another
five attempted to identify common genetic factors between
childhood and adulthood asthma (42-46). Across the 15 GWAS
of asthma and related traits reviewed, the largest sample sizes
were attained by those focusing on the genetic overlap of
asthma and allergic diseases. The largest one included 360,838
individuals (180,129 cases and 180,709 controls) and aimed to
disentangle the common genetic basis of asthma, hay fever and
eczema in asthmatic children from European populations (45).
The smallest comprised 949 individuals and it was focused on a
highly specific phenotype, the response to asthma treatment with
short-acting B, agonists (SABA) (36) (Supplementary Table 1).

Although there is an increasing trend to include
multiethnic populations in genomic studies of asthma, an
underrepresentation of non-European populations is still
pervasive (47, 48). In fact, the vast majority of GWAS performed
between 2016 and 2018 focused on patients of European ancestry
(33, 34, 39, 41-43, 45, 49), presenting a particularly poor
representation of Asians and Africans-admixed populations.

In total, 451 genetic variants, including short
insertions/deletions and SNPs, were reported as risk factors
for asthma and related traits by the GWAS of the last 2 years.
From these, 319 SNPs clustered at 167 loci that reached genome-
wide significance at a threshold of p < 5 x 1078 orp < 3 x 1078
in the discovery or replication phases and/or after performing a
meta-analysis with the results from both stages. Among these,
68 were revealed as novel asthma loci, whereas 99 had been
previously associated with asthma or any allergic diseases.

In the sections below, we summarize the main findings
of these GWAS, distinguishing among those that focused on
asthma susceptibility; treatment response; gene-environment
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interactions and the overlap among asthma and allergic
disorders.

Asthma Susceptibility

Eight GWAS evaluated the association with asthma (33, 35,
37, 38, 42-44, 46) (Supplementary Table 1), although only four
studies revealed genome-wide significant associations (38, 43,
44, 46). These validated the association of 14 loci previously
associated with asthma susceptibility (Table 1).

The well-known 17921 asthma locus (50) has been the most
replicated signal, although the main driver of this association
has not been disentangled to date (43). The gene encoding the
zona pellucida-binding protein 2 (ZPBP2) has been revealed
as a common locus of both childhood and adulthood asthma
by several studies, supported by the association of several
intronic SNPs as well as variants located within the intergenic
region of ZPBP2 and GSDMB (43, 44). A SNP located at
the promoter region of ZPBP2 (rs11557467) showed the most
significant association after performing a meta-analysis in 13,556
children and adults from several European populations (43).
The risk allele was associated with asthma susceptibility (OR
for the T allele = 1.32, p = 329 x 107'%) (43) and was also
replicated in Latinos/Hispanics (44). This variant was previously
evidenced to be a putative site with allele-specific nucleosome
occupancy in patients with asthma (51). Similar results were
found for GSDMB, with a shared signal between both European
(min p = 2.55 x 107%") (43) and Latino/Hispanic populations
(min p = 821 x 107') (44). Furthermore, the association
of ORMDL3 with asthma was validated in Latinos/Hispanics
(min p = 1.90 x 1071%) (44), which have been also extensively
associated with asthma across different populations (30, 52, 53)
(Table 1). Interestingly, differences in the expression level of
ZPBP2 and GSDMB have been found between European and
African populations (54). In fact, early studies had revealed
that SNPs associated with asthma co-regulate the expression of
ORMDL3, GSDMB, and ZPBP2 in Latinos (54).

A large multiethnic GWAS performed in 23,948 asthma cases
and 118,538 controls validated the association of several genes
already known to be involved in asthma with functions related
to immune response and other activities, such as organogenesis,
cellular differentiation and transcriptional modulation, among
others (46). The most significant association signal was driven
by the SNP rs2952156 located at the Erb-B2 Receptor Tyrosine
Kinase 2 (ERBB2) gene, whose G allele was associated with
protection for asthma (OR = 0.87, p = 2.20 x 107°?) in ethnically
diverse populations (46) (Table 1).

Additionally, 6 loci not previously linked to asthma
were identified in European (38), Latino/Hispanic (44) and
multiethnic populations (38). In these studies, the GRM4 gene
was the most frequent signal, where a higher number of variants
with evidence of association with asthma susceptibility were
located (min p=5.29 x 107?) (38). GRM4 encodes the glutamate
metabotropic receptor 4, involved in synaptic neurotransmission
and maintenance on normal functions of the central nervous
system throughout the regulation of the adenylate cyclase cascade
(55), although it has been recently linked to tumorigenesis (56).
The GRM4 gene has been associated with several neurological
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disorders (57-59) and different types of cancer (56, 60) but, it
has not been associated with any asthma-related traits and it has
not been implicated in any immune-related function. However,
early studies had suggested the potential implication of glutamate
receptors on asthma worsening by means of triggering airways
inflammation (61).

Asthma Treatment Response

The most commonly prescribed medication to treat asthma are
SABA and inhaled corticosteroids (ICS) (2). Although most
asthma patients treated with these medications experience a
decrease in their symptoms (62), wide differences in asthma
treatment response have been described among individuals
and populations (63, 64). These observations suggest that
genetics may play a key role in the response to asthma
treatment (64, 65). Therefore, the characterization of multiple
genetic markers determining therapeutic responsiveness
to asthma medications could contribute in the future to
identify specific pharmacogenetic profiles. This would enable
clinical identification of those asthma patients that respond
unsatisfactorily to these treatments or that experience adverse
effects (66). Consequently, the burden of asthma could be
reduced by implementing personalized asthma management and
therapeutic strategies (67).

SABA are the most commonly prescribed relief asthma
medication that quickly reduces bronchoconstriction throughout
smooth muscle relaxation of the airways (2). Clinical response to
this treatment is frequently assessed as bronchodilator response
(BDR), which quantitatively measures the change in airway
constriction by means of the change in forced expiratory volume
in 1s after SABA administration (68). However, high variability
in BDR among individuals and populations has been described,
which has been evidenced to be influenced by environmental and
genetic factors (69, 70). In fact, it has been estimated that 47-92%
of the total variation in BDR could be attributed to the genetic
component (71, 72). Recently, a GWAS of BDR was performed
in 949 children with asthma from two African American
populations (36) (Supplementary Table 1). This revealed the
intergenic region of SPATA31DI1 and RASEF as population-
specific novel loci of BDR in African American children with
asthma (rs73650726, p for the A allele = 0.02, p = 7.69 x 1079).
Moreover, they found the PRKGI to be implicated in BDR shared
between African Americans and Latinos/Hispanics (min p =
3.94 x 107%) (Table 2). This gene encodes a cyclic guanosine
monophosphate-dependent protein kinase involved in several
biological processes, such as the nitric-oxide signaling pathway
(73, 74), which modulates vasodilation in response to B> agonists
(75). This fact together with evidence of expression of PRKGI in
pulmonary tissues suggest this could be a plausible gene of BDR
in African-admixed asthmatic children (76).

Despite the large improvements in asthma therapeutic
strategies in the last decades, ICS are still the most effective
and commonly prescribed medication to control symptoms
and prevent severe exacerbations in asthma patients (2), which
consist of the most important outcome in childhood asthma
(77). However, a small proportion of the genetic basis of the ICS
response has been disentangled (78-80). In the period reviewed,
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TABLE 1 | Summary of the most significant variants identified by the genome-wide association studies of asthma susceptibility.

SNP?2 Chr. region® Position® Nearest gene (s)
rs1420101 2q12 102957716 IL1RLT
rs10455025 5q22 110404999 TSLP
rs20541 5031 131995964 13
rs7705042 5031 141492419 NDFIP1
rs9272346 6p21 32604372 HLA-DQAT
rs2325291 6q15 90986686 BACHZ2
rs392969 9p24 6209697 L33
rs7927894 11913 76301316 LRRC32
rs167769 12913 57503775 STATE
rs2033784 15g22 67449660 SMAD3
rs2952156 17gi12 37876835 ERBB2
rs17637472 17g21 47461433 ZNF652-PHB
rs200567451 17g21 37902883 GRB7'
rs12946510 17921 37912377 GRB7-IKZF3
rs807092 17g21 37922259 IKZF3
rs36095411 17921 38031865 ZPBP2
rs36569035 17g21 38035624 ZPBP2-GSDMB
rs9303279 17921 38073968 GSDMB
rs8076131 17921 38080912 ORMDL3
rs7221814 17921 38089717 ORMDL3-LRRC3C
rs3095318 6p21 31088145 PSORS1C1
rs1776883 6p21 34156444 GRM4"
rs72721166 9p22 27304548 EQTN
rs75446656 10g21 65100016 JMJIDIC!
rs36080042 10g21 65426785 REEP3'
rs62067034 17g21 38063738 GSDMB
rs9303277 17921 37976469 IKZF3
rs11557467 17g21 38028634 ZPBP2
rs2290400 17921 38066240 GSDMB
rs4795405 17g21 38088417 ORMDL3

Effect allele ORde p-value® References
T 112 3.90 x 1021 (46)
c 1.15 9.40 x 10-26
G 0.89 5.00 x 10716
A 1.09 7.90 x 1079
A 116 5.70 x 10724
A 0.91 2.20 x 10712
G 0.86 7.20 x 10-20
T 1.10 2.20 x 101
T 1.08 3.90 x 1079
G 1.10 7.40 x 10718
G 0.87 2.20 x 1030
A 1.08 6.60 x 1079
G NA 510 x 1079 (44)
T NA 554 x 1013
A NA 8.70 x 1014
G NA 532 x 10714
T NA 636 x 1014
c NA 8.21 x 1014
A NA 519 x 10~18
G NA 9.37 x 1011
NA 1.42 161 x 10~ (38)
NA 0.80 5.29 x 1079
NA 1.82 3.83 x 1079
NA 2.64 3.60 x 1078
NA 2.62 470 x 1078
T NA 3.55 x 1012
T 1.31 143 x 10714 (43)
T 1.32 3.20 x 10719
c 1.31 2.55 x 10=20
T 1.26 1.90 x 10719

@ Only the most significant variants per loci and study are included.

b Chromosomal region.

¢Positions based on GRCh37/hg19 build.

90dds ratio for the effect alleles.

% Association results of the meta-analysis.

INovel locus (no previous evidence of assaciation with asthma). NA: not available.

Mosteller et al. performed the unique additional GWAS that has
explored the association of genetic variants with ICS response
(Supplementary Table 1). This constitutes the first GWAS of ICS
response to include non-European patients. Unfortunately, they
did not find any significant finding (40).

In addition to the most common types of medications
used to treat asthma, there is an increasing number of
emerging therapies, including biological treatments. These have
been designed to act directly toward specific components of
the T-lymphocyte inflammatory response involved in asthma
such as, interleukin 5 (IL-5). This mediator is centrally
involved in increasing immunoglobulin E levels and blood and
bronchoalveolar eosinophilia in severe asthma. Therefore, the
inhibition of IL-5 by using monoclonal antibodies could reduce
the high levels of eosinophils (81). A few pharmacogenetic

studies have recently evaluated the response to asthma therapies
with anti-IL-5 monoclonal antibodies, such as mepolizumab (39)
(Supplementary Table 1), which has been evidenced to reduce
asthma exacerbations rates and enables asthma control (82, 83).
Condreay et al. investigated the association of genetic variants
with the response to asthma treatment with mepolizumab
measured as number of asthma exacerbations, eosinophil count
and immunoglobulin E levels in 1,192 asthma patients. Although
no variants reached genome-wide significance level (p < 5 x
107*), six SNPs at 6p24 and 9p21 showed suggestive associations
with mepolizumab response (Table 2) (39).

Unfortunately, despite the large efforts during the last decades,
pharmacogenetic findings are still not able to predict clinical
outcomes that are directly applied to asthma patients (84).
As happened in the past for the asthma field, and although
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TABLE 2 | Summary results of the genome-wide association studies of asthma treatment response.

Treatment SNP Chr. region? Position? Nearest gene(s) Effect allele Beta®d p-valued References
SABA rs73650726 9g21 85152666 SPATA31D1-RASEF® A —3.80 7.69 x 1079 (36)
rs7903366 10g21 53689774 PRKG1 T 1.23 3.94 x 10-8
rs7081864 10021 53690331 PRKG1 A 1.23 4.94 x 1078
rs7070958 10021 53691116 PRKG1 A —1.24 4.09 x 1078
Mepolizumab rs114633080 6g24 145404255 IFNAT14-IFNA22P® NA NA NA (39)
rs137893217 6g24 145427162 IFNA14-IFNA22P® NA NA NA
rs78517277 6g24 145465077 IFNAT4-IFNA22P® NA NA NA
rs117220641 6qg24 145496192 IFNA14-IFNA22P® NA NA NA
rs10811516 9p21 21255049 IFNAT4-IFNA22P® NA NA NA
rs10811517 9p21 21256306 IFNA14-IFNA22P® NA NA NA

4Chromosomal region.

b Positions based on GRCh37/hg19 build.

“Beta values for the effect alleles.

9 Association results of the meta-analysis.

#Novel locus (no previous evidence of association with asthma). NA: not available.

asthma pharmacogenetic studies have started to evolve toward
GWAS approaches (64, 85), the main reason could be that most
published pharmacogenomic studies continue to be performed
using the candidate-gene approach (64, 80, 85).

Gene-Environment Interactions

Despite the significant contribution of genetic factors on asthma
and related traits, a key role of the gene interactions with
exposures to a wide variety of environmental factors has
been described (15, 16, 86). Among these, early-life exposures
demonstrate a high relevance in the prediction of childhood
asthma development, including respiratory infections (87), gut
and airway microbiome (87, 88), and tobacco smoke exposure
(89). Several strategies have been used to identify gene-
environment interactions during the last decades (90, 91), but
their application has recently emerged in the form of genome-
wide interaction studies (GWIS) (91), which are considered a
powerful approach to identify novel disease loci that interact with
environmental factors (41).

Two GWIS have attempted to identify gene-environment
interactions involved in asthma susceptibility since 2016 (34,
41) (Supplementary Table 1). One of them explored for the
first time the interaction of genetic variants with traffic-related
air pollution, although previous studies used candidate gene
approaches (34). Traffic air pollution measured as nitrogen
dioxide levels cause deterioration of asthma symptoms by
triggering exacerbations and decreasing the lung function (92,
93). This GWIS in European children revealed five loci that were
suggestively associated and three of the SNPs were located at
ADCY2, a known asthma locus (94). The risk alleles at ADCY2
were also associated with decreased expression of the gene
in peripheral blood. Moreover, differential ADCY2 expression
depending on nitrogen dioxide levels was found, suggesting that
this gene could have functional implications on asthma under
exposure to traffic-related air pollution (34). Similar results were
found for a SNP located within the intergenic region of BAGALT5
and SLC9A8 (Table 3), which were revealed as novel plausible

genes with functional implications on childhood asthma in
interaction with nitrogen dioxide exposure (34).

Additionally, a GWIS of active tobacco smoking was
conducted in 4,057 patients with adulthood-onset asthma of
European ancestry (41) (Supplementary Table 1). It is well-
known that second-hand smoke exposure to tobacco smoke
increases childhood asthma risk during prenatal and postnatal
stages (95-99). Although active tobacco smoke has been
associated with asthma onset during adulthood (100), it is
still unclear how the genetic variation could affect asthma
susceptibility in interaction with tobacco smoke exposure in
adults (41). The intergenic SNPs rs9969775 (OR for the A allele
= 0.50, p = 7.63 x 107°) and rs5011804 (OR for the C allele
= 150, p = 1.21 x 10™*), which are located at the MPDZ-
NFIB and KRAS-IFLTDI loci, respectively, showed significant
interactions with active tobacco smoking for late-onset asthma.
These findings were validated at nominal level in an independent
study (41) (Table 3). Although none of these loci showed any
functions specifically related to asthma and none were previously
associated with asthma or related traits, the SNP rs9969775 was
postulated to be involved in the regulation of gene expression in
the lung (41).

Overlap Among Asthma and Allergic

Diseases

Given the firm links in the pathogenesis of asthma and
other allergic diseases (20, 101), a few studies used this
rationale to explore the overlapping genetic architecture
among these diseases (45, 49, 102, 103), including two large-
scale GWAS published between 2016 and 2018 (45, 49)
(Supplementary Table 1).

Ferreira et al. carried out the largest GWAS of asthma
and allergic diseases to date (45). They combined data from
360,838 children and adults from 13 different European studies,
including 180,129 patients with self-reported or physician-
diagnosed asthma, eczema or hay fever, and 180,709 controls
(Supplementary Table 1). They reported 136 independent SNPs
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TABLE 3 | Summary results of the genome-wide association studies of gene-environment interactions.

Environmental SNP? Chr. region®  Position® Nearest gene(s)
exposure
Nitrogen rs727432 5pl15 7716078 ADCY2
dioxide 154143882 5p15 7717364 ADCY2
rs6886921 5p15 7718539 ADCY2
rs9B3146 11g14 83423444 DLG2®
1512455842 18q12 32006284 MOCOS®
rs1057251 1812 32102579 MOCOs?
rs12457919 18q12 32108100  MOCOS-FHOD3®
1512457919 18q12 33854102 MOCOS-FHOD3®
rs6B6237 20413 47804141 B4GALT5-SLCIAS®
Tobacco rs9969775 9p23 13561933 MPDZ-NFIB®
smoke rs5011804 12p12 25441804  KRAS-LMNTD1®

40nly the variants with evidence of replication are included.

bChromosomal region.

¢Positions based on GRCh37/hg19 build.

90dds ratio for the effect alleles.

®Novel locus (no previous evidence of association with asthma). NA: not available

at 99 loci as genome-wide significant associations (p < 3 x
107%) with susceptibility to asthma or any allergic disease
(Supplementary Table 2). A total of 86 variants were located at
loci that were already associated with at least one of the diseases
under study, whereas 50 other SNPs revealed novel loci that
were shared by asthma and allergy (Table 4). A high proportion
(96%) of these variants showed similar effects between asthma,
eczema and hay fever. The most significant variants were
located within or near loci with previous evidence of implication
on asthma and/or allergic diseases such as, WNTI11-LRRC32,
IL18RI1, TLR1, and HLA-DQAI, among others. In fact, the SNP
157936323 of the intergenic region of WNTII and LRRC32
genes showed the strongest evidence of association (OR for the
A allele = 1.09, p = 2.20 x 107%%) (Supplementary Table 2).
Altogether, the 136 SNPs identified accounted for 3.2, 3.8, and
1.2% of the total variation of asthma, hay fever and eczema,
respectively. These findings partially explain the co-existence of
these diseases in many patients (45) (Supplementary Table 2).
Interestingly, evidence of potential functional implication on
blood and pulmonary tissues was found for many of the SNPs
identified. Specifically, they demonstrated that risk variants
shared among asthma, hay fever and eczema are involved in
the regulation of gene expression in immune response-related
signaling pathways, such as in the B and T cell activation (45).
These findings confirmed previous evidence (104) suggesting
that these biological processes could be among the ones shared
between asthma and allergic diseases (45).

Besides these findings, 29 of the genes identified by Ferreira
et al. encode for proteins that are drug targets for several diseases,
including allergic and auto-immune diseases. Interestingly, the
protective effect of these genes was found to be correlated with
the effect of drugs targeting them, attenuating allergy symptoms.

Discovery phase Replication phase

Effect allele ORY p-value ORd p-value References
G 161 667 x 1075 113 0.016 (34)
A 161 475x107° 088 0.015
o] 171 7.03x 1076 112 0.018
A 067 861x107° 112 0.034
o} 048 6.10x107%  1.30 0.010
o] 050 6.18x107° 130 940x 1078
A 039 552x%107% 1.30 0.012
A 039 552x107° NA 0.017
A 169 543x107° 089 1.60x10°°
A 050 7.63x107° 065 0.020 (41)
o] 150 1.21 x 1074 1.40 0.030

These findings suggest that these could be effective targets to treat
allergic diseases or asthma and thus, the proteins encoded by
these should be prioritized for pre-clinical evaluation (45).

That GWAS was further complemented in a separate study
with a gene-based association analysis using an algorithm
that was specifically designed to identify shared risk variants
among multiple phenotypes. With this approximation, which
helps to increase the statistical power to detect novel risk loci,
multiple variants near or within each gene are tested rather than
focusing on individual SNP tests at a time (103). By relying
on the information of SNPs that modify gene expression levels
in different tissues and cell types, also known as expression
quantitative trait loci (103, 105), they additionally revealed 19
novel risk genes for allergic diseases, which were not revealed
by the previous stages of the study (45). Among these genes,
nine showed functions that were closely related to well-known
mechanisms involved in allergic diseases and asthma. Although
further functional validation is needed, these could also represent
novel drug targets (103).

Recently, Zhu et al. performed another GWAS in 110,361
Europeans in an attempt to identify genetic variants
shared among asthma, hay fever, eczema and rhinitis
(Supplementary Table 1). After performing a cross-trait
meta-analysis, 38 loci were associated with both asthma
and allergic diseases at genome-wide significance level
(Supplementary Table 2). These loci were enriched in essential
pathways for several tissues, such as skin, lung and whole blood,
among others (49). Among these results, seven hits were novel
loci that might contribute to the common genetic architecture of
asthma and allergic diseases (49) (Table 4). These findings were
consistent with the results reported by Ferreira et al. (45). In fact,
a high proportion of the loci revealed by Zhu et al. (49) had been
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TABLE 4 | Novel loci of asthma and allergic diseases revealed by meta-analyses published between 2016 and 2018.

Phenotypes SNP Chr. Position? Nearest gene (s) Effect ORSd p-valued References
region? allele

Asthma/hay rs12743520  1p22 93037112 PIGX c 0.93¢ 3.83 x 10788 (49)

fever/eczema/rhinitis  ¢g1815704 121 152893801  IVL-SPRR2E c 1.148 5.16 x 10-9%
rs1214598 1024 167426424  RP11-104L21.2 G 0.95° 5.14 x 10~11e
rs4916533 3029 196373582  LRRC33 c 0.93° 1.66 x 1078
rs56267605  4q27 123363109  ADADT-IL2 A 1.05° 2.56 x 10~ 12¢
rs6461503 7p21 20560996 ABCBS5 c 1,058 3.19 x 10~ 10e
rs2169282 9p24 6350235 TPD52L3 G 1.09¢ 1.80 x 10~ 108
rs12413578  10p14 9049253 SLC7A10 G 0.91° 1.09 x 10~ 14e
rs10876864  12q13 56401085 SUOX A 1.058 1.41 x 10~ 13¢
rs9911533 17q21 38775476 SMARCET T 0.92° 9.70 x 10~ 16e
rs10414065 19913 33721455 SLC7A10-CEBPA c 0.91¢ 2.63 x 10-10¢
152766664 20q13 52171241 RP4-724E16.2 G 1.088 8.07 x 10~ 11e
rs10033073  1p36 4775401 EVI5 G 1.04 1.20 x 10-10

Asthma/hay rs1057258 1p36 234115629  INPP5D c 1.05 1.40 x 10-10 (45)

fever/eczema rs10414065 1921 33721455 SLC7A10-CEBPA o) 1.10 6.10 x 1018
rs10663129 121 141321836  RASA2 ACT 1.04 1.10 x 10-13
rs10760123  1g42 123650534  PHF19-TRAFT T 1.03 5.20 x 109
rs10910095  2p25 2510755 TNFRSF14-FAM213B G 1.04 2.70 x 108
rs11169225 2qg12 50345671 AQP2 A 1.05 1.20 x 10~ 11
rs12440045  3q28 41782684 RTF1-ITPKA (& 1.03 4.90 x 1010
rs13088318  3g29 101242751  FAM172BP-TRMT10C A 1.03 8.60 x 10~9
rs13153019  4p16 176782218  LMAN2-RGS14 (6 1.04 1.30 x 1078
rs13403656  4q24 112269127  BCL2L11-ANAPC1 A 1.05 2.20 x 108
rs13384448  4q27 228707862  CCL20-DAW1 T 1.04 2.80 x 1012
1227275 5p13 103593898  MANBA [ 1.03 3.70 x 10~ 1
rs17664743 5022 50253897 C7orf72-IKZF1 A 1.04 6.20 x 10~
rs250308 5q31 118684297  TNFAIP8 T 1.03 4.00 x 1079
rs2910162 6p21 159909345  MIR3142-MIR146A G 1.03 250 x 1079
rs35469349  7p12 128294709  PTPRK A 1.04 2.30 x 10~10
rs3540 7p21 91045408 IQGAP1 G 1.04 3.30 x 10~
14296977 8g21 77018542 GSAP c 1.06 2.10 x 1013
rs4801001 9p24 52336175 DYNAP-RAB27B T 1.03 5.90 x 109
rs4574025 9933 60009814 TNFRSF11A T 1.03 6.80 x 1079
rs4671601 9q34 64836267 LOC339807 8 1.04 8.80 x 1079
rs4943794 10p14 41173408 FOXO1 G 1.04 7.20 x 1012
rs5758343 10p14 41816652 TEF-TOB2 A 1.05 4.80 x 10714
rs55726902  10p14 48196982 HDAC7 G 1.05 2.60 x 1016
rs4848612 10q24 112388538  BCL2L11-ANAPCT A 1.04 2.30 x 1010
rs61192126  11q13 72394852 LINC00870-RYBP T 1.04 8.90 x 1011
rs59593577 1113 95425526 SESN3-FAM768 (o] 1.05 1.60 x 10~
rs6489785 12913 121363724  SPPL3-HNF1A-AST T 1.04 1.60 x 10~15
rs6977955 12q24 28156887 JAZF1 T 1.05 7.10 x 1018
rs697852 12q24 226914734  [TPKB A 1.04 1,60 x 10~9
rs7130753 13g22 111470567  LAYN-SIK2 C 1.05 7.00 x 10~15
rs71368508  14q13 4521473 SMTNL2-ALOX15 e 1.12 2.00 x 109
rs7137828 14q21 111932800  ATXN2 T 1.03 2.20 x 10~10
rs7207591 14024 40414862 STAT58 A 1.04 1.40 x 10~9
rs72033857  14q24 167390671  RNASET2-MIR3939 C 1.06 1.20 x 1079
rs7214661 14032 43430696 MAP3K14-ARHGAP27 G 1.03 1.20 x 1078
rs73205303  15q15 36467830 RUNXT A 1.04 7.90 x 10~10

(Continued)
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TABLE 4 | Continued

Phenotypes SNP Chr. Position? Nearest gene (s) Effect ORed p-value® References
region? allele
rs74847330 16022 143831599 KYNU-ARHGAP15 A 1.05 1.80 x 1079
rs75557865 16p13 121652141 SLC15A2 G 1.03 1.60 x 1078
rs76167968 17g21 35681738 SFPQ-ZMYM4 T 1.06 1.30 x 10~8
rs76081789 17g21 44846426 SIKT T 1.07 1.30 x 10~8
rs9323612 20g13 75968608 JDP2-BATF A 1.03 8.60 x 109
rs9372120 20g13 106667535 ATGS G 1.04 4.20 x 10~ 11
rs9383820 20g13 157419508 ARID1B C 1.04 1,20 x 1078
rs9573092 21g22 73627275 PIBF1-KLF5 A 1.03 270 % 10~8
rs9989163 22q13 103235012 RCOR1-TRAF3 A 1.03 1.90 x 1078

@Chromosomal region.

b positions based on GRCh37/hg19 build.
“Odds ratio for the effect alleles.

9 Association results of the meta-analysis.
®Association results of the discovery phase.

previously identified by Ferreira et al. (45). Interestingly, most of
them had functions related to immune response, inflammation
and epithelium maintenance, such as HLA-DQBI1-AS1, ILIRLI,
FLG-AS1, and STAT6, among others (45, 49).

ADMIXTURE MAPPING

It has been evidenced that differences in asthma prevalence and
severity among populations and ethnic groups could be partly
explained by population-specific genetic factors. Alternative
genetic scanning methods take advantage of these population
specificities that are not frequently explored by means of GWAS
approaches (106, 107), which could contribute to further identify
asthma genes. One of such approaches is based on the exploration
of the variation in genetic ancestry at chromosome-segment
level (termed local ancestry) and the correlation with asthma in
populations that are the result of a recent historical admixture,
an approach most commonly known as admixture mapping
(108, 109). Although both GWAS and admixture mapping are
based on genome-wide data obtained by means of genotyping
platforms, admixture mapping compares local ancestry estimates
with the disease or trait (63). With this approach, a much smaller
number of comparisons are involved in the scan, which highly
increases the statistical power to detect associations compared
to a traditional GWAS approach for a given sample size (110).
Besides, this approach gives an opportunity for leveraging the
specific genetic architecture of admixed populations, which have
been largely underrepresented in genetic studies of asthma
(111, 112). Admixed populations are characterized by high
correlation over large chromosomal regions resulting from the
recent admixture process, therefore these populations simplify
gene mapping over longer distances (113-116). Moreover, if
the trait of interest affects differentially the parental populations
of the admixed, large trait differences are expected among
admixed individuals, providing increased power to detect novel
associations (117). Besides, the particular allelic configurations
of the admixed individuals could interact with genetic risks
for asthma, mitigating, or enhancing their effects in disease. In
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fact, causal variants are transmitted in higher proportion from
the parental to the admixed populations, which leads to higher
prevalence in the latter (112). As a consequence, it is expected
that the proportion of the parental ancestry at those loci will
vary between asthma cases and control individuals (110, 113),
which would be indicative of ancestry-specific genetic risks (63).
Combining admixture mapping with the traditional GWAS is a
suitable strategy to identify both asthma risks that are ancestry-
specific and those that are shared among different ancestry
groups (63, 114). Although recently admixed populations are
abundant (63), those with African admixture have been the
prevalent in the asthma field (69, 109, 115).

There are two major African-admixed populations in the
United States: African Americans and Latinos/Hispanics, which
show different proportions of ancestry from each parental
population (63). However, both show evident genetic footprints
of the African admixture (116). Although very simplified,
Latinos/Hispanics are usually modeled as descendants of
ancient Native American, European and sub-Saharan African
populations (63, 117), whereas current African Americans are
modeled as descendants of an admixture event between sub-
Saharan African and Europeans (63, 110, 118). Interestingly,
compared to European Americans, asthma prevalence is higher
in these populations, which also show a decreased response to
asthma medications (14, 69, 119).

During the last decades, several loci have been associated
with asthma and related traits in African Americans and
Latinos/Hispanics using admixture mapping analysis as it has
been reviewed by Mersha et al. (63) and Hernandez-Pacheco
et al. (109). Additionally, two more admixture mapping analysis
of asthma susceptibility and treatment response in African-
admixed populations had been published by September 2018
(36, 120).

Spear et al. performed a genome-wide exploration in order
to identify those genomic regions in which African ancestry is
associated with response to asthma treatment with SABA in 949
African Americans. They found that local African ancestry at
the 8p11 locus was suggestively associated with BDR in African
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American children with asthma, though the result did not reach
significance level after considering the multiple comparisons (B
=149, p = 6.34 x 107%) (36).

Additionally, Gignoux et al. revealed that the risk linked to the
18921 locus in the admixture mapping peak in Latinos/Hispanics
was driven by the Native American ancestry (OR = 1.20, p = 1.63
% 107%), whereas the European ancestry was protective (OR =
0.86, p = 8.35 x 107?), which was validated in an independent
Hispanic/Latino population. Interestingly, this peak is located
within the intergenic region of SMAD2 and ZBTB7C, none of
which have been previously associated with any asthma-related
trait, even in GWAS analyzing the same study populations (120-
122), suggesting that admixture mapping is a powerful approach
to identify novel asthma loci in admixed populations (120). The
SMAD2 gene encodes a cofactor involved in regulation of the
growth factor p signaling that has been extensively evidenced to
play a key role in asthma (69, 123, 124).

ASTHMA PREDICTION AND TRANSLATION
INTO THE CLINIC

In the last 2 years, many asthma genes have been discovered and
validated in independent populations, strongly supporting that
these are generally involved in asthma pathogenesis. However,
the genetic risk factors identified to date only represent a small
proportion of total asthma heritability (22, 23, 125). Therefore,
despite the uncountable advantages of the GWAS compared to
previous strategies (23, 27, 126), there are a number of challenges
ahead in order to better understand the genetic architecture of
asthma (23, 126, 127).

One of the potential explanations of the current difficulty in
explaining a larger proportion of the disease could be the reduced
effect size of most genetic risks. Current reference panels and
genotyping platforms are mainly designed to capture common
genetic variants with are anticipated to show small effects in
the disease (23, 114, 125). Therefore, the unassessed genomic
variation could help to explain the missing heritability of asthma
(114, 128).

Most GWAS of asthma have been limited in terms of
low statistical power (23, 125, 127) due to limitations in
the study design, mostly due to reduced sample sizes or the
underrepresentation of genetically diverse populations, among
others (20, 47, 48, 114, 129). A solution to this problem
has been attempted in the last years with the emergence of
large consortia gathering many asthma studies from different
countries around the world (121, 122, 130, 131), which have
contributed to increase the representation of patients from
multiethnic populations (126, 127). However, this continuous
need to increase sample sizes might have also led to heterogeneity
in asthma definition by means of combination of samples with
different asthma phenotypes. Consequently, this could have
contributed to the reduction of the statistical power driven by the
dilution of the effect size of association signals among different
phenotypes (23, 125, 132-134). Thus, there is an increasing need
to accurately characterize asthma patients through classification
into homogenous groups (23, 134).

Advances in Genomics of Asthma

On the other hand, a limited number of large-scale studies
have explored the role of gene-environment interactions in
asthma despite robust evidence of the important contribution
of environmental exposures in asthma susceptibility and severity
(15, 16, 86, 135, 136). In fact, it has been evidenced underscoring
the significant environmental contribution while designing a
GWAS could result in reduced effect sizes (22, 137).

Last but not least, the functional implications of most
asthma loci still remain unknown. Therefore, further studies are
needed to increase our understanding of the impact of these
on genes and cellular function, and their contribution on the
molecular mechanisms underlying asthma pathophysiology (22).
These have been proposed to be disentangled by means of
approaches combining GWAS data with information related to
biological pathways or processes (138, 139). Nonetheless, only
one GWAS-based pathway enrichment analysis of asthma has
been performed to date (140).

Because of all of this, our current knowledge of asthma
genetics hampers our capacity to predict disease progression and
treatment response, preventing its use in the clinical practice
(125, 127). As a result, there is still a long way to use this
knowledge and their integration with lifestyle and environment
exposures (127, 141, 142) to develop precision medicine
strategies for accurate prevention, diagnosis, or treatment of
asthma (23).

Other Omic Studies and Integration of

Multiomics

Other omics technologies, apart from genomics, are powerful
tools to increase the current knowledge about asthma
pathophysiology (143, 144). These are focused on data from
a wide variety of biological sources: genomic modifications
(epigenomics), gene transcription (transcriptomics), protein
levels and chemical modifications (proteomics), endogenous and
exogenous metabolites (metabolomics), and the microbiome
(metagenomics), among others (23, 126, 127, 145, 146). The
application of omics approximations in asthma is still incipient
compared to other diseases (23, 147). Still, several studies have
been performed in asthma in the last years as it was reviewed
elsewhere (23, 127, 148, 149).

To our knowledge, a total of 26 asthma studies using other
omics approaches have been published in the last 2 years
(Supplementary Table 3). Just like recent GWAS of asthma,
these studies have been equally focused on childhood and
adulthood asthma since 2016. Moreover, most of them have
been carried out in patients of European descent. A total of 18
studies focused on asthma susceptibility or severity (150-167);
three focused on the ICS response (168-170); two explored
the interactions with environmental factors (171, 172); and
three inspected the overlap with other pulmonary diseases
(173-175). Nonetheless, other experts have discussed the recent
omics advances in asthma in this issue except for those of
transcriptomics. Therefore, we focused on summarizing the main
findings of studies made using this approach.

Transcriptomics provide a quantitative and qualitative
characterization or RNA transcripts (176). These are mainly
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focused on comparing gene expression levels in cells or
tissues under specific controlled conditions in order to identify
differentially expressed genes that could have (alone or in
combination) functional implications on the disease under study
(127, 177). Rapid development of technologies has made possible
the near-complete characterization of the transcriptome, first
using arrays and later, by means of RNA sequencing, which has
greatly promoted the genome-wide exploration of transcriptomic
changes in asthma during the last years (23, 127). A number
of advantages of transcriptomics studies in asthma have been
extensively described (23, 126). In fact, it has been proposed to
be an accurate method to characterize pathways contributing to
asthma pathophysiology, and the interactions with exogenous
and endogenous factors in different sample types such as, blood,
sputum or lung tissues, among others (23, 146).

Transcriptomics is a powerful tool to provide or confirm
a mechanistic explanation of asthma loci identified by GWAS
(23). Eight transcriptomic studies of asthma have been recently
performed (Supplementary Table 3). However, most of them
were carried out using arrays (157, 158, 167, 170-172) and the
majority focused on European populations (157, 163, 170-172)
and adults (157, 163, 171, 172, 175). Only three of them explored
differential gene expression in children with asthma (158, 167,
170).

The largest transcriptomic study of childhood asthma
performed in the last 2 years explored array-based gene
expression levels of 133 asthma patients and 11 healthy controls
of Asian ancestry (167) (Supplementary Table 3). RNA was
extracted from a mixed population of T cells that were isolated
from peripheral blood (167). Yeh et al. classified asthma patients
into three groups based on 2,048 genes differentially expressed
in immune cells. These groups showed distinct inflammatory
profiles, including one that clustered the patients with higher
neutrophil count and the poorest treatment control, suggesting
that these could correspond to those patients with the most
severe asthma status. When this group was compared with
asthma patients included in other groups, 163 genes were
found to be upregulated. Most of these genes encoded proteins
involved in glucocorticoid signaling pathway and the immune
response, suggesting that this could be an accurate method to
classify asthma patients based on transcriptomic data (167).
In transcriptomic studies of adulthood asthma, solid or liquid
airway samples are frequently used such as, sputum or lung
tissues (178, 179). However, clinical procedures to obtain these
samples are quite invasive and are especially impractical in
children (167). For this reason, peripheral blood has been
regarded as the most suitable sample for the studies in children
(23, 167).

Asthma diagnosis has classically relied just on conventional
clinical guidelines and biomarkers for over decades (180),
which are considered very inaccurate due to the wide variety
of molecular mechanisms underlying the different asthma
phenotypes (181, 182). Is in this respect where integrative
approaches that combine complete clinical data and the
omics sources could contribute to better characterize the
biological processes underlying asthma pathophysiology
(182,183), ultimately helping to define asthma subtypes
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and to improve the prediction of severity and treatment
response.

Multiomics approaches, which incorporate information from
different omics levels, have been suggested as a promising
strategy to fulfill that purpose (144) as they show an increased
predictive capacity (166, 184). Five multiomics studies of asthma
and related traits have been performed since 2016. Most of
them have combined only a few omics levels (166, 185-188)
(Supplementary Table 3).

Forno et al. conducted the largest multiomics study of
asthma to date (186). They proposed a novel vertical approach
to combine data from different omics levels (genomics,
epigenomics, transcriptomics, and proteomics) with clinical
information available for 1,127 Latino/Hispanic children,
including 618 asthma patients and 509 children without
asthma (Supplementary Table 3). Expression of 1,645 genes was
associated with cytokine levels in blood, revealing the enrichment
of the cytokine signaling pathway. From the 269 genes involved
in this pathway, 41 were significantly associated with more than
two asthma intermediate phenotypes. As a result, this list was
reduced to the IL5RA gene, which was found to be the most
significant association at the following steps (186). In fact, several
transcription factors previously associated with pulmonary
diseases showed evidence of association with IL5RA (189-191),
suggesting that these could be involved in its signaling pathway.
Furthermore, low plasma levels of IL-5Ra were found in children
with asthma exacerbations, whereas children with earlier age of
asthma onset showed increased levels of IL-5Ra, providing firm
evidence of implication of IL5RA on asthma (186).

Studies as this one suggests that vertical approaches could be
a suitable strategy to perform integrative multiomics studies of
asthma and even other diseases. However, further validation in
independent populations and other complex diseases is needed
to confirm the applicability of this method (192). In this respect,
a few omics studies of asthma treatment been performed to
date, opening an opportunity to identify novel markers that
could be applied in the design of precision medicine approaches
in asthma and novel therapeutic strategies (67, 193). Although
omics approaches have promisingly broken new ground in
asthma research, translation into the clinic is still very challenging
due to the large amount of information that is obtained.

Unexplored Genetic Variation in Asthma
Exploring non-coding variation has been also proposed as a
promising strategy to disentangle the genetic basis of complex
diseases (114) such as, microRNAs (miRNAs). These are short,
non-coding and single-strand RNA molecules that interact with
different genomic elements and regulate gene expression at
transcriptional level (148, 184, 194). Interestingly, these are
involved in the regulation of the stability of immune cells and
the intensity of inflammation (194). In fact, miRNAs have been
proposed as potential non-invasive asthma biomarkers that could
be used for asthma diagnosis (195, 196). However, although some
authors have suggested the implication of miRNAs on asthma
susceptibility, severity, and exacerbations (195, 197, 198), there
is a lack of studies that have extensively evaluated their role in
asthma (197) and further studies are needed (199).
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Structural variation, including copy number variations
(CNVs), has been proposed to account for part of the missing
heritability of complex traits (114, 200). These involve large
chromosomal segments such as, duplications or deletions with
consequences on regulation of gene expression (201). It has been
reported that CNVs comprise 2% of the total genetic variation
(202) with effects on approximately 12% of the human genome
(203). This type of variation is enriched within protein-coding
genes with functions related to immune response, suggesting
its implication on disorders with a significant immunological
component such as, asthma (204, 205). Although structural
variation has been implicated on asthma, these is an insufficient
number of studies to date (206). Some have found strong
evidence of association of CNVs with asthma susceptibility (206,
207). Although this type of variation might contribute to an
accumulation of mutations and allergic sensitization, leading to
an increase of asthma susceptibility, CNVs do not seem to be the
initial trigger of asthma development (208).

A substantial proportion of the genetic risk for common
diseases could also be explained by variants that are at
low frequency in the population (209, 210). The rarer the
variant the more likely is for the variant to be population-
specific (209, 210). Besides, the pathogenic potential of variants
tends to accumulate in the lower range of allele frequency.
Therefore, rare variants are more likely to be more structured
in populations and to have larger effects on the disease (128,
209). As a corollary, rare variants will be underrepresented
in reference datasets and, therefore, remain undetected by
traditional GWAS. With this scenario in mind, many rare
variants with large effects may be contributing to asthma and
allergic diseases (128, 209, 211). However, their study will
be only available for now applying sequencing-based methods
instead of genotyping arrays. Irrespective of this, endogamous
populations are especially appropriate to study the role of rare
and low-frequency variation in asthma (210, 212) because rare
pathogenic variants are predicted to increase their frequency in
these populations (213, 214). Despite this, recent studies have
also demonstrated the role of rare variants on recently admixed
populations (209), whose inherent characteristics also increase
the possibilities to uncover the contribution of rare and low-
frequency variants on asthma (215).

Predicted loss-of-function (pLoF) variants, which are likely
involved in disrupting protein-coding genes, show significant
scientific and clinical interest due to their utility for clinical
interpretation of sequencing data. In fact, pLoF variants have
been suggested to allow direct identification of causal genes
(216) and provide direct mechanistic implications of association
effects (217). Although this type of variation has been extensively
unexplored for over decades (218), Emdin et al. have recently
revealed the potential role of these variants in asthma (217).
They found evidence of association of pLoF variants located
at well-known IL33 and GSDMB asthma loci with lower risk
of both asthma and allergic rhinitis (217). Interestingly, similar
results have been found for protein-truncating variants in IL33
and GSDMB (219). These have been predicted to shorten the
coding sequence by inducing loss or gain-of-function effects
(220). These findings also suggested that exploration of either

Advances in Genomics of Asthma

pLoFs or protein-truncating variants could be another powerful
tool for the identification of novel therapies for asthma (217, 219).

As mentioned, the main reason for the scarce evaluation of
these types of genetic variation in asthma could be attributed to
the fact that research strategies on asthma genetics have focused
on using SNP genotyping platforms, which are suboptimal for
inferring CNVs, and do not capture rare or pLoF variants (23,
29, 114, 125), as these would be optimally detected by means of
sequencing approaches. Given that simultaneous sequencing of
millions of small DNA fragments is currently possible at great
speed and relatively low cost thanks to large improvements in
next-generation sequencing (NGS) technologies (221, 222), the
interest on the impact of these types of genetic variation in
asthma will continue to rise.

Estimation of Polygenic Risk Scores

Another example of the large efforts to try to accelerate the
progression toward precision medicine in complex traits is an
emerging approach that takes GWAS results as the start point.
This consists of stratification of the whole population based on
estimates of individual’s genetic disease susceptibility measured
as polygenic risk scores (PRSs) (223). Just like other complex
diseases, the genetic architecture of asthma is polygenic, where
many genes contribute to disease development (224). Hence,
the overall disease risk could be considered as the result of
combined effects driven by common low-risk and rare large-
risk variants (225). PRSs are the result of summing up risk
alleles from thousand variants revealed by the GWAS (226). Even
though most common variants show small effects, combining
their effects could explain a significant proportion of the disease
variability or at least allow classifying patients into discrete
subgroups based on different levels of probabilistic disease risk
(223, 226, 227).

Although multilocus profiles of genetic risks for asthma
have been constructed using small sets of variants (101),
large evaluations of PRSs are lacking for asthma. Nevertheless,
previous studies that focused on other complex diseases (228-
236) suggest that this approach could be fruitful for asthma. For
instance, Khera et al. recently estimated PRSs for five common
disorders with major public health impact, including coronary
artery disease (236). They found 20-fold greater coronary artery
disease risk using a PRSs involving many genetic variants than
previous studies based on biomarkers or the mutation panels
traditionally used in the clinical practice (236).

Uncountable utilities of PRSs have been demonstrated for
the study of common diseases, suggesting its plausibility in a
healthcare scenario (227). In fact, it has been proposed that
PRS estimation could facilitate the development of accurate
preventive, diagnostic and therapeutic strategies (223, 227, 236).
Moreover, given the previous evidence of genetic overlap among
different diseases (35, 45, 49, 103, 227, 237), an evaluation of
individual risks could be assessed simultaneously for multiple
traits at a time. This would potentiate the implementation of
common therapeutic strategies for different diseases (227, 236).
For all these reasons, calculation of PRS has been considered
as a feasible approach to translate asthma research findings into
healthcare practice for early disease detection (227).
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There are many technical, economic, and sociopolitical
barriers that should be overcome for the use of PRSs into clinical
practice. By one hand, physicians would need additional training
to correctly interpret and communicate PRSs to the patients
(227). On the other hand, most current PRS estimates are based
on loci that were mapped using designs with an overwhelming
number of European patients. Therefore, their generalizability in
populations of non-European ancestries are questionable (223,
236, 238) due to the large differences in terms of effect sizes,
allele frequencies and linkage disequilibrium patterns. Besides
this, most PRSs have been estimated in adults. Therefore, an
evaluation of their usefulness in other age groups will be needed.

For asthma, the major limitation of PRSs is related to the
reduced proportion of heritability explained by the loci identified
to date. Given that PRS is a quantitative measure of the individual
genetic risk, the more genetic variants are incorporated into
the predictive disease risk model, the better the individuals
are stratified into the risk subgroups (226). In this scenario,
some studies suggest that whole-genome prediction models may
account for the unknown genetic risks and, therefore, be able to
improve the capacity to predict disease susceptibility, outcomes
and treatment response, where the contribution of rare and
low-frequency variants will be particularly relevant (223, 239).

On these terms, complex diseases could be comparable to
rare disorders, where rare variants with large effect sizes provide
disease risk in a small proportion of the population (127, 240).
Large-scale sequencing studies will be required to further assess
this idea (226, 240).

FUTURE PERSPECTIVES

Despite the large insight provided by GWAS and the admixture
mapping scans during the last decades, it remains a large
proportion of the missing heritability yet to be ascertained for
asthma and related traits (22, 23, 125-127). The future of genetic
research in asthma will be driven by NGS approaches, which are
expected to significantly increase our knowledge of many other
complex diseases (114, 126, 241).

The use of NGS technologies in pulmonary diseases is
still emerging (242-246). More specifically, only a few asthma
genetics studies have used NGS technologies (242, 243, 246)
and large consortia studies are underway (247, 248). Because
of its prohibitive costs for large population studies, several
strategies have been proposed, such as sequencing the subjects
from the extremes of the phenotype distribution (245, 246, 249)
or the families where multiple individuals affected (250). The
combination of NGS with conventional GWAS approaches has
been suggested as another promising strategy (251).

Although the limited knowledge of genetic factors involved
in asthma available to date hampers our current capacity to
predict disease progression and treatment response (22, 23, 125),
the use of genetic information to develop novel therapeutic
targets is plausible. For instance, DeBoewe et al. recently
found the association of protein-truncating variants with asthma
located within widely known asthma susceptibility loci, such
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as IL33 or GSDMB. This reinforced the evidence suggesting
the capacity of the genetic research to find potential asthma
therapeutic targets. In fact, as a result of GWAS findings, several
drugs targeting IL6R, IL-33, and TSLP are in development
or are being evaluated in ongoing clinical trials investigating
their efficacy to treat asthma and allergic diseases (22, 252,
253).

CONCLUSIONS

Our knowledge of asthma genetics has been greatly improved
over the last decade because of GWAS, revealing a number
of novel and firm common risk factors with small effects that
overall explain a limited proportion of asthma heritability.
Nonetheless, the improvements in high-throughput sequencing
technologies and their anticipated cost reductions have the
promise to accelerate the transition of this knowledge into the
clinical practice and to progressively redirect the field toward an
integrative multiomics perspective.
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Chapter 1

Table 82. Summary results of the meta-analysis of asthma and allergic diseases published between 2016 and 2018.

Phenotypes SNP regitgﬁ . Position® Nearest gene(s) EH:I‘: OR ¢d p-value ¥ Reference
rs12743520 1p22 93037112 PIGXT c 0.93¢ 3.83x108e
rs301805 1p36 8481016 RERE ¢ G 0.96¢ 6.43 x 109¢
rs742230 1p36 25251424 RUNX3¢ A 0.96 ¢ 1.02 x 108¢
rs61816766 1921 152319572 FLG-AS1 T 114 463 x1012¢
rs61815704 1921 152893891 IVL-SPRR2E' Cc 1.14¢ 5.16 x 109¢
rs1214598 1924 167426424 RP11-104L21.21 G 0.95¢ 514 x 10"
rs10174949 2p25 8442248 LINC00299 ¢ G 0.94¢ 1.70 x 10-16¢
rs72823641 2912 102936159 IL1RL1 T 0.89° 1.58x10%e
rs34290285 2q37 242698640 D2HGDH ¢ G 0.93® 517 x107"e
rs4916533 3q29 196373582 LRRC33f c 0.93¢ 1.66 x 108°
rs28393318 4p14 38784267 TLR10 A 0.92¢ 214 x1079¢
rs56267605 4927 123363109 ADAD1-IL2f A 1.05¢ 256 x 1012¢
rs6881270 5p13 35879095 IL7R C 0.91e  1.53x10"4e
rs7705653 5q22 110142816 TSLP A 114 1.12x101%¢
rs1837253 5g22 110401872 TSLP C 093¢ 4.38x102¢
rs2548992 5q31 131808668 C5orf56 ¢ G 1.10¢ 4.54 x 10-10¢e
rs2706362 531 131925187 RADS0 T 1.06° 3.75x10"e
rs10074523 5q31 132060583 KIF3A A 1.10® 237 x100e
Asthma/hay 59273374  6p21 32626614 HLA-DQB1-AS1 G 0.84° 7.87 x 10%e
fever/eczema/ [
thinitis rs6461503  7p21 20560996 ABCBS5' c 1.05¢  3.19x1010¢
rs2136016 8g21 81300681 TPD52-ZBTB10 A 1.09¢ 2.11x1079%¢
rs9775039 9p24 6177453 IL33 G 1.18¢ 442 x102e
rs2169282 9p24 6350235 TPD52L3f G 1.09¢ 1.80x1010¢
rs10795656 10p14 8595839 GATA3-CELF2 G 1.05¢ 4.07 x 10-10¢e
rs12413578 10p14 9049253 SLC7A10f C 0.91¢ 1.09 x 10-14¢
rs61839660 10p15 6094697 IL2RA 8 c 112 230x10"e
rs7936070 11913 76293527 LRRC32 G 1.08° 2.81x10%e
rs659529 11923 111436896 LAYN A 095° 6.03x10"e
rs10876864 12913 56401085 SUoXf A 1.05¢  1.41x1013e
rs1059513 12913 57489709 STAT69 T 0.92¢ 7.65x10"3¢
rs8008961 14924 68752643 RAD51B¢ c 1.05¢ 1.24 x 108¢
rs56062135 15922 67455630 SMAD3 ¢ C 1.16¢ 1.56 x 10-22¢
rs36045143  16p13 11224966 CLEC16A A 093¢ 1.83x1021e
rs869402 17912 38068043 GSDMB ¢ T 1.12¢  415x107'7¢
rs9911533 17q21 38775476 SMARCET T 0.92¢ 9.70x1078e
rs10414065 19q13 33721455 SLC7A10-CEBPA c 091e 263x1070¢
rs2766664 20913 52171241 RP4-724E16.21 G 1.08¢ 8.07 x 10 e
rs3208007 20913 62322288 RTEL1?9 C 0.95¢ 3.22 x 1010
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Chapter 1

Table S2 (continuation). Summary results of the meta-analysis of asthma and allergic diseases published between 2016 and

2018.

Phenotypes SNP . egihorr-l . Position® Nearest gene(s) I::T:Ic;t OR%4 p-value Reference
rs10883723 1p34 104225832 C100rf95-ACTR1A C 1.03 1.60 x 108
rs10033073 1p36 4775401 EVI5® G 1.04 1.20x 10
rs10876864 1p36 56401085 SUOX-IKZF4 G 1.05 1.40x10"

rs1057258 1p36 234115629 INPP5D C 1.05 1.40x1070
rs10174949 1921 8442248 LINC00299 9 G 1.07  7.30x10%
rs10414065 1921 33721455 SLC7A10-CEBPAT o} 110 6.10x 1078

rs1048990 1921 35761675 PSMAG6 G 1.04 1.00 x 108
rs10865050 1921 102941311 IL18R1 G 113  7.00 x 1041
rs10663129 1921 141321836 RASA2f ACT 1.04  1.10x10"
rs10486391 1923 20376018 ITGB8 A 1.03 6.80x 10°
rs10519067 1924 61068347 RORA G 1.06 9.30x10"
rs10068717 1924 141494934 NDFIP1 T 1.04 4.80x107

rs1064213 1925 198950240 PLCL1 G 1.04 540x1072
rs10760123 1942 123650534 PHF19-TRAF11 T 1.03  520x10°
rs11255968 2pi14 8936162 GATA3-SFTA1P C 1.09 7.70 x 10°
rs10910095 2p25 2510755 TNFRSF14-FAM213Bf G 1.04 2.70x 108
rs11169225 2912 50345671 AQP2f A 1.05 1.20 x 10-11
rs11204896 2q12 151796742 RORC C 1.06 240x10"
rs111914382 2q13 38097001 FOXA1-TTC6 TG 1.04 8.10 x 10°
Asthmalhay rs112401631  2q13 38764524 CCR7-SMARCE1 A 126 2.20x10%
fever/eczema  rs1143633 2913 113590467 IL1B o} 1.03  1.70x 1010 [2]
rs11464691 2q22 38770641 CCR7-SMARCE1 TA 1.05 1.40x 102
rs1102705 2933 172700868 FASLG-TNFSF18 G 1.06  3.10x 1010
rs11236814 2q36 76343428 WNT11-LRRC32 A 1.07 4.00x 10
rs11255753 2q37 8605553 GATAS3-SFTA1P T 1.04 2.00x 10"
rs10947428 2q37 33647058 ITPR3 C 1.05 3.50x10"
rs12470864 3p13 102926362 IL1RL2-IL18R1 A 1.06 4.20x10%
rs12551834 3p22 131613191 C9orf114-LRRCB8A G 1.06 3.00 x 10
rs11652139 3q12 38149033 PSMD3 A 1.05 7.50x 102
rs12596613 3q13 11491007 RMI2-LITAF C 1.03 6.10x10°
rs11644510 3923 11277358 CLEC16A-RMI2 C 1.07 6.10x 1038
rs12413578 3q27 9049253 GATA3-SFTA1P C 110 1.30x 10%
rs12365699 3q27 118743286 DDX6-CXCRS5 G 1.06 5.10x 10"
rs12440045 3q28 41782684 RTF1-ITPKA' C 1.03 4.90x 101
rs12123821 3928 152179152 RPTN-HRNR T 1.1 6.80 x 1017
rs13088318 3929 101242751 FAM172BP-TRMT10C A 1.03  8.60x10°
rs144829310 4p14 6208030 RANBP6-IL33 T 1.09 1.20x 10%
rs13153019 4p16 176782218 LMAN2-RGS141 C 1.04 1.30 x 108
rs13403656 4q24 112269127 BCL2L11-ANAPC1T A 1.05 2.20x 108

rs1444789 4q27 9064361 GATA3-SFTA1P C 1.07 1.50x 1022
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Table S2 (continuation). Summary results of the meta-analysis of asthma and allergic diseases published between 2016 and

2018.

Phenotypes SNP . eg:::ﬁ . Position® Nearest gene(s) iﬁ:@t OR%4 p-value? Reference
rs13384448  4q27 228707862 CCL20-DAWT T 1.04  2.80x 102
rs227275 5p13 103593898 MANBA * c 103 3.70x 10"
rs2228145  5p13 154426970 IL6R c 1.04  430x 1073
rs16922576  5p15 5064193 JAK2 c 1.04  3.20x 10°°
rs2507978  5p21 31351664 HLA-B-MICA G 1.04  1.20x 1070
rs17664743  5q22 50253897 C7orf72-IKZF1 1 A 1.04  6.20x 107
rs2104047  5q22 68754417 RAD51B¢ T 1.04 160 x 1072
rs2070001  5q22 161185058  NDUFS2-FCER1G T 1.04  1.30x 107
rs17607589  5q22 188402586 LPP c 1.05  1.80x 10-4
rs1814576  5q23 110159879  SLC25A46-TSLP c 112 1.40x 102
rs2025758 5931 8841669 GATA3-SFTATP T 1.04  470x 1075
rs2134814  5q31 90987512 BACH2 c 1.05  1.70x 1077
rs250308 5q31 118684297 TNFAIP8* T 103 4.00x 10°
rs150254607  5g31 123454110 IL2-IL21 ATAT 108 4.60x 1074
rs2030030  5q31 187793833 BCL6-LPP-AS?2 T 1.04  1.00 x 10*
rs1837253  5q34 110401872  SLC25A46-TSLP c 1.07 160 x 10°"
rs16003574 5935 14610309 FAM105A G 107  1.40x 1072
rs2854001  6p21 31323012 HLA-B A 1.06  120x107®
rs28895016  6p21 31574525 NCR3-AIF1 c 110 9.40x 10

Asthma/hay  rs2893907  6p21 64382359 ZNF365 c 1.03  1.80 x 10° 2]

feverleczema 910162 6p21 150000345  MIR3142-MIRT46A G 103 2.50x10°
rs2088277  6p21 167431352 CD247 c 1.04  4.00x 1074
rs34004019  6p22 32626403 HLA-DQA7-HLA-DQB1 A 110 3.80 x 102
rs2766678  6q15 52208356 ZNF217 G 1.06  5.00x 10®
rs34200285  6q21 242698640 D2HGDH?® G 1.08  4.00x 10
rs301806 6922 8482078 RERES T 1.05  1.80 x 100
rs3001307  6q23 131989136 RAD50-IL13 G 1.06  3.60 x 1021
rs343478 6925 6051399 RANBP6-IL33 G 1.03 2,60 x 10
rs3007670  6q27 33046752 HLA-DPA1 G 1.06  7.70x 102
rs35469349  7p12 128294709 PTPRK' A 1.04  2.30 x 10°
rs4000390  7p15 173146921  TNFSF18-TNFSF4 A 1.05  1.30x 10
rs3787184  7p21 50157837 NFATC2 A 1.05  1.10x 1072
rs3540 7p21 91045408 IQGAP1 G 1.04  3.30x 10
rs3749833  7q11 131799626 C501f56 9 c 1.04  3.30 x 10"
rsd206977  8q21 77018542 GSAP' c 1.06  2.10x 1072
rsd145717  8q24 123316076 ADAD1 T 1.06  9.20x 1027
rs4747846  9p24 6074451 IL2RA ¢ c 1.04  1.00x 10
rsd801001  9p24 52336175 DYNAP-RAB27B' T 103 5.90x 10°
rs479844 9p24 65551957 AP5B1-OVOL1 G 1.04  160x 1073
rs4574025 9933 60009814 TNFRSF11A T 103 6.80 x 107
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Table S2 (continuation). Summary results of the meta-analysis of asthma and allergic diseases published between 2016 and

2018.

Phenotypes SNP r e(g:ill:rﬁ . Position® Nearest gene(s) grlf::;t OR ¢4 p-value® Reference
rs4671601 9q34 64836267 LOC339807 C 1.04 8.80 x 10°
rs4043704  10p14 41173408 FOXO1t c 104  T7.20x 1072
rsb5758343 10p14 41816652 TEF-TOB2 A 1.05 4.80 x 104
rs55726902 10p14 48196982 HDACT7f G 1.05 2.60x 1078
rs55646091 10p14 76299431 WNT11-LRRC32 A 1.18 2.30 x 1040
rs5029937 10p14 138195151 TNFAIP3 G 1.08 2.40x10%
rs519973  10p14 187633268 BCL6-LPP-AS2 A 103  4.50x 1070
rs5743618 10p15 38798648 TLR1 C 1.10 3.30 x 1058
rsb6375023 10p15 67448363 SMAD3 ¢ A 1.07 8.20 x 1032
rs56129466 10921 128158189 KIRREL3-AS3-ETS1 A 1.05 1.90 x 1013
rs4848612 10924 112388538 BCL2L11-ANAPC1! A 1.04 2.30x 1010
rs6461503  11q13 20560906 ITGB8-ABCBS T 104  170x 1074
rs61192126 11913 72394852 LINCO0870-RYBP! T 1.04 8.90 x 10"
rs59593577 1113 95425526 SESN3-FAM768 C 105  160x 10
rs60946162 11913 188133336 LPP T 1.04 8.60 x 1015
rs61839660 11921 6094697 IL2RA 9 T 108  4.40x 1070
rs6011033 11923 62322699 RTEL1 9 G 105  3.50x 10
rs63406760 11923 123742692 C120rf65-CDK2AP1 T 1.05 3.00x 1013
rs61816761  11q24 152285861 FLG A 1922  T7.40x 102

Asthmalhay  rs6776757  12q13 33069091 GLB1 G 103 3.10x1070 2]

feverleczema 1050513 12q13 57489709 STAT69 T 108  1.00x 102
rs6594499 12913 110470137 WDR36-CAMK4 C 1.08 4.60 x 1046
rs6489785  12q13 121363724  SPPL3-HNF1A-AS1' T 104  1.60x1075
rs6977955 12924 28156887 JAZF11 T 105  7.10x 107
rs6869502 12924 110166083 SLC25A46-TSLP T 1.08 6.40 x 1028
rs697852  12q24 226914734 ITPKB A 104  1.60x10°
rs6990534 13914 128814091 MYC A 1.04 6.40 x 1014
rs7130753 13922 111470567 LAYN-SIK2f c 1.05 7.00 x 10-1°
rs71368508 14913 4521473 SMTNL2-ALOX15¢f C 1.12 2.00x10°
rs7137828 14921 111932800 ATXN2? T 1.03 2.20 x 10710
rs7207591  14q24 40414862 STAT5B' A 104  1.40x10%°
rs72033857 14924 167390671 RNASET2-MIR39391 C 1.06 1.20 x 10°
rs7214661 14q32 43430696 MAP3K14-ARHGAP27 G 1.03 1.20x 108
rs73205303 15915 36467830 RUNX1T T A 1.04 7.90 x 1010
rs72782676 15q22 9032555 GATA3-SFTA1P Cc 1.30 3.20x 10"
rs74847330 15q22 143831599 KYNU-ARHGAP15f A 1.05 1.80 x 10°
rs740474 15926 140925362 DIAPH1 o 103  5.60x 10"
rs75557865  16p13 121652141 SLC15A21 G 103  1.60x10%®
rs7512552 16p13 150265704 C1orf54-MRPS21 C 1.03 1.40 x 10°°
rs7714574  17p13 40492655 DAB2-PTGER4 T 103 5.90x 101
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Table S2 (continuation). Summary results of the meta-analysis of asthma and allergic diseases published between 2016 and
2018.

Chr. Effect

Phenotypes SNP reglon ® Position®  Nearest gene(s) allele OR ¢4 p-value ® Reference

rs7936323 17912 76293758 WNT11-LRRC32 A 1.09 2.20x 108

rs760805 17921 25251923 RUNX3 ¢ T 1.04 6.40 x 1013

rs76167968 17921 35681738 SFPQ-ZMYM4 f T 1.06 1.30x 108

rs7717955 17921 35862841 IL7R C 1.07 9.10 x 1036

rs76081789 17921 44846426 SIK1f T 1.07 1.30 x 10

rs7824394 17921 81292599 MIR5708-ZBTB10 A 1.05 3.50 x 1020

rs80064395 17921 196372546 FBX045-CEP19 C 1.07 1.60 x 102

Asthma/hay 15921650 18q21 38069076 GSDMB ¢ A 1.06 5.70 x 1030 2]

feverleczema \cg48  18q21 131996500 IL13 A 107 1.50x 102
rs9259819 19913 29893575 HLA-J G 1.04 2.40x10°

rs9323612 20913 75968608 JDP2-BATFf A 1.03 8.60 x 10°

rs9372120 20913 106667535 ATGSf G 1.04 420x 10M

rs9383820 20913 157419508 ARID1B' C 1.04 1.20 x 108

rs9889262 21922 47398070 ZNF652 A 1.04 9.70 x 1016

rs9573092 21922 73627275 PIBF1-KLF5f A 1.03 2.70x 108

rs9989163 22913 103235012 RCOR1-TRAF3f A 1.03 1.90 x 108

a Chromosomal region; ° Positions based on GRCh37/hg19 build; ¢ Odds ratio for the effect alleles; ¢ Association results of the meta-analysis;
¢ Association results of the discovery phase; ' Novel locus (no previous evidence of association with asthma); 9 Loci identified by both
studies.

1. Zhu Z, Lee PH, Chaffin MD, Chung W, Loh PR, Lu Q, et al. A genome-wide cross-trait analysis from UK Biobank highlights the shared
genetic  architecture of asthma and allergic diseases. Nat Genet 2018;50:857-64.doi:10.1038/s41588-018-0121-0.
2. Ferreira MA, Vonk JM, Baurecht H, Marenholz I, Tian C, Hoffman JD, et al. Shared genetic origin of asthma, hay fever and eczema
elucidates allergic disease biology. Nat Genet 2017;49:1752-7.doi:10.1038/ng.3985.
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3.2. Genome-wide association
study of asthma exacerbations
despite ICS use in admixed
populations




Chapter 2

ICS are the most effective and commonly prescribed medication to control asthma symptoms and
prevent exacerbations. Nonetheless, high variability in the response to this medication has been described
among individuals and populations, evidencing the important contribution of the individual’s genetic
composition to the response. To date, only a few genetic markers of ICS response have been identified and
mostly in European and Asian populations. In this Chapter, a GWAS of asthma exacerbations was
performed in 1,347 admixed (Hispanic/Latino and African American) children and youth treated with ICS.
Genetic variants shared among populations were explored through the validation of suggestive associations
in 1,697 children and youth with asthma of European ancestry. Moreover, loci of ICS response identified by

previous GWAS of ICS response were followed up for replication in the admixed populations.

A total of 15 variants were suggestively associated with asthma exacerbations despite ICS use in
asthma patients of admixed ancestry (p<5x10°%). From these, one variant in the intergenic region of
APOBEC3B-APOBEC3C showed nominal evidence of replication with asthma exacerbations in European
asthma patients treated with ICS. This association was also validated with the improvement in lung function
after six weeks of ICS therapy in one of the studies in Europeans analyzed. Additionally, the intergenic
region of LAMBTL4 and ARHGAP28, a potential locus of ICS response identified by previous GWAS, was
found associated with asthma exacerbations despite ICS treatment in Hispanic/Latino and African American
children and young adults. This is one of the few studies evaluating the genetic factors involved in ICS
response in asthma patients from admixed populations, whose results suggest the existence of genetic

variation shared among different populations.

This Chapter was published in Clinical and Experimental Allergy in 2019 as an Original Article entitled
‘Genome-wide association study of inhaled corticosteroid response in admixed children with asthma’
(doi.org/10.1111/cea.13354). This article is reproduced under the terms of John Wiley and Sons license
(number 4913690109698).
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Summary

Background: Inhaled corticosteroids (ICS) are the most widely prescribed and effec-
tive medication to control asthma symptoms and exacerbations. However, many chil-
dren still have asthma exacerbations despite treatment, particularly in admixed
populations, such as Puerto Ricans and African Americans. A few genome-wide asso-
ciation studies (GWAS) have been performed in European and Asian populations, and
they have demonstrated the importance of the genetic component in ICS response.
Objective: We aimed to identify genetic variants associated with asthma exacerba-
tions in admixed children treated with ICS and to validate previous GWAS findings.
Methods: A meta-analysis of two GWAS of asthma exacerbations was performed in
1347 admixed children treated with ICS (Hispanics/Latinos and African Americans), analys-
ing 8.7 million genetic variants. Those with P < 5 x 10~° were followed up for replication
in 1697 asthmatic patients from six European studies. Associations of ICS response
described in published GWAS were followed up for replication in the admixed populations.
Results: A total of 15 independent variants were suggestively associated with
asthma exacerbations in admixed populations (P < 5 x 107%). One of them, located
in the intergenic region of APOBEC3B and APOBEC3C, showed evidence of replica-
tion in Europeans (rs5995653, P = 7.52 x 1073 and was also associated with
change in lung function after treatment with ICS (P = 4.91 x 10~3). Additionally, the
reported association of the L3MBTL4-ARHGAP28 genomic region was confirmed in
admixed populations, although a different variant was identified.

Conclusions and clinical relevance: This study revealed the novel association of
APOBEC3B and APOBEC3C with asthma exacerbations in children treated with ICS
and replicated previously identified genomic regions. This contributes to the current
knowledge about the multiple genetic markers determining responsiveness to ICS
which could lead in the future the clinical identification of those asthma patients

who are not able to respond to such treatment.

KEYWORDS
African American, childhood asthma, exacerbations, Latino, pharmacogenomics

61



Chapter 2

HERNANDEZ-PACHECO kT AL

WILEY-

1 | INTRODUCTION

Asthma is the most common chronic condition in children and young
adults. In addition to the direct impact of the illness on the individual,
severe exacerbations of asthma generate considerable economic costs
to healthcare systems, as well as work and/or school absenteeism.!

Inhaled corticosteroids (ICS) are the most effective and com-
monly prescribed medications for symptom control and prevention
of severe asthma exacerbations.! While most children using ICS
experience a decrease in their asthma symptoms, 30%-40% will con-
tinue to experience exacerbations, and of these non-responders,
10%-15% may even have an increase in their exacerbations.? High
variability in ICS response has been described also among ethnici-
ties.? In addition to high asthma morbidity, exacerbations rates and
mortality, admixed populations have reduced ICS response.* These
strong ethnic differences suggest a substantial hereditary component
in the ICS response.® In fact, approximately 40%-60% of the varia-
tion in ICS response may be due to genetic factors.®

For several decades, pharmacogenetic studies have utilized candi-
date-gene approaches, which only evaluate a small portion of the
genetic variation. More recently, these have evolved towards hypothe-
sis-free approaches by implementing genome-wide association studies
(GWAS).” Eight GWAS of ICS response have been performed to date®
15 revealing an association between 14 genomic regions and this trait.

However, the polymorphisms identified by GWAS to date only
represent a small proportion of the heritability of ICS response, and
hence, it is not possible to predict an individual's response to this
treatment.'® The design of the GWAS performed to date may be the
main reason, where analyses are statistically underpowered to detect
genetic associations. Most GWAS of ICS response have included a rel-
atively small number of individuals (N < 1000) of primarily European
and, to a lesser extent, Asian ancestry, with poor representation of
admixed populations,* which include Hispanics/Latinos and African
Americans. However, the increased asthma prevalence among
admixed individuals with African ancestry, such as Puerto Ricans and
African Americans, and the greater genetic diversity and specific
genetic background of these populations present a unique opportunity
to study the response to ICS treatment in asthma.>*

We hypothesized that a large pharmacogenetic study of ICS
response in admixed individuals with asthma that exhaustively
explores the association of genetic variants across the genome could
reveal novel genes associated with this trait. We also attempted
to evaluate whether the associations described in GWAS performed in
European and Asian populations could be generalized to admixed
populations.

2 | METHODS

2.1 | Study populations

A total of eight independent studies participating in the Pharmacoge-
nomics in Childhood of Asthma (PiCA) consortium 7 were analysed
as part of discovery and replication phases of this meta-GWAS.

62

Individuals from two admixed populations were included in the dis-
covery phase: the Genes-environments & Admixture in Latino Ameri-
(GALA

Asthma, Genes and Environments (SAGE). Samples from six Euro-

cans Study I) and the Study of African Americans,
pean PiCA studies were used for replication. All studies have been
approved by their local institutional review boards, and all partici-
pants/parents provided written informed assent and consent, respec-
tively. GALA Il and SAGE were approved by the Human Research
Protection Program Institutional Review Board of the University of
California, San Francisco (San Francisco, United States) (ethics
approval numbers: 217802 and 210362, respectively). PACMAN was
approved by the Medical Ethics Committee of the University Medi-
cal Centre Utrecht (Utrecht, the Netherlands). The Tayside Commit-
tee on Medical Research Ethics (Dundee, United Kingdom) approved
BREATHE. PASS was approved by the Liverpool Paediatric Research
Ethics Committee (Liverpool, United Kingdom) (reference number:
08/H1002/56). SLOVENIA was approved by the Slovenian National
Medical ESTATe was
approved by the Medische Ethische Toetsings Commissie, Erasmus
Medical Center (Rotterdam, the Netherlands) (ethics approval num-
ber: MEC-2011-474). followMAGICS was approved by the Ethik-
Kommission der Bayerischen Landesérztekammer (Munich, Germany)

Ethics Committee (Ljubljana, Slovenia).

(ethics reference number: 01218).

2.1.1 | Discovery phase

Patients from the GALA Il and SAGE studies with a physician diag-
nosis of asthma who reported having active symptoms and asthma
medication use within the last year were analysed in the discovery
phase. These are two independent studies focused on two different
racial/ethnic groups based on the self-identified ethnicity of the four
grandparents of each subject: Hispanics/Latinos (GALA 1) and African
Americans (SAGE). Both studies recruited unrelated children and
young adults, aged 8 to 21 years old, using the same protocol and
questionnaires from different areas in the United States. GALA Il
also recruited individuals in Puerto Rico.*®

Analyses were performed for a subset of 854 subjects from
GALA Il and 493 individuals from SAGE. Specifically, we assessed
self-reported ICS use, age, gender, genome-wide genotypic data 1%%°
and information regarding presence or absence of severe asthma
exacerbations, as defined by the European Respiratory Society (ERS)
and the American Thoracic Society (ATS).?* We examined exacerba-
tions that occurred during the 12 months preceding the study enrol-
ment (need to seek emergency asthma care, hospitalizations or the

administration of oral corticosteroids).

2.1.2 | Replication phase

Validation was carried out in European individuals from six indepen-
dent studies participating in the PiCA consortium: the follow-up
stage of the Multicenter Asthma Genetics in Childhood Study (fol-
lowMAGICS); the Pharmacogenetics of Adrenal Suppression study
(PASS); Pharmacogenetics of Asthma Medication in Children:
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Medication with Anti-inflammatory effects (PACMAN); Effectiveness
and Safety of Treatment with Asthma Therapy in Children (ESTATe);
BREATHE; and SLOVENIA studies. Details for each study are
described in the Supporting Information.

The use of ICS and availability of data related to the presence/
absence of asthma exacerbations during the previous 12 or
6 months were also applied as inclusion criteria for the individuals
from these studies analysed in the current study, whereas non-avail-
ability of data related to ICS use, asthma exacerbations, age, gender
and genotype data were considered as exclusion criteria. For those
studies without data related to the events included in the ATS/ERS
definition of asthma exacerbations, information regarding school
absences, unscheduled general practitioner (GP) or respiratory sys-

tem specialist visits was also considered.

2.2 | Genome-wide genotyping, genetic ancestry
assessment and imputation

Both GALA Il and SAGE samples were genotyped using the Axiom®™
LAT1 array (Affymetrix Inc.), and quality control (QC) procedures
were performed as described elsewhere.!”?° Genotyping of the sub-
jects included in the replication phase was performed on different
genotyping platforms, as described in previous publications (see Sup-
porting Information) (Table S1). In addition, four of the studies were
genotyped for the purposes of the PiCA consortium and their QC is
described in the Supporting Information.

Genetic ancestry was assessed by means of principal component
(PC) analysis with EIGENSOFT 6.14 for the studies included in both
discovery and replication phases.?? Quantitative global genetic
ancestry estimates were also obtained for the populations included
in the discovery phase. An unsupervised model was applied using
ADMIXTURE,?® assuming the European (CEU), African (YRI) and
Native American (NAM) as the parental populations for the Hispan-
ics/Latinos, and YRI and CEU for African Americans. For that, refer-
ence haplotypes from CEU and YRI populations from the HapMap
Project Phase Ill 2* were used. Moreover, haplotypes from individu-
als genotyped with Axiom™® LAT1 array (Affymetrix Inc.) were consid-
ered as reference for NAM population, as described elsewhere.'?2°

In all the studies, imputation was carried out by means of the
Michigan Imputation Server (https://imputationserver.sph.umich.edu)
using the second release of the Haplotype Reference Consortium
(HRC) (r1.1 2016) as reference panel.?® Haplotype reconstruction
and imputation were performed with SHAPEIT v2.r790 27 and Mini-

mac3,2® respectively.

2.3 | Association testing and meta-analysis in the
discovery phase

GWAS analyses were carried out separately for GALA Il and SAGE.
Logistic regressions were used to evaluate the association between
genetic variants and ICS response by means of the binary Wald test
implemented in EPACTS 3.2.6.2° The presence or absence of any
asthma exacerbations during the last 12 or é months in patients
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treated with ICS was considered as a measure of ICS response,
which was evaluated as a binary variable. Age, gender and the first
two PCs, obtained with EIGENSOFT 6.14,%% were included as covari-
ates in the regression models. The number of PCs included as covari-
ates was chosen based on the comparison of different models that
included up to 10 PCs, showing that results based on 2 PCs had the
best fit with the expected values under the null hypothesis of no
association.

Single nucleotide polymorphisms (SNPs) with a minor allele fre-
quency (MAF) > 1% and with imputation quality (Rsq) > 0.3 in GALA
Il and SAGE, and shared among both populations, were meta-ana-
lysed using METASOFT.*® Fixed-effects or random-effects models
were selected for each variant depending on absence or presence of
heterogeneity, respectively, which was assessed by means of the
Cochran Q test. A threshold of P-value <5 x 10°¢ was arbitrarily
set to select variants suggestively associated with asthma exacerba-
tions, since this threshold is commonly adopted in GWAS.31-3%
Among those variants, independent associations were detected by
means of logistic regression analyses conditioned on the most signifi-
cant SNP of each locus using R 3.4.3.3¢ This analysis provided a list
of independent variants that were followed up for replication.

24 | Association testing and meta-analysis in the
replication phase

Statistical analyses were performed following the same methodology
as in the discovery phase, except for the definition of asthma exacer-
bations available in each study and the number of PCs included as
covariates in the association analyses (Table S1). Evidence of
replication was considered for those SNPs that showed a combined P-
value < 0.05 in a meta-analysis of all the European studies and consis-
tent directions of effects in both discovery and validation populations.

2.5 | Association with ICS response measured as
change in FEV;

SNPs significantly associated with asthma exacerbations in both
admixed and European populations were evaluated for association
with the change in the forced expiratory volume in 1 second (FEV,)
after 6 weeks of treatment with ICS in 166 ICS users from the SLO-
VENIA study, the only cohort included in the analyses with this out-
come measured. This variable was dichotomized to define
responders and non-responders to ICS treatment using a cut-off of
>8% improvement of FEV4, which has been established as a good
predictor of asthma severity in children.®’ Logistic regression models
were applied including age, gender and the first two PCs as

covariates.

2.6 | Functional evaluation of variants associated
with ICS response

Functional annotation and evidence of significant expression quanti-
tative trait loci (eQTL) were searched with HaploReg v4.1%® based
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on data provided by the Encyclopedia of DNA Elements (ENCODE)
project®® This was performed for the SNP associated with ICS
response in admixed and European populations and those in high
linkage disequilibrium (LD) (r? > 0.9) according to African populations
from the 1000 Genomes Project (1KGP) data incorporated by Hap-
loReg v4.1. Gene expression was inspected using the Portal for the
Genotype-Tissue Expression (GTEx) “© and the Gene Expression
Atlas.** Moreover, evidence of association with enhancers was

searched using the multiple sources available from GeneHancer.*?

2.7 | Validation of previous associations in admixed
populations

Since previous GWAS of ICS response have focused on European

8-15

and Asian populations, we attempted to validate their results in

admixed populations. A total of 25 SNPs near or within 14 genes
declared as associated with ICS response 14
replication in GALA Il and SAGE.

Replication was attempted at the SNP level and also as genomic

were followed up for

region, the latter considering variants located within 100 kilobases
(kb) upstream or downstream from the gene where the variant was
located or from the two closest genes in case the variant was inter-
genic. Evidence of replication was considered for SNPs nominally
associated with ICS response (P < 0.05) that had the same direction
of the effect as the published GWAS. For the replication at level of
genomic region, a Bonferroni-like correction was applied to account
for the number of independent variants tested within each genomic
region, as estimated with empirical autocorrelations based on Mar-
kov chain Monte Carlo (MCMC) simulations. For this, an autocorrela-
tion matrix was obtained based on the -log;o P-value of each SNP
analysed using the effectiveSize function from the R package coda,*®
as described elsewhere** According to this, a Bonferroni-corrected
significance threshold was estimated for each genomic region with
a = 0.05/number of independent variants.

3 | RESULTS

3.1 | Characteristics of the study populations

The characteristics of the 1347 admixed asthmatic patients from
GALA Il and SAGE analysed in the discovery phase and the 1697
Europeans subjects included in the replication are shown in Table 1
and Table S1, respectively. In terms of estimates of global ancestry
in the admixed populations, Hispanics/Latinos had 13.6% African
ancestry, 51.5% European ancestry and 34.9% Native American
ancestry. In contrast, African Americans had 79.4% African admix-
ture and 20.6% European ancestry. Hispanics/Latinos reported a
higher proportion of asthma exacerbations in the 12 months preced-
ing study enrolment (66.4%) than African Americans (51.9%).
Although asthma exacerbations were differentially defined in the val-
idation populations, similar proportions were found across the dis-
covery and replication studies, except for PACMAN and SLOVENIA,
with values of 11.0% and 34.1%, respectively (Table S1).
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TABLE 1 Clinical and demographic characteristics of the admixed
populations analysed in the discovery phase

GALA Il (n = 854) SAGE (n = 493)
Gender (% male) 57.3 54.2
Mean age + SD (y) 121 + 3.2 135+ 34

Ethnicity Hispanic/Latino African American
Mean genetic ancestry (%)
African 13.6 794
European 51.5 20.6
Native American 34.9 NA
Asthma exacerbations in the 66.4 51.9
last 12 months (%)
Emergency asthma care (%) 56.6 43.2
OCS use (%) 402 29.4
Hospitalizations (%) 12.6 5.7

NA, not available; OCS, oral corticosteroids; SD, standard deviation.

3.2 | Discovery phase

The meta-analysis of the GALA Il and SAGE GWAS included 8.7
million SNPs that were shared among Hispanics/Latinos and Afri-
can Americans and had MAF > 1% and Rsq > 0.3. The Q-Q plots
of the association results for each individual study (Figure S1A
and Figure S1B) and those obtained after combining both admixed
populations did not reveal major genomic inflation due to popula-
tion stratification (Agc = 1.04, Figure S1C). Although the genome-
wide significant threshold (P-value < 5 x 1078) was not reached by
any of the variants, 27 SNPs with Rsq values ranging from 0.59
to 1.00 and located near or within 13 loci were suggestively asso-
ciated with asthma exacerbations despite the use of ICS (P-
value < 5 x 107%) in admixed children and young adults (Figure 1
and Table S2).

After performing pairwise regression models conditioned on the
most significant variant for each locus with at least two suggestive
associations, one independent variant was detected per locus, except
APOBEC3B-APOBEC3C and ANKRD30B, where two SNPs
remained significant after conditioning on each gene's most signifi-
cant variant (Table S3). As a result, 15 SNPs were identified as
independently associated with ICS response in admixed populations
(Table $3) and were followed up for replication.

for

3.3 | Replication phase

Of the 15 SNPs selected for replication in Europeans, 11 SNPs had
a MAF > 1% and Rsq > 0.3 (ranging from 0.36 to 1.00) in Euro-
peans and were forwarded for replication (Table 2). Of those,
rs5995653, located within the intergenic region of APOBEC3B and
APOBEC3C (Figure 2), showed evidence of nominal replication after
combining the European studies. To check that the association of
this SNP in the admixed populations was not confounded by unac-
counted components of ancestry, different regression models were

tested including estimates of genetic ancestry, different number of
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PCs or following the method described by Conomos et al,** which
provided similar results (Table S4). The direction of effect for this
SNP was the same in Europeans (OR for A allele: 0.76, 95% CI:
0.62-0.93, P = 7.52 x 1073 as in the admixed samples (OR for A
allele = 0.66, 95% Cl: 0.56-0.79, P=4.80x 107 (Table2). A
meta-analysis of this SNP across the two phases resulted in a sug-
gestive genome-wide significant association (OR for A allele = 0.70,
95% Cl: 0.61-0.81, P = 3.31 x 107, Figure 3).

3.4 | Association of rs5995653 with ICS response
measured as change in FEV,

The SNP rs5995653 was significantly associated with a positive
response to the ICS treatment in SLOVENIA, measured as an
increase in FEV; (OR for A allele = 2.16, 95% Cl: 1.26-3.70,
P =491 x 107%), which is concordant with the protective effect of
this SNP with asthma exacerbations in both discovery and validation
studies.

:
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3.5 | Insilico functional role of the novel
association detected

The experimental data provided by the ENCODE project show that
the SNP rs5995653 is located within a histone H3 lysine 4 mono-
methylation (H3K4mel) mark of an active gene enhancer and a
DNase hypersensitivity site in blood cells.?? This is concordant with
the GeneHancer evidence that APOBEC3B has been associated with
enhancers that regulate multiple transcription factor binding sites,
indicating its involvement in the regulation of gene expression in dif-
ferent cell types, including lung fibroblasts.*> Moreover, this variant
is also in high LD with several eQTL in blood cells associated with
the expression of APOBEC3A (rs9607601: P =1.80 x 107** and
rs5995654: P = 9.10 x 107'%), APOBEC3G (rs9607601: P = 0.003)
and CBX6 (rs9607601: P = 3.94 x 10~* and rs5995654: P = 4.00 x
1074383946 | addition, previous functional studies have evidenced
high levels of gene expression of both APOBEC3B and APOBEC3C in

pulmonary cells (GTEx).#%4%

TABLE 2 Association results for the suggestive SNPs followed up for replication in European populations

Admixed populations (n = 1347)

SNP Chr? Position® Nearest gene(s) A1/A2 Freq.®
rs11121611 1 6367219 ACOT7 GIT 0.201
rs35514893 6 15909525  DTNBP1-MYLIP TIC 0.020
rs4897302 6 123886231 TRDN T/IC 0.505
rs61585310 7 104006510 LHFPL3 GIT 0.796
57851998 9 126828514 LHX2-NEKé6 NG 0.191
rs2125362 11 86167136 ME3 NG 0.684
rs450789 13 33578233 KL G/A 0.334
rs12959468 18 15182381 ANKRD30B-ROCK1 AG 0.039
rs2278992 19 18095769  KCNN1 (o) 0.176
rs6001366 22 39399941  APOBEC3B-APOBEC3C T/C 0.079
rs5995653 22 39404249  APOBEC3B-APOBEC3C A/G 0.285

Al, Effect allele; A2, non-effect allele; Cl, confidence interval.
The significant replication result is shown in bold.
“Chromosome.

bPositions based on GRCh37/hg19 build.

“Frequency of the effect allele.

90dds ratio for the effect alleles (additive model).

European populations (n = 1697)

OR (95% CI)*  P-value Freq. OR(95% CI)®  P-value
0.55(0.43-0.70) 1.65x10™° 0062 097 (0.61-1.56) 0.247 ©
0.36 (0.23-0.55) 286 x10°° 0082 073(022-246) 0613
1.58 (1.31-1.91) 1.75x 107 0221 0.96 (0.81-1.13) 0.637
0.61 (0.49-0.75) 2.85x 107® 0.763 0.91 (0.74-1.11) 0.352
0.56(0.44-0.72) 3.97 x 10 0046 0.83(0.65-1.06) 0.132
1.31 (0.68-2.56) 3.53x 107°° 0750 0.97 (0.82-1.16) 0.764
0.64(0.53-0.77) 3.33x10% 0271 0.97 (0.83-1.15) 0.756
0.39 (0.26-0.58) 299 x 10 0077 1.39 (0.74-2.62) 0.309
0.59 (0.47-0.74) 376 x10™° 0151 1.00 (0.81-1.24) 0.991
047 (0.35-0.65) 253 x10°° 0064 1.00(0.72-1.38) 0.995
0.66 (0.56-0.79) 480 x 10°® 0508 0.76 (0.62-0.93) 7.52 x 102

“Random-effects model was applied since heterogeneity was found between admixed/European populations.
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FIGURE 2 Regional plot of association
results in the discovery phase for the
APOBEC3B-APOBEC3C intergenic region,
which represents a novel association with
ICS response. Statistical significance of
association results (-logig P-value) (y-axis) is
represented by chromosome position (x- “
axis) for each SNP as a dot. A diamond
represents the independent association
signal with evidence of replication in
Europeans (rs5995653) and the remaining
SNPs are colour-coded based on their LD
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with this SNP, indicated by pairwise r*
values for American populations from the
1KGP

APOBEC3A—~ APOBEC38—+~

GALA II: 0.59 [0.46, 0.76]

SAGE II: 0.75 [0.58, 0.96]

followMAGICS: 0.81 [0.46, 1.42] F

PACMAN: 0.76 [0.51, 1.12]

PASS: 0.67 [0.48, 0.94]
FIGURE 3 Forest plot of association
effect of rs5995653 across studies. Odds
ratio (OR) for the effect allele (A) is shown
for each study and after combining them
by black boxes and a blue diamond. Black
dash lines indicate the corresponding 95%
confidence intervals (95% CI) for each
individual study

3.6 | Validation of previous associations of ICS
response

None of the 25 SNPs previously associated with ICS response was
consistently associated with asthma exacerbations in admixed popu-
lations (Table S5). To assess whether the lack of replication of previ-
ous GWAS hits could be due to the association of alternative
genetic variants among different populations, a replication analysis
was also performed at genomic region level. A total of 36 261 vari-
ants located within 100 kb upstream and downstream from 14 loci
previously associated with ICS response were evaluated. After apply-
ing a Bonferroni-like correction for the number of variants analysed
within each genomic region, suggestive associations were observed
for nine SNPs near three genomic regions: ALLC (min P-value = 4.69
% 107" for the SNP rs113903375), L3MBTL4-ARHGAP28 (min P-
value = 1.57 x 107° for the SNP rs62081416) and ELMO2-ZNF334
(min P-value = 3.56 x 10~ for the SNP rs2425845) (Table S6).
However, applying a more restrictive correction for the total number

ESTATe: 1.06 [0.50, 2.25)

SLOVENIA: 0.81 [0.48, 1.37]

Meta-analysis: 0.70 [0.61, 0.81]
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of independent variants across all genomic regions (P < 1.71 x 10~°
for 2916 independent variants tested), only the association of
rs62081416, located within the intergenic region of L3MBTL4 and
ARHGAP28, was significantly associated with ICS response in
admixed individuals (OR for A allele = 2.44, 95% Cl: 1.63-3.65,
P =157 x 1079

4 | DISCUSSION

In this study, we carried out the first GWAS of ICS response in His-
panic/Latino and African American children and young adults with
asthma. After combining the association results from these two pop-
ulations, 15 independent suggestive association signals were associ-
ated with asthma exacerbations despite use of ICS, and one of them
showed evidence of nominal replication in Europeans. This SNP was
also significantly associated with an increase in FEV; after 6 weeks
of treatment with ICS in one of the European studies where this
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outcome was measured. These results revealed for the first time the
association of APOBEC3B and APOBEC3C genes with ICS response
in asthmatic children and young adults. Additionally, we validated
the association of the L3MBTL4-ARHGAP28 genomic region in
admixed populations, which was previously described in a GWAS of
ICS response in subjects of European descent.

The APOBEC3B and APOBEC3C genes encode two members of
the apolipoprotein B mRNA-editing catalytic polypeptide 3 (APO-
BEC3) family. APOBEC3 proteins are involved in RNA editing
through the deamination of cytidine to uracil.*” Their main function
is related to innate immunity and is considered important restriction
factors against a broad range of viruses.*® However, APOBEC3 pro-
teins are also involved in cellular processes related to mutagenic
activity,*? including the development of several types of cancer,
while APOBEC3B specifically has been associated with an increased
risk of lung cancer.”®

We found that the A allele of rs5995653, located 5.8 kb from
the 3'UTR of APOBEC3C, showed a protective effect against
asthma exacerbations and was associated with improvement on
FEV, in patients treated with ICS. While no asthma-related func-
tions have been attributed to any of the APOBEC3 flanking genes,
evidence of high levels of RNA expression has been found in pul-
monary fibroblasts for both genes.*®*! Furthermore, the functional
evidence found for rs5995653 suggests that this SNP plays a key
role in regulating the expression of genes involved in several cellu-
lar processes in the lung. Interestingly, respiratory viral infections
are important risk factors for exacerbations in asthmatic children.>!
This fact is concordant with the consistent function of APOBEC3B
and APOBEC3C as restrictors of viral infections, suggesting that the
expression of these genes in pulmonary tissues could be involved
in fighting against viral-induced asthma exacerbations in patients
treated with ICS.

Qur study has several strengths. First, this is the largest meta-
GWAS of ICS response with a discovery phase specifically focused
on Hispanic/Latino and African American asthma patients, the minor-
ity ethnic groups most affected by asthma in the United States.*
Admixed populations with African and Native American have been
underrepresented in the asthma pharmacogenomic studies of ICS
response.* Secondly, we identified a novel association shared among
admixed and European populations, which could be also influential in
other populations. Third, we validated the association of three geno-
mic regions previously described in GWAS of ICS response in Euro-

1112 and one of them was associated

pean and Asian populations
with an improvement in FEV, after treatment with ICS in adults.*!
This evidence reinforces the validity of asthma exacerbations as a
good measure of response to the asthma treatment with ICS. Finally,
the fact that the intergenic region of L3MBTL4 and ARHGAP28 has
been previously identified in adults could suggest the existence of
common genetic markers of ICS response among adulthood and
childhood asthma.*?

We recognize some limitations of our study. First, the most sig-
nificant variant associated with ICS response in admixed and Euro-

pean populations did not reach genome-wide significance. This result
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was replicated in independent samples at nominal level, although it
would not still be significant after a multiple comparison correction.
Second, this study did not include a considerable larger sample size
compared to the largest GWAS of ICS response published to date.*”
Third, even though the HRC reference panel is the largest catalogue
of variants from the whole genome available to date,2® admixed pop-
ulations with African and Native American ancestries are not well
Fourth,

defined in the European populations included in the replication

represented. asthma exacerbations were differentially
phase. Nevertheless, this outcome was homogeneously defined in
the studies included in the discovery phase, suggesting that the iden-
tified locus is robustly associated with asthma exacerbation across a
range of definitions. Fifth, ICS response was evaluated as the pres-
ence or absence of asthma exacerbations in asthmatic patients with
a self-reported use of ICS, which might not correspond to compli-
ance or changes with the asthma control therapy. For this reason,
the association signal detected was followed up for replication using
a quantitative measurement of ICS response, which was only avail-
able in one of the European populations. Additional studies should
seek to validate the association signal when using change in FEV,
after the treatment with ICS as the response variable. Finally, func-
tional evidence relating the intergenic region of APOBEC3B and APO-
BEC3C with ICS response in asthma patients was not directly
assessed in this current study, since only experimental data available
in public databases were queried. Therefore, in vitro experiments in
relevant tissues and cell types for ICS response are needed to evalu-
ate the functional roles of these loci in order to confirm their impli-
cation in this trait.

In summary, our meta-GWAS in admixed children and young
adults identified a novel association of genetic variants from the
intergenic region of APOBEC3B and APOBEC3C as with ICS response
in subjects with asthma. We also validated the association of one
genomic region previously associated with ICS response. Our study
demonstrates the advantages of including admixed populations in

asthma pharmacogenomic studies of ICS response.
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SUPPLEMENTARY METHODS

Studies included in the replication phase

followMAGICS (n = 147)

FollowMAGICS is the follow-up phase of the observational Multicenter Asthma Genetics in Childhood
Study (MAGICS). All children were initially recruited at secondary and tertiary centers from Germany and
Austria after a physician’s diagnosis of asthma. During the follow-up phase of the same children and young
adults (followMAGICS), now aged 7 to 25 years, the persistence of asthma symptoms was queried using a
patient questionnaire. A description of the genome-wide genotyping with the Illumina Sentrix HumanHap300

BeadChip array (lllumina, Inc.) and quality control (QC) procedures is provided elsewhereS1-$4,

PASS (n =402)

The Pharmacogenetics of Adrenal Suppression study (PASS) is a multicenter cohort that was initially
conceived to explore the clinical and pharmacogenomic associations between the use of corticosteroids and
adrenal suppression. Children and young adults aged 5 to 18 years old with a clinical diagnosis of asthma,
inhaled corticosteroids (ICS) therapy under pediatric supervision, and clinical concern about adrenal
suppression were recruited from the United Kingdom. A detailed description of the study design, data
collection, characteristics of participants, genotyping with the lllumina Omni Express 8v1 array (lllumina,

Inc.), and QC procedures is described in previous publicationsS5-S8,

PACMAN (n = 654)

The Pharmacogenetics of Asthma Medication in Children: Medication with Anti-inflammatory effects
(PACMAN) study is an observational cohort that includes children aged 4 to 12 years old with self-reported
use of any asthma medication recruited through records of community pharmacies in the Netherlands.
Detailed information on asthma symptoms, exacerbations, and medication over the last 12 months was

collected during visits to community pharmacies is available elsewheres’.

ESTATe (n = 102)

The Effectiveness and Safety of Treatment with Asthma Therapy in children (ESTATe) is a case-
control study that includes children and young adults (4-19 years) with a physician diagnosis of asthma
recruited from primary care units in the Netherlands. Patients were selected from either Interdisciplinary
Processing of Clinical Information (IPCI) database or the PHARMO Database Network. Both databases
contain the electronic medical records of more than one million patients throughout the Netherlands with
detailed information on patient diagnosis, patient prescription (IPCI), or patient dispensing (PHARMO).
During the study period (2000 - 2012) all children with asthma, aged 5 years and older, and treated with
asthma controller therapy were selected. Within this study, cases with asthma exacerbations based on the
use of systemic corticosteroids, emergency room (ER) visits, or hospitalizations because of asthma were
selected. Each case was matched to four controls based on similarity in age, gender, general practitioner
(GP), and type of asthma controller therapy. Next, all potential cases and controls were invited to participate
via their respective GP. If patients agreed to participate, they provided written consent, completed a research

questionnaire including questions on asthma control, and provided a saliva sample (for DNA extraction).
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BREATHE (n = 210)

BREATHE is a study that includes children and young adults aged 3 to 22 years old with a physician
diagnosis of asthma recruited at primary and secondary care units from the United Kingdom. A detailed

clinical history and, demographic and anthropometric information were obtained from all participantsS8-S10,

SLOVENIA (n = 182)

SLOVENIA is a case-control study including children and young adults with mild and moderate
persistent asthma aged 5 to 18 years old of Slovenian origin recruited from tertiary health centers. Asthma
was defined by physician diagnosis and hospital records according to American Thoracic Society (ATS)
criteria. Forced expiratory volume in 1 second (FEV1) expressed as a percentage of the predicted value for
sex, height and age was measured before therapy and 6 weeks after treatment with the use of a Vitalograph
2150 spirometer (Compact, Buckingham, UK) according to ERS/ATS guidelines. ICS was regularly
administered to part of the asthmatic patients included in the study. Patients with other chronic inflammatory
diseases except for those with asthma and atopic diseases and asthmatics treated with other asthma

medications were excluded from the studyS™.

Genotyping and quality control analyses in the validation studies genotyped for the current study

Four of the validation studies (PACMAN, ESTATe, BREATHE, and SLOVENIA) were specifically
genotyped for the purposes of the Pharmacogenomics in Childhood of Asthma (PiCA) consortium. The
Ilumina Infinium CoreExome-24 BeadChip (lllumina, Inc.) was used to genotype samples from the
PACMAN, ESTATe, and BREATHE studies, whereas genotyping was performed with the Illumina Global
Screening Array-24 v1.0 BeadChip (Illumina, Inc.) for subjects included in SLOVENIA.

QC analyses were performed in these studies using PLINK 1.09512, Several QC steps were performed
at individual level. Firstly, concordance between the reported and the genetic gender assessed by means of
the genotype data from the X chromosome was inspected and individuals with discordances in gender
information were discarded from further analyses. Secondly, subjects with a genotyping completion rate
(CR)<95% were discarded, as well as those with heterozygosity rates higher or lower than 4 standard
deviations of the population mean. Thirdly, cryptic relatedness of individuals and population stratification
were assessed. For that, single nucleotide polymorphisms (SNPs) and regions of extended linkage
disequilibrium were pruned out keeping approximately 100,000 SNPs for each study. An identity-by-descent
matrix was estimated to remove those duplicated or related individuals. Evidence of relatedness was
considered for second-degree relatives or higher evidenced by values of PIHAT =0.2. Then, a Principal
Component (PC) analysis was performed with EIGENSOFT 6.14513 in order to detect population stratification
due to the existence of individuals with large differences in ancestry. Additionally, this analysis provided PC
estimations that were included as covariates in the association testing. Finally, those individuals with
reported use of ICS and available information regarding the presence or absence of asthma exacerbations

were selected for association analyses.
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Moreover, genetic markers were filtered in order to exclude those with >5% missing genotypes.
However, deviations from Hardy-Weinberg Equilibrium were not inspected since the datasets analyzed only

included patients with asthma.

From a total of 893 genome-wide genotyped samples from PACMAN, 23 individuals had CR<95%. In
addition, 20 subjects were discarded because of excessive or reduced heterozygosity rates. Furthermore,
ten individuals with discordance in gender information were discarded from further analyses. Fifty-three pairs
of related subjects were detected and one individual from each pair was selected based on the availability of
information related to the presence/absence of severe asthma exacerbations and medication use. After QC,
a total of 487,050 autosomal markers and 654 asthma patients treated with ICS were selected for the

analyses.

From the 111 samples that were genotyped in ESTATe, those with a CR<99% and excessive
autosomal heterozygosity were discarded. Furthermore, three pairs of related individuals were identified and
one subject from each pair was excluded. A total of 526,121 SNPs located at autosomal chromosomes

remained after QC analyses.

A total of 288 samples from BREATHE were genotyped for the purposes of the PiCA consortium.
During QC procedures, five individuals were discarded due to excessive or reduced heterozygosity rates, in
addition to three subjects that showed large differences in ancestry based on a PC analysis. Moreover, eight
pairs of related individuals were detected, and only one participant was selected from each pair based on the

availability of clinical information. Furthermore, a total of 176,412 SNPs accomplished the QC criteria.

From the 336 samples from SLOVENIA that were genotyped, ten subjects with discordances in
gender information were removed. Moreover, 13 subjects with a genotyping CR <95% and two with an
excessive or reduced proportion of heterozygote genotypes were discarded for association analyses. After
QC analyses, 182 individuals with reported use of ICS and availability of data related to the
presence/absence of asthma exacerbations during the previous 12 months were kept for the analyses. The

number of autosomal genetic variants that passed the QC was 560,996.
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Figure S1. Quantile-quantile plots of association results of ICS response in the discovery phase. Observed and
expected association results are represented as -log1l0 p-value on the y-axis and x-axis, respectively. A) Q-Q plot of
association results in Latinos/Hispanics (GALA 11) (Acc=1.03); B) Q-Q plot of association results in African Americans
(SAGE) (Asc=0.96); C) Q-Q plot of association results after combining both admixed populations (Acc=1.04).
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Chapter 3

Only a few genes involved in the response to asthma treatment with ICS have been identified to date
through studies including reduced sample sizes and a scarce exploration of the variability of the genome.
Thus, in this Chapter, a GWAS of asthma exacerbations despite ICS use was carried out in children and
young adults of European descent. Association signals were also evaluated in non-European populations,
including African Americans, Asians, and Hispanics/Latinos. Variants previously revealed to be involved in
the ICS response by means of GWAS approaches were followed up for replication. This was complemented

with gene-enrichment analyses focused on pharmacological therapeutic targets.

A total of ten variants were associated with asthma exacerbations despite ICS use in Europeans at the
suggestive significance level (p<5x10-%). The association of one variant located in the intergenic region of the
genes CACNA2D3 and WNT5A was validated in independent studies, suggesting this could be a novel locus
of asthma exacerbations despite ICS treatment. Nonetheless, this was not found associated in non-
European populations. Additionally, evidence of replication was detected for five other loci previously
associated with the response to ICS treatment. The gene-set enrichment analyses revealed that trichostatin
A could be implicated in the molecular mechanisms underlying the response to asthma treatment, allowing to

hypothesize that it could be a potential asthma therapy.

This Chapter is presented as a manuscript draft entitled ‘Genome-wide association study of asthma
exacerbations despite inhaled corticosteroids use' recently accepted for publication in the European
Respiratory Journal (doi.org/10.1183/13993003.03388-2020). This is an author-submitted, peer-reviewed
version of the article accepted for publication, prior to copy-editing, formatting and typesetting. This version of
the article may not be duplicated or reproduced without prior permission from the copyright owner, the
European Respiratory Society. The publisher is not responsible or liable for any errors or omissions in this
version of the article or in any version of record, is available online from the European Respiratory Journal
without a subscription 18 months after the date of issue publication.
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TAKE-HOME MESSAGE

A genome-wide association study of asthma exacerbations despite inhaled corticosteroids treatment
in childhood asthma revealed a novel association at the CACNA2D3-WNT5A locus and suggested

trichostatin A as a potential asthma therapy.

ABSTRACT

Rationale. Substantial variability in response to asthma treatment with inhaled corticosteroids (ICS) has
been described among individuals and populations, suggesting the contribution of genetic factors.
Nonetheless, only a few genes have been identified to date. We aimed to identify genetic variants associated
with asthma exacerbations despite ICS use in European children and young adults and to validate the
findings in non-Europeans. Moreover, we explored whether a gene-set enrichment analysis could suggest

potential novel asthma therapies.

Methods. A genome-wide association study (GWAS) of asthma exacerbations was tested in 2,681
European-descent children treated with ICS from eight studies. Suggestive association signals were followed
up for replication in 538 European asthma patients. Further evaluation was performed in 1,773 non-
Europeans. Variants revealed by published GWAS were assessed for replication. Additionally, gene-set

enrichment analysis focused on drugs was performed.

Results. Ten independent variants were associated with asthma exacerbations despite ICS treatment in the
discovery phase (p<5x10¢). Of those, one variant at the CACNA2D3-WNT5A locus was nominally replicated
in Europeans (rs67026078, p=0.010), but this was not validated in non-European populations. Five other
genes associated with ICS response in previous studies were replicated. Additionally, an enrichment of

associations in genes regulated by trichostatin A treatment was found.

Conclusions. The intergenic region of CACNA2D3 and WNT5A was revealed as a novel locus for asthma
exacerbations despite ICS treatment in European populations. Genes associated were related to trichostatin

A, suggesting that this drug could regulate the molecular mechanisms involved in treatment response.

Keywords: childhood asthma, Europeans, exacerbations, pharmacogenomics, treatment, trichostatin A.

90



Chapter 3

INTRODUCTION

Asthma is the most common chronic condition in children and young adults®. Inhaled corticosteroids
(ICS) are the first-line treatment recommended by current international guidelines to control and prevent
asthma symptoms?. Although ICS are the most effective medication for improving symptoms and preventing
severe exacerbations?, high interindividual variability in ICS response has been described?®. Studies have
shown that 30 to 40% of the asthmatic children treated with ICS do not show an improvement of their
symptoms and that 10 to 15% of them may even experience worsening of asthma exacerbations despite the
regular use of this medication3. Moreover, marked variation in ICS response has been described among

populations*.

The contribution of genetic factors in asthma-related traits has been widely suggested®. Specifically,
the variation in ICS response has been suggested to be the result of the interaction of several factors such
as the specific asthma endotype, comorbidities, ancestry, the environment, and the individual’s genetic
composition®. Approximately 40-60% of the total variation in ICS response may be explained by genetic
factors’. Pharmacogenetic studies of ICS response have focused mostly on a few genes with known
biological implications in the mechanisms of action of ICS5. More recently, genome-wide association studies
(GWAS), have explored the role of genetic variation in the ICS response®0. Overall, these GWAS have
identified 13 genes associated with different definitions of ICS response, most of which were not previously
associated with asthma-related phenotypes, except for PDE10A. However, it is expected that more genes
are involved in the response to this asthma treatment. Moreover, the genetic architecture of clinical markers
of disease severity, such as asthma exacerbations or lung function measurements, is not completely
disentangled!213, The studies performed to date have been limited by the relatively small number of study
participants. Therefore, there is a need for studies including a large number of individuals to increase the
power to detect significant associations with asthma severity and ICS response®. Increasing the knowledge
about the genetic markers involved in asthma progression and therapeutic response would be of special
importance in clinical practice since current international guidelines for the management of asthma propose
pharmacological stepwise approaches based on the occurrence and persistence of clinical outcomes as

indicators of disease severity?.

In the present study, we aimed to replicate suggested associations in a candidate gene approach and
to identify novel genetic variants involved in the occurrence of asthma exacerbations despite ICS treatment
by performing a large GWAS in Europeans and to examine whether this genetic variation is shared with
other populations. We also explored whether a gene-set enrichment analysis of the GWAS results could
suggest alternative treatments that could be potential therapeutic alternatives in patients who do not respond

to ICS therapy.
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METHODS

Ethics statement

All studies included were approved by their local institutional review boards and written informed
consent was provided by participants or their parents/caregivers. All methods were carried out following

guidelines and regulations for human subject research under the principles of the Declaration of Helsinki.

Study Populations

A total of fourteen independent studies participating in the Pharmacogenomics in Childhood of Asthma
(PiCA) consortium!* were included in this study. Eight available studies in populations of European descent
at the time of data collecting were included in the discovery phase, whereas replication of association results
was evaluated in three additional independent European studies. Further validation was performed in three

non-Europeans studies from Hispanic/Latino, African American, and Asian populations.

Discovery phase

Asthma patients from eight independent European studies were analyzed in the discovery phase: the
Pharmacogenetics of Asthma Medication in Children: Medication with Anti-inflammatory effects (PACMAN);
the Paediatric Asthma Gene-Environment Study (PAGES); BREATHE; the Genetics of the Scottish Health
Research Register (GOSHARE); the Pharmacogenetics of Adrenal Suppression study (PASS); SLOVENIA,;
the follow-up stage of the Multicenter Asthma Genetics in Childhood Study (followMAGICS); Effectiveness
and Safety of Treatment with Asthma Therapy in Children (ESTATe). All these studies included children and
young adults aged 2 to 25 years recruited in five different European countries. Among the participants, only
individuals with reported use of ICS, information about asthma exacerbations, and genome-wide genotyping
data were included. ICS use was based on declared use of any type of ICS and/or combination with long-
acting B2 agonists at least once in the previous 12 months based on self-reports, pharmacy, or medical
records?®®. A period of the last 6 months was considered for those studies without data available related to

the previous year. A detailed description of each study is provided in the Supplementary Material.

The presence or absence of at least one asthma exacerbation episode during the 6 or 12 months
preceding the study enrolment was assessed. Severe asthma exacerbations were defined by a need for
emergency care, hospitalizations, or administration of systemic corticosteroids because of asthmal® for
PACMAN, GoSHARE, PASS, SLOVENIA, and ESTATe (Table 1). Definitions of moderate asthma
exacerbations were used in BREATHE-PAGES, BREATHE, and followMAGICS (Table 1), since no
information was available for any of the previous variables®. Therefore, data related to unscheduled general
practitioner or respiratory system specialist visits and school absence were also considered in the definition
of asthma exacerbations for BREATHE-PAGES, BREATHE, and followMAGICS (Table 1), as described

elsewhere?s,
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Replication phase

Validation of the results found in the discovery phase was carried out in three independent European
studies: the Avon Longitudinal Study of Parents and Children (ALSPAC); the Childhood Asthma
Management Program (CAMP) and, the Children Allergy Milieu Stockholm an Epidemiological Study
(BAMSE). Definitions of ICS use and asthma exacerbations were based on retrospective information about
the 12 months prior to study enrolment adopting the same criteria applied in the discovery phase, except for
prospective data from CAMP. Further details about these studies are described in the Supplementary

Material.

Assessment of ICS associations in non-European populations

Association signals with evidence of replication (p<0.05) among Europeans were evaluated in
Latinos/Hispanics from the Genes-Environment and Admixture in Latino Americans (GALA 1) study, African
Americans included from the Study of African Americans, Asthma, Genes and Environments (SAGE), and
Asians from The Singapore Cross-Sectional Genetic Epidemiology Study (SCSGES). Information about the
presence or absence of asthma exacerbations despite ICS use in the 12 previous months to study enrolment

was considered. The details on these studies are described in Supplementary Material.

Genotyping, genetic ancestry estimation, and imputation

Samples from the studies included in the discovery phase were genotyped using different platforms for
previous studies (Table 1)'%, except for PAGES, GoSHARE, and part of the samples from BREATHE. These
studies were genotyped with the Axiom™ Precision Medicine Research Array (Affymetrix Inc.) by Centro
Nacional de Genotipado (CeGen; www.cegen.org). The same QC procedures described in Hernandez-

Pacheco et al. were applied to all the studies!®. Further details are available in the Supplementary Material.

Details about the genotyping of the replication samples are provided in the Supplementary Material
and summarized in Table S1. Similarly, the genotyping methods used for the non-European studies (Table

S2) are described in the Supplementary Material.

Assessment of the genetic ancestry was carried out through Principal Component (PC) analyses or by
model-based assessments of the proportions of genetic ancestry (GALA Il and SAGE)'". For SCSGES,
estimation of ancestry was not performed since genome-wide genotyping was not available. The second
release of the Haplotype Reference Consortium (rl.1 2016) was used as reference panel for imputation??,
except for CAMP and ALSPAC, where phase 3 of the 1000 Genomes Project (1KGP) was used 8.

Association analysis in the discovery phase

GWAS analyses were carried out separately for each study, except for PAGES and a subset of
individuals from BREATHE that were genotyped together with PAGES. These two studies were analyzed
together since the similarities of the study design, type of biological samples, demographic and clinical
characteristics, and genotyping platform used, and are denoted as BREATHE-PAGES. Association between
genetic variants and the binary variable of asthma exacerbations was tested employing the binary Wald
logistic regression model implemented in EPACTS 3.2.6°. Regression models included as covariates age,

gender, and the PCs needed to control for population stratification within each study.
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Results for single nucleotide polymorphisms (SNPs) with a minor allele frequency (MAF) =21% and
imputation quality (Rsq) 20.3 obtained for each study included in the discovery phase were meta-analyzed.
Fixed-effects or random-effects models were applied using METASOFT?2%, depending on the significance of
the Cochran Q-test evidencing heterogeneity among the studies analyzed. Association with asthma
exacerbations despite the use of ICS treatment was considered at suggestive significance level (p-value

<5x10-%), which was arbitrarily set based on the criteria commonly adopted in GWAS studies?®.

Independent association signals were detected from these results through conditional and joint
multiple-SNP analyses (COJO), as implemented in GCTA 1.92.021. Stepwise model selection was carried out
to select independently associated SNPs within each genomic region with a suggestive association signal
through a linkage disequilibrium (LD) correlation matrix obtained with the data from PACMAN, the largest
study included in the discovery phase. Independent SNPs associated (p-values5x10%) with asthma

exacerbations were followed up for replication.

Association analysis in the replication phase

Association analyses were performed in three different PiCA studies of European descent. The
definition of asthma exacerbations used for each replication population is described in Table S1. Association
testing in BAMSE was performed following the same methodology as in the discovery phase. Logistic
regressions were carried out in CAMP and ALSPAC using PLINK 1.922 and SNPTEST 2.5.223, respectively.
Association results obtained from the European replication studies for variants associated with asthma
exacerbations despite ICS use at nominal level (p-value<0.05), and with the same direction of the effects as

in the discovery phase were meta-analyzed following the same methodology as described above.

Association analysis in non-European populations

The association of the variant with evidence of replication was further assessed in GALA |l and SAGE
using the same statistical methodology applied for the studies included in the discovery phase. In SCSGES
(Table S2), association with asthma exacerbations was evaluated using logistic regressions adjusted by age
and gender using PLINK 1.922,

Evidence of replication was considered if the variant assessed showed a p-value<0.05 and the same

direction of the effect as the one found in European populations.

Association analysis accounting for ICS dosage and asthma severity

Several sensitivity analyses were performed to ascertain whether the effect of the associations found
in different populations was driven by potential confounders of the response to asthma medication or disease
severity. Specifically, association analyses with asthma exacerbations were performed for the variant with
evidence of replication. First, logistic regressions were carried out evaluating the association with the
presence/absence of asthma exacerbations accounting for the daily ICS dosage in PACMAN, the only study
with available information for this variable based on medical prescriptions, as described in the
Supplementary Material. Additionally, association analyses were carried out accounting for asthma severity
based on the classification into treatment steps based on a modification of the guidelines established by the
British Thoracic Society and the Scottish Intercollegiate Guidelines Network (BTS/SIGN)24. Only those
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individuals with available information about the use of the medications included in the classification into

treatment steps were selected and they were classified as described in the Supplementary Material.

In silico functional evaluation of variants associated with asthma exacerbations despite ICS use

Functional evaluation of the variant with evidence of replication was carried out using publicly
available databases. Evaluation of functional evidence described in the Encyclopedia of DNA Elements
(ENCODE) was used to assess the role as expression quantitative trait loci (eQTL), DNase hypersensitivity
sites, and histone marks using HaploReg v4.1%5, and the Portal for the Genotype-Tissue Expression (GTEXx)
was also queried?®. Previous significant evidence as protein quantitative trait loci (pQTL) or methylation
guantitative trait loci (meQTL) was also explored using publicly available information by means of the

PhenoScanner v2 tool?7:28,

Validation of previously reported ICS genes in European populations

Previous studies identified a total of 26 SNPs located near or within 15 genes associated with ICS
response in different populations (Table S3). These variants were analyzed in the present dataset using the

meta-analysis results of the discovery phase of the current GWAS.

Validation of previous associations was performed at the SNP level, searching for consistent
association at the nominal level (p<0.05). Additionally, replication was also assessed as genomic regions,
analyzing variants located within 100 kilobases (kb) upstream and downstream from the gene limits. A
Bonferroni-corrected significance threshold was estimated for each genomic region as a=0.05/number of

independent variants analyzed, using the same methodology as described elsewhere?s,

Enrichment analysis of drug targets

A gene-set enrichment analysis focused on drugs was performed using the summary association
results from the discovery phase of this GWAS. An overlap between the genes associated with asthma
exacerbations in the discovery phase and gene sets with previous evidence of expression inhibition or
induction after exposure to drugs or small molecules was inspected. For that, variants were first assigned to
the nearest gene using the UCSC Table Browser tool?°. Not only SNPs associated (p<5x10-¢) with asthma
exacerbations despite ICS treatment in the discovery phase were included, but also those significant at
p<1x10* were analyzed to increase the statistical power to detect genes previously identified to show drug-
induced changes in expression levels. This threshold was arbitrarily set as it is commonly carried out in
gene-set enrichment approaches3?3. For this, the information available at the Drug SlGnatures DataBase
and DrugMatrix was used utilizing the Enrichr tool®2. Evidence of significant enrichment at drugs was
considered for those genes with significant drug-related expression changes after accounting for the multiple

comparisons tested (false discovery rate (FDR) <0.05).
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RESULTS

Characteristics of the study populations

A total of 2,681 children and young adults with asthma from eight studies were analyzed in the
discovery phase (Table 1), whereas 538 patients from different populations were included in the replication
stage of this GWAS in Europeans (Table S1). Individuals from the studies analyzed in the discovery phase
showed a similar mean age, except for followMAGICS, which included individuals with older ages (17.2 + 3.0
years) (Table 1). Although different definitions of asthma exacerbations were used, similar proportions of
exacerbations were found across European populations included in the discovery phase, except for
PACMAN and GoSHARE, which showed the lowest asthma exacerbations rates (11.0% and 13.8%,
respectively) (Table 1). Among the non-European samples, Latinos/Hispanics from GALA Il had the highest

proportion of asthma exacerbations occurrence despite the treatment with ICS (66.4%) (Table S2).

Association results in European populations

Association results for a total of 8.1 million common SNPs (MAF2=1%) with Rsq=0.3 and shared among
the eight European populations included in the discovery phase were meta-analyzed. No major evidence of
genomic inflation due to population stratification was found when each study was individually analyzed
(Figure S1A-S1H), neither after combining them in a meta-analysis (Acc=1.04, Figure S1l). Although no
associations were detected at the genome-wide significance level (p-values5x10-8), a total of 19 variants
near or within ten loci showed p-value<5x10-6 in European children and young adults (Table S4, Figure 1).
Among those polymorphisms, one independent variant per locus was found after performing pairwise
regressions conditioned on the most significant variant for each locus with more than one association signal.

Thus, a total of ten independent signals were detected (Table 2), which were followed up for replication.
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Figure 1. Manhattan plot of association results of asthma exacerbations in ICS users included in the discovery
phase. Association results are represented as -logio p-value on the y-axis along the chromosomes (x-axis). The
horizontal black line shows the suggestive significance threshold for replication (p<5x10-6).
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Of the ten variants associated with asthma exacerbations despite ICS treatment in the discovery
phase (p-value<5x10-) only the SNP rs67026078, located within the intergenic region of CACNA2D3 and
WNT5A (Figure 2), showed nominal replication after meta-analyzing the European studies included in the
replication (odds ratio (OR) for C allele:1.83, 95% Confidence Interval (Cl):1.16 — 2.90, p=0.010) (Table 3).
The association had a consistent effect as in the discovery phase (OR for C allele:1.50, 95%CI:0.93 — 2.43,
p=4.22x10°%) (Table 3). Suggestive genome-wide association was found for this SNP after performing a
meta-analysis across the European studies analyzed in both phases (OR for C allele:1.58, 95%Cl:1.11 —
2.26, p=4.34x107) (Figure 3). Nonetheless, the association effect of this variant was mostly driven by the
studies with information about the occurrence of asthma exacerbations available for a twelve-month period.
This could be explained by the fact that a wider timeframe makes exacerbation events likely to occur, but
also by the larger sample size analyzed compared to the studies with information based on the previous 6
months (n=1,557 vs. n=1,124).

6 — I'; — 100

0.8 rs67026078
L 4

0.6

5 - o (9'

0.2

log1o(p-value)

(q/W9) 8jel uoneuUIqUIOsaY

.‘—AC TR8 CACNA2D3—> - WﬂTSA

54 54.5 55 55.5
Position on chr3 (Mb)

Figure 2. Regional plot of association results for the CACNA2D3-WNT5A locus for the European populations
included in the discovery phase. Logarithmic transformation of the association results (-logio p-value) is represented
in the y-axis by chromosome position (x-axis) for each SNP as a dot. The SNP rs67026078 with evidence of replication
in the European populations included in the replication phase is represented by a diamond. The remaining variants are
grey color-coded based on pairwise r? values with that SNP for European populations from 1KGP.
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Figure 3. Forest plot of association effect of rs67026078 across European studies included in the GWAS of
asthma exacerbations despite ICS treatment. Association effects are shown in terms of odds ratio (OR) for the effect
allele (C) for each study and after meta-analyzing the results from both phases by black boxes and a blue diamond,
respectively. Black dash lines indicate the corresponding 95% Confidence Intervals (95% CI) for each study. The effect
of association results is not given for BREATHE since rs67026078 did not pass quality control checks.

Assessment of ICS associations in non-European populations

The SNP rs67026078 with evidence of replication in independent European populations was not
associated with asthma exacerbations in patients treated with ICS from Hispanic/Latino nor African American
populations (Table S5). In Asians, this variant was not consistently associated with asthma exacerbations in
SCSGES neither (Table S5). Differences in the effect allele frequency of this variant were found among the
populations evaluated, being higher in the studies of European ancestry included in the discovery (6.1-9.3%)
and replication phases (5.7-9.4%), compared to the non-European populations. Specifically, this variant had

a frequency of 4.7%, 4.9%, and 1.4% in Hispanics/Latinos, African Americans, and Asians, respectively.

Association analysis accounting for ICS dosage and asthma severity

Sensitivity analyses of asthma exacerbations despite ICS use including daily medication dosages as a
covariate in 521 asthma patients of European descent from the PACMAN study revealed that the association
effect of rs67026078 adjusted by the ICS dose did not account for the association with the occurrence of
asthma exacerbations (OR for C allele:1.24, 95% Cl:1.14 — 1.34, p=2.30x107). These results are equivalent
in terms of significance to those obtained applying the original association model for the same individuals
with complete data, but the effect sizes are smaller (OR for C allele:4.30, 95% Cl:2.33 — 7.92, p=2.98x10% in
the model not adjusted by ICS dose). Similar results were found adjusting by a categorical variable related to
ICS dose based on age groups: OR for C allele:1.23, 95% Cl:1.14 — 1.34, p=2.02x10"") (Table S6).

Association analyses adjusted by asthma severity based on treatment steps classification were
performed in 2,282 asthma patients from the discovery phase with available data related to the medication
use (Table 1). The SNP rs67026078 was suggestively associated with asthma exacerbations after

accounting for disease severity (OR for C allele:1.43, 95% CI:0.88 — 2.33, p=1.05x10%). These results are
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equivalent to those obtained applying the original association models to the individuals with available
classification into treatment steps (OR for C allele:1.45, 95% CI:0.91 — 2.33, p=1.03x10%).

Functional evaluation of the variant associated with asthma exacerbations despite ICS use

According to the ENCODE project, the SNP with evidence of replication among Europeans,
rs67026078, is located within a histone H3 lysine 4 mono-methylation (H3K4mel) mark in several tissues,
including fetal lung fibroblasts and other fetal pulmonary cells. Its suggestive role in regulating gene
expression is also shown by the fact that this is a DNAse hypersensitivity site in lung fibroblast primary
cells®3. However, no evidence of significant eQTL was found for this SNP. Nonetheless, the SNP
rs67026078 had been previously significantly identified (p<0.01) as pQTL and meQTL. Specifically, Sun et
al. found this variant to be associated with protein expression levels for 16 different proteins in plasma?7.28.34
(Table S7). Some of these have been related to molecular and cellular processes related to asthma
pathophysiology (ADAMTS5) and involved directly or indirectly in the Wnt pathway (PSMA2, ADAMTSS5,
ATAD2, CHST3, TEAD3)3. Moreover, rs67026078 was found to regulate the methylation patterns of a CpG
site (cg16278514) at the intergenic region of CACNA2D3 and WNT5A in whole blood by Bonder et al.27:28:35,
Interestingly, both CACNA2D3 and WNT5A are expressed in pulmonary tissues?5.

Validation of genes previously associated with ICS response

Among the 26 SNPs associated in previous GWAS of ICS response, one variant intergenic to UMAD1
and GLCCI1 (rs37972) showed evidence of replication in European populations included in the PIiCA
consortium (OR for C allele:1.20, 95%Cl:1.05 — 1.37, p=6.58x103) (Table S8). Considering the genomic
regions where these genes reside, 33,096 variants located within 100 kb upstream and downstream from the
15 genes of ICS response previously described were evaluated. Accounting for the number of independent
association signals within each genomic region, evidence of replication was found for 40 SNPs near five
genomic regions: PDE10A-T (SNP with min p-value: rs57042153, OR for T allele:1.43, 95%CI:1.20 — 1.70,
p=5.97 x 10°), UMAD1-GLCCI1 (rs13235500, OR for G allele:0.71, 95%CI:0.60 — 0.85, p=2.44 x 104), SHB-
ALDH1B1 (SNP with min p-value: rs341488, OR for A allele:2.24, 95%CI:1.48 — 3.40, p=1.44 x 10%),
ZNF432-ZNF841 (SNP with min p-value:rs67834224, OR for A allele:0.65, 95%Cl:0.52 — 0.82, p=2.86 x 10
4), ELMO2-ZNF334 (SNP with min p-value: rs11087003, OR for C allele:0.77, 95%CI:0.66 — 0.89, p=5.84 x
104) (Table S9). However, none of these associations were significant after correction for the total number of
SNPs tested across all genomic regions (1,799 independent SNPs: Bonferroni-like correction significance
threshold of p<2.78x10).

Enrichment analysis in European asthmatic children and young adults treated with ICS

Enrichment analysis of associations from the GWAS results focused on drugs was carried out,
including 782 SNPs associated with asthma exacerbations despite ICS treatment (p<1x10-4) in the discovery
phase. A total of 49 different drugs and small molecules that had been found to regulate expression levels of
the genes associated with asthma exacerbations in the GWAS were revealed (Table S10). Of those,
trichostatin A (TSA) remained statistically significant after adjusting for multiple comparisons (FDR=0.035)
(Table S10). Specifically, a total of 30 of the 83 genes associated at p<1x10 in our GWAS had been
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previously proposed as targets of TSA, since changes in expression levels were found to be triggered by the
exposure to this drug (Table S11). These genes included several loci previously associated with asthma-
related traits and allergic diseases (e.g., RERE, NEGR1, ROBO2, LAMA2, SLC11A2, JMJD1C) or involved
in drug metabolism (e.g., AOX1) (Table S12)35:37.

DISCUSSION

To our knowledge, this study describes the results of the largest GWAS of asthma exacerbations in
children and young adults treated with ICS to date. After combining eight different studies of European
ancestry, ten independent variants were found to be suggestively associated with asthma exacerbations
despite ICS treatment in children and young adults with asthma. One SNP within the intergenic region of
CACNA2D3 and WNT5A showed evidence of replication at nominal level in three independent European
populations. However, this was not validated in Latinos/Hispanics, African Americans, or Asians, which could
be due to ancestry-specific effects. Additionally, we found evidence of replication for five different genes
associated with ICS response by previous GWAS studies at SNP or genomic-region level. Furthermore, an
enrichment analysis of association signals with asthma exacerbations revealed TSA, which could regulate

molecular mechanisms involved in asthma pathogenesis.

CACNA2D3 encodes a member of the alpha-2/delta subunit family, which are voltage-dependent
calcium channels consisting of a complex of alpha-1, alpha-2/delta, beta, and gamma subunits. Specifically,
CACNA2D3 modulates the calcium current density through the regulation of the influx of calcium ions into
the cell upon membrane polarization3®. CACNA2D3 has important functions given the fact that calcium is a
secondary messenger involved in multiple cellular processes such as cell proliferation, apoptosis, adhesion,
and migration®®. This gene could have a role in respiratory diseases since variants located near CACNA2D3
have been recently associated with different lung function measurements, which are important predictors of
asthma severity and progression#%41, Specifically, these associations include forced expiratory volume in one
second (FEV1), forced vital capacity (FVC), and the ratio FEV1/FVC, in chronic obstructive pulmonary
disease (COPD) patients from the large cohort of European descent UKBiobank*243, and the change in lung
function after administration of bronchodilators in smokers#. It is well known that pulmonary function is an
important predictor of asthma severity and progression*®4l. Additionally, an intronic CACNA2D3 variant
(rs1820616) has also been associated with the fractional concentration of nitric oxide (FeNO) in exhaled
air*>, which is a good indicator of inflammatory patterns in the airways and potentially an alternative
approach to support asthma diagnosis in children*®4” and to monitor the adherence and response to
medications*®. These findings suggest that CACNA2D3 could be involved in asthma progression, including

the risk of asthma exacerbations, even in patients under ICS therapy.

WNT5A encodes for the WNT family member 5A, a lipid-modified glycoprotein that activates diverse
signaling pathways*?. This protein has been evidenced to play a crucial role in development during
embryogenesis, oncogenesis, and regulation of inflammatory processes in infectious disorders®°. Moreover,
other genes encoding for ligands involved in the WNT signaling pathway are associated with impaired lung
function in asthmatic children>!. This suggests that WNT5A could be also involved in the pulmonary capacity

in asthma. Interestingly, genes associated with asthma susceptibility have been linked to WNT signaling
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through a gene-set enrichment analysis®. Specifically, this biological process seems to play regulatory and
suppressive roles through the modulation of inflammation and structural changes in airways. WNT ligands
have been proposed to act on the major players implicated on inflammatory processes such as dendritic and
T-helper type 2 (Th2) cells and macrophages®?. Indeed, WNT molecules regulate the homeostasis of these
cells, avoiding dysregulated immune responses, which could trigger several diseases, including allergic
asthma®2,

Specifically, expression of WNT5A has been positively associated with Th2-mediated airway
inflammation in asthmatic patients53. Additionally, eosinophils derived from asthma patients have been found
to enhance expression levels of this gene in airway smooth muscle (ASM) cells, triggering cell proliferation,
inflammatory processes, and airway remodelling®. It is well known that eosinophilia at blood and tissue
levels is one of the most important phenotypes in asthma patients®®, triggered by high levels of chemokines
and cytokines. Specifically, eosinophils migrate from lymph nodes to the airway in asthma, where they
adhere to the ASM, releasing transforming growth factor B1 (TGF-B1) molecules®®. Increased levels of TGF-
B1 have been related to the overexpression of WNT5A in ASM cells at gene and protein levels compared to
healthy individuals. Therefore, production of extracellular matrix proteins is induced, increasing ASM mass
and contractility and hence, airway remodeling by means of hypertrophy and hyperplasia®. These findings
suggest the important role of the WNT5A and the WNT signaling pathway in asthma pathogenesis, making it
a promising therapeutic target in asthma®’, throughout inhibition of WNT ligands biogenesis, secretion and
blocking their ligand-receptor interactions through small pharmacological molecules®®. Nonetheless, further
research is needed to explore the potential side effects of drugs targeting this pathway, since tumorigenesis-

related functions have been also widely attributed to WNT molecules®8.

The C allele of the SNP rs67026078, which is located 54.1 kb from the 3’ UTR of CACNA2D3, was
found to be associated with an increased risk of asthma exacerbations despite the ICS treatment across the
European studies analyzed in the discovery and replication phases. Sensitivity analyses accounting for
baseline asthma severity suggested that the effect of this association is related to the response to asthma
medications or the biologic drivers of asthma exacerbations. Nonetheless, this did not show to be
significantly associated with asthma exacerbations in patients treated with ICS from Hispanic/Latino, African
American, or Asian populations. This result could be explained by ancestry-driven effects evidenced by the
lower frequency of the effect allele of this variant in non-European populations. This polymorphism had not
been previously associated with asthma treatment response, although functional evidence suggests that this

variant could be actively involved in the regulation of gene expression in cells from lung tissue®.

We also performed a gene-set enrichment analysis focusing on drugs, finding evidence of enrichment
of TSA, which had been proposed to target several genes previously associated with asthma-related traits
and drug metabolism, suggesting that TSA could be involved in the molecular mechanisms underlying the
occurrence of asthma exacerbations despite ICS treatment. These findings demonstrate that GWAS
approaches in combination with gene-set enrichment analyses seem to be a powerful strategy to explore

potential novel therapeutic interventions, even in the absence of genome-wide associations5%:6°,

TSA is a hydroxamic acid extracted from the bacterial genus Streptomyces with a wide range of
histone deacetylase (HDAC) inhibitor activities in mammalian cells®l. Specifically, TSA belongs to a family of

compounds acting on metal-dependent HDACSs, inhibiting histone deacetylation, and causing
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hyperacetylation of core histones, which is one of the major regulators of the chromatin structure®,
Nonetheless, HDAC inhibitors have been also demonstrated to act on diverse non-histone substrates

involved in several functions such as cell signaling, chromatin structure, and DNA repair, among others®3.

Interestingly, the potential clinical utility of HDAC inhibitors in asthma has been investigated®3. Several
studies in animal models®3-65 have suggested that the inhibition of HDACs by TSA could play an important
role in the reduction of asthma development by decreasing airway inflammation and hyperresponsiveness®®.
These findings, together with evidence that HDACs regulate sensitivity to glucocorticosteroids®3, suggest that
histone acetylation may play a key role in asthma development®’, and seems to be a promising target for
alternatives to the standard medications currently used in the management of asthma. Specifically, in vivo
experiments in allergen-challenged mice have demonstrated that treatment with TSA decreases eosinophils
and lymphocytes levels in bronchial alveolar lavage. Reduced expression levels of inflammatory mediators
such as Th2 cytokines were also detected®’. Moreover, it has been found that TSA shows additive effects in
combination with glucocorticosteroids, suggesting that it might target the main pathological processes in
asthma through mechanisms of action different from the classical asthma anti-inflammatory medications®*.
Additionally, Banerjee et al. also found that TSA could have important functions in the inhibition of
bronchoconstriction by inducing remodelling changes®. It has been demonstrated that TSA treatment might
inhibit the release of intracellular calcium, reducing ASM contraction in human lung slices and ASM cells in

vitro expose to contractile agonists®4.

Although the effects of TSA on chromatin structure and regulation of gene expression in pulmonary
tissues are still unclear®, these findings suggest that TSA could potentially play an important role in asthma
through epigenetic modifications and regulate the molecular mechanisms involved in response to ICS.
Nonetheless, to the best of our knowledge, the effect of TSA on asthma patients has not been tested in
clinical trials yet and little is known about the potential side effects of this drug. For this reason, there is still a

long way for the potential introduction of TSA as controller therapy in clinical practice.

The current study has some limitations that need to be acknowledged. First, the genome-wide
significance level was reached neither in the discovery phase nor after combining the results with
independent European studies. Although to our knowledge our study includes the largest sample size
analyzed in any GWAS of exacerbations despite ICS use performed in children and young adults with
asthma to date, the lack of genome-wide associations could be explained by reduced statistical power given
by differences in patient recruitment and definition of asthma exacerbations tested in association in both
discovery and replication phases. Additionally, no covariates related to the etiology of asthma exacerbations
and exposure to potential environmental triggers were considered in the association analyses. Second,
retrospective information about the occurrence or absence of asthma exacerbations partly based on self-
reports was used, which could not be fully informative of the real ICS response. Moreover, a period of 6 or
12 months preceding the study enrolment was considered, which could have introduced substantial
heterogeneity in the interpretation of treatment response, since more exacerbations are possible in additional
6 months and non-response might be more likely to occur in 12 months. Third, although the standard
definition of severe asthma exacerbations established by the European Respiratory Society (ERS) and the
American Thoracic Society (ATS) considering them as the need for unscheduled medical care because of

asthmal® was used, this information was incomplete for some of the European studies included in the
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discovery or replication phases. Therefore, data regarding unscheduled visits to general practitioners or
respiratory disease specialists and school absences due to asthma were considered instead, which captures
moderate asthma exacerbations. Additionally, no variables indicating whether ICS therapy had been initiated
before or after exacerbations episodes were available. Altogether, this heterogeneity in data availability could
represent a potential interpretation bias in terms of response to asthma treatment. Fourth, specific ICS dose
and type or any index of treatment adherence were not included as covariates in the association analyses,
since information related to these variables was not available for most of the studies included in this GWAS.
Fifth, although in silico evaluation of the functional implication of CACNA2D3 and WNT5A on asthma
exacerbations was carried out, in vitro experiments, pharmacogenomic research of pre-existing randomized
controlled trials, and longitudinal asthma studies are needed to confirm their role in asthma treatment

response.

In summary, our GWAS of asthma exacerbations in children and young adults treated with ICS
revealed a novel association in Europeans. We also found evidence of replication of variants previously
associated with different definitions of ICS response in asthma patients of European descent and suggested
TSA as a potential novel therapy that could be implicated in mechanisms controlling asthma symptoms and
moderate-to-severe exacerbations in ICS non-responders. These findings suggest that the integration of
different analytical methods could be a powerful strategy providing new insights into the molecular

mechanisms underlying ICS response and suggesting alternative asthma therapies.
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SUPPLEMENTARY METHODS

Studies included in the discovery phase

PACMAN (n = 654)

The Pharmacogenetics of Asthma Medication in Children: Medication with Anti-inflammatory effects
(PACMAN) study is an observational cohort including children (4-12 years old) who reported the use of any
asthma medication. This information was obtained through records of community pharmacies in the

Netherlands. Further details about the study design have been extensively described elsewhereS?,

PAGES (n = 437)

The Paediatric Asthma Gene-Environment Study (PAGES) is a cross-sectional study that recruited
children and young adults (2-16 years old) with a pediatrician’s diagnosis of asthma attending secondary
care clinics at five different centers across the United Kingdom: Aberdeen, Edinburg, Glasgow, Kilmarnock,
and Brighton. Participants were invited to attend a clinical assessment where questionnaires about dietary
and quality of life were complimented, and saliva samples were collected. Any coexisting respiratory disease

or specific significant health problems were used as exclusion criteriaS2.

BREATHE (n = 288)

The BREATHE study recruited children and young adults aged 3 to 22 years old with a physician
diagnosis of asthma at primary and secondary care units from the United Kingdom. Detailed information
about the eligibility criteria and study design has been described elsewhereS3-S5, From the total number of
BREATHE samples included in the discovery phase of this genome-wide association study (GWAS), 182
had been genotyped using the lllumina Infinium CoreExome-24 BeadChip (lllumina) array, whereas
genotypes of samples from 103 patients were obtained using the Axiom™ Precision Medicine Research
Array (Affymetrix Inc.). The latter were tested in association together with PAGES samples due to similarities

of study design and sample characteristics and were denoted as BREATHE-PAGES.

GOSHARE (n = 472)

As part of the Genetic of Scottish Health Research Register (GoSHARE) study, children and young
adults aged 3 to 18 years old were recruited from National Health Service databases containing complete
electronic medical records (EMR), prescription information, hospital, and emergency room records from

Tayside (Scotland). A detailed description is available in McKinstry et al.S8,

PASS (n =402)

The Pharmacogenetics of Adrenal Suppression study (PASS) is a multicentre cohort including children
and young adults aged 5 to 18 years old from the United Kingdom with a physician diagnosis of asthma and
on inhaled corticosteroids (ICS) therapy under pediatric supervision. Clinical concern about adrenal
suppression was also considered as an eligibility criterion since this study was initially designed to explore
the clinical and pharmacogenomic associations between the use of corticosteroids and adrenal suppression.

A detailed description is available in previous publicationsS”S8,
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SLOVENIA (n = 182)

SLOVENIA recruited children and young adults (5-18 years old) with mild and moderate persistent
asthma from tertiary health centers in Slovenia. Asthma was defined by physician diagnosis and hospital
records according to the American Thoracic Society (ATS) criteria. Forced expiratory volume in 1 second
(FEV1) expressed as a percentage of predicted was measured before and after 6 weeks after treatment with
ICS using the Vitalograph 2150 spirometer (Compact, Buckingham, UK) according to ERS/ATS guidelines.

ICS was regularly administered to part of the asthmatic patients included in the studyS°.

followMAGICS (n = 147)

FollowMAGICS is the follow-up phase of the observational Multicenter Asthma Genetics in Childhood
Study (MAGICS). Children with a physician’s diagnosis of asthma were initially recruited at secondary and
tertiary centers from Germany and Austria. Persistence of asthma symptoms was used as an inclusion

criterion for the follow-up phase of the same patients (followMAGICS), now aged from 7 to 25 yearsS10-S13,

ESTATe (n = 102)

The Effectiveness and Safety of Treatment with Asthma Therapy in children (ESTATe) is a case-
control study including children and young adults aged 4 to 19 years old with a physician diagnosis of
asthma. Patients were selected at primary care units from the Netherlands based on electronic medical
records. The use of asthma controller therapy was used as an eligibility criterion. A more detailed description

of the study design was provided elsewhereS4,

Studies included in the replication phase

ALSPAC (n = 258)

The Avon Longitudinal Study of Parents and Children (ALSPAC) is a birth cohort that recruited
pregnant women in Avon (United Kingdom). Data from parents and children were regularly collected since
the child was born during research clinic assessments. The main purpose of the follow-up phase of this
cohort is to study the transition from childhood into adulthood of those children. This study includes a wide
variety of phenotypic, environmental, genetic, and epigenetic information from children. Further details about

the data available, recruitment criteria, and strategy are available elsewheres15-S17,

Pregnant women residents in Avon (United Kingdom) with expected dates of delivery 1st April 1991 to
31st December 1992 were invited to take part in the study. The initial number of pregnancies enrolled is
14,541 (for these at least one questionnaire has been returned or a “Children in Focus” clinic had been
attended by 19/07/99). Of these initial pregnancies, there was a total of 14,676 fetuses, resulting in 14,062

live births and 13,988 children who were alive at 1 year of age.

When the oldest children were approximately 7 years of age, an attempt was made to bolster the initial
sample with eligible cases who had failed to join the study originally. As a result, when considering variables
collected from the age of seven onwards (and potentially abstracted from obstetric notes) there are data
available for more than the 14,541 pregnancies mentioned above. The number of new pregnancies not in the

initial sample (known as Phase | enrolment) that are currently represented on the built files and reflecting
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enrolment status at the age of 24 is 913 (456, 262, and 195 recruited during Phases II, Ill, and IV
respectively), resulting in an additional 913 children being enrolled. The phases of enrolment are described
in more detail in the cohort profile paper and its update. The total sample size for analyses using any data
collected after the age of seven is therefore 15,454 pregnancies, resulting in 15,589 fetuses. Of these 14,901

were alive at 1 year of age.

A 10% sample of the ALSPAC cohort, known as the Children in Focus (CiF) group, attended clinics at
the University of Bristol at various time intervals between 4 to 61 months of age. The CiF group was chosen
at random from the last 6 months of ALSPAC births (1432 families attended at least one clinic). Excluded
were those mothers who had moved out of the area or were lost to follow-up, and those partaking in another

study of infant development in Avon.

Ethical approval for the study was obtained from the ALSPAC Ethics and Law Committee and the
Local Research Ethics Committees. Further details are available in the cohort profile articleS15-S17 and the
study website contains details of all the data that is available through a fully searchable data dictionary and
variable search tool: http://www.bristol.ac.uk/alspac/researchers/our-data/. Informed consent for the use of
data collected via questionnaires and clinics was obtained from participants following the recommendations
of the ALSPAC Ethics and Law Committee at the time.

The ALSPAC children were genotyped on the lllumina HumanHap550-Quad platform, by the
Wellcome Trust Sanger Institute, Cambridge (United Kingdom), and the Laboratory Corporation of America,

Burlington, NC, using support from 23andMe.

The UK Medical Research Council and Wellcome (Grant ref: 102215/2/13/2) and the University of
Bristol provide core support for ALSPAC. This publication is the work of the authors and Raquel Granell will

serve as a guarantor for the contents of this paper.

CAMP (n = 175)

The Childhood Asthma Management Program (CAMP) study was initially conceived as a clinical trial
based on the concerns of the multiple side effects of the long-term use of steroids. Children aged 5 to 12
years at the time of study enrolment with a clinical diagnosis of chronic asthma were included. Evidence of

severe asthma or other respiratory diseases was used as exclusion criteria, among othersS18-520,

BAMSE (n = 105)

The Children Allergy Milieu Stockholm an Epidemiological Study (BAMSE) is a prospective population-
based birth cohort initially conceived for the study of the relation of breast-feeding and risk factors for allergic
diseases and asthma in childhood. Follow-up questionnaires about environmental exposures and allergy-
related symptoms during the first years of life were obtained from parents. Blood samples and lung function
measures were collected from children at the age of 8 years. Reaction to common inhalant and food
allergens was also evaluated. Asthma was defined as episodes of wheeze and bronchial hypersensitivity,

whereas allergic sensitization was considered with positive evidence of reaction to common allergensS21-523,
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Assessment of ICS associations in non-European populations

GALA 1l (n = 854)

Genes-Environment and Admixture in Latino Americans (GALA IlI) is a case-control study of asthma
including children and young adults aged 8 to 21 years with four Latino grandparents. Participants were
recruited from five different centers in the United States and Puerto Rico (Chicago, lllinois; New York City,
New York; Houston, Texas; San Francisco, California; and San Juan, Puerto Rico). Subjects with a physician
diagnosis of asthma were defined as cases. A detailed description of the eligibility and exclusion criteria has

been previously describedS24:525,

SAGE (n =493)

The Study of African Americans, Asthma, Genes, and Environments (SAGE) is a cross-sectional
asthma study with similar characteristics to GALA 1l but focused on individuals with four grandparents of
African American ancestry. Subjects were recruited in the San Francisco Bay Area, California, United States.

Further details about the study design have been published elsewhereS24525,

SCSGES (n = 425)

The Singapore Cross-Sectional Genetic Epidemiology Study (SCSGES) is an ongoing case-control
and cross-sectional genetic epidemiology study on allergic diseases among Singapore individuals aged 7 to
20 yearsS?, Recruitment was carried out at the National University of Singapore (NUS) and the KK Women's
and Children's Hospital in Singapore. Mouthwash and blood samples were collected from each participant.

Asthma was defined as a physician diagnosis of asthma symptoms before recruitmentS26-528,

A variant with evidence of replication in Europeans and selected for further validation in non-European
populations was genotyped in SCSGES using the MassARRAY® iPLEX® Gold (Agena Bioscience Inc.)
through genotyping services provided by CeGen. QC procedures were applied using PLINK 1.952%, which
included ensuring call rates above 95% for the samples and the SNP analyzed, and a Hardy-Weinberg

equilibrium p-value>0.05.

Quality control analyses in the studies included in the discovery phase genotyped for the current

study

Samples from PAGES, goSHARE, and part of BREATHE were genotyped for the current study with
the Axiom™ Precision Medicine Research Array (Affymetrix Inc.) by Centro Nacional de Genotipado
(CeGen; www.cegen.org). Genotyping assays were successfully performed for 1,233 samples (PAGES,
n=589; goSHARE, n=511; BREATHE, n=135). Preliminary quality control (QC) analyses were performed on
raw genotype data using the Best Practices workflow for human samples implemented in Axiom™ Analysis
Suite (Affymetrix Inc.) to detect variants and samples with very low quality. Moreover, variants with
misclassification of genotype clusters were discarded, keeping those with <5% missing genotypes, minor
allele frequency (MAF) =1% and Fisher's Linear Discriminant values =4.65. Genetic markers located at
sexual chromosomes and the pseudoautosomal region and those corresponding to insertions and deletions

were discarded.
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Additionally, standard QC procedures applied in GWAS approaches were carried out, as described in
Hernandez-Pacheco et al.514. After QC, 398,634 autosomal variants and 1,012 samples were selected for

association analyses with asthma exacerbations despite ICS use.

Association analysis accounting for ICS dosage and asthma severity

Sensitivity analyses were performed for the variant with evidence of replication to ascertain whether
the effect of the associations with asthma exacerbations despite ICS use was driven by the specific
medication dosage. Logistic regressions were carried out evaluating the association with a binary variable of
the presence/absence of asthma exacerbations, which was defined as the need for emergency care/and or
use of systemic corticosteroids because of asthma in the 12 months prior to the study enrolment, through
general linear models implemented in R 3.4.45%0, Patients treated with ICS from PACMAN, the only study
with ICS prescription data available, were included in the analyses. This information was based on the daily
dosages of equivalents to budesonide described in the last prescription for ICS inhaler refilling before study
enrolment that was recorded in pharmacy electronic systemsS31, The association model applied included the
information about the occurrence of asthma exacerbations as a dependent variable, and allele dosages of
the SNP rs67026078 as an independent variable plus age, gender, principal components, and a quantitative
variable related to daily ICS dose as covariates. This analysis was also carried out adjusting by a categorical
variable derived from the daily ICS dosage taking into account that different ICS dosages are recommended
by international guidelines based on the age group and asthma severity of the patients. Therefore, ICS
dosage was categorized into low, medium or high depending on whether the individuals were <12 years old
(100-200 mcg, 200-400 mcg, >400 mcg) or 212 years old (200-400 mcg, 400-800 mcg, >800 mcg)S32.

Additionally, association analyses were carried out for the SNP rs67026078 accounting for asthma
severity based on the classification into treatment steps based on a modification of the guidelines
established by the British Thoracic Society and the Scottish Intercollegiate Guidelines Network
(BTS/SIGN)S23. Only those individuals from the studies included in the discovery stage with available
information about the use of the medications included in the classification into treatment steps were selected.
SLOVENIA was not included since information about any of the medications included in the definition of
treatment steps was not available. BREATHE was also excluded because rs67026078 did not pass quality
control checks. Therefore, individuals were classified as follows: Step 1, as-needed use of short-acting B2
agonists (SABA); Step 2, as-needed use of SABA plus regular ICS; Step 3, as-needed use of SABA plus
regular ICS and long-acting 2 agonists (LABA), Step 4, as-needed use of SABA plus regular ICS, LABA
and leukotriene receptor antagonists (LTRA). Alternatively, patients with reported use of SABA as needed
plus combinations of ICS and LABA, as-needed SABA plus ICS and combinations of ICS and LABA; or as-
needed SABA plus ICS and LTRA were also classified into Step 3. Step 4 was also defined as the use of
SABA as needed plus LABA, combinations of ICS and LABA, and LTRA; as-needed SABA plus ICS,
combinations of ICS and LABA, and LTRA; or as-needed SABA plus combinations of ICS and LABA, and
LTRA. All the patients were classified into Step 2 or above since ICS use was considered as one of the
inclusion criteria in our study. Association testing was individually carried out for each study through logistic
regressions using R 3.4.453%1 applying the same regression models used in the discovery phase but also

adjusted by treatment steps. Association results were combined in a meta-analysis using METASOFTS34,
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Ethical approval of each study included

The Medical Ethics Committee of the University Medical Centre Utrecht (Utrecht, the Netherlands)
approved PACMAN (protocol number: 08/023). PAGES was approved by the Cornwall and Plymouth
Research Ethics Committee (Plymouth, United Kingdom). GoOSHARE and BREATHE were approved by the
Tayside Committee on Medical Research Ethics (Dundee, United Kingdom). The Liverpool Paediatric
Research Ethics Committee (Liverpool, United Kingdom) (reference number: 08/H1002/56) approved PASS.
The Slovenian National Medical Ethics Committee (Ljubljana, Slovenia) approved SLOVENIA (reference
number: 0120-569/2017/4). followMAGICS was approved by the Ethik-Kommission der Bayerischen
Landeséarztekammer (Munich, Germany) (ethics reference number: 01218). The Medische Ethische
Toetsings Commissie, Erasmus Medical Centre (Rotterdam, the Netherlands) (ethics approval number:
MEC-2011-474) approved ESTATe. ALSPAC was approved by Bristol Research Ethics Committees and the
ALSPAC Ethics and Law Committee (Bristol, United Kingdom). The clinic’s institutional review board (IRB)
approved CAMP (Boston, United States) (ethics approval number: 1999-P-001549). BAMSE was approved
by the Regional ethical committee in Stockholm (Stockholm, Sweden) (ethics approval numbers: 02-420 and
2010/1474-31/3). The Human Research Protection Program Institutional Review Board of the University of
California, San Francisco (San Francisco, United States) approved GALA Il and SAGE (ethics approval
numbers: 10-00889 and 10-02877, respectively). SCSGES was approved by the Institutional Review Board
at the National University of Singapore (Singapore) (ethics approval number: B-14-150, 07-023, 09-256,
10-445, and 13-075).
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Table S5. Association results with asthma exacerbations in patients treated with ICS for the SNP rs67026078 in non-
European populations.

Study Ancestry Sample size Freq.? OR (95% CI) ® p-value
GALA I Hispanic/Latino 854 0.047 0.94 (0.57 — 1.54) 0.800
SAGE African American 493 0.049 1.12 (0.61-2.04) 0.712
SCSGES Asian 426 0.014 0.33 (0.07 — 1.54) 0.160

2 Frequency of the effect allele (C); ® Odds ratio for the effect alleles (additive model).
Cl: Confidence Interval; ICS: inhaled corticosteroids; SNP: single-nucleotide polymorphism.

Table S6. Association results for rs67026078 with asthma exacerbations despite ICS use adjusting by the daily
ICS dosage in PACMAN.

Association model OR (95% ClI) ¢ p-value

Original association model 2 4.30(2.33-7.92) 298 x 10°€
Association model accounting for daily ICS dosage (quantitative) ® 1.24 (1.14 - 1.34) 2.30x 107
Association model accounting for daily ICS dosage (categorical) ¢ 1.23 (1.14 - 1.34) 2.02x 107

a Asthma exacerbations ~ SNP + Age + Gender; ® Asthma exacerbations ~ SNP + Age + Gender + ICS dosage; °© Meta-
analysis of association results adjusted by ICS dosage categorized into low, medium and high depending on whether the
patients were <12 years old (100-200 mcg, 200-400 mcg, >400 mcg) or =212 years old (200-400 mcg, 400-800 mcg, >800
mcg); ¢ Odds ratio for the effect allele (C) (additive model).

Only asthma patients treated with ICS from PACMAN with available information about daily ICS dosage were included in all
the analyses (n=521).

ClI: Confidence Interval; ICS: inhaled corticosteroids; SNP: single-nucleotide polymorphism.
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Table S11. Genes enriched at trichostatin A in European children with asthma.

Meta-GWAS of ICS response in Europeans

(n=2,681)

Gene Chr.? Position begin 5'° Position end 3'°® SNP min p-value OR (95% CI) © p-value

RERE 1 8412457 8877702 rs149875147 1.75(1.34 - 2.30) 4.32x10°
NEGR1 1 71861623 72748417 rs517762 1.39(1.18 - 1.63) 6.59x 10®
DPYD 1 97543299 98386615 rs115051546 454 (214 -9.62) 8.06x 105
LTBP1 2 33172039 33624576 rs11681246 0.72 (0.63-0.83) 3.28 x 10
PRKCE 2 45878454 46415129 rs6738524 1.29 (0.92-1.82) 5.04x 105
NRXN1 2 50145643 51259674 rs7569775 0.72(0.62-0.83) 1.24 x10°
MYO3B 2 171034655 171511681 rs6756607 0.76 (0.66 —0.86) 3.10 x 10°
AOX1 2 201450591 201541787 rs7587871 1.09 (0.75-1.58) 3.10x 10
PLEKHM3 2 208686012 208890284 rs10208193 1.37 (1.18 - 1.58) 2.05x 10
RBMS3 3 29322473 30051886 rs6549930 1.34 (1.18 -1.53) 1.24x 105
FHIT 3 59735036 61237133 rs12489758 2.38 (1.56 —3.63) 5.31x10°%
ROBO2 3 75955845 77699115 rs72891545 479(2.36-9.73) 1.44x10°
ARHGAP24 4 86396267 86923823 rs62315626 3.15(1.90-5.21) 8.19x 10°
BANK1 4 102332443 102995969 rs74934013 2.66 (0.75-9.44) 9.45x10°
SEMAS5A 5 9035138 9546233 rs707637 1.44 (1.21-1.72) 4.96 x 10
CDH10 5 24487209 24645087 rs17459974 1.35(1.17 - 1.55) 3.63x 105
LAMAZ2 6 129204286 129837714 rs12527452 0.73(0.59-0.90) 3.37x10°
PDE10A 6 165740776 166400091 rs57042153 1.43(1.20-1.70) 5.97 x 10°®
HERPUD2 7 35672269 35735181 rs79634971 1.29 (1.14 -1.47) 7.84x10°
GSN 9 123970072 124095121 rs113561738 2.10 (1.49 -2.96) 2.84 x 10
JMJD1C 10 64926981 65225722 rs12780983 1.33(1.15-1.53) 9.03x 105
KCNMA1 10 78629359 79398353 rs571396 1.16 (0.83 -1.61) 8.16 x 105
OPCML 11 132284871 133402414 rs514075 1.63 (1.30 -2.03) 2.02x 105
TMTC1 12 29653746 29937692 rs78501135 1.56 (1.27 - 1.92) 2.44x 105
SLC11A2 12 51373184 51422349 rs440595 1.38 (1.18 - 1.60) 3.20x 10°
CPM 12 69235977 69365350 rs1695154 0.75(0.65-0.86) 3.71x 10%
RTN1 14 60062694 60337684 rs1952032 1.37 (1.19-1.58) 1.10x 105
COLEC12 18 319355 500729 rs71352938 1.60 (1.27 —2.03) 7.91x10°
ASXL3 18 31158541 31331156 rs10164193 1.65(1.30-2.10) 4.77 x 10
ADAMTSS 21 28290231 28339439 rs233900 1.28 (1.02-1.61) 4.05x10°

a Chromosome; ® Positions based on GRCh37/hg19 build; € Odds ratio for the effect alleles.
Cl: Confidence Interval; GWAS: genome-wide association study; ICS: inhaled corticosteroids; NA: not available; SNP:
single-nucleotide polymorphism.
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Figure S1. Quantile-quantile plots of association results of asthma exacerbations in patients treated with ICS
from the European studies analyzed in the discovery phase. Observed and expected association results are
represented as -logl0 p-value on the y-axis and x-axis, respectively. Figures S1A-H represent the Q-Q plots of
association results for each individual study: A) PACMAN (Acc=0.98); B) BREATHE-PAGES (Acc=1.02); C) GoSHARE
(Aec=0.91); D) PASS (Acc=0.96); E) SLOVENIA (Acc=0.95); F) BREATHE (Acc=1.03); G) followMAGICS (Acc=0.88); H)
ESTATe (Aec=1.06). Figure S1I corresponds to the Q-Q plot of association results after combining those eight European

populations in a meta-analysis (Acc=1.04).
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Chapter 4

The difference in lung function measured at the beginning of asthma treatment and a short period later
has been evidenced to be a good clinical predictor of the response to asthma therapy. This fourth Chapter
presents the results of a GWAS of the change in FEV: after 6 weeks of ICS use in 166 childhood asthma
patients of European ancestry. The genetic variants found were assessed for association with asthma
exacerbations despite ICS use in 4,028 children and young adults from ten independent studies in
Europeans and non-Europeans. Additionally, genes previously associated with different measures of ICS
response, mostly in Europeans and Asians, were attempted for validation with the change in FEV: after ICS

use.

A variant at the ROBO2 gene was identified to be suggestively associated with the change in FEV1
after a short period of ICS use. The association of this gene was validated with asthma exacerbations
despite ICS at the level of the genomic region in Europeans, but not in African Americans and
Hispanics/Latinos. These findings suggest that ROBO2 could play a role in ICS response in patients of
European descent. Additionally, the association of the intergenic region of the PDE10A and T genes was
validated with the change in FEV1 after ICS treatment, demonstrating the validity of this measure as a marker

of the response to asthma therapy.

This Chapter is presented as a manuscript draft entitled ‘Genome-wide association study of change in lung
function after inhaled corticosteroids treatment in children and young adults with asthma’ that will be submitted
to an international scientific journal for its revision.
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ABSTRACT

Background. Asthma is the most common chronic disease in children, and it is usually treated with inhaled
corticosteroids (ICS) as controller medication. High variability in ICS response has been described,
evidencing an important contribution of the individual's genetic composition. Here, we aimed to identify novel

genetic markers involved in asthma treatment response with ICS.

Methods. A genome-wide association study (GWAS) of ICS response defined as the change in lung function
after 6 weeks of ICS treatment was performed in 166 asthma patients from the SLOVENIA study. Prioritized
variants were assessed for association with asthma exacerbations despite ICS use in European (n=2,681)
and admixed (n=1,347) children and youth from the Pharmacogenomics in Childhood Asthma (PiCA)

Consortium. Variants associated with ICS response by previous GWAS were also assessed for replication.

Results. The SNP rs1166980 from the ROBO2 gene was suggestively associated with ICS response
measured with a binary outcome (OR for G allele: 7.01, 95% CI: 3.29 — 14.93, p=4.61x107) and with the
quantitative measurement of lung function change (B for G allele: -6.54, 95% CI: -9.74 — -3.34, p=9.41x10%).
ROBO2 showed gene-level evidence of replication with asthma exacerbations despite ICS use in Europeans
(p=1.44x10%), but not in admixed individuals. The previously described association of PDE10A-T with ICS

response was validated.

Conclusions. We identified ROBO2 as a novel locus of ICS response measured as the change in lung
function and asthma exacerbations despite ICS use in European populations, which could be a potential

novel locus of the response to this medication.

Keywords: childhood asthma, exacerbations, forced expiratory volume in one second, inhaled
corticosteroids.
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INTRODUCTION

Asthma is the most common chronic disease in childhood and causes a high impact on the quality of
life of the patients and their families, as well as in economic terms on the healthcare system, school and/or
work absenteeism®2. This is a complex respiratory disorder characterized by inflammation and reversible
obstruction of airways?, and symptoms such as wheeze, breathlessness, chest tightness and, cough, among

othersl.

Inhaled corticosteroids (ICS) are the most effective and widely prescribed asthma preventive
medication!245, Patients with asthma benefit from ICS therapy through decreased airway inflammation,
improved lung function, and reduced asthma-related symptoms and exacerbations®. Although ICS has
demonstrated efficacy in improving symptoms in most children with asthma, between 30 and 40% do not
respond to ICS treatment. Furthermore, 10-15% of the children treated with ICS may experience worsening
of asthma exacerbations or even suffer severe adverse effects*”. Not only interindividual differences in ICS

response have been described, but also among different populations and ethnic groups#*8-°.

Different clinical markers that have been commonly used to evaluate ICS response include the asthma
control testl%, asthma symptoms scores!!!?, information about exacerbations!®'5, and change in lung
function after therapy*6. Among these, performing serial measurements of lung function after the start of the
therapy is the most commonly used marker for the assessment of treatment response®4. The difference
between forced expiratory volume in one second (FEV1) values measured at the beginning of treatment and
a few weeks!”18 or months?® later provides substantial information about ICS response!®. Importantly, the
change in FEV: after 6 weeks of treatment with ICS has been proposed to be a good predictor of long-term
asthma control'”18, Although some limitations have been attributed to the evaluation of lung function (e.g.,
measurement variability during the day, experience and potential errors driven by the operator, type and
calibration of the equipment, and the interpretative algorithm), this approach provides a quantitative and

objective measure of the response to asthma treatment20.21,

Some authors have suggested that variability in ICS response may be explained by the interaction of
several factors including the individual’s genetic composition?223, It has been estimated that between 40 and
60% of the total variation in ICS response may be explained by genetic factors?. Pharmacogenetic studies
of ICS have been recently carried out mostly using the genome-wide association study (GWAS) approach?>.
To date, a total of ten published GWAS have explored the association with ICS response mostly in European
populations?6-35, These have identified the association of 26 genetic variants located within or near 15 genes
with different definitions of ICS response, being the change in FEV: after a short period of treatment with ICS
the most common definition. Nonetheless, the validation of some of these associations has suggested that
the assessment of the presence or absence of asthma exacerbations despite ICS treatment can also be
used as a proxy of asthma treatment response in different populations36. Despite the effort of these studies,
the number of genes associated with ICS response to date is scarce and the effect sizes of the associations

detected are small?>.

In the current study, we aimed to identify novel genetic markers associated with ICS treatment

response by means of a GWAS of the change in FEV1 after initiating ICS therapy in asthma patients of
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European descent. Association with asthma exacerbations of the markers identified was attempted in

children and young adults treated with ICS from different populations.

METHODS

Ethics statement

All studies included were approved by their local institutional review boards and all participants or their
parents/caregivers gave their informed consent for inclusion before they participated in the study. All
methods were applied in accordance with guidelines and regulations for human subject research under the
principles of the Declaration of Helsinki. Further details of the ethical approval of each study are available in
the Supplementary Material.

Study population analyzed in the discovery phase

Asthma patients from the SLOVENIA study were included in the GWAS of change in lung function
after ICS treatment. Children and young adults (5-18 years old) of Slovenian origin with mild or moderate
persistent asthma were included in this study. Patients were excluded if they had other chronic inflammatory

disorders, except for asthma and atopic diseases36-38,

A subset of patients with reported use of any type of ICS and/or combination with long-acting beta-2
agonists (LABA) at least once in the 12 months preceding the study enrolment were analyzed. Availability of
genome-wide genotypes, data on the change in FEV: after 6 weeks of ICS therapy and information
regarding asthma exacerbations were considered as inclusion criteria in the GWAS analyses. FEV:
expressed as the percentage of the predicted value based on sex, age, and height of the patients was
measured before the beginning of ICS treatment (when the patients were ICS-naive) and 6 weeks after the
start of the treatment using a Vitalograph 2150 spirometer (Compact, Buckingham, UK), according to the
standard guidelines established by the European Respiratory Society (ERS) and the American Thoracic
Society (ATS)3:3°, Based on these measurements, the percent change in FEV:1 (AFEV1) was calculated as
(post-FEV1 — pre-FEV1)/(pre-FEV1) x 100. Based on a threshold of 8% FEV:1improvement, which has been
shown to be a good predictor of asthma treatment response in children3640, participants were classified as
ICS responders (AFEV128%) or non-responders (AFEV1<8%).

Genotyping and imputation of genetic variants in SLOVENIA

The SLOVENIA samples were genotyped using the Illumina Global Screening Array-24 v1.0
BeadChip (lllumina Inc.). Quality control (QC) analyses were carried out with PLINK 1.94142 following the
procedures described elsewhere3¢. Genetic variants across the whole genome were imputed with the
Michigan Imputation Server*® using Minimac344, performing the haplotype reconstruction with SHAPEIT
v2.r790%, Data from the second release of the Haplotype Reference Consortium (r1.1 2016) was used as a

reference panel3646
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Association testing with the change in FEV: defined as a binary variable

The association of genetic variants with the binary variable of ICS response was tested using logistic
regression models with the binary Wald test implemented in EPACTS 3.2.6%, including age and gender as
covariates. Association analyses were also adjusted by the first two principal components (PCs) of genetic
ancestry estimated by means of EIGENSOFT“8. This model was selected since it showed the best fit with the
expected values in terms of significance assuming no association as null hypothesis attending to Acc values,

estimated through the R package gap*°, and quantile-quantile plots.

Results were filtered to retain single nucleotide polymorphisms (SNPs) with a minor allele frequency
(MAF) 21% and imputation quality (Rsq) 20.3 and variants that reached a significance threshold of p-
value<5x10-% were deemed suggestively associated and followed up for replication in additional studies. This

threshold was set arbitrarily, following what has been commonly adopted by previous GWAS?36:37,

Association with the quantitative change in FEV; after ICS treatment

SNPs suggestively associated with the binary outcome related to AFEV: after 6 weeks of ICS
treatment were assessed in the same group of asthma patients from the SLOVENIA study, but evaluating
the association with the quantitative form of this outcome. Linear regression models were performed through

linear Wald tests in EPACTS 3.2.6%" adjusted by the same aforementioned covariates.

Replication of results analyzing the association with asthma exacerbations despite ICS use in
additional studies

The genetic markers found to be associated with AFEV:1 after ICS treatment were attempted for
validation with the absence or presence of asthma exacerbations despite the use of ICS. This was done in
ten independent studies included in the PiCA consortium®°. Association analyses were carried out in asthma
patients (2-25 years old) treated with ICS in the previous year, separately performed in two groups of studies

based on their ancestry.

On one hand, eight independent European studies were analyzed: the Pharmacogenetics of Asthma
Medication in Children: Medication with Anti-inflammatory effects (PACMAN); the Paediatric Asthma Gene-
Environment Study (PAGES); BREATHE; Genetics of the Scottish Health Research Register (GoSHARE);
the Pharmacogenetics of Adrenal Suppression study (PASS); SLOVENIA; the follow-up stage of the
Multicenter Asthma Genetics in Childhood Study (followMAGICS); Effectiveness and Safety of Treatment
with Asthma Therapy in Children (ESTATe) (Table S1). Additionally, two recently admixed populations with
African ancestry were also included in association analyses: Latinos/Hispanics and African Americans from
the Admixture in Latino Americans (GALA II) study, and African Americans included in the Study of African

Americans, Asthma, Genes, and Environments (SAGE), respectively (Table S2).

Asthma exacerbations were defined as the need for emergency care, hospitalizations, or systemically
administered corticosteroids because of asthma in the previous 6 or 12 months depending on the study.
Information regarding any of these events was not available for BREATHE-PAGES, BREATHE, and
followMAGICS so that alternative definitions including unscheduled general practitioner or respiratory system

specialist visits and school absences were used instead (Table S1 and Table S2). ICS use was defined
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using the same criteria described for participants in the SLOVENIA study. Further description of the
characteristics of the study populations, genotyping, imputation, and association analyses are available in

the Supplementary Material and elsewhere36.37,

Association with the presence/absence of asthma exacerbations despite ICS use was tested for each
study using logistic Wald tests implemented in EPACTS 3.2.6%7. Regression models also included age,
gender, and PCs as covariates. A meta-analysis of the association results was carried out within each
ancestry group using METASOFT?®L, The absence or presence of genetic heterogeneity was accounted for

applying fixed-effects or random-effects models, respectively, through Cochran Q-test>!.

The association of the SNPs identified in the discovery phase was separately evaluated in each
ancestry group of studies. Replication was carried out at the SNP-level, but also genomic regions were
considered, including variants located within a 100 kilobases (kb) window upstream and downstream from
the limits of the genes where the variants were located. Only common SNPs with MAF=21% and Rsq=0.3
shared among the populations included in each group were included. Replication results were considered
significant for those SNPs that reached the Bonferroni-corrected significance threshold, estimated as
a=0.05/number of independent signals within each genomic region. For this, independent variants were
separately estimated for Europeans and non-Europeans through empirical autocorrelations based on the -

logio p-value of each SNP analyzed using the R package coda36:52,

Sensitivity analyses of asthma severity

Sensitivity analyses were carried out for the variants identified to ascertain whether the association
effect detected was driven by disease severity rather than the response to asthma medications. On one
hand, association analyses were adjusted by the baseline asthma severity of SLOVENIA patients measured
as the pulmonary capacity before the beginning of ICS treatment. The original regression models evaluating
the association with the binary and quantitative outcomes related to AFEV: after 6 weeks under ICS therapy

were applied, but also including basal FEV1 as a covariate.

On the other hand, logistic regressions were performed evaluating the association with the
presence/absence of asthma exacerbations under ICS therapy accounting for asthma severity based on a
modified classification into treatment steps established by the British Thoracic Society and the Scottish
Intercollegiate Guidelines Network (BTS/SIGN)%3. These were performed in asthma patients with reported
use of ICS in the previous 6 or 12 months from the studies included in the replication phase with available
information about the use of the medications included in the classification into treatment steps. Therefore,
individuals were classified as follows: Step 1, as-needed use of short-acting beta-2 agonists (SABA); Step 2,
as-needed use of SABA plus regular ICS; Step 3, as-needed use of SABA plus regular ICS and LABA; Step
4, as-needed use of SABA plus regular ICS, LABA and leukotriene receptor antagonists (LTRA).
Alternatively, Step 3 also included patients with reported use of SABA as needed plus combinations of ICS
and LABA,; as-needed SABA plus ICS and combinations of ICS and LABA; or as-needed SABA plus ICS and
LTRA. Moreover, Step 4 was also defined as the use of SABA as needed plus LABA, combinations of ICS
and LABA, and LTRA,; as-needed SABA plus ICS, combinations of ICS and LABA, and LTRA; or as-needed
SABA plus combinations of ICS and LABA, and LTRA. It is important to note that all patients were classified
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into Step 2 or above since being under ICS therapy was one of the inclusion criteria in our study. Association
testing was individually carried out for each study through logistic regressions using R 3.4.453, Association
results were combined in a meta-analysis using METASOFT5L. Nonetheless, sensitivity analyses accounting
for asthma severity measured as treatment steps could not be performed in SLOVENIA since incomplete

information about the different medications included in the definition of treatment steps.

Validation of previous associations with ICS response

Previous GWAS have identified a total of 26 SNPs near or within 15 genes associated with ICS
response in several populations not overlapping with the ones analyzed in the current study (Table S3).
Validation of these associations was attempted at SNP-level using the results of the GWAS of the binary
variable of AFEV: after ICS treatment performed in the SLOVENIA study. Evidence of replication was
considered for significant variants at the nominal level (p<0.05) with the same direction of the association
effect as in the discovery phase. Replication was also evaluated at the genomic-region level, including
variants located within 100 kilobases (kb) upstream and downstream from the limits of the genes of ICS
response previously identified. A Bonferroni-like correction was applied accounting for the number of
independent variants analyzed within each genomic region. Evidence of replication was considered for those
association signals reaching the Bonferroni-corrected significance threshold estimated as a = 0.05/number of

independent variants3637,

RESULTS

Characteristics of the study populations

A total of 166 children and young adults with asthma from the SLOVENIA study with reported use of
ICS in the last 12 months were included in the discovery phase (Table 1). Of these, 94 were ICS non-
responders (cases) and 72 were responders (controls). Individuals included were 10.9 + 3.4 years old on
average, showing similar mean age in both groups (cases: 10.7 + 3.2 years, controls: 11.2 + 3.5 years). ICS
responders showed a substantial improvement in lung function after 6 weeks of treatment with ICS (16.9% +
8.7%). While 37.2% of the patients defined as non-responders to ICS showed asthma exacerbations in the

previous year, 29.2% of the controls had suffered these events in the same period (Table 1).

Patients from the European and non-European studies included in the replication showed a similar
mean age to those in the SLOVENIA study, except for followMAGICS, which included older participants
(17.2 £ 3.0 years) (Table S1, Table S2). Since asthma exacerbations were differentially defined among
studies, there was variation in the exacerbation rates, ranging from 11.0% in PACMAN to 66.4% in GALA I
(Table S1, Table S2).
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Table 1. Clinical and demographic characteristics of the asthma patients from the SLOVENIA study included
in the GWAS of change in FEV1 after ICS treatment.

Total re!s%i:::r-s a respclaisders b pvalue
Sample size 166 94 72 -
Gender (% male) 59.0 62.8 54.2 0.264"
Mean age + SD (years) 109+ 34 10.7 £ 3.2 11.2+3.5 0.461
Lung function
Mean basal FEV1 £ SD (%)¢° 87.1+14.8 91.3+12.7 81.6+155 < 0.001i
Mean post-treatment FEV1 + SD (%)¢ 93.7+14.4 90.1+13.6 98.5+14.2 < 0.001
Mean AFEV: £ SD (%) 6.7+12.1 -1.2+78 16.9+ 8.7 < 0.001
gs;rl:tnr;l: gz:;acerbatlons in the last 12 337 372 29.2 0.276h
ER visits (%) © 27.7 29.8 25.0 0.495h
OCS use (%) f 12.0 12.8 11.1 0.746"
Hospitalizations (%) 9 9.0 8.5 9.7 0.787"

a Asthma patients with AFEV1<8% after 6 weeks of ICS treatment; ® Asthma patients with AFEV128% after 6 weeks of
ICS treatment; °FEV1 measured at the beginning of ICS treatment; 9FEV1 measured after 6 weeks of ICS treatment; ©
Proportion of patients with any exacerbations who sought emergency care due to asthma; f Proportion of patients with
any exacerbations who needed the use oral corticosteroids because of asthma; ¢ Proportion of patients with any
exacerbations who needed to be hospitalized because of asthma; " Pearson ¥2 test (df=1; a=0.05); | Mann-Whitney U
test.

ER: emergency room; FEV1: forced expiratory volume in one second; AFEV+: change in FEV1 after 6 weeks of ICS
treatment; OCS: systemic corticosteroids; SD: standard deviation; NA: not available.

Association results of the change in FEV; after ICS treatment

A total of 7.5 million common SNPs (MAF=1%) with Rsq=0.3 were tested for association with the
binary outcome related to AFEV: after ICS treatment in asthma patients from the SLOVENIA study. No
evidence of genomic inflation due to population stratification effects was revealed by the value of Acc=1.00
(Figure S1). No associations were found at genome-wide significance level (p-value<5x1038), but the SNP
rs1166980 located in the ROBO2 gene was found to be suggestively associated with ICS responsiveness in
asthma patients (odds ratio (OR) for G allele: 7.01, 95% confidence interval (CI): 3.29 — 14.93, p=4.61x107)
(Figure 1, Figure 2). The association of rs1166980 was also found for the quantitative measurement of
AFEV1 in SLOVENIA, since the risk allele for non-response to ICS, was also associated with lower lung
function improvement (B for G allele: -6.54, 95% CI: -9.74 — -3.34, p=9.41x10%).
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Figure 1. Manhattan plot of association results of the binary variable of the change in FEV1 after ICS treatment
in the discovery phase. The logarithmic transformation of the association results (-logio p-value) is represented on the
y-axis along with the chromosome position (x-axis). The suggestive significance threshold (p<5x10-) considered for
evidence of association with ICS response is indicated by the gray line.
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Figure 2. Regional plot of association results with the binary variable related to the change in FEV: after ICS
treatment in the SLOVENIA study. Association results are represented on the y-axis (-logio p-value) by chromosome
position (x-axis) for each SNP as a dot. The diamond corresponds to the variant suggestively associated with ICS
response (rs1166980). The remaining SNPs are color-coded based on pairwise linkage disequilibrium (r?> values) with
that SNP for European populations from 1KGP (GRCh37/hg19 build).
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Validation of the association with asthma exacerbations despite ICS use

The association of the SNP rs1166980 was not replicated in Europeans, Latinos/Hispanics, and
African Americans when assessing asthma exacerbations despite ICS use as an outcome. At the genomic-
region level, a total of 5,919 variants within 100 kb upstream and downstream from ROBO2 were assessed
in Europeans. From these, eleven SNPs were significantly associated with asthma exacerbations despite
ICS use after accounting for the 164 independent variants located within this region (Bonferroni-like
correction significance threshold of p<3.04x104). The SNP rs72891545 was the most significant association
with ICS response using asthma exacerbations as the outcome (OR for A allele: 4.79, 95% CI: 2.36 — 9.73,
p=1.44x10°%) (Table S4, Figure S2). A total of 6,453 variants within a +/-100 kb window from ROBO2 were
evaluated in admixed populations. However, no significant associations with asthma exacerbations despite

ICS were found after applying a Bonferroni-like correction (p<1.22x10 for 411 independent variants).

Sensitivity analyses accounting for asthma severity

Association analyses adjusted by basal FEV1 as a proxy of asthma severity revealed no major
differences from the original results obtained for rs1166980 in SLOVENIA neither when the binary (OR for G
allele: 7.21, 95% CI: 3.15 — 16.50, p=2.95x10%) nor quantitative AFEV1 variables were evaluated (B for G
allele: -5.58, 95% CI: -8.72 — -2.44, p=6.42x104). Additionally, sensitivity analyses accounting for asthma
severity based on treatment steps classification were performed in 2,282 individuals from six of the eight
studies from populations of European descent included in the replication phase with available information
about the medications included in the definition of treatment steps. Specifically, these were carried out for
the variant within the genomic region of ROBO2 most significantly associated with asthma exacerbations
despite ICS in European populations (rs72891545). As a result, no major differences were found (OR for A
allele: 2.66, 95% Cl: 1.44 — 4.89, p=1.71x10-%) compared to the original association models performed for the
patients with available information about treatment steps (OR for A allele: 3.66, 95% CI. 1.88 — 7.12,
p=1.32x104).

Validation of previous associations with ICS response

Among the 26 SNPs previously associated with ICS response through GWAS approaches, two
variants were found to be nominally associated with the binary outcome related to AFEV: after 6 weeks of
ICS treatment in the SLOVENIA study: rs2395672 at CMTR1 (OR for G allele: 1.78, 95% CI: 1.03 — 3.05,
p=0.037) and rs3827907 at EDDM3B (OR for C allele: 0.52, 95% CI: 0.32 — 0.84, p=7.40x10-3) (Table S5).
However, these did not remain significant after adjusting for the total number of variants assessed
(p<1.92x10%). At the genomic-region level, a total of 33,617 variants located within a 100 kb window from
genes previously associated with ICS response were assessed. This resulted in evidence of suggestive
replication for two variants located in the intergenic region of PDE10A and T after Bonferroni-like correction
of the significance threshold within each genomic region: rs9365939 (OR for G allele: 0.41, 95% CI: 0.26 —
0.65, p=1.92x10%) and rs2118353 (OR for T allele: 0.41, 95% CI: 0.26 — 0.65, p=1.92x10+4) (Table S6).
However, no significant association was found after correcting for the total number of independent SNPs

tested across all the genomic regions (p<2.89x10- for 1728 independent variants).
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DISCUSSION

The current study describes the results of one of the few GWAS of the response to inhaled
corticosteroids in asthma carried out in ICS-naive patients to date. A variant located in the ROBO2 gene was
the most significantly associated with a binary variable of ICS responsiveness based on FEV:1 change after 6
weeks of ICS treatment. Consistent with this finding, the same result was also found with the quantitative
variable of FEV1 change. This association was validated at genomic-region level by analyzing asthma
exacerbations despite ICS use in Europeans, but not in Latinos/Hispanics, and African Americans.
Moreover, this association effect seems to be driven by the response to asthma treatment rather than

disease severity.

ROBO2 encodes one of the members of the roundabout guidance receptor's family, which are
immunoglobulins highly conserved across species. Four ROBO proteins have been identified in humans®®.
These are transmembrane receptors binding Slit guidance ligands [SLIT]®:57 with well-known functions in the
nervous system, including the modulation of axon guidance and cell migration during neuronal
development®6-58, However, they have also been demonstrated to be involved in different processes, such as
regulation of the immune response®® and tissue morphogenesis®. Furthermore, the ROBO signaling
pathway has been suggested to be involved in lung development®861, Previous studies have found that the
inactivation of ROBO induces the attraction of immune cells, remodeling the extracellular matrix and
reducing the number of alveoli®2. Specifically, ROBO?2 is involved in the signal transduction of SLIT258, which
has been shown to have an important function in pulmonary diseases®86364, SLIT2 is implicated in the
migration of different cell types, including eosinophils®®, which are known to be elevated in certain types of
asthma. In addition, SLIT2 has been found to inhibit the differentiation of fibrocytes from monocytes,
preventing fibrotic processes in several diseases, including pulmonary fibrosis®. Moreover, Lin et al detected

decreased levels of ROBO2 and SLIT2 in chronic obstructive pulmonary disease (COPD) patients®4.

ROBO2 has been suggestively associated with post-bronchodilator spirometric measures in African
Americans®’. More interestingly, it has been suggested that this gene may play an important role in asthma
through the induction of airway constriction®. This gene was identified to be a shared genetic factor for
asthma susceptibility among European, African American, and Latino/Hispanic populations®. Ding et al. also
suggested that ROBO2 may be part of biological networks related to inflammatory diseases and disorders of
the immune system®. This evidence suggests that ROBO2 could play an important role in asthma

phenotypes, including response to ICS in asthma.

As part of this study, we also assessed the replication of SNPs and genes that have previously been
implicated in ICS response, providing evidence of an association of the intergenic region of the PDE10A and
T genes with FEV1 change after ICS treatment. However, this association was found for different SNPs from

those described in the study reporting the association of this genomic region with ICS response?”.

This study has several limitations that need to be acknowledged. First, the sample size of the
discovery phase was limited, which could cause that only one variant was suggestively associated with ICS
responsiveness, with a lack of genome-wide significant associations. Nonetheless, the fact that FEV1 was

measured in ICS-naive patients with asthma, an approach that is rare among studies, explains part of the
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difficulty in achieving a larger sample size. Second, information related to spirometry recordings before and
after a short period of ICS treatment was not available in independent populations to assess replication using
the same measurement. However, the association of ROBO2 with ICS response among asthma patients
was also found evaluating the association with asthma exacerbations despite ICS treatment. Third, different
definitions of asthma exacerbations were used based on retrospective information from European and
admixed asthmatic children treated with ICS, which could not be fully informative about the response to
asthma treatment. Fourth, information about the specific ICS used and the doses administered, or indices of
adherence to treatment were not available for any of the studies evaluated, not allowing to include these

factors as covariates in the regression models.

In conclusion, this study identified an association with a variant in ROBO2 and AFEV: after ICS
treatment in European children and young adults with asthma. This association was validated using asthma
exacerbations despite ICS use as an alternative outcome in independent European populations. Taken
together with the biological plausibility regarding the role of ROBO2 in pulmonary and immune functions,
ROBO2 potentially represents a novel locus influencing the response to ICS in patients with asthma. Larger
studies coupled with functional evaluation are required to fully understand the role of ROBO2 in

responsiveness to ICS in patients with asthma.
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SUPPLEMENTARY METHODS

Design and characteristics of the studies included in association analyses with asthma

exacerbations despite ICS use

European populations

PACMAN (n = 654)

The Pharmacogenetics of Asthma Medication in Children: Medication with Anti-inflammatory effects
(PACMAN) study is an observational cohort including children (4-12 years old) with self-reported use of any
asthma medications. Recruitment was carried out through records of community pharmacies in the
NetherlandsS.

PAGES (n = 437)

The Paediatric Asthma Gene-Environment Study (PAGES) is a cross-sectional study that includes
asthma patients (2-16 years old) with a pediatrician’s diagnosis, recruited at secondary care clinics at
different centers across the United Kingdom: Aberdeen, Edinburg, Glasgow, Kilmarnock, and Brighton.
Clinical assessment through questionnaires about dietary and quality of life was complimented, and saliva
samples were collected. The coexistence of any respiratory diseases or significant health problems were

considered as exclusion criterias2.

BREATHE (n = 288)

The BREATHE study recruited participants aged 3 to 22 years old with a physician’s diagnosis of
asthma. Participants were recruited at primary and secondary care centers from the United KingdomS3-S5,
From the BREATHE samples included, genotypes from 182 patients had been obtained using the lllumina
Infinium CoreExome-24 BeadChip (Illumina) array, whereas 103 samples were genotyped using the Axiom™
Precision Medicine Research Array (Affymetrix Inc.). Quality control procedures were applied as described in
Hernandez-Pacheco et al.S6. Association analyses were performed for the latter together with PAGES

samples due to similarities of study design and sample characteristics, denoted as BREATHE-PAGES.

GOSHARE (n =472)

The Genetic of Scottish Health Research Register (GoSHARE) recruited children and young adults (3-
18 years old) in Tayside (Scotland) through complete electronic medical records (EMR) available at

databases from the National Health ServiceS’.

PASS (n = 402)

The Pharmacogenetics of Adrenal Suppression study (PASS) includes children and young adults (5-
18 years old) from the United Kingdom. Participants had a physician’s diagnosis of asthma and were treated
with inhaled corticosteroids (ICS) under medical supervision. Clinical concern about adrenal suppression
was also considered as an inclusion criterion since this study was initially conceived to explore the effects of

corticosteroids on adrenal suppressionS8-S9,
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SLOVENIA (n = 182)

The SLOVENIA study recruited patients (5-18 years old) with a physician diagnosis of mild to
moderate persistent asthma and hospital records at tertiary health centers in Slovenia. Part of the
participants was regularly treated with ICS under medical supervision. The coexistence of other chronic
inflammatory diseases was considered as an exclusion criterionS10,

followMAGICS (n = 147)

Participants with persistent asthma symptoms from the follow-up phase of the Multicenter Asthma
Genetics in Childhood Study (followMAGICS) were aged from 7 to 25 years old. Children with a physician’s

diagnosis of asthma were recruited at secondary and tertiary centers from Germany and AustriaS11-514,

ESTATe (n = 102)

Children and young adults (4-19 years old) with a physician’s diagnosis of asthma were included in the
case-control Effectiveness and Safety of Treatment with Asthma Therapy in children (ESTATe) study.
Patients using any asthma controller medication were recruited at primary care units from the Netherlands

based on electronic medical recordss®.

Admixed populations

GALA Il (n = 854)

Genes-Environment and Admixture in Latino Americans (GALA II) is a case-control study including
asthma patients (8-21 years old) with a physician’s diagnosis, active symptoms, and reported use of any
asthma medications recruited in the United States and Puerto Rico. Hispanic/Latino origin based on four

grandparents belonging to that ancestry group was used as an inclusion criterionS25,

SAGE (n =493)

The Study of African Americans, Asthma, Genes, and Environments (SAGE) recruited asthma patients
following the same protocols used in GALA Il. Individuals with four grandparents of African American

ancestry were recruited in several centers across the United StatesS15-516,

Ethical approval of each study included

The Slovenian National Medical Ethics Committee (Ljubljana, Slovenia) approved SLOVENIA
(reference number: 0120-569/2017/4). The Medical Ethics Committee of the University Medical Centre
Utrecht (Utrecht, the Netherlands) approved PACMAN (protocol number: 08/023). PAGES was approved by
the Cornwall and Plymouth Research Ethics Committee (Plymouth, United Kingdom). GoSHARE and
BREATHE were approved by the Tayside Committee on Medical Research Ethics (Dundee, United
Kingdom). The Liverpool Paediatric Research Ethics Committee (Liverpool, United Kingdom) (reference
number: 08/H1002/56) approved PASS. followMAGICS was approved by the Ethik-Kommission der
Bayerischen Landeséarztekammer (Munich, Germany) (ethics reference number: 01218). The Medische
Ethische Toetsings Commissie, Erasmus Medical Centre (Rotterdam, the Netherlands) (ethics approval

number: MEC-2011-474) approved ESTATe. The Human Research Protection Program Institutional Review
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Board of the University of California, San Francisco (San Francisco, United States) approved GALA Il and
SAGE (ethics approval numbers: 10-00889 and 10-02877, respectively).
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Chapter 4

Table S2. Clinical and demographic characteristics of admixed populations included in the evaluation of the
association with asthma exacerbations despite ICS treatment.

GALA Il (n=854) SAGE (n=493)
Gender (% male) 57.3 60.4
Mean age + SD (years) 121+£32 102+ 35
Recruitment country United States United States
Ancestry Latino/Hispanic African American
Asthma exacerbations in the last 12 months (%) 66.4 51.9
ER visits/ ER visits/
Definition hospitalizations/ hospitalizations/
OCS use OCS use
ER visits (%) 2 56.6 43.2
OCS use (%) ® 40.2 294
Hospitalizations (%) © 12.6 5.7

2 Proportion of patients with any exacerbations who sought emergency care due to asthma; ® Proportion of patients with
any exacerbations who needed the use oral corticosteroids because of asthma; © Proportion of patients with any
exacerbations who needed to be hospitalized because of asthma.

SD: standard deviation; ER: emergency room; OCS: systemic corticosteroids; NA: not available.
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Chapter 4

Table S4. Genomic-region replication of ROBO2 with asthma exacerbations despite ICS use in

European populations. Evidence for significant variants after Bonferroni-like correction.

SNP Chr.® Position ® E/NE OR (95% CI) © p-value
rs72891542 3 77183058 TIC 421 (212 -8.37) 3.96 x 10°
rs72891545 3 77186033 AG 479 (2.36 - 9.73) 1.44 x 10
rs80109563 3 77189324 TIC 6.38 (2.60 — 15.65) 526 x 10
rs77698848 3 77191168 AIG 6.06 (2.37 — 15.52) 1.72 x 104
rs75844835 3 77192763 GIT 9.02 (3.04 — 26.79) 7.53x 10
rs75804244 3 77193590 AG 6.47 (2.74 — 15.30) 211x 105
rs75336627 3 77197609 AG 4.95(2.18 - 11.27) 1.38 x 104
rs77225325 3 77199127 AIC 4.95 (2.18 — 11.27) 138 x 104
rs76099377 3 77199443 GIA 4.95 (2.18 — 11.27) 138 x 104

rs7623806 3 77201032 cr 4.95(2.18 - 11.27) 138 x 104
rs72891555 3 77205263 GIT 4.94 (2.09 — 11.71) 282 x 104

2 Chromosome; ° Positions based on GRCh37/hg19 build; ¢ Odds ratio for the effect alleles.
ClI: Confidence Interval; E: Effect allele; ICS: inhaled corticosteroids; NA: not available; NE: Non-effect allele; SNP:

single-nucleotide polymorphism.

The most significant SNP is in boldface.
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Observed —logqo(p)
3
1

Expected —logio(p)

Figure S1. Quantile-quantile plot of association results of ICS response measured as the binary outcome
related to the change in FEV1 after ICS treatment. The logarithmic transformation of the observed and expected
association results (-log10 p-value) is represented on the y-axis and x-axis, respectively (Aec=1.00).
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Figure S2. Regional plot of association results with asthma exacerbations despite ICS use in European
children and young adults. The y-axis represents the logarithmic transformation of the association results (-logio p-
value) by chromosome position (x-axis) for each SNP as a dot. The most significant variant after Bonferroni-like
correction is represented by a diamond (rs72891545). The remaining SNPs are color-coded based on pairwise linkage
disequilibrium (r? values) with that SNP for European populations from 1KGP (GRCh37/hg19 build).
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A few studies have explored the genes contributing to ICS response using a combination of different
omics data, although with a scarce combination of several omics layers. This Chapter includes the results of
a study combining transcriptomic and genomic data to identify novel markers involved in the response to ICS
treatment. This work was partially performed as part of a research internship at the Center for Human
Molecular Genetics and Pharmacogenomics at the Faculty of Medicine, University of Maribor (Slovenia)
under the supervision of Prof. Dr. Uro§ Potoc¢nik between 14" January 2019 and 3" June 2019 funded by an
M-AES Research Scholarship (Instituto de Salud Carlos Ill, MV18/00038). Differential gene expression was
evaluated using publicly available transcriptome data from ASM cells in vitro treated with GCs. Genes with
significant changes in expression levels were also inspected in PBMCs from responders and non-responders
to ICS therapy based on the absence or occurrence of asthma exacerbations, respectively. Further
validation was carried out using three publicly available transcriptome datasets from ASM cells
experimentally exposed to GCs or control solutions. Genetic variants within the genes with dysregulated
expression levels across all the datasets evaluated were tested for association with asthma exacerbations
despite ICS using genomic data from children and young adults from European and non-European

populations.

A total of 24 genes showed evidence of differential expression in ASM treated with GCs and PBMCs
from ICS responder asthma patients. From these, six genes were found to be overexpressed in independent
transcriptomic datasets from ASM cells treated with GCs compared to those exposed to control solutions.
Genetic variants at LTBP1 were associated with asthma exacerbations despite ICS use in European and
non-European populations, which could be a potential novel locus of ICS response in children and youth with
asthma. These results suggest that the combination of data from different omics sources could be a powerful

strategy to identify novel markers involved in the response to asthma medications.

This Chapter is presented as an extended version of the article entitled “Combined analysis of transcriptomic
and genetic data for the identification of loci involved in glucocorticosteroid response in asthma” published as a
Letter to the Editor in Allergy in 2020 (doi.org/10.1111/all.14552). This article is reproduced under the terms of
John Wiley and Sons license (hnumber 4913680940940).
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ABSTRACT

Background. Inhaled corticosteroids (ICS) are the most commonly prescribed medication to control asthma
symptoms. Both environmental and genetic factors are involved in the variability in response to this
medication. However, few biomarkers have been associated with response to asthma treatment with ICS.

Here, we aimed to analyze transcriptomic and genomic data to identify novel markers of ICS response.

Methods. Differential gene expression analyses were performed using transcriptome data from airway
smooth muscle (ASM) cells treated in vitro with glucocorticosteroids (GCs). Genes with changes in
expression levels after GCs exposure were examined in peripheral blood mononuclear cells (PBMCs) from
responders and non-responders to ICS treatment based on asthma exacerbations occurrence. Validation
was performed using three publicly available ASM transcriptomic datasets. Genes with evidence of
differential expression in response to GCs were tested for association with exacerbations despite ICS use in
European (n=2,681) and admixed (n=1,347) children and youth with asthma.

Results. A total of 24 genes showed significant changes in expression levels after GCs treatment in ASM
cells and PBMCs from responders to ICS. Evidence of overexpression of six of them was validated in
independent transcriptomic datasets of ASM exposed to GCs. Variants within LTBP1 were associated with
asthma exacerbations despite ICS use in Europeans (p = 3.28x10%) and admixed populations (minimum p =
6.76x10%).

Conclusions. LTBP1 was found to be a potential novel locus of ICS response in childhood asthma. These
findings suggest that integrating data from different omic sources could provide insights about molecular

mechanisms involved in asthma treatment response.

Keywords: childhood asthma, exacerbations, glucocorticosteroids, pharmacogenomics, transcriptome.
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INTRODUCTION

An increasing number of therapies are available to treat asthma, the most common chronic childhood
disease. However, inhaled corticosteroids (ICS) are still the most commonly prescribed and effective
controller medication for this disease®2. While most children with asthma treated with ICS have been
demonstrated to show an improvement of their symptoms, 30-40% of individuals fail or poorly respond to this
medication®. Moreover, 10-15% of children treated with ICS still experience asthma exacerbations despite
regular use of this medication®. While adherence is well recognized as a reason for treatment failure, it can
occur despite optimal usage. Substantial differences in response to asthma treatment with ICS have also
been reported among different populations and ethnic groups®*. However, the molecular mechanisms

underlying non-ICS-responsiveness among individuals and populations remain unknown>.

Beyond adherence, the variability in ICS response has been suggested to be the result of the
interaction of multiple factors including clinical phenotypes, ancestry, environmental and genetic factors®’. A
high contribution of the individual genetic composition in ICS response has been attributed to heritability
estimates of 40-60%8. However, to date, the number of genetic markers involved in ICS response is limited
and they are not sufficient to predict whether an individual will achieve control of their asthma using ICS°.
Therefore, the findings from genetic studies have not provided a real improvement in asthma management in

clinical practice®10.

Pharmacogenomics has been the most predominant approximation to ICS response research. In this
respect, only a few studies have attempted to identify markers involved in asthma treatment response with
ICS using data from other single omic sources apart from genomics®. Nevertheless, the power of these
strategies to provide insights about asthma treatment response mechanisms has been demonstrated®?,
especially when several -omics layers are integrated!?. To our knowledge, multi-omic studies of ICS

response in asthma patients are scarce!314,

Diverse mechanisms of action have been attributed to ICS, though many of them involve a reduction
of airway inflammation? through regulation of gene transcription!®. Several cell types are suggested to be the
source of inflammatory mediators in asthma such as structural airways cells, including fibroblasts, airway
smooth muscle (ASM), endothelial, and epithelial cells®>. Nevertheless, the action of GCs on other important
asthma subphenotypes has been described, including airway muscle contractility, hyperresponsiveness, and
bronchodilation617, It has been suggested that epithelial and ASM cells may be the main targets of GCs1819,
in addition to inflammatory cells (e.g. eosinophils, lymphocytes, mast, and dendritic cells)!>. ASM cells are
involved in the major asthma-related phenotypes, although the specific molecular mechanisms of action of
GCs on ASM cells are not well known?°. A few studies have recently explored the gene expression patterns
in ASM cells in response to GCs treatment by applying next-generation sequencing to the analysis of the
transcriptome (i.e., RNA-seq)?°2L. In the present study, we aimed to identify novel markers involved in the
response to GCs by combining transcriptome data obtained from ASM and peripheral blood mononuclear

cells (PBMCs) with genomic data from patients with different patterns of ICS response.
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METHODS

Exploration of changes in the transcriptome of ASM cells in response to GCs

As the discovery phase of this study, differential gene expression analyses were performed on RNA-
seq data obtained from ASM cells isolated from four non-asthmatic male lung transplant donors of European
ancestry publicly available at the Sequence Read Archive (SRA) (https://www.ncbi.nlm.nih.gov/sra)
(accession number SRP033351)?° (Figure S1). Briefly, this study performed in vitro experiments on cell lines
from each donor treating them with control solution or 1 pM dexamethasone for 18 h?® and carried out

RNAseq to analyze the effects of treatment in gene expression?°.

RNA-seq raw FASTA files were downloaded from SRA, converted to fastq format using a perl script
code assuming a quality score of 40. Subsequent analyses were performed with a modified pipeline in R
3.4.422, including initial quality control (QC) analysis based on parameters obtained with the FastQC 0.11.8
software?® to detect overrepresented sequences, GC contents, length distributions, and duplication levels.
Alignment to the GRCh37/hg19 reference genome was performed for paired-end reads using the Rsubread
package?*?5. Mapped sequence reads were assigned to genomic features at gene-level using the
featureCounts function implemented in Rsubread?5. Counts per million (CPM) were obtained using edgeR?’.
Very low expressed genes were filtered out based on CPM values corresponding to 10 or fewer read counts.
Retained genes were normalized according to library sizes using the trimmed mean of M values (TMM)
method implemented in edgeR?8. Subsequently, mean-variance modeling at the observational level (VOOM)
transformation was applied to filter and normalize counts?®. Differential gene expression levels in cells
treated with GCs compared to those treated with control solution were evaluated considering that cells
exposed to both experimental conditions were obtained from the same donors. Linear regression models
were applied through moderated t-tests allowing for sample-pair effects using the package LIMMASZ,
Differentially dysregulated genes in response to GCs treatment were identified after multiple comparison

adjustment with a false discovery rate (FDR) of 5% (g-value<0.05)31.

Analysis of genes dysregulated by GCs treatment in PBMCs from asthma patients treated with ICS

Genes differentially expressed in ASM cells treated with GCs were examined to determine if they also
showed changes in PBMCs obtained from asthma patients treated with ICS from the SLOVENIA study
(approved by the Slovenian National Medical Ethics Committee (Ljubljana, Slovenia), ethical approval
number: 0120-569/2017/4)3233, RNA was extracted from six children and young adults with asthma under
regular use of ICS during the previous 12 months of study enrollment and libraries were sequenced using
the BGISEQ-500 instrument (BGI Inc.). Based on data on emergency asthma care, hospitalizations, and/or
administration of oral corticosteroids because of asthma symptoms in the past 12 months, patients were
classified as ICS non-responders (n=3), if they had a history of any of such events or, responders to ICS
(n=3) if they did not experience any of those types of events (Table S1). Further details are described in the

Supplementary Material.

QC analyses were performed on the RNA-seq data obtained from PBMCs following the same

methodology described above for the ASM cells. The relative abundance of each PBMC type was estimated
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through the CIBERSORT method using PBMC LM22 signature matrix3*. Differential gene expression
analyses were carried out using linear models implemented on LIMMA3. The relative percentage of
lymphocytes B and T, natural killer cells, and monocytes among total PBMCs were included as covariates in
the analyses. To equate for fold change (FC) direction, differential gene expression was assessed for
responders to ICS or GCs treated ASM cells relative to ICS non-responder patients or control (not GCs
exposed) ASM cells, respectively. FDR was used for multiple comparison adjustments accounting for the
genes analyzed in this dataset (Figure S1).

Validation of transcriptome changes in additional datasets from ASM cells

Validation of significant differentially expressed genes found in both ASM cells treated with GCs and
PBMCs from asthma patients treated with ICS was sought using additional datasets of gene expression
profiles of ASM cells after GCs exposure (GSE13168, GSE34313, and SRP098649) (Table S2, Figure S1).
Differential expression analyses comparing ASM cells exposed to GCs treatment or control solutions were
performed using Reproducible Analysis and Validation of Expression Data (RAVED)
(https://github.com/HimesGroup/raved) through the online tool Reducing Associations by Linking Genes And
omics Results (REALGAR) (http://realgar.org/)3>:36. Differential expression results obtained from these three
independent ASM transcriptomic datasets were combined in a meta-analysis using a random-effects model
accounting for the variance among studies through the metaVolcanoR package®’. Evidence of replication
was considered for genes with significantly consistent changes in expression levels in cells treated with GCs
relative to the controls (g-value<0.05).

Association of genetic variants within identified genes with asthma exacerbations despite ICS
treatment in children and young adults with asthma

The association of genetic variants located within 100 kilobases (kb) upstream or downstream from
the genes with evidence of differential expression in all the transcriptomic datasets with asthma
exacerbations despite ICS use was explored (Figure S1). For that, ten studies participating in the
Pharmacogenomics in Childhood of Asthma (PiCA) consortium38 were analyzed. A total of eight studies in
European descent populations were included: the Pharmacogenetics of Asthma Medication in Children:
Medication with Anti-inflammatory effects (PACMAN); the Paediatric Asthma Gene-Environment Study
(PAGES); BREATHE; Genetics of the Scottish Health Research Register (GoSHARE); the
Pharmacogenetics of Adrenal Suppression study (PASS); SLOVENIA; the follow-up stage of the Multicenter
Asthma Genetics in Childhood Study (followMAGICS); Effectiveness and Safety of Treatment with Asthma
Therapy in Children (ESTATe). Additionally, two studies in admixed populations were also analyzed:
Latinos/Hispanics from the Genes-Environment and Admixture in Latino Americans (GALA Il) study, and
African Americans included in the Study of African Americans, Asthma, Genes and Environments (SAGE)33.
Details about ethical approval of each study are described in the Supplementary Material and additional

information about the studies is described elsewhere33,

Children and young adults with asthma (2-25 years old) with available genome-wide genotype data,

reported use of ICS, and data related to the ICS response based on the occurrence of asthma exacerbations

182



Chapter 5

during the 6 or 12 months preceding the study enroliment were included (Supplementary Material). Asthma
exacerbations were defined by the need for emergency care, hospitalizations, or administration of systemic
corticosteroids because of asthma (Table S3 and Table S4). Alternative definitions were used for those
studies without available information regarding any of these events, such as unscheduled general
practitioner or respiratory system specialist visits and school absences (Table S3). Individuals with asthma
exacerbations despite ICS treatment were considered as ICS non-responders and those without asthma
exacerbations as ICS responders.

Association between imputed genetic variants and asthma exacerbations despite ICS treatment was
tested for each study through Wald logistic regressions using EPACTS 3.2.6%°. Principal components (PCs)
of genetic ancestry were calculated to account for population stratification using PLINK v1.94041 and
EIGENSOFT 6.14%2. Subsequently, regression models were adjusted by age, gender, and PCs. The number
of PCs used as covariates was chosen comparing different regression models including different numbers of
PCs and that showing the best lambda fit (Aec~1), estimated through the Gap v1.2.2 R package, was
selected. Further details have been described elsewhere33. Two separate meta-analyses were performed
based on the ancestry of the studies included: European and non-European. Single nucleotide
polymorphisms (SNPs) with a minor allele frequency (MAF)=1% and imputation quality (Rsq)=0.3 shared
among the studies included in each group were meta-analyzed applying fixed-effects or random-effects
models depending on the Cochran Q-test implemented on METASOFT*. Independent variants within each
gene region evaluated were separately estimated for Europeans and non-Europeans through empirical
autocorrelations based on the -logio p-value of each SNP analyzed using coda R package**. A Bonferroni-
like correction was applied accounting for the total number of independent variants tested for each
population group. Evidence of association with ICS response was considered for those variants reaching the

threshold established as a=0.05/total number of independent variants.

Sensitivity analyses were carried out for the variants identified through the same association models
but also adjusting for the treatment step as a proxy of asthma severity*>. Only patients with available data
about the medications included in the definition of medication steps were included. Logistic regressions were
carried out with R 3.4.422 including a covariate classifying individuals as follows: Step 1, as-needed use of
short-acting B2 agonists (SABA); Step 2, as-needed use of SABA plus regular ICS; Step 3, as-needed use of
SABA plus regular ICS and long-acting 2 agonists (LABA); Step 4, as-needed use of SABA plus regular
ICS, LABA and leukotriene receptor antagonists (LTRA). Alternatively, patients with reported use of SABA as
needed plus combinations of ICS and LABA; as-needed SABA plus ICS and combinations of ICS and LABA;
or as-needed SABA plus ICS and LTRA were also classified into Step 3. Step 4 was also defined as the use
of SABA as needed plus LABA, combinations of ICS and LABA, and LTRA; as-needed SABA plus ICS,
combinations of ICS and LABA, and LTRA; or as-needed SABA plus combinations of ICS and LABA, and
LTRA. All the patients were classified into Step 2 or above since ICS use was considered as one of the

inclusion criteria in our study.
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RESULTS

Differential gene expression analyses in airway smooth muscle cells in response to GCs

An average of 48.8 million total reads was obtained per sample and an average of 81.9% of the reads
was successfully mapped to the GRCh37/hg19 build of the human reference genome. A total of 14,707
genes were analyzed and 4,718 of them were found to be differentially expressed in cells treated with GCs
compared to those exposed to control solution (g-value<0.05) (Figure 1A).

Analysis of changes in gene expression driven by GCs exposure in peripheral blood mononuclear
cells from asthma patients treated with ICS

The relative abundance of each PBMC type showed no evidence to be statistically different between
asthma patients with patterns of responsiveness and non-responsiveness to ICS therapy (p-value>0.05)
from the SLOVENIA study (Figure S2). Genes with altered expression levels in ASM cells after treatment
with GCs were followed up for replication using PBMCs transcriptome profiles obtained from six patients
treated with ICS from the SLOVENIA study (Table S1). From the 4,718 genes found differentially expressed
in ASM cells after in vitro GCs exposure, 32 genes showed significant changes in expression levels in
PBMCs depending on the ICS response status (g-value<0.05). Of those, 24 genes showed consistent

alteration in expression levels compared to samples taken as controls in both datasets based on logz FC
values (Figure 1B, Table S5).
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Figure 1. Results of differential expression in response to GCs in ASM cells and PBMCs. Volcano plot of
differential expression results in ASM cells after exposure to GCs compared to a control solution (panel A). Results of
differential expression in PBMCs from ICS responders are shown for genes with significant changes in expression
levels in ASM cells in response to GCs after adjusting with a false discovery rate (FDR) of 5% (g-value<0.05) (panel B).
Results are represented in terms of logz fold change (logz FC) (x-axis) and the logarithmic transformation of FDR (-logio
FDR) (y-axis). Genes significantly (g-value<0.05) found to be up-regulated (log= FC>0) or downregulated (log2. FC<0)
are represented by means of green or red dots, respectively. Genes with consistent alteration of expression levels in
ASM cells and PBMCs are labeled into white boxes.

Validation of transcriptome changes in response to GCs in additional datasets from ASM cells

From the 24 genes with consistent changes in expression levels in response to GCs stimulation and
related to asthma exacerbations despite ICS treatment, six genes were up-regulated in cells experimentally
treated with different GCs compared to those exposed to control solutions after combining the publicly
available ASM transcriptomic datasets: LTBP1 (g-value=7.46x104), MTURN (g-value=3.92x10-3), NAMPT (g-
value=3.77x107), CALD1 (g-value=5.22x10°), MMD (g-value=5.84x10+%), COL18A1 (g-value=1.93x10-)
(Table S6). The potential implication of these genes on asthma severity was assessed by evaluating their
expression in PBMCs according to baseline lung function, showing no significant changes (Table S7).
Additionally, only LTBP1 remained significantly differentially expressed in response to ICS treatment after
including baseline lung function as a covariate (Table S7).

Association of genetic variants within identified genes with asthma exacerbations despite ICS use in
children and young adults with asthma

Association of 7,042 SNPs within 100 kb upstream and downstream from the genes LTBP1, MTURN,
NAMPT, CALD1, MMD, and COL18A1 with asthma exacerbations despite ICS use was evaluated in
European children and young adults with asthma. After applying a Bonferroni-like correction considering the
total number of independent variants tested across all the gene regions (p<4.96x10- for 1,007 independent
variants tested), the SNP rs11681246 located within LTBP1 (Figure 2) was significantly associated with
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asthma exacerbations despite ICS use in Europeans (OR for G allele: 0.72, 95% CI: 0.63 — 0.83, p =
3.28x10%) (Figure 3, Table S8). The effect of this association was similar after adjusting by treatment step,
as a proxy of disease severity, in a subset of 2,282 patients with complete information about asthma
medication (OR for G allele: 0.74, 95% CI: 0.63 — 0.86, p=1.13x104). However, this SNP was not replicated
in admixed populations, which could be explained by differences in frequency of the effect allele between
Europeans (39.4-47.2%), Hispanics/Latinos (25.7%), and African Americans (29.2%). Nonetheless, we
assessed the association of alternative polymorphisms in this genomic region in admixed populations,
revealing the association of six intronic LTBP1 variants in high linkage disequilibrium (r2>0.95) (Table S8), all
dependent on the association of rs76390075 (OR for C allele: 0.40, 95% CI: 0.26 — 0.63, p=6.76x10%), after
adjustment for 234 independent variants tested (p<2.14x104) (Figure 4). Moreover, this association was
robust to the adjustment by medication step, OR for C allele: 0.41, 95% CI: 0.26 — 0.65, p=1.12x10“.

However, the association signals detected in European and admixed populations are not in LD (r?<0.01).
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Figure 2. Dot plots of differential expression for LTBP1 in ASM cells and PBMCs in response to GCs. Gene
expression levels are represented in terms of logz counts per million (CPM) in the y-axis as dots for cases (red) and
control (blue) samples. The median expression level is represented for each sample group by a black horizontal line. P-
values adjusted by false discovery rate are shown (g-value).
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Figure 3. Association results with asthma exacerbations despite ICS treatment for LTBP1 in European
populations. Forest plot of association effects SNP rs11681246 across the European studies included in the
association analyses (panel A). Association effects are shown in terms of odds ratio (OR) for the effect allele (G) for
each study and after performing a meta-analysis of the results by black boxes and a blue diamond, respectively. The
95% Confidence Intervals (95% CI) are represented by black dash lines. Results are not provided for BREATHE since
rs11681246 did not pass quality control checks in this study. Regional plot of association results with asthma
exacerbations despite ICS use (panel B). The logarithmic transformation of the association results (-logio p-value) is
represented in the y-axis by chromosome position (x-axis) for each SNP as a dot. The most significant variant after
Bonferroni-like correction is represented by a diamond. The remaining SNPs are color-coded based on pairwise
linkage disequilibrium (r? values) with that SNP for European populations from 1KGP (GRCh37/hg19 build)®2,
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Figure 4. Association results with asthma exacerbations for LTBP1 in Latinos/Hispanics and African
Americans treated with ICS. Forest plot of association effects of the most significant LTBP1 variant associated with
asthma exacerbations despite ICS use in admixed populations (rs76390075) (panel A). Association effects are shown
as odds ratio (OR) for the effect allele (G) for each study and after performing a meta-analysis of the results for
admixed populations by black boxes and a blue diamond, respectively. The 95% Confidence Intervals (95% CI) are
represented by black dash lines. Regional plot of association results of LTBP1 variants with asthma exacerbations
despite ICS use in admixed populations (panel B). The y-axis represents the logarithmic transformation of the
association results (-logio p-value) by chromosome position (x-axis) for each SNP as a dot. The diamond corresponds
to the most significant variant after Bonferroni-like correction. The remaining SNPs are color-coded based on pairwise
linkage disequilibrium (r? values) with that SNP for Admixed American populations from 1KGP (GRCh37/hg19 build)®2.
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DISCUSSION

This study describes the results of transcriptomic analyses of several datasets to reveal candidate
genes related to ICS response among asthma patients. After combining RNA-seq data from ASM cells
treated with GCs with data from PBMCs from asthma patients with different patterns of ICS response based
on the occurrence of asthma exacerbations, 24 genes showed consistent changes in expression levels.
From these, overexpression of six genes after GCs exposure was validated in three independent ASM
transcriptomic datasets. The implication of LTBP1 in the response to GCs was validated by revealing the
association of seven variants within this gene with asthma exacerbations despite ICS use among
Europeans, Latinos/Hispanics, and African Americans. GCs were found to increase LTBP1 expression levels
in ASM cells experimentally exposed independently of the type of GCs. Similar effects were detected in
PBMCs obtained from ICS responder asthma patients, but not in the ICS non-responders. This suggests that
the ICS treatment may not influence LTBP1 expression in PBMCs from patients who experience asthma

exacerbations despite ICS treatment.

LTBP1 encodes a member of the family of latent-transforming growth factor-beta (TGF-B) binding
proteins. LTBP1 is involved in the regulation of the TGF-B1 activity*, including its activation from a precursor
form#7, folding, secretion out from the cell*8, and deposition at the extracellular matrix4® through interactions
with fibrillin molecules®°. Interestingly, TGF-B1 has been proposed to play a key role in cell growth and
differentiation, immune response, and airway remodeling®l. Specifically, increased levels of the active form
of TGF-B1 have been detected in asthma patients, which has been suggested to recruit myofibroblasts
triggering an increased collagen deposition and the development of subepithelial fibrosis in asthma®2. LTBP1
has been also proposed to be involved in allergic diseases and idiopathic pulmonary fibrosis (IPF)5%3, where
LTBP1 has been found to interact with fibulin 1¢ (FBLN1), modulating lung remodeling and fibrosis through
the regulation of TGF-B1 activation®. Additionally, TGF-B1 induces the conversion of fibroblasts to
myofibroblasts, which is significantly reduced through inhibition of FBLN1. For this reason, the inhibition of
FBLN1 binding to LTBP1 has been proposed as a therapeutic strategy to reduce fibrotic processes®s.
Additionally, genetic variants near or within LTBP1 have been associated with lung function (forced
expiratory volume in 1 second and forced vital capacity) among participants from the UKBiobank
(http://lwww.nealelab.is/uk-biobank/)>*. Despite the limited sample size of the gene expression datasets
evaluated, these findings support that LTBP1 could play an important role in asthma-related phenotypes.
Additionally, our sensitivity analyses suggested that LTBP1 could be involved in the response to asthma
therapy with ICS rather than disease severity. Nonetheless, validation of our findings in independent
populations analyzing larger sample sizes and functional studies are needed. These will provide insights
about the biological mechanisms implicating LTBP1 in ICS response and to test whether its clinical

relevance predicting the treatment response.

Interestingly, in this study, we found the LTBP1 variants rs11681246 and rs76390075 were found to
be the most significant associations with asthma exacerbations in patients treated with ICS from European
and admixed populations, respectively. Previous evidence suggests that both could be involved in the
regulation of gene expression in pulmonary cells, according to the Encyclopedia of DNA Elements
(ENCODE)5%5%6, The SNP rs11681246 has been related to histone marks such as the monomethylation of
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histone H3 at lysine 4 (H3K4mel) and acetylation of histone H3 at lysine 27 (H3K27ac) in several cell lines,
including fetal fibroblasts and adult lung fibroblast primary cells. Moreover, this has been proposed to be a
DNAse hypersensitivity site in pulmonary fibroblast primary cells55%. On the other hand, the most
significantly associated variant with asthma exacerbations despite ICS use (rs76390075) is in LD (r?=1) in
admixed populations with variants that had been evidenced to play a potential functional role in pulmonary
tissues, including epigenetic modifications such as the acetylation of histone H3 at lysine 9 and, H3K4mel
and H3K27ac marks (rs75486357 and rs3820912), and the location at DNAse hypersensitivity sites in fetal
fibroblasts and pulmonary fibroblast primary cells (rs3820912)5556, Nonetheless, no evidence of implications
as expression quantitative trait loci (eQTL) was found for any of these variants®’. Therefore, this evidence

supports the potential role of associated variants in gene expression regulation.

To the best of our knowledge, our study is one of the few combining diverse populations and different
omics layers to identify genetic markers of ICS responsel25859, The strengths of our study are related to the
assessment of several different transcriptomic datasets and the fact that association analyses were carried
out using data from the largest consortium studying the pharmacogenetic factors involved in asthma
treatment response in children and youth, including populations with different ancestries. This is in contrast
with previous studies, which have explored the association of a low number of variants in reduced sample

Sizes9:33:60,

However, we acknowledge some limitations of our study. First, gene expression levels in response to
GCs or control exposure were compared between reduced groups of ASM cells in the discovery phase of
this study. Moreover, these cells were obtained from non-asthmatic individuals belonging to European-
descent males, not representing the two genders and different ethnic groups?°. Additionally, the sample size
of PBMCs transcriptomics set consisted of a minimum of biological replicates needed to identify significantly
differentially expressed genes. Second, gene expression profiles obtained using microarrays and RNA-seq
assays were compared, even though some discrepancies have been attributed between these approaches®?.
In order to avoid bias, the two sources of data were analyzed in different stages of the analyses. Third,
transcriptome data from different cell types were compared, although cell specificity has been attributed to
the effects of GCs®8. Fourth, transcriptomic datasets with different study designs were analyzed, including
cells experimentally exposed to GCs and those extracted from patients under ICS therapy. Fifth, the
occurrence of exacerbations despite ICS therapy was considered based on retrospective information, which
could not reflect the real state at the time of the study enroliment. Additionally, no specifications about ICS
dose, the type used, nor adherence were available, which are factors that could also influence treatment

response.

In summary, our study revealed LTBP1 as a novel locus for ICS response in asthma patients. These
results indicate that combining publicly available data from different omic sources could be a powerful
approach to provide novel insights about the mechanisms involved in the response to ICS treatment and
thus, to develop alternative diagnosis and therapeutic strategies that could improve asthma management

strategies in clinical practice.
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SUPPLEMENTARY METHODS

Analysis of genes dysregulated by GCs treatment in peripheral blood mononuclear cells from

asthma patients treated with ICS

The SLOVENIA study includes children and young adults (5-18 years old) with a physician’s diagnosis
of mild or moderate persistent asthma of Slovenian origin. Part of the asthmatic patients included in the
study were under regular treatment with inhaled corticosteroids (ICS) following the PRACTALLS! and NAEPP
guidelinesS?. Therefore, patients younger than 12 years old received a daily dose of 200 mcg of fluticasone,
whereas those older than 12 years old were treated with 400 mcg of fluticasone. Adherence to ICS therapy
was confirmed in consequent follow-ups based on parents/patient self-reports and, prescription refills. None
of the patients were on high dose ICS therapy. Detailed information about the study design has been

described elsewheres3.54,

RNA was extracted from peripheral blood mononuclear cells (PBMCs) obtained from patients with
asthma treated with ICS in the previous 12 months using the TRI Reagent commercial kit (Sigma-Aldrich,
Inc.). The quality and integrity of RNA samples were measured using the Agilent RNA 6000 Nanochip
(Agilent Technologies, Inc.) and the Agilent 2100 Bionanalyzer (Agilent Technologies, Inc.). LncRNA and
mMRNA 100 bp libraries were constructed using MGIEasy rRNA Depletion Kit (MGITech Co., Ltd) and
MGIEasy RNA Library Prep Set (MGITech Co., Ltd). Paired-end sequencing was performed using the
BGISEQ-500 instrument (BGI Inc.) at BGI-Europe facilities (BGlI Inc.).

Design and characteristics of the studies included in the validation using genomic data

European populations

PACMAN (n = 654)

The Pharmacogenetics of Asthma Medication in Children: Medication with Anti-inflammatory effects
(PACMAN) study is an observational cohort including children (4-12 years old) with a declared use of any

asthma medications. This information is based on records from community pharmacies in the NetherlandsS5.

PAGES (n =437)

The Paediatric Asthma Gene-Environment Study (PAGES) is a cross-sectional study that recruited
children and young adults (2-16 years old) with a pediatrician’s diagnosis of asthma attending secondary
care clinics in the United Kingdom. Clinical assessment through questionnaires and saliva sample collection
was carried out. Candidates with any respiratory diseases apart from asthma or significant health problems

were excludedss,

BREATHE (n = 288)

The BREATHE study recruited participants (3-22 years old) with a physician diagnosis of asthma from
the United Kingdoms7S°, From the BREATHE samples included, genotypes from 182 patients had been
obtained using the lllumina Infinium CoreExome-24 BeadChip (lllumina) array, whereas 103 samples were

genotyped using the Axiom™ Precision Medicine Research Array (Affymetrix Inc.). Association analyses
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were performed for the latter together with PAGES samples due to similarities of study design and sample
characteristics, denoted as BREATHE-PAGES.

GOSHARE (n = 472)

Children and young adults aged 3 to 18 years old participating in the Genetic of Scottish Health
Research Register (GOSHARE) study were recruited in Tayside (Scotland) using databases from the

National Health Service. Further details have been reported in previous publicationsS10,

PASS (n = 402)

Participants (5-18 years old) with a physician diagnosis of asthma and under treatment with inhaled
corticosteroids (ICS) from the Pharmacogenetics of Adrenal Suppression study (PASS) were included. This
study was initially designed to assess associations between the use of corticosteroids and adrenal
suppression so that, clinical concern about adrenal suppression was also considered as an inclusion

criterions11. s12,

SLOVENIA (n = 182)

Children and young adults (5-18 years old) with mild and moderate persistent asthma recruited from
tertiary health centers in Slovenia were included in the SLOVENIA study. Lung function was measured as
the forced expiratory volume in 1 second (FEV1) before and after 6 weeks after treatment with ICS using the

Vitalograph 2150 spirometer (Compact, Buckingham, UK) according to ERS/ATS guidelinesS3.

followMAGICS (n = 147)

Participants from the observational Multicenter Asthma Genetics in Childhood Study (MAGICS) were
included in the follow-up phase of this study (followMAGICS), including patients with persistent asthma
symptoms, now aged from 7 to 25 years. Recruitment was carried out at secondary and tertiary centers from

Germany and AustriaS13-516,

ESTATe (n = 102)

The Effectiveness and Safety of Treatment with Asthma Therapy in children (ESTATe) is a case-
control study including children and young adults (4-19 years old). Patients with a physician diagnosis of
asthma were recruited at primary care units at the Netherlands based on electronic medical records. Only

those individuals with reported use of asthma controller therapy were includeds?.

Admixed populations

GALA Il (n = 854)

Genes-Environment and Admixture in Latino Americans (GALA 1l) is a case-control study including
patients with a physician diagnosis of asthma and controls (8-21 years old) with four Latino grandparents.
Participants were recruited from five different centers in the United States and Puerto RicoS'’.

SAGE (n =493)

The Study of African Americans, Asthma, Genes and Environments (SAGE) is a cross-sectional

asthma study, whose participants show similar characteristics as GALA I, although only those with four
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grandparents of African American ancestry were included in this study. In this case, subjects were recruited
in centers from the United StatesS!7: S18,

Ethical approval of the studies of childhood asthma from the PiCA consortium

All studies included were approved by their local institutional review boards and written informed
consent was provided by participants or their parents/caregivers. The Medical Ethics Committee of the
University Medical Centre Utrecht (Utrecht, the Netherlands) approved PACMAN (protocol number: 08/023).
PAGES was approved by the Cornwall and Plymouth Research Ethics Committee (Plymouth, United
Kingdom). GoSHARE and BREATHE were approved by the Tayside Committee on Medical Research Ethics
(Dundee, United Kingdom). The Liverpool Paediatric Research Ethics Committee (Liverpool, United
Kingdom) (reference number: 08/H1002/56) approved PASS. The Slovenian National Medical Ethics
Committee (Ljubljana, Slovenia) approved SLOVENIA (ethical approval number: 0120-569/2017/4).
followMAGICS was approved by the Ethik-Kommission der Bayerischen Landesarztekammer (Munich,
Germany) (ethics reference number: 01218). The Medische Ethische Toetsings Commissie, Erasmus
Medical Center (Rotterdam, the Netherlands) (ethics approval number: MEC-2011-474) approved ESTATe.
The Human Research Protection Program Institutional Review Board of the University of California, San
Francisco (San Francisco, United States) approved GALA Il and SAGE (ethics approval numbers: 10-00889
and 10-02877, respectively).
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Table S4. Clinical and demographic characteristics of admixed populations included in the validation of
genes with asthma exacerbations despite ICS use.

GALA Il (n=854) SAGE (n=493)

Gender (% male) 57.3 60.4
Mean age + SD (years) 121+3.2 10.2+3.5
Recruitment country United States United States
Ancestry Latino/Hispanic African American
Asthma ixacerbatlons in the last 12 66.4 510
months (%)

Definition ER visits/ ER visits/

hospitalizations/OCS use hospitalizations/OCS use

ER visits (%) 2 56.6 43.2

OCS use (%) ® 40.2 294

Hospitalizations (%) ¢ 126 57

2 Proportion of patients with any exacerbations who sought emergency care due to asthma; ° Proportion of patients
with any exacerbations who needed the use of oral corticosteroids because of asthma; © Proportion of patients with
any exacerbations who needed to be hospitalized because of asthma.

SD: standard deviation; ER: emergency room; OCS: systemic corticosteroids; NA: not available.
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Table S7. Results of differential expression analyses in PBMCs for genes differentially expressed
across datasets analyzed using different regression models.

Asthma exacerbations + age + %FEV;2" Predicted baseline FEV; ¢ d

Gene log:FC (95% Cl)¢ p-value g-value logz:FC (95% Cl)¢ p-value g-valuef
LTBP1 1.05(0.45-1.65) 4.28x103 0.022 -0.07 (-0.26 - 0.11)  0.369 0.576

MTURN 0.59 (-0.16 — 1.34)  0.106 0.480 0.01(-0.17 =0.19)  0.907 0.951
NAMPT -1.21(-317-0.74)  0.186 0.700 0.07 (-0.21-0.35)  0.561 0.731
CALDT  1.45 (0.45 — 2.46) 0.011 0.061 -0.07 (-0.40-0.26)  0.611 0.769
MMD  0.84(-0.14-1.82)  0.083 0.399  -0.08(-0.33-0.16) 0.439 0.634
COL18A1 0.58 (-0.35—1.50)  0.186 0.700 0.00 (-0.21-0.21)  0.993 0.996

a Absence/presence of asthma exacerbations despite ICS use was evaluated as the dependent variable; ® The
predicted FEV1 measured at baseline before starting ICS therapy and age were included as covariates; ° Predicted
FEV1 measured at baseline before starting ICS therapy was evaluated as the dependent variable; 4 Estimated
relative percentages of lymphocytes B and T, natural killer cells and monocytes were included as covariates; © Base
2 logarithmic transformation of fold change obtained for PBMCs from asthma patients with different patterns of ICS
responsiveness based on the occurrence of asthma exacerbations; ' p-value adjusted by false discovery rate
accounting for the genes differentially expressed genes in the ASM analyzed in the discovery phase.

Genes with significant changes in expression levels are in boldface.

ASM: airway smooth muscle; Cl: confidence interval; ICS: inhaled corticosteroids; FEV1: forced expiratory volume
in one second; PBMCs: peripheral blood mononuclear cells.
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TRANSCRIPTOMIC DATA
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Himes et al. 2014 (SRP033351) (n=4)

RNA-seq Cells treated in vitro with Cells treated in vitro with
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Genes differentially expressed in
response to GCs (g-value<0.05)"

[ REPLICATION IN PBMCs FROM ASTHMA PATIENTS ]

Samples from asthma patients treated with ICS
SLOVENIA study (n=6)
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(n=3) (n=3)
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in expression levels in response
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[ ADDITIONAL REPLICATION IN ASM CELLS ]
Gene expression microarrays RNA-seq
Non-asthma lung Healthy/asthma lung Non-asthma lung
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(n=3) (n=6) (n=8)
Misior et al. 2009 Masuno et al. 2011 Kan et al. 2019
(GSE13168) (GSE34313) (SRP098649)

Cells treated in vitro with Cells treated in vitro with
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Genes with consistent changes
‘ in expression levels in response
to GCs (g-value<0.05)"

ICS response = presence/absence of asthma exacerbations despite ICS use

European populations (n=2,681) Admixed populations (n=1,347)

[ PACMAN ] [ SLOVENIA ] [ GALAI ]
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Figure S1. Flow diagram summarizing the methodological approach followed to identify novel loci of ICS
response through the combination of transcriptomic and genomic data. Differential gene expression analyses in
response to glucocorticosteroids (GCs) were carried out in different groups of airway smooth muscle (ASM) cells
treated with GCs in vitro or peripheral blood mononuclear cells (PBMCs) extracted from asthma patients with different
patterns of inhaled corticosteroids (ICS) responsiveness. The orange boxes show the source of the transcriptomic
datasets, whereas the criteria followed to select the genes that were attempted for validation in the replication stage or
additional evaluation are indicated within light blue boxes. The names of the studies participating in the
Pharmacogenomics in Childhood Asthma Consortium (PiCA) from populations of European or admixed ancestry
included in the association analyses of asthma exacerbations despite ICS use are shown within green or red boxes,
respectively. p-value adjusted by false discovery rate; 2a= 0.05/number of independent variants. ASM: airway smooth
muscle; GCs: glucocorticosteroids; ICS: inhaled corticosteroids; kb: kilobases; PBMCs: peripheral blood mononuclear
cells; RNA-seq: RNA sequencing.
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Figure S2. Bar plot of PBMC composition in asthma patients with different patterns of ICS responsiveness. The
estimated relative percentage of each cell type among the total population of peripheral blood mononuclear cells

(PBMCs) (y-axis) in inhaled corticosteroids (ICS) responder and non-responder asthma patients is represented. PBMC
types are color-coded as it is shown in the legend on the right.
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4. DISCUSSION

This doctoral thesis includes the results of exploring the genetic variation underlying the response to
asthma treatment with ICS through association studies and transcriptomic approaches. To achieve the
objectives of this work, we have: i) reviewed the main findings of the genomic studies of different asthma-
related phenotypes published between 2016 and 2018; ii) explored the genetic markers involved in asthma
exacerbations despite ICS use in children and youth from diverse populations; iii) evaluated the genetic
associations with the change in lung function after ICS use; and iv) combined transcriptomic profiles from
different cells exposed to GCs with genomic information from asthma patients treated with ICS. The findings
of these studies propose four novel suggestive loci that could be involved in the response to asthma therapy
with ICS and support the existence of genetic variation involved in the response that is exclusive or shared
among different populations. We have also validated several previous associations with different measures
of ICS response, suggesting that the information about the occurrence or absence of asthma exacerbations
could be a good measurement of the response to asthma treatment with ICS. Additionally, a gene-set

enrichment analysis revealed a potential novel medication that could be assessed for asthma treatment.

4.1. Current trends of genomics of asthma-related traits and future perspectives

The main genomic approaches applied to different asthma-related phenotypes between 2016 and
2018 were reviewed, as presented in Chapter 1. A brief overview of the evolution of genetic approaches in
asthma was provided, from linkage analyses and candidate-gene association studies to GWAS. The results
from recent genomic studies and the future perspectives of this field were discussed, which are anticipated
to be led by high-throughput sequencing technologies. This supplemented the work published by Vicente et
al., where the main results of the first decade of GWAS in the asthma field were described (Vicente et al.
2017). Apart from studies focused on candidate genes with previous evidence of implication in any molecular
mechanisms underlying asthma, GWAS has been the most common approach in the last decade
(Hernandez-Pacheco et al. 2019). This has been mostly applied to the study of the genetic variation involved
in asthma susceptibility, with the 17921 locus being the most replicated signal through the association of
genes encoding zona pellucida binding protein 2 (ZPBP2), gasdermin B (GSDMB), or the ORMDL
sphingolipid biosynthesis regulator 3 (ORMDL3), among others (Nieuwenhuis et al. 2016; Yan et al. 2017).
Although they have well-known functions that seem not to be directly related to asthma pathophysiology,
these have been widely evidenced to be associated with asthma (Moffatt et al. 2007; Ono et al. 2014, Das et
al. 2017; Yan et al. 2017). Indeed, dysregulated expression of these genes has been related to the
protection or risk to develop asthma (Berlivet et al. 2012; Miller et al. 2018). Interestingly, some authors have
suggested that these genes could be involved in airway inflammation and structural changes (Kay et al.
2004; Paulenda and Draber 2016). These findings suggest that the genetic variation harbored at the 17921

locus could play an important role in asthma phenotypes.

The GWAS published to date have also revealed novel association signals of asthma susceptibility in
different populations including GRM4, encoding glutamate metabotropic receptor 4. Although this is involved

in well-established functions in the central nervous system (Hovelso et al. 2012), some authors have linked
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glutamate metabotropic receptors to airflow obstruction mediated by several processes (Kc and Martin
2010), including an increased phospholipase A2 activity, which triggers the liberation of pro-inflammatory

mediators (Pniewska and Pawliczak 2013).

Genetic variation involved in treatment response has also been explored in asthma but to a lesser
extent. Most of the pharmacogenomic studies of the response to asthma therapy with ICS published within
the period reviewed have been carried out through candidate-gene association approaches in addition to a
scarce exploration of the genomic variability (Keskin et al. 2019). This might be the explanation for the
reduced number of biomarkers identified and their limited predictive capacity for treatment response
(Hernandez-Pacheco et al. 2019). Moreover, their potential implications in the molecular mechanisms of
asthma have not been completely inspected and there is no strong evidence supporting their clinical use
(Garcia-Menaya et al. 2019). Thus, these have not provided real improvements in the pharmacological
management of this disease (Park et al. 2015; Keskin et al. 2019). Although GWAS strategies have been
used in the field of asthma genetics for more than a decade, their application in pharmacogenomics of
asthma is relatively recent (Vijverberg et al. 2018; Perez-Garcia et al. 2020). Specifically, only a few GWAS
of asthma treatment response had been published in the period reviewed, which were focused on the most
prescribed medications to treat asthma (SABA and ICS) (Mosteller et al. 2017; Spear et al. 2018).
Additionally, some recent large-scale GWAS have demonstrated the existence of shared genetic factors
among asthma and allergic diseases (Ferreira et al. 2017; Zhu et al. 2018), confirming previous evidence of
clinical and molecular similarities among them (Ober and Yao 2011; Farh et al. 2015). These findings
suggest the power of genomic strategies to identify potential novel targets for alternative treatments in

asthma (Hernandez-Pacheco et al. 2019).

Despite the numerous advantages that high-throughput genotyping technologies have provided to the
research of genetics of asthma through GWAS compared to previous approaches, the genetic
polymorphisms associated with different asthma-related phenotypes until now are not enough to completely
understand the genetic architecture of this disease (Willis-Owen et al. 2018). This could be explained by the
inherent limitations of genotyping platforms and those derived from inappropriate study designs, leading to
the reduction of the statistical power to detect significant association signals (Willis-Owen et al. 2018). The
reduced sample size is one of the most recurrent limitations of these studies. Genetic variants involved in
complex diseases such as asthma have been evidenced to provide small effects, explaining a minor
proportion of the total heritability (Bien et al. 2019). Thus, larger sample sizes are required to achieve the
necessary statistical power (Manolio et al. 2009). This has been attempted to be solved by gathering many
asthma studies from diverse populations around the world by large emerging consortia (Moffatt et al. 2010;
Bousquet et al. 2011; Torgerson et al. 2011; Farzan et al. 2017a). Some examples of these efforts have
been shown in Chapters 2-5 with the results of several studies exploring the genetic variation underlying the
response to the most prescribed controller asthma medication combining several populations participating in
the PiCA consortium. These attempted to examine not only population-specific genetic factors but also those
shared among different ancestry groups, including asthma patients from European, Asian, and admixed
ancestry. Nonetheless, the scarce representation of genetically diverse populations has been one of the
major limitations of most GWAS of asthma until December 2020 (Wells et al. 2016; Gautam et al. 2017; Bien
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et al. 2019; Sirugo et al. 2019), despite the uncountable benefits attributed to including recently admixed

populations for the genetic research of complex traits (Hernandez-Pacheco et al. 2016; Bien et al. 2019).

The genomic research of asthma has also been characterized by the limited exploration of the
interaction between genes and the environment despite the large evidence of the important contribution of
environmental exposures in asthma development, progression, and treatment response (Bonnelykke and
Ober 2016; Hernandez-Pacheco et al. 2019). Additionally, the functional implications at the molecular and
cellular levels of the asthma loci identified to date have been scarcely investigated (Hernandez-Pacheco et
al. 2019). Interestingly, gene-set enrichment analyses have been proposed to be a promising strategy to
provide insights about the biological processes underlying asthma and proxies for the discovery of potential
alternative pharmacological therapies (Kao et al. 2017), as it has been demonstrated by the findings
described in Chapter 3. In silico evaluations also provide valuable approximations about the functional
contribution in asthma pathophysiology using publicly available information (The ENCODE Project
Consortium 2012), but there is a need for more experimental functional studies of the genetic variation

identified by genomic studies.

Nonetheless, traditional genomic strategies have also hampered the evaluation of the role of genetic
variants apart from common polymorphisms captured by genotyping platforms, such as non-coding, low
frequency, and structural variation, which have been proposed to be part of the missing heritability of asthma
and related phenotypes (Du et al. 2012; Willis-Owen et al. 2018; Bien et al. 2019). This evidence draws the
future directions of the asthma genetic research driven by NGS, which could optimally capture the
undetected variation by genotyping-related approaches (Marx 2013; Wang and Chen 2018; Hernandez-
Pacheco et al. 2019). Despite the large technical improvements in NGS technologies and the progressive
reduction of its costs (Rizzo and Buck 2012), the implementation of this approach in large sample size
studies is still challenging (Kulkarni and Frommolt 2017; Petersen et al. 2017). This could be one of the
explanations for the scarce usage of NGS in respiratory diseases, including asthma (Campbell et al. 2014;
Mak et al. 2018). Therefore, the application of GWAS approaches still seems promising in the search of
genetic markers involved in asthma and related traits that have been scarcely explored, such as the

treatment response (Hernandez-Pacheco et al. 2019).

Apart from association studies, other omics approaches have demonstrated to be powerful to provide
insights that could help to better understand the molecular mechanisms taking place in asthma, although
they are still emerging in this field (Pirih and Kunej 2018; Ivanova et al. 2019), especially in the research of
asthma treatment response (Galeone et al. 2018; Tyler and Bunyavanich 2019). Therefore, in the literature
review presented in Chapter 1, the need for studies integrating data from different biological sources to
increase our knowledge about the mechanisms involved in asthma development, progression, and different
response patterns to pharmacological therapies was identified (Pecak et al. 2018; Ivanova et al. 2019;
Abdel-Aziz et al. 2020).
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4.2. APOBEC3B-APOBEC3C: a suggestive novel locus for asthma exacerbations in patients treated

with ICS from different populations

One of the few GWAS of response to asthma treatment with ICS in admixed populations published to
date, presented in Chapter 2, revealed for the first time the association of one variant located in the
intergenic region of the APOBEC3B and APOBEC3C genes with asthma exacerbations despite ICS use.
Specifically, the suggestive association of the effect allele of the SNP rs5995653 with the protection against
asthma exacerbations under ICS therapy found in Hispanic/Latino and African American children and youth

was validated at nominal level in six independent European studies of childhood asthma.

APOBEC3B and APOBEC3C encode two cytidine deaminases belonging to the APOBEC3
(apolipoprotein B mRNA editing enzyme catalytic subunit 3) family (Desimmie et al. 2014), arranged in
tandem in chromosome 22 (Jarmuz et al. 2002), which had not been previously associated with any asthma-
related traits. These are involved in several functions through RNA editing activities, including the innate
immune response against mobile genetic elements, such as a wide variety of exogenous viruses (e.g.,
retrovirus, hepatitis B virus, human immunodeficiency virus 1, and adenovirus) (Janahi and McGarvey 2013).
APOBECS proteins have been demonstrated to target mMRNA or nascent single-strand DNA (Cullen 2006)
after the reverse transcription of genomic RNA, causing viral hypermutations and subsequent replication
inhibition, although some authors have suggested that they could also inhibit the completion of the capsid
assembly after cell infection (Janahi and McGarvey 2013). Interestingly, viral infections of the respiratory
system have been evidenced to be important risk factors to develop childhood asthma (Mikhail and Grayson
2019) and the main triggering of exacerbations in children and adults with asthma (Edwards et al. 2013). A
broad spectrum of viruses has been associated with the occurrence of asthma exacerbations, highlighting
the contribution of rhinovirus (Mikhail and Grayson 2019). Some studies have proposed several molecular
mechanisms that could be involved, including low levels of type | interferons found in some asthma patients
(Wark et al. 2005; Djukanovic et al. 2014). This could explain a diminished response against viral infections
(Wark et al. 2005; Djukanovic et al. 2014) through uncontrolled virus replication (Mikhail and Grayson 2019)
and decreased induction of apoptosis of infected epithelial cells (Wark et al. 2005). Therefore, asthma
patients with respiratory viral infections could experience a detriment in lung function and increased
inflammation in response to reduced levels of type | interferon, developing acute exacerbation episodes
(Wark et al. 2005). Additionally, it has been suggested that increased levels of neutrophils in the airway
epithelium in children with respiratory viral infections could enhance the expression of IgE receptors in
dendritic cells and IgE production. As a consequence, increased levels of Th2 cells and cytokines result in
airway hyperresponsiveness and increased proliferation of mucous secretory cells (Mikhail and Grayson
2019). Taking together these pieces of evidence, it could be hypothesized that asthma patients carrying
copies of the minor allele of rs5995653 (A allele) could have a better response to respiratory infections,

decreasing the risk of asthma exacerbations under ICS therapy.

Previous studies have detected high levels of APOBEC3B and APOBEC3C mRNA in pulmonary
fibroblasts (Kapushesky et al. 2010; GTEx Consortium 2013). The in silico functional evaluation carried out
as part of this thesis also suggested that rs5995653 could be implicated in the regulation of the transcription
of nearby genes in blood cells (The ENCODE Project Consortium 2012; Westra et al. 2013; Ward and Kellis
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2016; Fishilevich et al. 2017). Specifically, this variant has been evidenced to be located within a histone
mark and a DNase hypersensitivity site in different blood cell types, including primary lymphocytes B and T,
monocytes, hematopoietic stem, and NK cells (The ENCODE Project Consortium 2012). Moreover, this
polymorphism is in high LD (r>>0.9) with expression quantitative trait loci (eQTL) associated with the
expression levels of several genes in whole blood cells (rs9607601 and rs5995654) (The ENCODE Project
Consortium 2012; Westra et al. 2013; Ward and Kellis 2016). Interestingly, both variants have been
evidenced to be eQTLs for nearby genes (APOBEC3A, CBX6, and APOBEC3G) (The ENCODE Project
Consortium 2012; Westra et al. 2013; Ward and Kellis 2016). These have also been nominally associated
with asthma, allergic diseases, and the use of asthma medications in different studies (Ferreira et al. 2017;
Demenais et al. 2018; Kichaev et al. 2019) according to the Open Targets Genetics portal (Carvalho-Silva et
al. 2019). Additionally, APOBEC3G and CBX6 had been previously linked to lung function measurements in
COPD patients of European ancestry (Carvalho-Silva et al. 2019; Kichaev et al. 2019).

Altogether, these findings indicate that APOBEC3 genes could be implicated in asthma
pathophysiology and the development of exacerbations. The study presented in Chapter 2 suggests the
implication of the APOBEC3B-APOBECS3C locus in ICS response in asthma patients, which was associated
with two different clinical measures of asthma treatment response. Although further validation in independent
populations from different ancestry groups is needed, these results indicate that the association of this locus
with ICS response is shared among Latinos/Hispanics, African Americans, and Europeans. Evidence of
association with the change in FEV1 after a short period of ICS use was also provided. Additionally, evidence
of replication of variants in L3MBTL4-ARHGAP28 was found in admixed populations, which had been
previously associated with asthma exacerbations in European children and adults treated with ICS (Dahlin et

al. 2015), suggesting its contribution to ICS response across different age groups.

A gene-set enrichment analysis performed as part of the study described in Chapter 2, using the
summary association results of the GWAS, revealed evidence of enrichment for processes related to well-
known functions of APOBEC3 genes (e.g., deaminase activity, innate immune response, regulation of viral
genome replication, metabolic processes involving pyrimidines, DNA modifications) (results not shown in
Chapters’ section). This analysis reinforced the evidence about the possible implication of other members of
the APOBEC3 gene family (e.g., APOBEC3D, APOBEC3F, and APOBEC3G) in asthma exacerbations in
patients under ICS therapy. Additionally, several genes with variants that did not reach the suggestive
significance threshold in the GWAS performed in admixed populations but included in the enrichment
analysis had been previously implicated in the regulation of the transcription of RORA (McLean et al. 2011)
(CNTNSG, INPP5A, RYR1, SYNE1, ZDHHC21, and ZFP36L1), which represents one of the most replicated
associations for asthma susceptibility and asthma-related traits (Acevedo et al. 2013; Gaertner et al. 2019;
Lima et al. 2019).

Recently admixed populations have been widely underrepresented in genomic studies of complex
traits such as asthma (Mersha 2015; Hernandez-Pacheco et al. 2016; Sirugo et al. 2019) and even more in
the pharmacogenomic research of ICS response (Hernandez-Pacheco et al. 2016; Levin et al. 2019).
Specifically, the study presented in Chapter 2 together with the work by Levin et al. (2019) represent the few

GWAS of ICS response on admixed populations, which were published almost simultaneously. Interestingly,
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both studies suggested the existence of genetic determinants of ICS response shared among children and
adults. However, different loci were revealed, which could be due to differences in study design. Therefore,
the EDDM3B gene, found to be associated by Levin et al., did not reach the suggestive significance level set
to consider significant associations with response to asthma treatment with ICS in the study performed as
part of this doctoral thesis, which could be also the explanation of the fact that the association of
APOBEC3B-APOBEC3C was not detected in that second GWAS.

Moreover, the loci identified were associated with different definitions of response to asthma treatment
with ICS, suggesting the validity of the information about the occurrence of asthma exacerbations as a good
predictor of response to asthma medications. Nonetheless, although the study described in Chapter 2
proposed the existence of genetic variation underlying ICS response shared among different populations,
Levin et al. did not find any evidence of replication in asthma patients of European descent (Levin et al.
2019).

Ancestry groups with diverse backgrounds differ from homogeneous populations in terms of allele
frequencies, LD patterns with disease causal markers, genetic architecture, gene-gene, and gene-
environment interactions (Sirugo et al. 2019). Populations that have experienced recent admixture events
are characterized by wide ancestry-specific LD blocks that facilitate the identification of genomic regions
likely to harbor causal variants with potential functional implications on the disease (Bien et al. 2019).
Despite numerous studies advising the inclusion of genetically and ethnically diverse populations in genetic
investigations of complex traits, Europeans, and to a lesser extent, Asians are still overrepresented,
hampering the application of their findings to different populations (Bien et al. 2019; Sirugo et al. 2019).
Consequently, the genetic variants identified have limited applicability and accuracy in the development of
predictive models of complex disease risk for underrepresented populations (Bien et al. 2019; Sirugo et al.
2019). Therefore, disentangling the genetic variation specific of ancestrally diverse populations seems to be
crucial to help accurately predict the disease development, complications, and drug response in the future.
This would improve the clinical management of the disease on a global scale and increase the benefits of
medicine from a personalized perspective (Bien et al. 2019; Sirugo et al. 2019). More inclusive genetic
investigations have been proposed to be carried out through large studies recruiting individuals from multiple
ancestry groups or combining several modest sample-sized cohorts from different populations in transethnic

meta-analyses (Bien et al. 2019).

Nonetheless, the inclusion of samples from admixed individuals with African and Native American
ancestries in the exploration of genetic factors involved in complex traits shows inherent disadvantages that
need to be discussed (Shriner et al. 2011; Ortega and Meyers 2014b; Mersha 2015). Specifically, one of the
major limitations of GWAS in admixed populations is related to the fact that these are poorly represented in
most of the reference panels for genotype imputation available to date (Ortega and Meyers 2014b; Vergara
et al. 2018; Schurz et al. 2019), hampering the capacity to increase the number of genetic variants beyond
those captured by commercial genotyping platforms (Vergara et al. 2018). Therefore, the total number of
genetic variants tested in association and the statistical power to detect significant association signals are

significantly diminished.
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At the time the analyses of the study presented in Chapter 2 were performed, HRC was the largest
publicly available catalog of genetic variants (McCarthy et al. 2016). The release of this reference panel
dramatically improved the capacity of imputation of genetic variants together with the development of publicly
available computational servers, such as The Michigan Imputation Server (Das et al. 2016; Bien et al. 2019).
Nonetheless, HRC was built mostly with samples of European descent (McCarthy et al. 2016). Large sample
size reference panels with information about a high proportion of sites across the genome, such as HRC,
have been reported to substantially increase the number of good quality and accurately imputed variants,
even at low frequency (Deelen et al. 2014; McCarthy et al. 2016). For this reason, higher coverage of
imputed variants using HRC compared to previous imputation panels was expected. Nonetheless, the
similarity in terms of genetic ancestry between the reference panel and the population under study also

needs to be considered in the selection of the most appropriate panel for imputation (Vergara et al. 2018).

There are just a few available reference panels with modest sample sizes focused on populations with
African ancestry, such as the Consortium on Asthma among African ancestry Populations in the Americas
(CAAPA) (Mathias et al. 2016). Nonetheless, several studies comparing different reference datasets have
suggested that large and multiethnic panels (e.g., the third phase of 1KGP) provide more accurate haplotype
information about the parental populations for the imputation of admixed samples (Auton et al. 2015; Vergara
et al. 2018) compared to population-specific reference panels with limited sample sizes. Thus, 1KGP phase
3 has been shown to increase the number of imputed variants in recently admixed populations with African
ancestry despite its smaller size compared to HRC (Vergara et al. 2018). This could be one of the potential
explanations of the fact that no genome-wide associations (p-value<5x10-€) were detected in the GWAS of

asthma exacerbations despite ICS use focused on Latinos/Hispanics and African Americans described here.

Interestingly, the SNP located at APOBEC3B-APOBEC3C associated with asthma exacerbations
despite ICS use in admixed and European populations was slightly more significant after combining
Latinos/Hispanics and African Americans when 1KGP phase 3 (Auton et al. 2015; Sudmant et al. 2015) was
used as a reference panel (results not shown in Chapters’ section) compared to the original GWAS results
obtained with variants imputed with HRC r1.1 (McCarthy et al. 2016) presented in Chapter 2: p=9.64 x 107
vs. p=4.80 x 105. Moreover, it approached the genome-wide significance level after performing a meta-
analysis of this variant across the admixed and European populations included in the discovery and
replication phases using 1KGP phase 3 and HRC r1.1 datasets, respectively: p=6.09 x 108 vs. p=2.66 x 107
(results not shown in Chapter’s section). These results suggest that the imputation of genetic variants in
admixed populations with 1IKGP phase 3 as a reference panel could have increased the statistical power to
detect novel loci of ICS response in the study described in Chapter 2. Moreover, combining different panels
for the genotype imputation of each study could also have improved the imputation accuracy, as it has been

proposed elsewhere (Huang et al. 2009; Vergara et al. 2018).

4.3. ldentification of a novel European-specific locus for exacerbations despite ICS use and a

promising asthma therapy

Some studies have previously suggested the existence of genetic variation involved in the response to

asthma treatment with ICS shared among different populations, whereas a proportion of markers might be
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exclusive of certain ancestry groups (Wells et al. 2016; Hernandez-Pacheco et al. 2019; Levin et al. 2019).
However, further investigation is needed to confirm this preliminary evidence. Even though most of the
studies performed to date have been focused on populations of European descent, these have included
reduced sample sizes, hampering the capacity to contribute to the knowledge about the heritability of
response to asthma therapy with ICS. In Chapter 3, the results of the largest GWAS of asthma
exacerbations despite ICS use in children and young adults performed until December 2020 are described,
combining eleven independent studies of childhood asthma from European populations. As a result, one
variant located within the intergenic region of CACNA2D3 and WNT5A (rs67026078) was suggestively
associated with exacerbations in asthma patients under ICS therapy. Nonetheless, this did not show
evidence of implication in asthma exacerbations in Latinos/Hispanics, African Americans nor Asians,
suggesting that it could have an ancestry-specific effect.

CACNAZ2D3 encodes a member of the auxiliary alpha-2/delta subunit family of voltage-gated calcium
channels, which consist of a pore-forming and three regulatory subunits (Qin et al. 2002; Davies et al. 2007).
Calcium channels activated by voltage mediate the flux of calcium ions (Ca?*) into the cell from the
extracellular space through polarization of the plasma membrane, which is one of the main sources of
intracellular Ca?* (Qin et al. 2002; Davies et al. 2007). Specifically, CACNA2D3 is involved in the
acceleration of the activation of calcium channels through the modulation of the Ca?* current density (Gurnett
et al. 1996). Ca?* is a secondary messenger involved in a broad range of key biological processes, including
muscle contraction, neurotransmission, cell differentiation, and regulation of the transcription, among others
(Parkash and Asotra 2010).

Interestingly, CACNA2D3 has been related to different asthma-related clinical biomarkers (van der
Valk et al. 2014; Wain et al. 2017). Specifically, it has been associated with measurements of lung function in
adults of European descent with COPD from UKBiobank (Wain et al. 2017; Carvalho-Silva et al. 2019).
Although both COPD and asthma are pulmonary diseases characterized by airflow obstruction and
inflammation of the airways sharing several molecular mechanisms, clinical and functional features, they also
show many differences (Cukic et al. 2012; Gaspar Marques et al. 2020). Nonetheless, the evaluation of the
pulmonary capacity through spirometric measures is considered a gold standard for the diagnosis,
assessment of disease control, and progression in both diseases (Quezada et al. 2016; Khan et al. 2018;
Grossman et al. 2019a; Grossman et al. 2019b). Specifically, the guantification of the improvement in lung
function after the administration of bronchodilators is a valuable tool in the management of COPD and
asthma (Rabe et al. 2007; Pellegrino et al. 2010; Coverstone et al. 2019). Interestingly, CACNA2D3 has
been associated with BDR in individuals of European and African American descent with COPD (Lutz et al.
2015). Measures of lung function have been evidenced to be reliable markers of the risk to experience future
episodes of asthma exacerbations. Therefore, trajectories of pulmonary capacity during childhood might be a
predictor of asthma severity (Quezada et al. 2016; Khan et al. 2018; Grossman et al. 2019a; Grossman et al.
2019b). BDR has also been demonstrated to be a powerful marker of the response to asthma medications
(Chhabra 2015). Indeed, this has been reported to be a good predictor of treatment responsiveness in
asthma patients under therapy with ICS (Tantisira et al. 2006; Galant et al. 2014; Wu et al. 2014).
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On the other hand, WNT5A flanks the downstream limit of the intergenic region where the association
signal detected in the study described in Chapter 3 is located. This gene encodes for a lipid-modified
glycoprotein, which is the member 5A of the large family of proteins involved in the Wingless/integrase 1
(WNT) signal transduction pathway (van Amerongen et al. 2008). The regulation of a wide range of key
cellular processes has been attributed to WNT signaling (Komiya and Habas 2008), which can occur through
several transduction cascades dependent or independent of 3-catenin, also known as canonical or non-
canonical, respectively (Komiya and Habas 2008; Kumawat and Gosens 2016). Specifically, WNT5A
participates in the non-canonical branch of this biological process through Ca?* signaling, inducing the
transcription nuclear factor of activated lymphocytes T (Pashirzad et al. 2017). WNT5A is also involved in the
regulation of embryonic development, tissue homeostasis, cell adhesion, and migration, and has been
related to several human diseases, including various types of cancer (McDonald and Silver 2009; Kumawat
and Gosens 2016).

Importantly, WNT5A has been associated with the maintenance of innate immunity in homeostatic and
pathological states. This protein participates in several inflammatory disorders (Kumawat and Gosens 2016;
Pashirzad et al. 2017), not only promoting the production of pro-inflammatory chemokines and cytokines but
also regulating the recruitment of immune effectors (Kumawat and Gosens 2016). It has been demonstrated
that the WNT biological process could modulate the activity of macrophages and neutrophils, two cell types
with central roles in the inflammatory immune response (Yang et al. 2012; Kumawat and Gosens 2016;
Reuter et al. 2016). Indeed, WNT5A prolongs the survival of macrophages in homeostatic conditions, but
also induces anti-inflammatory activities mediated by macrophages during acute inflammation (Reuter et al.
2016). Nonetheless, the expression of WNT5A receptors in neutrophils has been associated with increased
migration of these cells from the lymph nodes to the airways (Kumawat and Gosens 2016). Neutrophils are
the major source of TGF-B1 (transforming growth factor $1), activating epithelial and mesenchymal cells that
drive structural changes in the airways (Januskevicius et al. 2016). Moreover, WNT proteins could regulate
the function of dendritic cells (Reuter et al. 2016), which are activated in asthma patients (Lambrecht and
Hammad 2010; Lloyd and Hessel 2010). In fact, in vitro exposure of dendritic cells to WNT ligands has been
demonstrated to produce anti-inflammatory mediators (Oderup et al. 2013) and induce regulatory
lymphocytes T (Holtzhausen et al. 2015), suppressing the adaptive immune response (Reuter et al. 2016).
However, it is still unclear how this evidence could be applied to inflammatory processes in the lung (Reuter
et al. 2016). Nonetheless, some studies have suggested the participation of this signaling pathway in
pulmonary diseases, such as asthma. The upregulation of WNT5A has been found in mild-to-moderate
asthma patients with high Th2-driven inflammation patterns compared to patients with low Th2 inflammation
and healthy controls (Choy et al. 2011).

Apart from inflammation, WNT signaling is also implicated in structural modifications of the airways
taking place in asthma. Specifically, the WNT signaling independent of 3-catenin, where WNT5A is involved,
seems to participate in the regulation of the transition from epithelial to mesenchymal cells together with the
action of TGF-B1 (Hackett et al. 2009; Reuter et al. 2016). This suggests the central role of WNT ligands and
TGF-B1 in structural processes in the airways. Indeed, expression of TGF-1 and WNT5A in ASM cells at

gene and protein levels have been positively correlated (Kumawat and Gosens 2016), and they have also
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been related to the Th2 inflammatory signature, which is characteristic of patients with mild-to-moderate
asthma (Choy et al. 2011; Halwani et al. 2011). Low doses of TGF-B1 have been associated with increased
ASM mass, through the proliferation, migration, and inhibition of the apoptosis of ASM cells (Halwani et al.
2011). TGF-B1 also induces the apoptosis of epithelial cells in response to pro-inflammatory mediators and
promotes the differentiation and proliferation of myofibroblasts, increasing the deposition of elements of the
extracellular matrix and causing subepithelial fibrosis (Halwani et al. 2011). Interestingly, high expression
levels of WNT5A have been detected in fibroblasts from patients with idiopathic pulmonary fibrosis (IPF)
(Vuga et al. 2009), a chronic disease characterized by interstitial lung fibrosis (Liu et al. 2019). This suggests
that WNT5A could be also involved in fibrotic processes, including the ones observed in asthma

pathogenesis.

Additionally, a gene-set enrichment analysis revealed the enrichment of genes associated with asthma
susceptibility in Europeans involved in the WNT signaling pathway, including WNT5A (Barreto-Luis et al.
2017). Many authors have widely proposed that members of the WNT signaling, and specifically WNT5A,
could have a central role in molecular and cellular mechanisms underlying asthma. Therefore, this could be
a promising pharmacological target to treat asthma patients, although further investigation is needed
(Koopmans et al. 2016; Reuter et al. 2016; Koopmans and Gosens 2018). These pieces of evidence suggest
that the association signal described in Chapter 3 could reveal CACNA2D3 and WNT5A as potential novel

loci for asthma exacerbations despite ICS treatment.

The in silico functional evaluation carried out as part of this study revealed that rs67026078 at
CACNA2D3-WNT5A could be involved in the regulation of gene expression in fetal and adult lung fibroblasts
(The ENCODE Project Consortium 2012). Moreover, this variant had been previously associated with the
expression levels of different proteins involved in the Wnt signaling pathway and asthma-related
mechanisms (Staley et al. 2016; Stelzer et al. 2016; Sun et al. 2018; Kamat et al. 2019), and with the
regulation of the methylation patterns or a CpG site in blood (Staley et al. 2016; Bonder et al. 2017; Kamat et
al. 2019). These findings suggest the role of this association signal in the response to asthma medications,
even though evidence of replication was found in Europeans, but not in Latinos/Hispanics, African

Americans, or Asians, suggesting that this variant could have ancestry-specific effects.

Additionally, five loci previously associated with different definitions of ICS response in Europeans
through GWAS approaches were validated. Evidence of replication was found for a variant at UMAD1-
GLCCI1, previously associated with the improvement in lung function after ICS treatment (Tantisira et al.
2011). Additionally, validation of the association of UMAD1-GLCCI1 and PDE10A-T was found, assessing
alternative genetic variants to the reported in the original work describing their association (Tantisira et al.
2011; Tantisira et al. 2012). Moreover, an association signal detected analyzing BDR as a measure of ICS
response was validated with asthma exacerbations despite ICS use in European populations (ZNF432-
ZNF841) (Wu et al. 2014). Loci previously evidenced to be associated with asthma exacerbations despite
ICS treatment (SHB-ALDH1B1 and ELMO2-ZNF334) (Dahlin et al. 2015) were also validated. Nonetheless,
none of the loci previously identified to be associated with ICS response in Asian (Park et al. 2014b) or

admixed populations (Levin et al. 2019) were validated in Europeans.
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The GWAS of asthma exacerbations despite ICS use of European populations was complemented
with a gene-set enrichment analysis of variants reaching p<1x10 focusing on drugs or small molecules with
previous evidence of implication in the regulation of gene expression. As a result, an enrichment in
association signals within genes whose expression levels are affected by trichostatin A (TSA) treatment was
found, suggesting that this could be involved in molecular mechanisms underlying ICS response (Chen et al.
2013; Kuleshov et al. 2016). TSA has been evidenced to be a potent inhibitor of the histone deacetylase,
whose effects have been widely related to anticancer activities (Mogal and Abdulkadir 2006; Royce and
Karagiannis 2012; Ma et al. 2017). Additionally, findings of in vivo experiments in animal models suggest that
this drug could play a central role in the regulation of the main asthma pathophysiological processes, such
as airway inflammation, bronchoconstriction, and hyperresponsiveness (Adcock et al. 2007; Banerjee et al.
2012) through different molecular mechanisms of standard asthma medications (Choi et al. 2005; Adcock et
al. 2007; Banerjee et al. 2012; Toki et al. 2016). Nonetheless, further investigation is needed to understand

the potential benefits and side effects of this drug in asthma patients.

These results together with those obtained from the gene-set enrichment analysis performed in
admixed populations evidence the potential of this approach to identify novel genetic markers of asthma
treatment response, alleviating the stringent requirements of significance level conventionally applied in
GWAS approaches (Kao et al. 2017; Sun et al. 2019). Thus, this method allows detecting enrichment for
associations with a specific trait even when the significance threshold is not reached by individual variants
(Zhu et al. 2018).

4.4, Detection of the association of ROBO2 with different measures of ICS response in European

patients with asthma

The results described in Chapters 2 and 3 of this doctoral thesis suggest the potential of the
information about the history of asthma exacerbations to assess the clinical response to ICS therapy.
Chapter 4 presents a study aimed to evaluate the association with an additional definition of treatment
response to identify further genetic loci involved in ICS response. Specifically, a GWAS of the change in
FEV: after 6 weeks of ICS treatment was carried out. ICS-naive asthma patients from the only PiCA study
with available information about this variable at the time of performing the analyses (SLOVENIA) were
included in the analyses. This study revealed the suggestive association of the intronic ROBO2 variant
rs1166980 with the change in lung function in Slovenian children and young adults with asthma. Specifically,
the effect allele of this SNP was found to be associated with a lower improvement in FEV1 after a short
period of ICS use. Even though ROBO2 had not been previously associated with the response to asthma
pharmacological therapies, it is not the first time this gene is linked to asthma-related traits (Parameswaran
et al. 2007; Ding et al. 2013; Lutz et al. 2015).

ROBO2, located at 3p12.3, encodes an immunoglobulin of the family of transmembrane roundabout
guidance receptors (Barak et al. 2019), which specifically bind Slit guidance ligands [SLIT] (Kidd et al. 1998;
Li et al. 1999), secreted proteins associated with the extracellular matrix (Dickinson and Duncan 2010). The
role of ROBO proteins was initially linked to the development of the nervous system (Li et al. 1999), although

their broad range of functional implications is currently well-known, being many of them involved in some of
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the main pathophysiological processes taken place in asthma. The ROBO/SLIT signal transduction has been
related to cell adhesion, migration, growth, and survival (Dickinson and Duncan 2010). Indeed, it has been
related to the morphogenesis of several tissues during fetal development (Xian et al. 2001; Dickinson and
Duncan 2010), including normal or aberrant pulmonary tissues (Xian et al. 2001). Several studies have also
demonstrated the implication of ROBO/SLIT in the regulation of the innate immune response (Tole,
Mukovozov et al. 2009; Lin, Zhong et al. 2019). Moreover, variants near ROBO1 have been associated with
virus diversity as a proxy of infection susceptibility, suggesting the implication of this pathway in the response
to viral infections (Fumagalli et al. 2010), which are one of the main risk factors to develop asthma
exacerbations (Mikhail and Grayson 2019). Specifically, the SLIT2 ligand binding to ROBO2 (Xian et al.
2001) has been linked to the regulation of chemotaxis and inhibition of the migration of several types of
immune cells from the blood circulatory system to the target tissue where they exert their functions,
preventing inflammatory responses (e.g., leukocytes, lymphocytes T, dendritic cells, macrophages, and
neutrophils) (Wu et al. 2001; Tole et al. 2009; Pilling et al. 2019). The inhibition of ROBO expression has
been related to the increased production of chemoattractants, promoting the migration of immune cells and
airway remodeling and, decreasing the number of alveoli (Branchfield et al. 2016). Additionally, ROBO2-
SLIT2 has been linked to the prevention of fibrotic processes in the lung (Pilling et al. 2014). Interestingly, it
has been suggested that SLIT2 is involved in the inhibition of the migration of monocytes from the blood
circulation to pulmonary tissues, where they differentiate into fibrocytes, promoting fibroblasts proliferation
and collagen production through TGF-B secretion. Experiments in mice models have demonstrated that
fibroblasts and epithelial cells secrete SLIT2 in a healthy state, preventing the development of lung fibrosis.

Moreover, patients with pulmonary fibrosis have shown reduced levels of SLIT2 (Pilling et al. 2014).

These findings suggest that SLIT ligands could exert anti-inflammatory and anti-fibrotic effects (Tole et
al. 2009; Pilling et al. 2014). Thus, ROBO proteins could also play a key role in processes occurring in the
lung later in life with potential implications in pulmonary diseases. Additionally, a gene encoding another
member of the family of ROBO proteins, ROBOS3, had been previously associated with FVC in COPD
patients (Kichaev et al. 2019). Moreover, the expression levels of the ROBO2 and SLIT2 have been
negatively correlated with disease progression in patients with COPD (Lin et al. 2019), a disease with
underlying mechanisms shared with asthma, as was discussed above. Specifically, it has been hypothesized
that the downregulation of ROBO2 and SLIT2 expression activates the Cdc42 and Rac2 GTPases,
promoting the migration of neutrophils and lymphocytes T into the lung and, causing the characteristic
inflammatory COPD patterns (Lin et al. 2019). Therefore, the ROBO2/SLIT2 system could also play a similar

key role in the inflammatory processes in asthma.

Interestingly, ROBO2 has been proposed to be an important factor triggering the constriction of the
airways in pulmonary obstructive diseases, such as asthma and COPD (Parameswaran et al. 2007). Indeed,
this gene has been associated with clinical markers of the reversibility of airflow limitation in adults of African
American descent. Specifically, evidence of suggestive association with FEV:1 and FEV1/FVC measured a
few minutes after the administration of SABA was found for three ROBO2 intronic variants (Lutz et al. 2015).
Additionally, ROBO2 has been suggested as a potential locus of susceptibility to develop childhood asthma

(Ding et al. 2013). Nevertheless, the findings presented in Chapter 4 suggest that ROBO2 could exert
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ancestry-specific effects in the response to asthma therapy with ICS. Indeed, the association of ROBO2 was
validated with the information about the recent history of asthma exacerbations despite ICS treatment in

European populations, but not in Latinos/Hispanics, and African Americans.

Although the in silico functional evaluation carried out did not reveal major implications for any of the
variants at ROBO2 associated with ICS response, the gene-set enrichment analysis performed as part of the
study presented in Chapter 3 revealed this gene as a potential target of TSA. All these pieces of evidence
described here suggest the potential implications of ROBO2 in asthma-related traits, including the response

to asthma therapy with ICS, although further investigation is needed to confirm these findings.

Additionally, the association of PDE10A-T, which had been previously identified in children and adults
of European ancestry (Tantisira et al. 2012), was validated in Chapter 4 with FEV1 change after ICS use in
Slovenian asthma patients. Interestingly, evidence of replication had also been found for this locus with ICS
response measured as the occurrence/absence of asthma exacerbations in Europeans, as presented in
Chapter 3. These findings consistently suggest that PDE10A-T could play an important role in the response

to asthma treatment with ICS at least in populations of European descent.

4.5. Lessons from the application of GWAS approaches to the evaluation of genetic variation of ICS

response in different populations

Chapters 2-4 describe the results of the application of GWAS approaches in several ancestry groups
evaluating different clinical markers of ICS responsiveness. The findings obtained reinforce previous
evidence suggesting the existence of genetic variation specific and common to different populations. The
nominal replication in European populations of APOBEC3B-APOBEC3C, identified in Latinos/Hispanics and
African Americans, together with the validation in these admixed populations of the association signal
located at L3MBTL4-ARHGAP28, previously identified in Europeans (Dahlin et al. 2015), suggest the
existence of genetic markers shared among different populations (Chapter 2). However, some findings of the
work described in Chapters 3 and 4 also suggest the contribution of ancestry-specific genetic markers to the
response to asthma treatment with ICS. First, no evidence of replication of the CACNA2D3-WNT5A locus
was found in non-Europeans and, the association of CACNA2D3-WNT5A and ROBO2 was shared among
independent European populations. Moreover, the association of different loci previously identified in
Europeans (Tantisira et al. 2011; Tantisira et al. 2012; Wu et al. 2014; Dahlin et al. 2015) was validated in
the same population group analyzed as part of this thesis, but none of the genes revealed by the few GWAS
of ICS response in Asian or admixed populations published until December 2020 (Park et al. 2014b; Levin et

al. 2019) were validated in the European populations analyzed.

Differences between childhood and adulthood asthma have been described for their clinical
manifestations (Chung and Paton 2019; Pividori et al. 2019; Withers and Green 2019), prevalence rates
(Shah and Newcomb 2018; Dharmage et al. 2019), and heritability estimates (Moffatt et al. 2010; Ullemar et
al. 2016; Pividori et al. 2019). Furthermore, a study has recently identified the association of variants near
the THSD4 and HIVEP2 genes with differential risk or protection against asthma exacerbations while on ICS
therapy depending on the patient’s age (Dahlin et al. 2020). Nonetheless, the findings of this thesis suggest

the contribution of common genetic variants to ICS response across different age groups through the

227



Discussion

validation in patients with childhood asthma of the association of two loci previously identified in children and
adults (Chapters 2-4) (Tantisira et al. 2012; Dahlin et al. 2015). Therefore, the differences and similarities
between adulthood and childhood asthma in terms of the genetic contribution in the response to ICS therapy

is still unclear, being evident the need for further investigation.

Several limitations have been attributed to the spirometric assessment of the pulmonary capacity
driven by the fact that symptoms worsening and disease progression are not always reflected by a decline in
lung function (Global Initiative for Asthma 2020), together with a high dependence on patient and measure
operation-related factors (Cooper 2005; Global Initiative for Asthma 2020). Lung function measurements are
widely considered as objective and quantitative markers commonly used in clinical practice for the asthma
diagnosis (Global Initiative for Asthma 2020), evaluation of the progression and control of the symptoms
(Szefler et al. 2002; Gorelick et al. 2004; Martin et al. 2007), and to measure the response to
pharmacological therapies, such as ICS (Global Initiative for Asthma 2020). Nevertheless, the results of the
GWAS presented in Chapters 2-4 reinforce the validity of the information about the recent history of asthma
exacerbations as a good measurement of treatment response. Specifically, several associations described
by previous publications analyzing lung function (Tantisira et al. 2011; Tantisira et al. 2012; Wu et al. 2014;
Dahlin et al. 2015) (Chapters 3 and 4) or by the GWAS of the change in FEV1 (Chapter 4) were validated
considering the presence/absence of asthma exacerbations despite the use of ICS as outcome. Additionally,
the association of the APOBEC3B-APOBECS3C locus with ICS response measured as asthma exacerbations
in children and young adults of admixed ancestry was validated with the change in FEV1 after ICS treatment
(Chapter 2).

4.6. Potential role of LTBP1 in the response to asthma treatment with ICS revealed by the

combination of transcriptomic and genomic data

The results described in Chapters 2-4 demonstrate that the genome-wide evaluation of the association
of genetic variants is still a powerful strategy to identify novel loci that could potentially play an important role
in the response to ICS in asthma patients. Nonetheless, an alternative approach was applied in Chapter 5,
combining transcriptomic and genomic data to further contribute to disentangling the molecular mechanisms
underlying the responsiveness to this medication in asthma patients. Changes in expression levels in
response to GCs were assessed using the only transcriptome datasets obtained through NGS (RNA-seq)
that were available at the time of performing the analyses. Specifically, gene expression profiles from ASM
cells in vitro exposed to GCs (Himes et al. 2014) and PBMCs from asthma patients with different
responsiveness patterns to ICS therapy based on a recent history of asthma exacerbations were assessed.
Further validation was performed using three additional publicly available ASM transcriptome datasets
experimentally treated with different types of GCs or control solutions (Misior et al. 2009; Masuno et al. 2011,
Kan et al. 2019). Six genes showed evidence of significant overexpression in ASM treated with GCs or
PBMCs from ICS responders. None of these had been previously linked to the response to asthma
medications, although some had been previously associated with asthma-related traits, including
measurements of lung function (LTBP1, NAMPT, CALD1, COL18A1l) (Kichaev et al. 2019) or asthma
susceptibility (NAMPT) (Bonnelykke et al. 2014; Pickrell et al. 2016). Additionally, the evaluation of genetic

associations within genes with consistent differential expression in ASM cells and PBMCs revealed that
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LTBP1 could be also involved in asthma exacerbations despite ICS use in populations of European or

admixed ancestry.

LTBP1 is located at 2p22.3 and belongs to a gene family encoding extracellular binding proteins to the
latent form of TGF-B (Torrego et al. 2007). LTBPs are involved in the organization of microfibrils in the
extracellular matrix and assembly of elastic fibers, although they play a key role in the regulation of TGF-f3
signaling (Torrego et al. 2007; Robertson and Rifkin 2013; Robertson et al. 2015). The activity of TGF-f
cytokines has been linked to cell growth, apoptosis, and inflammatory processes (Taipale et al. 1998),
among other functions. Indeed, TGF-B molecules are synthesized in a latent state and then, these are
folded, secreted and, deposited in the extracellular matrix through the interaction with fibrillin and fibronectin
in a process mediated by their binding to LTBPs (Miyazono et al. 1991; Isogai et al. 2003; Annes et al. 2004;
Hyytiainen et al. 2004; Massam-Wu et al. 2010; Robertson and Rifkin 2013).

TGF-P proteins are expressed in inflammatory (neutrophils and eosinophils) and structural cells in the
lung (fibroblasts, epithelial, and ASM cells) (Wong et al. 1993; Duvernelle et al. 2003). Cytokines of the TGF-
B family and LTBPs participate in multiple pulmonary processes from the morphogenesis during fetal
development to mechanisms involved in many respiratory diseases (Aschner and Downey 2016; Saito et al.
2018), including structural changes in the airways (Torrego et al. 2007; Peng et al. 2011). Specifically, TGF-
cytokines increase the production of extracellular matrix proteins from pulmonary fibroblasts and growth

factors of the connective tissue from ASM cells (Torrego et al. 2007).

Some studies have demonstrated that LTBP1 predominantly binds to TGF-B1, which is the most
abundant TGF-B isoform (Saharinen and Keski-Oja 2000; Chen et al. 2005). Although LTBP1 is expressed in
a broad range of cell types and tissues, it is especially abundant in vital organs, such as the lung (Robertson
et al. 2015). TGF-B1 is a potent inductor of fibrotic processes in the lung through the differentiation of
fibroblasts into myofibroblasts and the inhibition of cell growth and repair of the alveolar epithelium (Saito et
al. 2018). Indeed, the TGF-B signaling and LTBP1 have been recently proposed as important elements in
IPF. Indeed, a mice model of pulmonary fibrosis showed increased levels of fibulin 1 (FBLN1) in fibrotic lungs
(Liu et al. 2019), which has been suggested to regulate the activation of TGF-B1 and, therefore, the airways
remodeling and fibrotic processes (Liu et al. 2019). Interestingly, the participation of FBLN1 through LTBP1
has also been proposed in COPD and asthma (Liu et al. 2016a; Liu et al. 2017). Liu et al. (2019)
hypothesized that the binding of FBLN1C to LTBP1 in the extracellular space is required to trigger the
activation of the TGF-f signaling, promoting the differentiation of fibroblasts into myofibroblasts and collagen

deposition.

All the findings described above suggest that TGF-B signaling might play a key role in asthma, not
only inducing fibrotic processes but also other structural changes in the airways and regulating the immune
response (Tirado-Rodriguez et al. 2014). Indeed, TGF-B proteins are important immunomodulators in
asthma and allergic diseases (Tirado-Rodriguez et al. 2014), which share both molecular mechanisms and
genetic factors (Ober and Yao 2011; Belsky et al. 2013; Hinds et al. 2013; Ferreira et al. 2017; Ferreira et al.
2018; Zhu et al. 2018). TGF-f signaling mediates the migration of leukocytes to the airways, maintaining the
inflammatory response (Tran 2012), but it can also exert anti-inflammatory functions (Tirado-Rodriguez et al.

2014). Furthermore, eosinophils are the major source of TGF-f in patients with asthma or allergy (Al-Alawi et
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al. 2014) and, interestingly, increased levels of TGF-B1 have been detected in BAL samples from asthma
patients (Ohno et al. 1996; Redington et al. 1997; Lau et al. 2010; Al-Alawi et al. 2014). Therefore, a strong
correlation between TGF-B1 expression, eosinophil levels, and severity of asthma has been proposed (Al-
Alawi et al. 2014). Additionally, it has been postulated that TGF-B1 might underlie the proliferation of ASM
cells, inducing bronchoconstriction, and airway hyperresponsiveness (Worthington et al. 2012; Ojiaku et al.
2018; Saito et al. 2018).

Interestingly, several published GWAS have revealed the association of the genes encoding TGF-f1
and its receptor with asthma susceptibility (Chiang et al. 2013; Frischmeyer-Guerrerio et al. 2013; Yao et al.
2016). On the other hand, LTBP1 has been associated with different spirometric measures (Carvalho-Silva
et al. 2019; Kichaev et al. 2019), markers commonly used in the clinical management of asthma (Grossman
et al. 2019; Global Initiative for Asthma 2020). Based on these pieces of evidence together with the results
described in Chapter 5 suggesting its implication in ICS response in asthma patients, it seems feasible to
speculate that LTBP1 could be involved in molecular and cellular mechanisms underlying asthma-related
traits. Indeed, the in silico functional evaluation revealed potential implications of the LTBP1 variants
associated with asthma exacerbations despite ICS use in the regulation of the gene expression in pulmonary
cells (The ENCODE Project Consortium 2012). Moreover, the gene-set enrichment analyses performed as
part of the study described in Chapter 3 showed that LTBP1 was one of the genes whose expression was
affected by TSA exposure, suggesting that it could be a target of this potential novel alternative medication in

asthma patients.

Nonetheless, the findings of the work presented in Chapter 5 not only propose the potential implication
of LTBP1 in the response to asthma treatment with ICS but also reinforce previous evidence of the important
role of TGF-B1 in asthma pathophysiology (Halwani et al. 2011; Al-Alawi et al. 2014). Interestingly, proteins
encoded by some of the novel loci of ICS response suggested by the studies included in Chapters 3-5 of this
doctoral thesis (WNT5A, ROBO2 and, LTBP1) are directly or indirectly involved in processes related to TGF-
B1. As described above, LTBP1 is the main regulator of the activity of TGF-B1, whereas WNT5A and
ROBO?2 are indirectly implicated in structural changes in the airways mediated by the interaction with TGF-
B1. Therefore, TGF-B1 could be hypothesized as a central player in the mechanisms underlying the
response to asthma treatment with ICS, which has been evidenced to ineffectively inhibit TGF-B1 (Chakir et
al. 2003). This opens the door to the development of alternative therapeutic asthma strategies personally

designed for those patients without a proper response to ICS therapy.

4.7. Study limitations

The studies performed as part of this doctoral thesis have contributed to the knowledge about the
genetic factors involved in the response to asthma treatment with ICS, suggesting four novel loci and
potential alternative asthma medication. Nevertheless, some limitations need to be acknowledged. First, no
genome-wide significant associations were found with none of the different definitions of ICS response in
admixed nor European populations, not even after combining the association results obtained in the
discovery and replication phases of each study. Although the genome-wide significance level of p-

values5x10-8 is the most widely accepted threshold to consider significant associations in studies using
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GWAS approaches (Willer et al. 2006; Pe'er et al. 2008) to differentiate true associations from false positives
(Kaler and Purcell 2019), it is not always reached mainly due to limitations in terms of statistical power. In the
GWAS presented in Chapters 2-4, the lack of genome-wide significant signals could be due to differences in
the design and clinical definitions of episodes of asthma exacerbations despite the regular use of ICS among
the different studies included. Nonetheless, it has been proposed that this threshold is not absolute, and it is
dependent on the characteristics of the data, such as the origin of the genetic information, minor allele
frequencies, and LD patterns due to differences among ancestry groups (Panagiotou and loannidis 2012).
Moreover, association signals at a less stringent significance level have also been revealed to account for
part of the heritability of many traits (Bjorkegren et al. 2015). Even though there is no standard threshold to
consider suggestive associations, several arbitrarily defined less stringent cutoffs have been used by GWAS
of different traits to select association signals to be followed up for replication in independent populations
(Duggal et al. 2008). However, the suggestive significance threshold of p-values5x10® has been the most
commonly used by GWAS approaches (Reed et al. 2015; Sanders et al. 2017; Griebeler and Werner 2018;
Roosenboom et al. 2018). This was reached in the discovery phase of the studies presented in this doctoral

thesis and evidence of replication was found at nominal level in independent samples.

Second, the studies presented in this thesis included modest sample sizes, which could limit the
significance of the findings. Nonetheless, it is important to notice the difficulty to include homogeneous
groups of asthma patients fulfilling several demographical, clinical, ancestry-related, and genetic criteria in
GWAS of asthma and related traits, which restricts the total number of individuals included. Of notice, the
GWAS of asthma exacerbations despite ICS use in admixed (Chapter 2) and European populations (Chapter
3) included the largest sample sizes analyzed in any GWAS of ICS response in children and young adults
with asthma published until December 2020. However, genetic associations with the change in FEV1 after
ICS use were evaluated in Chapter 4 in a reduced sample size study, which was the only one participating in
the PiCA consortium with available information about this measure at the time of performing these analyses.
Moreover, this represents one of the few GWAS carried out in ICS-naive asthma patients. Specifically, these
are advantaged by the capacity to provide an approximation of the real response to the asthma treatment in
patients that had not been previously exposed to this medication, making it a unique phenotype that has

been explored before.

Third, episodes of asthma exacerbations despite ICS use as a measure of the response to this
medication were not homogeneously defined across the studies included in Chapters 2-5. Although the
standard definition of severe asthma exacerbations established by ATS and ERS was used (Reddel et al.
2009), information about any of the unscheduled medical care events considered was incomplete for some
of the studies from European descent populations so that moderate asthma attacks were assessed instead.
Additionally, this measure was based on partly self-reported retrospective information from two different
timeframes (6 or 12 months before study enrolment) also due to the non-availability of data in some studies.
Therefore, the information about asthma exacerbations could have been biased by the patient’s subjectivity
and the time-dependent probability of episodes occurrence. All of this could have not reflected the real
effectiveness of asthma therapy with ICS at the time of study enrolment. The association of the loci identified

in Chapters 2-5 could lead to questioning whether these could exert a direct effect on the disease severity
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regardless of the medication use. However, sensitivity analyses correcting for the groups of medications
prescribed or baseline lung function in Chapters 3-5, as proxies of disease severity, revealed that these
could be involved in the response to asthma treatment with ICS rather than asthma severity. Nonetheless,
treatment steps were defined based on the guidelines established by the BTS/SIGN in 2014 (British Thoracic
Society and the Scottish Intercollegiate Guidelines Network 2014). Although at the moment of performing
these analyses, there were available updated guidelines, which had slightly modified the medication
composition of each treatment step, the BTS/SIGN were used given that patients had been treated based on

this approach at the time of study enrolment.

Fourth, other factors that could affect ICS response could not be included as covariates in the
association analyses. Although the exposure to environmental factors in asthma-related traits (Ramadan et
al. 2019; Global Initiative for Asthma 2020) could differentially affect the probability and severity of asthma
exacerbations (Wenzel 2012; Fuchs et al. 2017; Murrison et al. 2019), this information was not considered in
the association analyses, given the lack of such information. ICS responsiveness was defined as the
occurrence or absence of asthma exacerbations despite ICS treatment based on retrospective information
about asthma medication use, but no specifications about the start time of this therapy were available.
Moreover, no details about the pharmacological asthma therapy were available, such as the specific ICS
type or adherence to medical treatment prescription. Information about the specific daily dose of ICS based
on medical prescriptions was not available in most of the studies, so that sensitivity analyses adjusted by this
variable could be carried out only in one study, although these did not reveal major effects on the association
of the variant identified in European populations with the occurrence of asthma exacerbations (Chapter 3).
Despite all these factors driving a heterogeneous definition of the occurrence of asthma exacerbations in
patients treated with ICS and potential bias in the interpretation of asthma control due to the regular use of
ICS, the loci identified in the discovery phase of the studies presented in Chapters 2-4 were validated in

independent studies, suggesting the robustness of the association signals detected.

Fifth, scarce validation of the association signals of asthma exacerbations despite ICS treatment could
be attempted with the change in FEV: after ICS use. Even though the variant at APOBEC3B-APOBEC3C
showed evidence of replication with this additional measure of ICS response, this was not evaluated for
variants at CACNA2D3-WNT5A nor LTPB1. Moreover, assessment of the association of ROBO2 with the
difference in spirometry measures after a short period of ICS treatment could not be carried out in
independent populations. Therefore, further validation of the findings with the change in lung function

included several independent studies is needed.

Sixth, the effective number of independent genetic markers tested within each genomic region
attempted for validation was estimated based on empirical autocorrelations of summary significance results
using the R package coda (Plummer et al. 2006). Although it is a feasible method to account for multiple
comparisons tested that has been applied in genetic association studies (Sobota et al. 2015), this is only
based on the logarithmic transformation of p-values. Thus, more accurate methods based on LD patterns

among the variants tested should have been applied.

Seventh, gene expression levels were compared in reduced groups of cell lines experimentally

exposed to GCs or control solutions, and patients with different patterns of ICS responsiveness in Chapter 5.
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This could be partly explained by the fact that this study was aimed to evaluate the differential gene
expression in response to GCs using RNA-seq data. Despite the substantial dramatic improvements in NGS
technologies in the last years (Rizzo and Buck 2012; Kulkarni and Frommolt 2017; Petersenet al. 2017),
including large sample sizes is still cost limiting. This needs to be added to the fact that invasive techniques
are required to obtain ASM samples, extracted from deceased lung transplant donors, which strongly
hampers the capacity to include large numbers of samples. Additionally, ASM cells included in the discovery
phase were obtained from a group of non-asthmatic individuals biased by age gender, and ancestry, even
though this was the only ASM transcriptome dataset obtained through NGS at the time of performing the
analyses. Changes in expression levels in response to GCs were validated in independent transcriptome
datasets from PBMCs and ASM cells despite differences among RNA-seq and gene expression microarrays
(Li et al. 2016), and the well-known GCs cell-specific effects (Pratt et al. 2006).

Finally, the functional implications of the loci identified with different definitions of ICS response could
be only assessed through in silico approaches using experimental evidence available at public databases.
Therefore, further investigation including in vitro experiments is needed to better understand the molecular

mechanisms implicating these loci in the response to asthma treatment with ICS.

4.8. Future directions of pharmacogenomics of ICS response

Despite the advances that this doctoral thesis has provided to the field of pharmacogenomics of
response to asthma treatment with ICS, further studies are needed to continue identifying the genetic
markers underlying the differential ICS responsiveness to contribute in the future to improve asthma
management and design alternative pharmacological strategies that could reduce the substantial burden of
this disease on the society. Nonetheless, future investigations should consider including large sample sizes
and individuals from diverse populations. Homogeneous phenotypic definitions of asthma and clinical
measures of the response to ICS therapy and, the inclusion of ICS-naive patients should be also attempted.
Furthermore, associations of the genetic ancestry at the chromosome level with ICS response should be
further assessed through admixture mapping scans, taking advantage of the numerous benefits of

genetically admixed populations.

Large reference panels for imputation with high coverage of genetic variants across the genome and
good representation of the ancestry groups under study should be also taken into account. Remarkably, the
recent release of the reference panel from the Trans-Omics for Precision Medicine (TOPMed) program
(March 2020) (Taliun et al. 2019) is expected to make a substantial change in human genomics. This is the
largest catalog of human genetic variation available to date with information about 410 million genetic
variants, including 240 million SNPs, short insertions/deletions, and high coverage of rare variants. Unlike
previous reference panels, TOPMed has been constructed uniquely through deep coverage WGS of 53,831
individuals, providing an exceptional source for high resolution, accuracy, and quality imputation of genetic
variants. Additionally, it contains a wide representation of different ancestry groups, thus it is expected to
benefit numerous studies for disentangling the genetic architecture of a broad range of human diseases in

diverse populations (Taliun et al. 2019). Therefore, future genomic studies of ICS response in asthma
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patients should consider this valuable resource as an opportunity to substantially increase the statistical

power to detect novel genetic markers of asthma treatment response.

Nevertheless, it has been suggested that the future of the genetic research in asthma and related-
traits will be predominantly led by NGS strategies (Marx 2013; Wang and Chen 2018; Hernandez-Pacheco
et al. 2019), even though its application to pulmonary diseases has been scarce to date (Pouladi et al. 2016;
Wang and Chen 2018). This will enable the exploration of the genetic component beyond the common
variation. Specifically, the role of non-coding, structural, and low-frequency variants in asthma treatment
response across the whole genome could be assessed. These approaches in combination with information
from different omics sources are expected to increase our knowledge about the genetic factors underlying

the response to asthma medications.
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Conclusions

1. Genetic factors associated with asthma and treatment response through genomic studies to date only
explain a proportion of the total estimated heritability of these traits and, many of these genetic factors have

not been validated in independent studies.

2. The APOBEC3B-APOBEC3C locus was suggested to be associated with the occurrence of asthma

exacerbations in children and young adults treated with ICS from admixed and European populations.

3. The CACNA2D3-WNT5A region was identified as a novel locus potentially associated with asthma

exacerbations despite ICS treatment in patients of European ancestry, but not in other populations.

4. An enrichment of nominally significant associations at genes with differential expression in response to
trichostatin A treatment was found in the genomic analysis of asthma exacerbations despite ICS use in

Europeans.

5. The association of several polymorphisms at the ROBO2 gene with the change in lung function after ICS
therapy and asthma exacerbations in patients treated with ICS was suggested in European children and

young adults with asthma.

6. The existence of genetic factors of ICS response shared among different populations was demonstrated.
The validity of the information about asthma exacerbations as a good marker of the response to asthma

treatment was also confirmed.
7. LTBP1 showed overexpression in different cell types in response to treatment with GCs. Several variants

at this gene were nominally associated with asthma exacerbations despite ICS use in admixed and

European populations.
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