

V. Plaza-Martín
Grado de Ingeniería Informática
Universidad de La Laguna, Tenerife, Spain
e-mail: plazamartin.victor@gmail.com

C.J. Pérez-González
Depto. de Matemáticas, Investigación Operativa y Computación
Universidad de La Laguna, Tenerife, Spain
e-mail: cpgonzal@ull.edu.es

M. Colebrook (*)
Departamento de Ingeniería Informática y de Sistemas
Universidad de La Laguna, Tenerife, Spain
e-mail: mcolesan@ull.edu.es

J.L. Roda-García
Departamento de Ingeniería Informática y de Sistemas
Universidad de La Laguna, Tenerife, Spain
e-mail: jlroda@ull.edu.es

T. González-Dos-Santos
Grado de Ingeniería Informática
Universidad de La Laguna, Tenerife, Spain
e-mail: tenoglez@gmail.com

J.C. González-González
Servicio de Telecomunicaciones y Tecnologías de la Información
Universidad de La Laguna, Tenerife, Spain
e-mail: jgonzal@ull.edu.es

Analyzing network log files using Big Data
techniques

Víctor Plaza-Martín, Carlos J. Pérez-González , Marcos Colebrook,
José L. Roda-García, Teno González-Dos-Santos, José C. González-González

Abstract The IT Department of the Universidad de La Laguna (ULL, Tenerife,
Spain) provides service to 26 buildings with more than 1,000 network devices
(wireless and wired), and access to more than 10,000 devices (computers, tablets,
smartphones, etc.) which generate around 200MB/day of data that is stored mainly
in the DHCP log, the Apache HTTP log, and the WiFi log files. Within this con-
text, the chapter addresses the design and development of an application that uses
Big Data techniques to analyze those log files in order to track information on the
device (date, time, MAC address, and georeferenced position), as well as the
number and type of network accesses for each building. In a near future, this ap-
plication will help the IT Department to analyze all these logs in real time.

2

1 Introduction

By the time you read this chapter, over 16 TB of data have been generated in the
world every second, as shown in [1]. This represents that in 2016, global IP traffic
will reach 1.1 zettabytes (ZB) per year, or 88.4 exabytes (EB, nearly one billion
gigabytes) per month, or nearly 3 EB per day, which is certainly a huge amount of
data.

According to [2], in 2013 four zettabytes (1 ZB = 109 TB = 1021 bytes) of data
were created by digital devices. In 2017, it is expected that the number of connect-
ed devices will reach three times the number of people on earth.

Hence, the main topic of the book, namely Big Data, is justified based on the
current technological situation in which data is generated at a higher speed than
can actually be processed, and large companies are facing the problem of deleting
data due to the impossibility to store it, thus losing useful information.

In fact, one of the main sources of data are the log files, which record either
events that occur in an operating system or other software runs, or messages be-
tween different users of a communication software.

Thus, an opportunity arose to work collaboratively with the Information Tech-
nology and Communication Department (STIC in Spanish) at the Universidad de
La Laguna. The STIC provides service to 26 buildings with more than 1,000 net-
work devices (wireless and wired), and renders access to more than 10,000 devic-
es (computers, tablets, smartphones, etc.), which generate around 200 MB/day of
data that is stored mainly in the DHCP (Dynamic Host Configuration Protocol)
log, the Apache HTTP log, and the WiFi log files.

The key problem was the need to monitor the access made from a single de-
vice, or the user’s activities all around the campus. In this sense, they wanted to
infer usage patterns throughout the day in order to strengthen the WiFi network at
certain points.

Within this context, the chapter addresses the design and development of an
application that uses Big Data techniques to analyze those log files in order to
track information on the device (date, time, MAC address, and georeferenced po-
sition), as well as the number and type of network accesses for each building. In a
near future, we believe that this application will help the STIC to analyze all these
logs in real time.

Although there are several applications focused on log management in the mar-
ket (see Table 5.1), the STIC wanted a custom tailored application since their log
files were not in the standard format, as we explain in the next sections. For a de-
tailed comparison of open-source log management solutions, the reader is referred
to [3].

3

Table 5.1 List of log management and analysis tools.

Tool Description Type of license

ELK Stack Set of applications and utilities (Logstash, Elasticsearch, Kiba-
na) to create a powerful search and analytics platform Free

Graylog2 Log management system with server and a web interface Free
Logentries Real-time log management and analytics Free/Commercial
Loggly Cloud-based log management service Free/Commercial

Logscape Allows searching, visualizing and analyzing log files from a
central dashboard Free/Commercial

Splunk Industry-leading platform that automatically indexes log data Commercial
Logtrust Turns machine data into business insights Commercial

The remainder of the chapter is organized as follows. In Sect. 2, we provide the
definition of Big Data, its influence and relevance nowadays, as well as a descrip-
tion of the Hadoop framework. Sect. 3 presents the problem description using
TOGAF. The project development and the working methodology are described in
Sect. 4. In Sect. 5, we present and discuss the results for each developed task,
along with some charts depicting the Hadoop cluster indicators. Finally, the con-
clusions are provided in Sect. 6.

2 Big Data state-of-the-art

As we stated in the introduction, every day nearly 3 EB (1 EB = 106 TB) of data is
generated [1]. IBM [4] pointed out that the main sources for this entire data arise
from the following:

• Web data and social media

– Web content
– Twitter feeds
– Facebook postings
– Clickstreams (data from user navigation)

• Data generated from M2M (machine-to-machine) communication

– GPS signals
– RFID readings
– Intelligent readers

• Great data transactions

– Government
– Business

4

• Biometrics

– Facial recognition
– Genetics

• Data generated directly from human beings

– Emails
– Voice recordings
– Records of all kinds

Another interesting approach is given by [5], who associated the data types
(structured or unstructured) to the data source (internal or external), asserting that
the unstructured external data is the largest area of opportunity for the enterprise
(see Fig 5.1).

Fig. 5.1 Data Types vs. Data Sources (adapted from [5])

Bloem et al. [6] summarized these sources by relating the increasing data varie-
ty and complexity with its volume (in bytes), from the ERP systems to the current
Big Data scenario, going through the CRM and Web systems (see Fig. 5.2). As a
consequence, Big Data is defined as a variable equal to:

Transactions + Interactions + Observations

5

Fig. 5.2 From ERP to Big Data (adapted from [6])

Nevertheless, the definition of Big Data that is the most widely accepted was
stated by Doug Laney, industry analyst from Gartner, in 2001 when he established
the three V’s of the Big Data [7]: Volume, Velocity and Variety.

Volume
The volume refers to the amount (size) of the datasets generated and the diffi-

culty that companies and organizations have to process them. The forecasts are
that in 2020, 25 billion devices will be connected to the Internet, making data
grow exponentially, multiplying by 10 the amount in a period of just 5 years.

Velocity
The speed is often misunderstood as a real-time analysis, but it also refers to

the rate of change (or flow) in the data, linking data coming at different speeds,
and also to the activity peaks.

Variety
This is perhaps the most interesting characteristic to analyze, since data can

arise from all areas of daily life, including multiple repositories, domains or types.
However, most of this data already belongs to organizations, but they make no use
of it, becoming what Doug Laney called dark data. This data, despite not being
useful by itself, can be analyzed and processed to generate useful and valuable in-
formation, and hence, opening new business opportunities. Depending on the type
of data, we can subdivide it into four main groups:

• Structured

6

• Semi-structured
• Unstructured
• Complex structured

Besides, the terms variability and complexity also arise as possible features
concerning Big Data, since data might be generated inconsistently, with huge
peaks from multiple sources that makes very difficult to relate them.

The following Fig. 5.2 adapted from [8] graphically summarizes the three char-
acteristic V’s of Big Data.

Fig. 5.3 The three V’s that define Big Data (adapted from Soubra, 2012)

Yiu [9] also contributed with another definition of Big Data: “datasets that are
too awkward to work with using traditional, hands-on database management
tools. Besides, he also defined the term Big Data Analytics as the process of exam-
ining and interrogating big data assets to derive insights of value for decision
making.”

For the TechAmerica Foundation [10], Big Data is a term that describes “large
volumes of high velocity, complex and variable data that require advanced tech-
niques and technologies to enable the capture, storage, distribution, management,
and analysis of the information.”

One of the latest definitions comes from the National Institute of Standards and
Technology [11], who considers Big Data as “consisting of extensive datasets –

7

primarily in the characteristics of volume, variety, velocity, and/or variability –
that require a scalable architecture for efficient storage, manipulation, and analy-
sis.”

The main idea behind all these definitions of Big Data is to analyze the data
sets to gain insight and valuable information for the final decision making. In this
sense, Davenport and Harris [12] and SAP [13] suggest that businesses should
change as soon as possible from a “Sense & Respond” to a “Predict & Act” strate-
gy, in which Big Data plays an important role in all the steps towards the main
goal (see Fig. 5.4).

Fig. 5.4 From “Sense & Respond” to “Predict & Act” (adapted from SAP, 2011)

Finally, and before presenting the Hadoop framework in the next section, just
to remark that the Telecommunications Standardization Sector of the International
Telecommunication Union (ITU-T) has recently released “Recommendation
Y.3600”, which provides requirements, capabilities and use cases of cloud compu-
ting based Big Data as well as its system context [14]. This is the first attempt to
make an international standard on Big Data, and we believe that it will truly pro-
vide solid foundations for the future design and development of applications on
this subject.

8

2.1 The Hadoop framework

For some time ago, the term Big Data has been directly involved with the use of
the Hadoop framework because it allowed analyzing unstructured data easily and
quickly. The Hadoop MapReduce framework [15] is an free software solution that
supports distributed applications, and is currently the most widely used solution
for leading companies such as Yahoo, Ebay, Facebook, IBM, etc., since it allows
working with thousands of nodes and petabytes of data.

Hadoop is usually referred as an ecosystem, due to the huge number of pro-
jects, services, libraries, APIs, etc., that gathers around. However, its architecture
is mainly composed of these elements:

• Hadoop Common: the set of Java libraries and tools required by the different
modules to access the filesystem and to start the cluster daemons.

• HDFS (Hadoop Distributed File System): basically a distributed file system,
scalable and portable, characterized by its high throughput access to application
data and the suitability for applications that have large data sets. An HDFS
cluster consists of:

– A single NameNode, that is a master server that manages the file system
namespace and controls the file access by the clients.

– In addition, there are a number of DataNodes, usually one per physical
node in the cluster, which manages the storage attached to them.

• Hadoop YARN: the framework to split up the functionalities of resource man-
agement and job scheduling/monitoring into separate daemons. YARN frees
the MapReduce engine from cluster resource management tasks, streamlining
data processing and the execution of the tasks. This data-computation frame-
work consists of:

– The ResourceManager: ultimate authority that arbitrates resources among
all the applications in the system.

– The NodeManager: framework agent who is responsible for containers,
monitoring their resource usage (CPU, memory, disk, network) and report-
ing to the ResourceManager/Scheduler.

• MapReduce: a JobTracker where client applications send jobs.
• A set of parallel applications that enhance the Hadoop ecosystem, such as Pig,

HBase, Hive, Hue, etc.

To develop this project we used Hadoop 2.0, which is a great update to the ar-
chitecture of Hadoop 1.0, as shown in Fig 5.5.

9

Fig. 5.5 Architectural update in Hadoop 2.0

It is noteworthy to remark that the HDFS system is specially designed to handle
large files. Besides, it is responsible for splitting and distributing the contents of
large data files into blocks or chunks of 64 MB (by default), generally across mul-
tiple machines (nodes). Its reliability is based on the replication of data blocks
across three different hosts (by default). Hence, the hosts can communicate among
them and rebalance the flow of data, move data and maintain a high replication
within the cluster to ensure the proper performance of the application.

The inner working scheme in Hadoop MapReduce is a sequential process in
which the JobTracker partitions large data sets stored in the HDFS system into
smaller blocks of 64 MB in the NameNode (master node). Then, these blocks are
distributed to the DataNodes (slave nodes) to perform the reading and mapping to
generate the output as a key-value tuple that is stored in a temporary destination.
At this stage, the Shuffler sorts those tuples by the key and subsequently all ele-
ments with the same key in the same node remain together. In the last step, the
DataNodes gather all the tuples with other partial results, to generate the final out-
put file. Even though the MapReduce process is completed, one last step is usually
added to visualize the data, such as using the statistical software R and the Shiny
framework.

For a deeper knowledge using the Hadoop framework for addressing big data
challenges, the reader is referred to Hu et al. [16]. Once we have introduced the
working framework, we are now ready to describe the problem in the next section

3 Problem description

As we stated in the introduction, the STIC is in charge of the management and
maintenance of the university’s network, which comprises more than 100 telemat-
ical services accessible from 26 buildings, along with more than 1,000 network
devices (wired and WiFi).

10

Previous to this project, the STIC had an application developed with Pentaho
Business Intelligence Community [17]. The main goal of this tool was to combine
the information obtained from various sources, mainly the access log from the
Apache server, the DHCP log file, and the log files generated by the WiFi device
drivers, in order to determine the total number and type of accesses for each build-
ing.

Although the application performed relatively well without the chance to apply
any filter, the running time spent to get the results for the network’s least used
time slot for a single day was nearly three days of execution. Thus, we settle the
possibility of carrying out a new process using Big Data tools to significantly re-
duce the running times.

Therefore, and before developing the new solution, we first modeled the log
system using architectural framework tools.

3.1 Modeling the WiFi log system

Current modern ICT (Information and Communications Technology)-intensive in-
stitutions need to use business-modeling techniques that relate the business goals
with the technology evolution. In the last twenty years, new ways to interconnect
company internal systems using new enterprise architecture frameworks and tech-
nologies have appeared.

Regarding this matter, The Open Group Architecture Framework (TOGAF) is
one of the most important enterprise architecture frameworks developed since the
1990s. In its latest version 9.1, TOGAF [18] provides a method and a set of good
practices that allow a good relationship between the overall systems of an enter-
prise and its stakeholders.

Businesses evolve rapidly to consider new stakeholders and technical require-
ments. Institution goals and emerging technologies must be aligned accordingly,
but daily operational tasks make this issue a hard job to deal with, whereas daily
changes make business management a complex activity. The continuous transfor-
mation from the current system to the required one is maintained under the
TOGAF methods and good practices. Two of the most important concepts in
TOGAF are the views and the viewpoints, respectively, which allow the enterprise
architect to focus in different parts of the complete business. As stated in TOGAF
documentation (TOGAF 2011), we can use the framework to model all the busi-
ness or we can concentrate in different parts of it.

In this chapter, we model the WiFi log information system of the ICT Depart-
ment (STIC) of the Universidad de La Laguna. We have used two different views
to define the main goals: the layered structure of the system and the application
solution view.

For this task, we have used Archimate (TOGAF 2011), which is an enterprise
modeling language that captures the complexity of different domains and its rela-
tions within the organization. Archimate is a modeling tool that will increase the

11

representation and comprehension of the enterprise modeled systems. Hence, the
enterprise architect models different parts of the institution focusing on the ele-
ments he/she wants to emphasize considering many other aspects of the system.
Besides, by using Archimate views the architect is able to analyze a specific prob-
lem bearing in mind the complete system.

In Archimate, the service concept plays a central role and can be defined as a
unit of functionality that an entity offers to other entities or environment. One of
the most important viewpoint diagrams is the Layered viewpoint [19]. The main
goal of the Layered viewpoint is to provide an overview in one diagram. This
view consists of three layers: Business layer, Application layer and the Technolo-
gy layer.

The Business layer offers products and services to external customers that run
business processes performed by business actors. The Application layer gives
support to the business layer with application services that are performed by appli-
cations. And finally, the Technology layer offers infrastructure services accom-
plished by computers and communication hardware and software. Relationships
between layers are formed by the use relation, which shows how the higher levels
use the services of the lower layers. A second type of link is the realization rela-
tion that shows which element in the lower layer realizes comparable elements in
higher layers.

3.2 Solution achieved

We analyzed the WiFi log system and, although there exist many relationships be-
tween different business domains (login, academic, human resources, etc.) we
have centered our efforts in the main goals that STIC’s staff defined:

• Track all network communication elements (routers, switches, servers, etc.)
• Fast support to network failures
• Track specific MAC or IP elements in the network
• Detect communication bottlenecks
• Geolocated network status visualization
• Provide better network services

3.2.1 Layered viewpoint

Through the Layered viewpoint diagram, we propose a viewpoint based on layers
or views, namely a BAI scheme (Business - Application - Infrastructure). Thus,
we can make an approach from different perspectives or viewpoints based on our
interests and subsequently, obtaining both a global representation of the solution
developed, as well as the current application by only changing the view.

12

Starting with the infrastructure layer, we can see in Fig. 5.6 that consists of two
basic elements. The first one is a set of computers located in the Computer Sci-
ence School connected via LAN, which provide hardware support in our Big Data
solution. On this infrastructure we have installed Hadoop 2.6.0 for Linux [15],
running both as NameNode and DataNode. One of the computer plays the role of
master of the cluster while the rest of nodes have the DataNode settings and play
the role of slaves.

On the other hand we have a Windows based computer holding an Apache
HTTP server, along with R [20] as the statistical analysis software.

Hadoop provides a number of services such as Streaming, HDFS, YARN and
JobTracker, which will all be used by the application component MapReduce,
whereas R provides RStudio [21] and ggplot services to Shiny [22].

As stated above, at the application level we have two basic components. The
first one is the MapReduce component, which comprises the Mapper, Shuffler and
Reducer services running sequentially in a pipeline mode. This application com-
ponent generates a CSV output file that serves as input to the other application
component (Shiny), and hence, establishing a collaboration between these two
components.

At the business level, we can see that the user (STIC’s staff) is presented with
three basic actions: the monitoring of the tasks and the cluster (both through the
user interface provided by YARN), and viewing the results and managing the que-
ries through a small dashboard.

3.2.2 Application Behavior Viewpoint

If we now change our view and perform an analysis at the application level focus-
ing on the MapReduce component (see Fig. 5.7), we can see that is composed by
two other MapReduce components: one for analyzing the DHCP logs, whereas the
other one integrates this information with the analysis of the Apache logs.

The MapReduce process responsible for the analysis of the DHCP logs starts
cleaning the input data using a regular expression. Thus, we obtain the set of use-
ful data and, in turn, we filter those log lines that are not needed for the analysis.
All this is accomplished by using generators and iterators in Python, so that a cer-
tain element is not generated until you actually need it. These programming tech-
niques imply less computational cost and memory usage. Once we have filtered
this information, we proceed to generate the data structure with that task, in this
case a dictionary within a dictionary, so that the IP is the key of the generic dic-
tionary and its value a dictionary where the key is the time and the MAC is the
value. This allows us to clearly identify the use of an IP address at any time and
what device is making use of it.

The Shuffler sorts all the information generated on each of the cluster nodes
within the mapping process, so as to ensure that all entries with the same key are
computed in the same DataNode, and therefore the integrity of the solution is as-
sured.

13

Now the Reduce process begins to synthesize all the DHCP information to a
minimal set, storing a record of each time an IP assigned to MAC changed, instead
of the whole entry. Consequently, the output volume is reduced by 58%, even
though it contains the same useful information. This aspect is key since the
MapReduce process responsible for processing the Apache Log files will use this
file later.

The second MapReduce process is similar to the first one in its concept, be-
cause it is based on cleaning the input data through regular expressions to get the
smallest unit of information required. Later on, we check the dictionary generated
as a result of the above process for the DHCP analysis, and we add both data if
needed.

Thus, we relate each useful access to its corresponding MAC address, adding
georeferencing information generated by the STIC’s staff based on the architec-
ture of their WiFi and wired network.

Fig. 5.6 The Layered Viewpoint

14

Fig. 5.7 The Application View

4 Project development

After several meetings with the STIC’s staff, some restrictions were set, which
shaped the structure of this project, emphasizing among them the use of Python as
the programming language in order to ease the maintenance of the solution pro-
posed.

Bearing always in mind that performance was the top priority, different alterna-
tives were analyzed and compared in order to ensure the best results were obtained
in such diverse aspects as reading/writing speed from both files and the HDFS
system, processing time, functional requirements, etc.

Hence, and using as a baseline the comparative generated by Laserson [23], we
concluded that the best option was to develop the solution through the Streaming
library that has performance ratios and a range of features similar to Java.

4.1 Working methodology

One of the biggest challenges when working with large amounts of data is to veri-
fy the accuracy of the results obtained, and this was a critical aspect for the STIC’s
staff.

Accordingly, a working methodology was designed in which an incremental
development of the solution would allow controlling the results from a large
enough input dataset.

Therefore, the development process was split into milestones (or tasks), each of
them with a defined, well-documented objective, and a series of data files as in-

15

puts for analysis. Thus, it was concluded that the working planning would be as
follows (the ‘V’ before the number stands for the version):

V0.5 Analysis of a log file folder

The system with a single node will compute the data in a directory, traverse all log
files inside, and produce a CSV file as the output with the names of the files found
and the number of log lines detected in each one.

V1.0 Analysis of a single log file with a single node

For one single log file of a single virtual server from the campus, get the number
of accesses grouped by hour.

V1.5 Analysis of a single log file with three nodes

For one single log file of a single server from the farm of virtual servers, get the
number of accesses grouped by hour, splitting the computation into three nodes.

V2.0 Analysis of several log files one-day analysis on multiple nodes

For the set of log files in a single day of multiple servers in the campus, obtain the
number of accesses grouped by hour, for each server and for each time slot.

V2.5 Analysis of several log files one-day analysis on multiple nodes with date
and time restrictions

For the set of log files from a single day of multiple servers in the campus, obtain
the number of accesses grouped by hour, for each server and for each time slot,
and filter the restrictions from-day/from-time and to-day/to-time specified in a
special file.

V3.0 DHCP log analysis

We must determine the MAC devices that connect to the network at any time. The
system will read the log files from the DHCP servers and generate a new output
file with the MAC addresses associated to each IP address at each time instant.

V4.0 Linking unstructured data and correlating elements in different time in-
stants

For a certain access log line to the virtual campus server, we have to determine the
MAC address associated with the IP address that made that precise access. The
output may now include the tuple: Date, Time, IP, MAC and Access Object.

V4.5 Deploying V4.0 for a period specified in the input filters

This task must link all the above sections and get the tuple of V4.0 for all log files
for a given period of time in the input filter.

V5.0 Analyzing WiFi connections

Analyze the log files of the different WiFi device controllers to obtain the tuples:
Date, Time, MAC, WiFi Access Point.

16

V5.5 Analyzing WiFi connections and georeferenced access

Analyze the georeferenced files for the WiFi access points, and link to the previ-
ous section the coordinates of the detected accesses.

V6.0 Linking all together

Link all previous sections to obtain the following tuple for a specific time period
defined in the input filter: Date, Time, Virtual Campus Access, IP, MAC, Access
Point, GPS coordinates.

5 Results

The main data sources are the semi-structured access log files that are automatical-
ly generated each time a user’s device access the university’s network. Currently,
the amount of data generated daily as a result of network monitoring exceeds 200
MB per day.

This is mainly due to the extensive network, which provides access to approx-
imately 10,000 devices and renders services to more than 26 buildings, with a total
of more than 1,000 network devices (wired and WiFi).

Besides, the access log files lack sensitive information and hence they need not
be anonymized. Indeed, the files have the characteristic morphology of being a
concatenation of an unsorted standard Apache log along with data added by the
log management system of the STIC. The fields are separated by spaces, and the
symbol “-” denotes the absence of data. An example of a log line in this type of
files is shown in Fig 5.8.

Fig. 5.8 Sample line in an access log file

Before presenting the results obtained over a given set of server logs from
2014, first we must process these log files by running a Hadoop MapReduce pro-
gram stored in the HDFS system within a cluster of nodes.

5.1 Cluster configuration

A cluster of 21 data nodes (and 1 node manager) with 4 GB of RAM in each node
was deployed with Hadoop YARN version 2.7. When submitting MapReduce

17

procedures in Hadoop, we are interested in measuring the cluster performance and
benchmarking the job executions. In this sense, Hadoop provides a high valuable
Java API for debugging problems in MapReduce jobs, analyzing the use of
memory and CPU time, and tracking the filesystem operations.

Among the most important resources within this Hadoop API are the counters,
which are a wide selection of indicators and statistics reported by the individual
tasks associated to job submissions. The counters in Hadoop are used to track the
job progress of a MapReduce algorithm, and to study the events occurred during
the job execution. White [24] describes five categories or groups of counters in
Hadoop (see Table 5.2) :

Table 5.2 Counter groups in Hadoop

Group Java enum
Map Reduce task counters org.apache.hadoop.mapreduce.TaskCounter
FileSystem counters org.apache.hadoop.mapreduce.FileSystemCounter
Job counters org.apache.hadoop.mapreduce.JobCounter
FileInputFormat counters org.apache.hadoop.mapreduce.lib.input.FileInputFormatCounter
FileOutputFormat counters org.apache.hadoop.mapreduce.lib.output.FileOutputFormatCounter

The group of task counters is updated as a task progresses, whereas the group

of job counters are updated as a job progresses. Some of the built-in MapReduce
counters are detailed in the following Table 5.3:

Table 5.3 MapReduce task counters

Counter Description
MAP_INPUT_RECORDS The number of input records consumed by all the maps in the job.
MAP_OUTPUT_RECORDS The number of map output records produced by all the maps in

the job.
MAP_OUTPUT_BYTES The number of bytes of uncompressed output produced by all the

maps in the job.
PHYSICAL_MEMORY_BYTES The physical memory being used by a task in bytes, as reported

by /proc/meminfo.
CPU_MILLISECONDS The cumulative CPU time for a task in milliseconds, as reported

by /proc/cpuinfo.
GC_TIME_MILLIS The elapsed time for garbage collection in tasks in milliseconds

(reported by GarbageCollectorMXBean.getCollectionTime())

Likewise, several built-in filesystem counters can be outlined as well:

18

Table 5.4 Filesystem counters

Counter Description
BYTES_READ The number of bytes read by the filesystem by map and reduce tasks.

There is a counter for each filesystem (local filesystem, HDFS, etc.)
BYTES_WRITTEN The number of bytes written by the filesystem by map and reduce tasks.
READ_OPS The number of read operations (i.e. open, file status) by the filesystem

by map and reduce tasks
WRITE_OPS The number of write operations (i.e. create, append) by the filesystem

by map and reduce tasks.

The job counters measure statistics at the job level, and their values are not
changed while a task is running. Some significant counters in this group are shown
in the following Table 5.5:

Table 5.5 Job counters

Counter Description
TOTAL_LAUNCHED_MAPS The number of map tasks that were launched.
TOTAL_LAUNCHED_REDUCES The number of reduce tasks that were launched.
NUM_FAILED_MAPS The number of map tasks that failed.
NUM_FAILED_REDUCES The number of reduce tasks that failed.
NUM_KILLED_MAPS The number of map tasks that were killed.
NUM_KILLED_REDUCES The number of reduce tasks that were killed.
MILLIS_MAPS The total time taken running map tasks, in millisec-

onds.
MILLIS_REDUCES The total time taken running reduce tasks, in millisec-

onds.
MB_MILLIS_MAPS The total time taken running map tasks multiplied by

RAM allocated, in miliseconds*megabyte
MB_MILLIS_REDUCES The total time taken running reduce tasks multiplied by

RAM allocated, in miliseconds*megabyte

5.2 Sample results for each task

Next, we show a sample of the MapReduce output for each stage of the project on
the input data, namely, the access log files, the DHCP log files, and a set of filter
files or static information such as location coordinates of the IP addresses within
the campus.

V0.5 Analysis of a log file folder

Given a set of access log files, we obtain the following Table 5.6:

19

Table 5.6 Output of task V0.5

Filename Number of Lines
access.log-20140317 318599
access.log-20140318 527553
access.log-20140319 513896
access.log-20140320 505612
Total number of lines 1865660

V1.0 Analysis of a single log file with a single node

The fragment of the generated output is shown in Table 5.7.

Table 5.7 Output of task V1.0

Month Day Hour IP Number of Accesses
Mar 17 10 10.212.2.230 843
Mar 17 10 10.212.2.94 68
Mar 17 10 10.212.3.189 59
Mar 17 10 10.212.3.212 1357
Mar 17 10 10.212.3.233 277

V1.5 Analysis of a single log file with three nodes

The output generated contains the same format as seen in Table 5.7, but the input
now comes from three files, one for each node, in order to verify that the aggrega-
tion between node output files works properly.

V2.0 Analysis of several log files one-day analysis on multiple nodes

The output shown in Table 5.8 counts the number of accesses per IP/date/server,
and then computes a total result by date/IP.

Table 5.8 Output of task V2.0

Month Day Hour Ip udvweb1
log-20140318

udvweb2
log-20140318

udvweb3
log-20140318

udvweb4
log-20140318

Total

Mar 17 8 10.219.3.69 0 0 19 0 19
Mar 17 8 10.219.8.238 6 914 0 0 920
Mar 17 8 10.219.8.239 0 1522 0 10 1532
Mar 17 8 10.219.8.242 176 1 0 0 177
Mar 17 8 10.219.8.243 0 0 0 32 32

20

V2.5 Analysis of several log files one-day analysis on multiple nodes with date
and time restrictions

The output of this task is identical to Table 5.8, but in this case we use a custom
filter file with timeslots to restrict the time of the accesses. This filter file has the
following structure:

From Mar 17 10:00:00

Until Mar 17 17:00:00

V3.0 DHCP log analysis

In this case, we filter according to file containing IP ranges associated with differ-
ent logical origins within the network management. This filter file has the follow-
ing contents:

192.168.x.x Danger1

172.16.x.x Danger2

10.x.x.x Internal

193.145.96.x PublicInternal

193.145.97.x PublicInternal

193.145.120.x Administration

193.145.125.x PublicInternal

*.ull.es InternalWithDNS

Others External

Table 5.9 shows a sample of the output generated in this task.

Table 5.9 Output of task V3.0

Month Day Hour Admin. External Internal Internal
With DNS

Public
Internal

Danger1 Danger2 Total

Mar 17 6 0 4686 103 128 0 0 0 4917
Mar 17 7 0 20003 3495 384 0 0 0 23882
Mar 17 8 0 44578 64334 384 0 0 0 109296
Mar 17 9 0 67733 91041 384 0 0 0 159158

V4.0 Linking unstructured data and correlating elements in different time in-
stants

21

The goal is to analyze the DHCP log file in order to have a baseline to gather all
the data previously analyzed from the V5.5 task on (see Table 5.10).

Table 5.10 Output of task V4.0

Month Day Hour Server Access Type IP address MAC address
Mar 18 11:34:32 udvweb1.stic.ull.es apache2_access 10.225.2.207 00:17:31:c4:30:71

V4.5 Deploying V4.0 for a period specified in the input filters

This output is similar to task V2.5 but over another data set, whereas the structure
of the output is the one obtained in task V4.0 but considering some time filters.

V5.0 Analyzing WiFi connections

The output is similar to task V4.0 but for WiFi connections (see Table 5.11).

Table 5.11 Output of task V5.0

Date Hour MAC Access Point
01/03/2016 8 88:9f:fa:93:35:7c 10.174.3.28

V5.5 Analyzing WiFi connections and georeferenced access

Given a set of files containing information related to the logical design of the WiFi
network, we generate an output with the format shown in Table 5.12. This output
format will help to link all previously developed tasks with the goal described in
task V6.0.

Table 5.12 Output of task V5.5

Building
Code

Building
Name

 Network
Type

Netmask Building GPS
Coordinates

BA2 Bellas Artes Nuevo Red Azul 10.101.0.0/24 28.461210,-16.276267

V6.0 Linking all together

The output of this task (shown in Table 5.13) was from the beginning the main
goal of the project, that is, to aggregate access data with DHCP information and
georeferenced positions in order to track a particular device, and to analyze both
the network traffic flow and the network load.

22

Table 5.13 Output of task V6.0

Date Access Point Device MAC Building Building GPS
Coordinates

01/03/2016 8:38 10.174.3.28 88:9f:fa:93:35:7c PE Periodismo Red WIFI 28.469314,-16.301921
01/03/2016 8:56 10.158.0.207 20:64:32:4c:44:94 IA IUBO+Agricolas Red WIFI 28.481374,-16.319417

5.3 Dashboards using R charts and data from counters

The tasks described in Sect. 4 were executed on four instance problems to analyze
the server logs of several months in 2014. In particular, the following months pe-
riods were processed: one month (August), two months (August to September),
three months (August to October) and, finally, four months (August to Novem-
ber).

The job counters of the tasks execution were collected and the information was
gathered into several JSON files, in order to properly show it in a dashboard de-
veloped using R [20]. This dashboard will allow us to study the efficiency of our
MapReduce scripts. For example, the next charts shown in Fig. 5.9 and Fig. 5.10
represent the number of tasks and the memory usage by data node (simply averag-
ing PHYSICAL_MEMORY_BYTES by the number of data nodes) for each prob-
lem instance, respectively.

Fig. 5.9 Number of tasks vs. months analyzed

23

Fig. 5.10 Memory usage by data node vs. months analyzed

The tasks (sum of TOTAL_LAUNCHED_MAPS and
TOTAL_LAUNCHED_REDUCES) in each job execution can be studied taking
into account the success or failure states (tasks that were killed or failed). This is
shown in Fig. 5.11.

The number of HDFS read and write operations can also be represented (see
Fig. 5.12) in order to study the data workflow in each problem. This issue is very
important since it could reduce the number of failures.

24

Fig. 5.11 Number of tasks by type vs. months analyzed

Fig. 5.12 Number of HDFS operations vs. months analyzed

The comparison of counters can be very useful to detect and debug other prob-
lems in job executions. The following charts represent the size of data read opera-
tion in HDFS (computed from BYTES_READ, see Fig. 5.13) and the memory us-
age by data node with respect the number of total tasks (Fig. 5.14).

25

Fig. 5.13 Size of HDFS reads vs. number of tasks

Fig. 5.14 Memory usage by data node vs. number of tasks

26

In order to compute the CPU time, we multiply the counter
CPU_MILLISECONDS by the data size read from the HDFS (that differs consid-
erably between each problem instance). The chart in Fig. 5.15 illustrates the time
of computation with respect to the amount of data that is processed.

Fig. 5.15 CPU time vs. months analyzed

The counters can be used also to define more complex indicators as a measure
of memory consumed in a job execution. In this case, the memory allocated and
occupied by tasks is given by:

• Allocated_Memory = (MB_MILLIS_MAPS + MB_MILLIS_REDUCES)
• Occupied_Memory = millis_tot * memory_mb / total_tasks

where:

• millis_tot = MILLI_MAPS + MILLI_REDUCES
• memory_mb = PHYSICAL_MEMORY_BYTES / (1024*1024)
• total_tasks=TOTAL_LAUNCHED_MAPS+

TOTAL_LAUNCHED_REDUCES

Therefore, the percentage of memory allocation used can be computed as
PERCENT_MEM_ALLOC = 100 * Occupied_Memory / Allocated_Memory, and
the corresponding chart shows in Fig 5.16 the memory usage for each problem in-
stance.

27

Fig. 5.16 Memory allocation vs. months analyzed

Another indicator of interest could be the percentage of Garbage Collector
(GC) time. When a Java application has excessive heap utilization, the corre-
sponding JVM can run a full garbage collection that blocks other works and uses
large amounts of CPU. The percentage of time spent in GC is computed as
GC_TIME_MILLIS / (MILLIS_MAPS + MILLIS_REDUCES). The following
chart in Fig. 5.17 represents this time for each problem instance, and can be con-
sidered as a control indicator to prevent this problem.

Fig. 5.17 Time of Garbage Collection vs. months analyzed

28

5.4 Graphical results

The summarized data obtained after processing can be represented by grouping
the different servers where the logs come from, as shown in the next Fig. 5.18.

Fig. 5.18 Total number of accesses for different servers along a time slot

The information can also be completed with georeferenced data to show the
spatial distribution of web accesses through the different WiFi access points in
several centers belonging to different campus of the university, as depicted in Fig
5.19.

Fig. 5.19 Spatial distribution of the web accesses through the WiFi access points

29

6 Conclusions

The IT Department of the Universidad de Laguna (STIC) provides service to 26
buildings with more than 1,000 network devices, and renders access to more than
10,000 user devices, which generate around 200 MB/day of log data. With such a
huge infrastructure, it is highly desirable to provide new tools to explore this semi-
structured data to get insights for the decision making.

In this chapter we have addressed the design and development of an application
that uses Big Data techniques to analyze those log files in order to track infor-
mation on user devices, as well as the number and type of network accesses for
each building. Indeed, we have obtained several interesting statistical measures
regarding the frequency and type of accesses.

Besides, the collaboration with STIC has tested an iterative and incremental
working methodology that has been very useful to obtain quite interesting results
to improve both network indicators and analysis metrics.

Accordingly, TOGAF and Archimate become necessary tools when we want to
analyze, communicate and maintain complex systems. In this work we present two
of the most important viewpoints used in Archimate. The Layered viewpoint gives
the developer team a graphical view of the complete WiFi logs system, from the
business functions to the infrastructure technology used. An intermediate layer,
the Application layer, shows the software components needed to achieve the ac-
tors’ goals. The second viewpoint, the Application Behavior viewpoint describes
in detail the internal behavior of our MapReduce application.

The final result of processing massive log files has proved to be extremely use-
ful to provide very valuable information in a short time. The charts shown in the
last sections of this chapter enable to make a clear analysis of our cluster’s per-
formance when the different jobs are submitted. In particular, the information de-
picted in the different figures eases the detection of errors and the control of the
success level of all the associated tasks of the different jobs.

Furthermore, we can obtain the total number of accesses for different servers
along a time slot and the spatial distribution of the web accesses through the WiFi
access points. This is particularly important to audit the service quality in order to
define new policies for the system design and the way the users connect to the
network.

All these features, along with some more improvements that could allow the
analysis of log files in real time, will be studied and developed in future research.

Acknowledgments This work is partially supported by the European Commision, Agreement
no. 621012, “Share PSI 2.0: Shared Standards for Open Data and Public Sector Information”,
ICT Policy Support Programme as part of the Competitiveness and Innovation Framework Pro-
gramme. By the Spanish Ministry of Education and Science, Research Project MTM2013-
43396-P, National Plan of Scientific Research, Technological Development and Innovation. And
by the Cabildo de Tenerife, through the Open-Big-Smart Data Project. The authors wish to thank
Adrián Muñoz-Barrera, Luis A. Rubio-Rodríguez and Pedro González-Yanes for their support
and assistance both in the configuration and deployment of the Hadoop cluster and in the devel-
opment of the solution.

30

References

[1] The Zettabyte Era.
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/VNI_Hype
rconnectivity_WP.html. Accessed May 2016.

[2] Intel (2014) What Happens in an Internet Minute?
http://www.intel.es/content/www/es/es/communications/internet-minute-infographic.html.
Accessed May 2016.

[3] Vaarandi R, Niziński P (2013) A Comparative Analysis of Open-Source Log Management
Solutions for Security Monitoring and Network Forensics. CCDCOE – NATO Cooperative
Cyber Defence. http://ccdcoe.org/multimedia/comparative-analysis-open-source-log-
management-solutions-security-monitoring-and-network.html. Accessed May 2016.

[4] What is Big Data? (in Spanish). http://www.ibm.com/developerworks/ssa/local/im/que-es-
big-data. Accessed May 2016.

[5] Nair R, Narayanan A (2012) Benefitting from Big Data: Leveraging Unstructured Data Ca-
pabilities for Competitive Advantage. Booz & Company.
http://www.strategyand.pwc.com/media/file/Strategyand_Benefiting-from-Big-Data.pdf. Ac-
cessed May 2016.

[6] Bloem J, van Doorn M, Duivestein S, van Manen T, van Ommeren E (2012) Creating clarity
with Big Data. SOGETI. http://blog.vint.sogeti.com/wp-content/uploads/2012/07/VINT-
Sogeti-on-Big-Data-1-of-4-Creating-Clarity.pdf. Accessed May 2016.

[7] Laney D (2012) Deja VVVu: Others Claiming Gartner’s Construct for Big Data.
http://blogs.gartner.com/doug-laney/deja-vvvue-others-claiming-gartners-volume-velocity-
variety-construct-for-big-data. Accessed May 2016.

[8] Soubra D (2012) The 3 Vs that define BigData. Data Science Central.
http://www.datasciencecentral.com/forum/topics/the-3vs-that-define-big-data. Accessed May
2016.

[9] Yiu C (2012) The Big Data Opportunity. Policy Exchange.
http://www.policyexchange.org.uk/images/publications/the%20big%20data%20opportunity.p
df. Accesssed May 2016.

[10] TechAmerica Foundation (2012) Demystifying Big Data: A Practical Guide To Transform-
ing The Business of Government. Available at: https://www-
304.ibm.com/industries/publicsector/fileserve?contentid=239170. Accessed May 2016.

[11] NIST (2015) Big Data Interoperability Framework: Volume 1, Definitions.
http://dx.doi.org/10.6028/NIST.SP.1500-1 . Accessed May 2016.

[12] Davenport T, Harris J (2007) Competing on Analytics. Harvard Business School Press. Bos-
ton, MA.

[13] SAP (2011) Making Business Run Better with In-Memory Computing & Predictive Analyt-
ics. http://scn.sap.com/docs/DOC-5024. Accessed May 2016.

[14] ITU-T (2015) Big Data – Cloud computing based requirements and capabilities.
http://handle.itu.int/11.1002/1000/12584. Accessed May 2016.

[15] Apache Hadoop. http://hadoop.apache.org. Accessed May 2016.
[16] Hu H, Wen Y, Chua TS, Li X (2014) Toward Scalable Systems for Big Data Analytics: A

Technology Tutorial. IEEE Access 2:652-687.
[17] Pentaho. http://www.pentaho.com . Accessed May 2016.
[18] The Open Group Architecture Framework (TOGAF) Version 9.1. The Open Group.

http://www.opengroup.org/togaf. Accessed May 2016.
[19] Lankhorst MM (2004) Enterprise architecture modelling—the issue of integration. Ad-

vanced Engineering Informatics 18(4):205–216.
[20] The R Project for Statistical Computing. https://www.r-project.org. Accessed May 2016.
[21] RStudio. https://www.rstudio.com. Accessed May 2016.
[22] Shiny. http://shiny.rstudio.com. Accessed May 2016.

31

[23] Laserson U (2013) A Guide to Python Frameworks for Hadoop.
http://blog.cloudera.com/blog/2013/01/a-guide-to-python-frameworks-for-hadoop. Accessed
May 2016.

[24] White T (2015) Hadoop: The Definitive Guide. O’Reilly Media.

