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Abstract

In this work we present the behaviour of open quantum systems, as they get
entangled with their environment and the decoherence process that it leads. This
is, in fact, the transition to quantum to classical world, the lost of information in
this process and how long it takes are the principal topics we study in this lines.

We will make a educational review of an article in modern research in quantum
physics “Entanglement of quantum clocks through gravity” (Ruiz et al., 2017),
where quantum clocks located in nearby worldlines get entangled through the
gravitational interaction, leading to a loss of coherence of a single clock and an
uncertainty in the time measuring process.

Resumen

En este trabajo presentamos el comportamiento de sistemas cuánticos abiertos,
a medida que se entrelazan con su entorno y el proceso de decoherencia que
esto provoca. Esta es, de hecho, la transición del mundo cuántico al clásico,
la pérdida de información en este proceso y cuánto dura son los principales temas
que estudiamos en estas ĺıneas.

Haremos una revisión educativa de un art́ıculo de investigación moderna en
f́ısica cuántica “Entrelazamiento de relojes cuánticos a través de la gravedad”(Ruiz
et al., 2017), donde los relojes cuánticos ubicados en lineas universo cercanas
se entrelazan a través de la interacción gravitatoria, llevando a una pérdida de
coherencia de uno de los relojes y a una incertidumbre en el proceso de medida
del tiempo.
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1 Introduction

Physics predicts the evolution of systems, the evolution of the whole universe
over time, or even in passed times, from the most tiny of the particles to the most
humongous galaxy we could imagine.The determinism of physics itself makes us
think that the world must be understood completely, and nothing could get away
from our understanding. Quantum mechanics explains most of the science we
know nowadays, and its advance along the last century has created new branches
of knowledge.

The evolution in quantum mechanics is deterministic, given by the Schrödinger
equation

ih̄
d

dt
|ψ⟩ = H |ψ⟩ (1.1)

According to initial and boundary conditions.

This deterministic evolution equation, enters in dispute with the probabilistic
results when a measurement is done. The evolution of the state that this Eq.
(1.1) gives to us, sometimes shows many alternatives that are never seen to co-
exist in our world (Zurek, 2002). This deterministic equation could give to us a
superposition that we will never be able to measure and we will never see.

Assume we want to measure, a physical magnitude. Our system, just before
the measurement, is in a state represented by |ψ⟩. From the postulates of quantum
mechanics, we know that the only possible result of the measurement is one of
the eigenvalues of the corresponding observable we are measuring, our physical
magnitude. We know the probabilities of obtaining the different results, and
only one of the possibilities is achieved. Now, after the measurement, we posses
additional information, and the state of the system after the measurement, will
be different, due to this extra info we own now. (Cohen-Tannoudji et al., 1986) .

In quantum systems the only reality which we have access is the results of
measurements.

Before a measurement, our information about the system is non-existent and
the only quantum state we could suppose is a superposition. When a measurement
is done the wave function collapse and it is, in fact, an update of the information
of the system due to this measurement.

And with it, decoherence plays a key role in the quantum measurement process,
which is one of the most important points when we try to understand the transition
from quantum to classical world.

Any quantum system is open, it is never perfectly isolated from the environ-
ment. Open quantum systems are conditioned by their surroundings. When we
study a quantum system, the environment conduct indirect measurements on the
system, changing the information we have about it. After a certain time, the co-
herences, the superposition of states are eliminated, by this interaction. We have
a lost of information due to this contact of the system-environment, where the
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coherences decay until being destroyed. It is then the superposition of states is
not present, and a preferred basis thrives on the system. This lost of information
occurs almost instantaneously, in short periods of time, the populations of the
reduced density matrix barely evolve, while the coherences decay on extremely
short times.

We will see that a system in contact with the environment, can be described by
an interaction Hamiltonian, which distinguishes a specific set of basis states, that
are not influenced by the environmental interaction. This interaction Hamiltonian
is taken to be HI =

∑
nAn ⊗Bn, and with it, the evolution of the total system

leads to a basis states not affected by the dynamics, not affected during the time
evolution.
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2 An exactly solvable model

To illustrate our discussion, we will see an specific system-reservoir model,
that allow an exact analytic solution, following the referenced book (Breuer et al.,
2002).

In this study, we consider a system in contact with a reservoir of harmonic
oscillators to describe how is the time evolution of the total system and how the
preferred basis emerges. Then, considering a reservoir in thermal equilibrium
at certain temperature T , we will show how is the evolution with time of the
coherences and how their decay is described by the so called, decoherence function.

2.1 Time evolution of the total system

Considering a two-state system coupled to a reservoir of harmonic oscillators.
The total Hamiltonian in the Schrödinger’s picture (operators not depend on time)
written as:

H = HS +HB +HI = H0 +HI =
ω0

2
σ3 +

∑
k

ωkb
†
kbk +

∑
k

σ3(gkb
†
k + g∗kbk) (2.1)

where H0 is the Hamiltonian of the system and the reservoir and HI is the interac-
tion Hamiltonian. ω0 is the level spacing of the two-state system and k labels the
reservoir modes with frequencies ωk. The terms b†k and bk are the bosonic creation
an annihilation operators. They satisfy the following commutation relation

[bk, b
†
k′ ] = δkk′ , (2.2)

and gk are coupling constant which describe the coupling of the two-state system
to the reservoir modes bk through the Pauli matrix σ3.

Let us introduce a basis of states vectors of the qubit through σ3 :
σ3 |0⟩ = − |0⟩
σ3 |1⟩ = + |1⟩

σ3 =

(
1 0
0 −1

)
, |0⟩ =

(
0
1

)
, |1⟩ =

(
1
0

)
. (2.3)

The Hamiltonian is of the form of H = HS + HB + HI = H0 + HI and
HI =

∑
n |n⟩ ⟨n| ⊗Bn = An ⊗Bn.

In this case, the Pauli matrix σ3 is a conserved quantity, because it commutes
with the Hamiltonian:

[H, σ3] = 0. As H = H0 +HI → [σ3
ω0

2
, σ3] = 0, [σ3,

∑
k

ωkb
†
kωk] = 0 (2.4)
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Just because they belong to different subspaces. And as well:

[σ3, σ3(gkb
†
k + g∗kbk)] = [σ3, σ3gkb

†
k] + [σ3, σ3g

∗
kbk]. (2.5)

Writing the density matrix of the total system ρ(t), since σ3 is a conserved
quantity, the populations are constant in time and are given by:

ρ11 = trS+B(|1⟩ ⟨1| ρ(t)) = ⟨1| ρS(t) |1⟩ , ρ00 = trS+B(|0⟩ ⟨0| ρ(t)) = ⟨0| ρS(t) |0⟩ .
(2.6)

Our target is how decoherence appears, and for that, we must study the deco-
herence function. In order to do that, we observe that in the interaction picture,
its Hamiltonian is described as follows

HI(t) = eiH0tHIe
−iH0t =

∑
k

σ3(gkb
†
ke

iωkt + g∗kbke
−iωkt), (2.7)

and the unitary time-evolution operator in the interaction picture can be written
as:

U(t) = T←exp

[
−i
∫ t

0

dsHI(s)

]
. (2.8)

With T← the time order operator. Since the commutator of the interaction
Hamiltonian at two different times is a c-number function:

[HI(t), HI(t
′)] = −2i

∑
k

|gk|2 sinωk(t− t′) ≡ −2iφ(t− t′), (2.9)

this last equation can be written as next

[HI(t), HI(t
′)] = HI(t)HI(t

′)−HI(t
′)HI(t) = (2.10)∑

k

σ3(gkb
†
ke

iωkt + g∗kbke
−iωkt) ·

∑
k

σ3(gkb
†
ke

iωkt
′
+ g∗kbke

−iωkt
′
)−

−
∑
k

σ3(gkb
†
ke

iωkt
′
+ g∗kbke

−iωkt
′
) ·
∑
k

σ3(gkb
†
ke

iωkt + g∗kbke
−iωkt) =

∑
k

σ2
3|gk|

2[b†kbk2i sinωk(t− t′)− bkb
†
k2i sinωk(t− t′)] = −2i

∑
k

σ2
3|gk|

2 sinωk(t−t′).

Using in this last step [bk, b
†
k] = 1, equation (2.9) follows.

Consequently, we obtain the time-evolution operator:

U(t) = exp

[
−1

2

∫ t

0

ds

∫ t

0

ds′[HI(s), HI(s
′)]Θ(s− s′)

]
exp

[
−i
∫ t

0

dsHI(s)

]
.

(2.11)
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To derive this last equation we proceed as follows:

First of all, we rewrite the time-evolution operator using the Magnus expansion
(Blanes et al., 2010).

U(t, t0) = eA (2.12)

A = − i

h̄

∫ t

t0

ds1H(S1) +
1

2

(
− i

h̄

)2 ∫ t

t0

ds2

∫ s2

t0

ds1[H(t2), H(t1)]+ (2.13)

+
1

4

(
− i

h̄

)3 ∫ t

t0

ds3

∫ s3

t0

ds2

∫ s2

t0

ds1[H(s3), [H(s2), H(s1)]] + ...

If [H(t2), H(t1)] = f(t2, t1) is a c-number then

A = − i

h̄

∫ t

t0

ds1H(S1) +
1

2

(
− i

h̄

)2 ∫ t

0

ds1

∫ s1

0

ds2f(s1, s2), (2.14)

and therefore

U(t, 0) = eA = exp

{
−1

2

1

h̄2

∫ t

0

ds1

∫ s1

0

ds2[H(s1), H(s2)]

}
× (2.15)

× exp

(
− i

h̄

∫ t

0

ds1H(s1)

)
(2.16)

In this solution, the right part (2.15) is a c-number and (2.16) is an operator.

Using the Heaviside function defined by

Θ(x) =

{
1 ; x > 0

0 ; x < 0
(2.17)

we will change the upper limits of the integrals. The time-evolution operator will
be described with only one common limit t.

U(t, 0) = exp

{
−1

2

1

h̄2

∫ t

0

ds1

∫ t

0

ds2[H(s1), H(s2)]Θ(s1 − s2)

}
× (2.18)

× exp

(
− i

h̄

∫ t

0

ds1H(s1)

)
(2.19)

We will rename (2.19) as V (t). Notice that [H(s1), H(s2)] = −2iφ(s1 − s2),
then we can conclude that the time evolution operator has the form:

U(t, 0) = exp

{
1

h̄2

∫ t

0

ds1

∫ t

0

ds2 φ(s1 − s2)Θ(s1 − s2)

}
· V (t) (2.20)
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Showing (2.11) is correct.

If we focus on the unitary operator V (t), from equation (2.7) it follows that

V (t) = exp

[
−i
∑
k

σ3gkb
†
k

∫ t

0

eiωksds+
∑
k

σ3gkb
∗
k

∫ t

0

e−iωksds

]
= (2.21)

= exp

[∑
k

σ3gk

[
b†k

(
1− eiωkt

ωk

)
− b∗k

(
1− e−iωkt

ωk

)]]
=

= exp

[
1

2
σ3
∑
k

(αkb
†
k − α∗kb

∗
k)

]
= exp

[
1

2
σ3
∑
k

(αkb
†
k − α∗kbk)

]
,

with the αk the amplitudes

αk = 2gk
1− eiωkt

ωk

. (2.22)

We see the evolution of the total system is determined by V (t), ignoring a
global phase factor. If we choose an arbitrary reservoir state |ϕ⟩ and the coherent
state generator D(αk) as:

D(αk) = exp
[
αkb

†
k − α∗kbk

]
(2.23)

V (t) (|0⟩ ⊗ |ϕ⟩) = |0⟩ ⊗
∏
k

D(−αk/2) |ϕ⟩ ≡ |0⟩ ⊗ |ϕ0(t)⟩ (2.24)

V (t) (|1⟩ ⊗ |ϕ⟩) = |1⟩ ⊗
∏
k

D(+αk/2) |ϕ⟩ ≡ |1⟩ ⊗ |ϕ1(t)⟩ . (2.25)

The interaction of the system with its environment creates correlations between
the system states |0⟩ and |1⟩ and a certain reservoir states |ϕ0(t)⟩ and |ϕ1(t)⟩,
respectively. Since now the states are entangled states system-reservoir according
by a superposition of states |n⟩ ⊗ |ϕn(t)⟩. Due to this interaction, the reservoir
carries information on the system state.

If we consider this “coherent state generator”, we can rewrite:

D(αk) = e[αkb
†
k−α

∗
kbk] = e(αkb

†
k) · e(−α∗

kbk) · e−[αkbk,−α∗
kbk]/2 = (2.26)

= eαkb
†
ke−α

∗
kbke−|αk|2/2.

Notice that in (2.26) we have used the property:

eA+B = eAeBe−[A,B]/2, (2.27)
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and [b†k, bk] = −1.

So, taking into account that bk |0⟩ = 0 and D(αk) |0⟩ = eαkb
†
ke−|αk|2/2 |0⟩,

everything conduces to: D(αk) |0⟩ = e−|αk|2/2eαkb
†
k |0⟩.

Let us consider a coherent state (Mart́ın Fierro et al., 2004) defined by

|αk⟩ ≡
∑
n

e−
|αk|2

2
αn
k√
n!

|n⟩ . (2.28)

Therefore, this coherent state generator acting to a state |0⟩ leads to

D(αk) |0⟩ = e−|αk|2/2eαkb
†
k |0⟩ = e−|αk|2/2

∞∑
n=0

1

n!
(αk)

n(b†k)
n |0⟩ , (2.29)

but (b†k)
n |0⟩ =

√
n! |n⟩, therefore

D(αk) |0⟩ = e
|αk|2

2

∞∑
n=0

1

n!
(αk)

n
√
n! |n⟩ = e

|αk|2

2

∞∑
n=0

αn
k√
n!

|n⟩ ≡ |αk⟩ . (2.30)

We have show that the “coherent state generator” acting on |0⟩ will lead to a
coherent state. If we choose another state, the operator will give another, different
coherent state.

So the reservoir states, are also coherent states with amplitudes ±αk/2

|ϕ0(t)⟩ =
∏
k

|−αk/2⟩ , |ϕ1(t)⟩ =
∏
k

|+αk/2⟩ . (2.31)
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2.2 Decoherence function

Let us consider a reservoir in a thermal equilibrium state at temperature T.
Considering an initial state of the total system as

ρ(0) = ρS(0)⊗ ρB with ρB =
1

ZB

e−βHB , (2.32)

with β = 1/kBT and ZB is the reservoir partition function.

The decoherence function describes the decay of the off-diagonal terms of the
reduced density matrix, the coherences.

To obtain it, first of all we have to know the matrix elements of the system’s
density matrix, that are related with the decoherence function through the evo-
lution with time of the coherences. The evolution of the matrix elements of the
density matrix are given, in the same way we mentioned in (2.6) by

ρij(t) = ⟨i| ρS(t) |j⟩ = ⟨i| trB{V (t)ρ(0)V −1(t)} |j⟩ , (2.33)

the populations does not change with time, as they are the diagonal terms and
the time dependence disappears when the product is done. On the other hand
coherences, evolve with time. The evolution is given by

ρ10(t) = ρ10(0)e
Γ(t), (2.34)

where we have introduce the decoherence function Γ(t).

That can be written in general :

Γnm(t) = ln
∣∣⟨V −1m (t)Vn(t)⟩

∣∣. (2.35)

Where the angular brackets are the expectation value taken over the initial
density of the reservoir ρB, it can be as well written as

Γ(t) = ln trB

{
exp

[∑
k

(αkb
†
k − α∗kbk)

]
ρB

}
=
∑
k

ln
〈
exp
[
αkb

†
k − α∗kbk

]〉
.

(2.36)

If we define the expectation value by mean of the Wigner characteristic func-
tion of the bath mode k (Ferraro et al., 2005).

χ(αk, α
∗
k) ≡

〈
exp
[
αkb

†
k − α∗kbk

]〉
. (2.37)

We find after some arrangements,
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χ(αk, α
∗
k) ≡

〈
exp
[
αkb

†
k − α∗kbk

]〉
= trρBe

αkb
†
k−α

∗
kbk , (2.38)

where ρB can be written, using (2.32) and (2.1):

ρB =
e−βh̄ωkb

†
kbk

TrBe−βh̄ωkb
†
kbk
, (2.39)

Let us introduce a coherent state basis, with |n⟩ Fock states and |α⟩ a coherent
state defined in (2.28)

h̄ωkb
†
kbk |n⟩ = h̄ωkn |n⟩ and |α⟩ ≡ e−

|α|2
2

∑
n

αn√
n!

|n⟩ (2.40)

The basis is an overcomplete one, as the coherent states are not orthogonal,
the resolution of the identity is not unique. One of them could be 1 =

∫
d2α
π

|α⟩ ⟨α|
with d2α = d(Reα)d(Imα).

We have to compute (2.38), the Wigner characteristic function,

χ(αk, α
∗
k) = trρBe

−α∗
kbk+αkb

†
k = trρBe

−α∗
kbkeαkb

†
ke−

1
2
[−α∗

kbk,αkb
†
k] (2.41)

Where we have used the same property we used in (2.27). Introducing the
identity

χ(αk, α
∗
k) = Tr

∫
d2α

π
ρBe

−α∗
kbk |α⟩ ⟨α| eαkb

†
ke|αk|2/2 =

∫
d2α

π
e|αk|2/2eαkα

∗−α∗
kα ⟨α| ρB |α⟩ .

(2.42)
In this last step we have introduced Tr{ρB |α⟩ ⟨α|} = ⟨α| ρB |α⟩.

Let us calculate this last term ⟨α| ρB |α⟩, using (2.39) and (2.40)

⟨α| ρB |α⟩ = Z−1
∑
n

e−βh̄ωn ⟨α|n⟩ ⟨n|α⟩ , (2.43)

with ⟨n|α⟩ = e−|α|
2/2 αn
√
n!

and Z−1 =
∑

n e
−βh̄ωn = 1

1−e−βh̄ω . Then

⟨α| ρB |α⟩ = Z−1
∑
n

e−βh̄ωne−|α|
2 |α|2n

n!
= (1− e−βh̄ω) exp(−|α|2(1− e−βh̄ω)) ≡

(2.44)
≡ A · exp(−|α|2A)

With this result, we can go back to (2.42) and write
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χ(αk, α
∗
k) = e|αk|2/2

∫
d2α

π
eαkα

∗−α∗
kαA · e−|α|2A = (2.45)

= e|αk|2/2A

∫ ∞
−∞

dxdy

π
eαk(x−iy)−α∗

k(x+iy)e−(x
2+y2)A.

Solving the integral we conclude that

χ(αk, α
∗
k) = e|αk|2/2(1− 2

A
) = exp

(
−|αk|2

2
coth

(
βh̄ω

2

))
. (2.46)

To conclude with the proper form of the Wigner characteristic function of the
bath mode χ(αk, α

∗
k), notice that

n̄ = ⟨b†kbk⟩ = (eβh̄ω − 1)−1 (2.47)

And also:

⟨{b†k, bk}⟩ = ⟨b†kbk + bkb
†
k⟩ = ⟨2b†kbk + 1⟩ = 2n̄+ 1 =

2

eβh̄ω − 1
+ 1 = coth

(
βh̄ω

2

)
(2.48)

Finally, the Wigner function is written as

χ(αk, α
∗
k) = exp

{
−|αk|2

2
⟨{b†k, bk}⟩

}
. (2.49)

With this result, the decoherence function (2.36) will be

Γ(t) = −
∑
k

1

2
|αk|2⟨{bk, b†k}⟩ = −

∑
k

4|gk|2

ωk
2

coth

(
βh̄ωk

2

)
(1− cos(ωkt)) (2.50)

With β = 1
kBT

.

This is the result for the decoherence function for a system in contact with a
reservoir in thermal equilibrium at temperature T. The coherences that evolve in
time are described by this decoherence function, which depends on the reservoir
state. In this case, it depends on |gk|2, that are the coupling constants that
describes the coupling of the two-state system to the reservoir modes k. It depend
as well on the oscillation modes of the reservoir ωk, and of the temperature of the
bath.
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2.3 Continuum limit

It is of interest to consider the continuum limit of the bath modes. If we define
the spectral density J(ω), through the density of the modes of frequency f(ω)

J(ω) = 4f(ω)|g(ω)|2. (2.51)

Using it, we can write the decoherence function and obtain the explicit expres-
sion for the function of this model.

Γ(t) = −
∫ ∞
0

dωJ(ω) coth

(
ω

2kBT

)(
1− cosωt

ω2

)
(2.52)

As an example, let us take a spectral density with exponential form, as it is
obtained in the quantum optical regime (Breuer et al., 2002), with g(ω) ≈

√
ω,

and with a mode density f(ω) = constant. That represent a one - dimensional
field of bath modes.

J(ω) = Aωe−ω/Ω. (2.53)

We take this form because we assume a linear increase of J(ω) for small fre-
quencies and an exponential frequency cutoff at Ω.

To determine the decoherence function, we split it in two parts, a vacuum part
and a thermal, Γ(t) = Γvac(t) + Γth(t).

The vacuum part describes how the fluctuations of the field vacuum affect to
the coherence of the open system. Depends only on the cutoff frequency Ω, it
does not depend of the temperature:

Γvac(t) ≡ −
∫ ∞
0

dωe−ω/Ω
1− cosωt

ω
= −1

2
ln
(
1 + Ω2t2

)
. (2.54)

The thermal contribution is given by

Γth(t) ≡ −
∫ ∞
0

dωe−ω/Ω
[
coth

(
ω

2kBT

)
− 1

]
1− cosωt

ω
= (2.55)

=
−1

β

∫ t

0

ds

∫ ∞
0

dxe−kBTx/Ω[coth(x/2)− 1] sin(sx/β).

If we now assume that kBT << Ω, e−kBTx → 1. The thermal contribution it
is approximated by

Γth(t) ≈
−1

β

∫ t

0

ds

∫ ∞
0

dx[coth(x/2)− 1] sin(sx/β) = − ln

[
sinh(tτB)

t/τB

]
. (2.56)
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Where τB is the thermal correlation time

τB =
β

π
=

1

πkBT
(2.57)

We can now write the total decoherence function:

Γ(t) = −1

2
ln
(
1 + Ω2t2

)
− ln

[
sinh(t/τB)

t/τB

]
(2.58)

We can distinguish three time regimes: a short time regime, with t << Ω−1,
a vacuum regime, that appears when Ω−1 << t << τB and the thermal, when
τB << t.

• Short time regime (t << Ω−1):

The thermal term does not affect to the decoherence function in this regime.
It only involves the vacuum term, that can be written as

Γ(t) ≈ −1

2
Ω2t2. (2.59)

In this short- time regime, the decoherence effects are fully determined by
the vacuum contribution.

• Vacuum regime, (Ω−1 << t << τB):

In this case, tΩ >> 1 and t
τB

<< 1, so the decoherence function can be
approximated by

Γ(t) ≈ −1

2
ln
(
Ω2t2

)
− ln

(
t
τB
t
τB

)
= − ln(Ωt). (2.60)

• Thermal regime. Long time regime (τB << t):

In this case, t
τB
>> 1 and we can approximate Γ(t) by

Γ(t) ≈ −1

2
ln
(
1 + Ω2t2

)
− ln

(
et/τB

t/τB

)
(2.61)

Γ(t) ≈ −1

2
ln
(
1 + Ω2t2

)
− t

τB
+ ln

(
t

τB

)
≈ − t

τB
(2.62)

Where in this last step, the lineal term with t is dominant over the ln term
for t >> τB.
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In Figure 1 it is represented in a semilogarithmic plot the Decoherence Function
Γ(t) (2.58). Together with the three approximations previously announced (2.59),
(2.60),(2.62).

Figure 1: Semilogarithmic plot of the decoherence function Γ(t) as a function of
τ = t/τB.

We have used that the cutoff(Ω) frequency have a value where ΩτB = 20.

It is showed the difference between the three regimes, and how the approxi-
mations performed the decoherence function in each time regime.

For longer times involved in the interaction of reservoir - system, the deco-
herence process is faster, as the decoherence function increases rapidly. For very
short times, coherences are still present in the reduced state and the superposition
is still possible. But, for larger times, the decoherence function get a value that
makes the coherences to decay fast to zero.
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3 Entanglement of quantum clocks through grav-

ity

In this section, our motivation is to see an application of this decoherence phe-
nomena, and how entanglement and decoherence appears in a particular context.

We are going to review and follow the article “Entanglement of quantum clocks
through gravity” written by Esteban Castro Ruiz et al (Ruiz et al., 2017) where
they show that different clocks get entangled through time dilation effect, which
eventually leads to a loss of coherence of a single clock.

After the solvable model we have just studied we will follow the article in
which, we model the clocks, defining an operational concept of clock, as quantum
systems in a superposition of energy eigenstates. It will leads to an entanglement
of nearby clocks. And, due to this, we will show the limitations when time is
measured.

We will see how the solvable model that we studied in the past section provides
the basis to understand this article. And it helps us to understand how the
entanglement of nearby quantum clocks appears as well as the decoherence time.

To show that, we consider the simplest system as a reference clock, one in
superposition of energy eigenstates like a two level system to which one defines
time evolution. Considering that the observer does not need to be located next
to the clock, in fact, the observer could perform measurements sending a probe
quantum system to interact with the clock, and then measuring the probe at
his/her location.

First of all, we describe the internal Hamiltonian of the particle we are studying
as

Hint = E0 |0⟩ ⟨0|+ E1 |1⟩ ⟨1| (3.1)

And we will consider that the energy E0 = 0 and call ∆E = E1−E0 = E1. It has
the same structure that the one we studied before in (2.3).

Let us consider the initial state of the clock like the simplest state in a super-
position of eigenstates. It could be described by:

|ψin⟩ =
1√
2
(|0⟩+ |1⟩). (3.2)

If we consider this state, it leads us to define an “orthogonalization time t⊥”
of the clock, as the passage of a unit time, defined by the time needed for the
initial state to become orthogonal to itself. With it, the clock model has a defined
precision. As this orthogonalization time quantifies his precision, the uncertainty
of time will be determined by it. For the system we are considering, the two level
system, from the initial state (3.2) and the internal Hamiltonian, we can easily
deduce the value of t⊥ to be t⊥ = πh̄

∆E
. It gives to us the time uncertainty of the

clock.
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3.1 Gravitational interaction between two clocks

We now consider two clocks interacting gravitationally. The gravitational in-
teraction would be described with the simplest approximation of the Einstein
equations, with the Newtonian gravitational energy: U(x) = −GmAmB

x
. Here “x”

represents the coordinate distance between the two clocks according to the far
away observer, which is fixed. And the labels A and B names the two clocks and
therefore mA,mB are their masses. This masses represent the two terms of the
mass-energy equivalence of the gravitational field: the static rest mass and the
dynamical mass, where this last one correspond to the internal degrees of freedom
Hint. And the only one we are going to considerate.

As we are considering the gravitational interaction and concerning to time
measuring and time dilation effects, it is relevant for us the time dilation effect
due to the mass - energy equivalence. With two clocks, the first one concerning to
measure time, have an uncertainty given by t⊥. The other clock, that is located
at a distance x of the first one, suffers a time dilation through gravity effects, and,
the time for it will run different, according to t+∆t = t[1 +G∆E/(c4x)] .

Therefore, the time uncertainty will be given by the value of the precision of
the clock t⊥, also should take into account the time dilation effect due to the
different gravitational fields. This two effects can be described by

t⊥∆t =
πh̄Gt

c4x
. (3.3)

To describe the interaction between clocks, we could use the masses and the
mass - energy equivalence in the interaction Hamiltonian, resulting that the in-
teraction is written in terms of m + Hint/c

2. To simplify it, we assume that the
static mass is negligible compared with the dynamical one.

Therefore, for the two clock system, the Hamiltonian leads

Ĥ = ĤA + ĤB − G

c4x
ĤAĤB. (3.4)

We assume that HA and HB have equal energies:

ĤA = E0 |0⟩ ⟨0|+ E1 |1⟩ ⟨1| and ĤB = E0 |0⟩ ⟨0|+ E1 |1⟩ ⟨1| , (3.5)

where we can take E0 = 0 and E1 = ∆E.

In matrix form

HA =

(
E0 0
0 E1

)
=

(
0 0
0 ∆E

)
, HB =

(
E0 0
0 E1

)
=

(
0 0
0 ∆E

)
. (3.6)

The energy spectra of this Hamiltonian will be:

Ĥ |0, 0⟩ = 0 |0, 0⟩ (3.7)
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Ĥ |0, 1⟩ = ∆E |0, 1⟩

Ĥ |1, 0⟩ = ∆E |1, 0⟩

Ĥ |1, 1⟩ = (2∆E − G

c4x
∆E2) |1, 1⟩

So the time evolution operator of the total system have the form, as we showed
in the previous section:

U = diag
{
1, e−i∆Et/h̄, e−i∆Et/h̄, e−i∆Et (2− G

c4x
∆E)/h̄

}
. (3.8)

We now consider the initial state of both clocks uncorrelated |ψ(t = 0)⟩ = [ 1√
2
(|0⟩+

|1⟩)]⊗2.

The evolution of the initial state will be performed by the time evolution
operator

U |ψ(t = 0)⟩ = 1

2

[
|00⟩+ e−i∆Et/h̄ |10⟩+ e−i∆Et/h̄ |01⟩+ e−i∆Et(2− G

c4x
∆E)/h̄ |11⟩

]
.

(3.9)

So the state at time t according to the far-away observer is:

|ψ⟩ = 1√
2

(
|0⟩ |φ0⟩+ e

−it
h̄

∆E |1⟩ |φ1⟩
)

(3.10)

Where |φ0⟩ = 1√
2

(
|0⟩+ e

−it
h̄

∆E |1⟩
)
, and |φ1⟩ = 1√

2

(
|0⟩+ e

−it
h̄

∆E(1−G∆E
c4x

) |1⟩
)

With this, we see that the clocks get entangled through the gravitational inter-
action and the time running of one clock is correlated with the energy of the other
clock. We realise that the interacting term of the Hamiltonian (3.4) is the only one
which creates the entanglement between the clocks A and B. The gravitational
interaction is the cause of the entanglement.

It is important to mention that the state at a time tmix = πh̄c4x
∆E2G

or τmix = πξ
ε2

gets maximally entangled (the modules of the Schmidt coefficients of the Schmidt
decomposition are all equal (Dür et al., 2000)). Where in this last equation,
for reasons of simplicity, we introduced the dimensionless variables Planck units,

defined as: τ = t
tP

with tP = lP
c
and lP =

√
h̄G
c3
, ε = ∆E

EP
with EP = h̄

tP
and ξ = x

lP
.

Let us go deep in this entanglement studying the reduced state of the first
clock. As we see in the section 2.2, the matrix elements of the system’s density
matrix are related with the decoherence function through the evolution with time
of the coherences.

First of all, we must calculate the density matrix of the complete two clocks
system. With our state at time t (3.10), the density matrix of our two clock
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system must be:

ρ = |ψ⟩ ⟨ψ| = 1

4


1 eiτξεe−i

τε2

ξ eiτξεe−i
τε2

ξ e2iτξεe−i
τε2

ξ

e−iτξεei
τε2

ξ 1 1 eiτξε

e−iτξεei
τε2

ξ 1 1 eiτξε

e−2iτξεei
τε2

ξ e−iτξε e−iτξε 1

 . (3.11)

With this density matrix of the complete system, we can glimpse the entan-
glement between the clocks, as the superposition is present, and moreover, if we
focus on how is the effect between both, the reduced state of the zeroth clock
would be given by the trace over the first clock, as it performs like a system doing
indirect measurements to the other one.

To know how is the state of “the zeroth clock”, due to this interaction between
both, we suppose the first clock is doing indirect measurements to clock zero, as
they are in nearly world lines. Then, the reduced state of the zeroth clock will be
given by ρ0(2) = Tr1ρ. Where the (2) in ρ0(2) labels that we are considering a 2
clock system, while the 1 in Tr1ρ labels that we are tracing over the first system.

ρ0(2) = Tr1ρ =
1

2

 1 1
2

[
eiτεξ

(
1 + e−i

τε2

ξ

)]
1
2

[
e−iτεξ

(
1 + ei

τε2

ξ

)]
1

 (3.12)

If we focus in the coherences, we notice that they evolve with time, while
populations do not. This is the same behaviour we mentioned in the previous
chapter; equation (2.34). The coherences evolve in time (τ) and, the diagonal
terms of the reduced state lose their time dependence.

In fact, the two clocks, located near each other interact due to the gravitational
effect, and eventually get entangled, which leads to a loss of coherence of one of
the clocks.

To describe how this effect arises, in the next section we will focus our attention
in how this coherences evolve with time, according to the decoherence function
and how long it takes, through the decoherence time.

This will be illustrated with a generalization of this two clocks case, with N+1
clocks.
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3.2 Gravitational interaction between N+1 clocks

For this section, we will consider three clocks, and after the case of N + 1
clocks in a region of the space characterized by the coordinate distance x. So we
could generalize the Hamiltonian of two interaction clocks (3.4) as:

Ĥ =
N∑
a=0

Ĥa −
G

c4x

∑
a<b

ĤaĤb. (3.13)

Let us analyze the evolution in the interaction picture of a three clock initial
state with an equal superposition of energies, which has the form: |ψin⟩ = [ 1√

2
(|0⟩+

|1⟩)]⊗3.

Following (Ruiz et al., 2017), we will not use the complete Hamiltonian (3.13).
For simplicity, we will focus in the interacting part, which is the only responsible
of the entanglement between the systems. According to (3.13), for three clocks,
the interacting Hamiltonian has the form:

Ĥint = − G

c4x

[
Ĥ1Ĥ2 + Ĥ2Ĥ3 + Ĥ1Ĥ3

]
(3.14)

Following the same procedure of the section 3.1, we conclude that

|ψ(t)⟩ = U |ψ(t = 0)⟩ = 1

(
√
2)3

[|000⟩+ |001⟩+ |010⟩+ e−i
τε2

ξ + |011⟩+

+ |100⟩+ e−i
τε2

ξ |110⟩+ e−i
τε2

ξ |101⟩+ e−3i
τε2

ξ |111⟩]. (3.15)

To achieve our target of study the evolution of the coherences, we are going to
focus on the reduce state of the zeroth clock due to the interaction of the clocks
on their surrounding. It can be written as ρ0(3) = Tr1Tr2 ρ:

ρ0(3) = Tr1Tr2 ρ =
1

2

 1 1
4

(
1 + e−i

τε2

ξ

)2

1
4

(
1 + ei

τε2

ξ

)2

1

 . (3.16)

Generalizing for a system of N+1 clocks, where the initial state is |ψin⟩ =
[ 1√

2
(|0⟩+ |1⟩)]⊗N+1. The resultant reduce state for the zeroth clock ρ0(N+1) read

ρ0(N+1) =
1

2

 1

[
1
2

(
1 + e−i

τε2

ξ

)]N
[
1
2

(
1 + ei

τε2

ξ

)]N
1

 . (3.17)

20



As mentioned before, the coherences evolve in time, in this case, as well as in
the two clocks, the state gets maximally entangled at the time τmix. To study
how this coherences evolve with time and know at what time the coherences get
reduced, it is defined the Visibility as: V = |(ρ0)12|2 where (ρ0)12 are the off-
diagonal terms of the reduced state:

V = 2|(ρ0)12| =
[
1

2

(
1 + cos

τε2

ξ

)]N
≈ 1−

(√
Nτε2

2ξ

)2

≈ e
−
(√

Nτε2

2ξ

)2

. (3.18)

In the first approximation we have considered

1

2

(
1 + cos

τε2

ξ

)N

≈

1
2

2−

(
τε2

ξ

)2
2




N

=

(
1−

(
τε2

2ξ

)2
)N

, (3.19)

and then, according to the binomial series (1 + x)k ≈ 1 + kx+ ..., it is concluded

that: 1
2
(1+ cos τε

2

ξ
)N ≈

(
1−

√
Nτε2

2ξ

)2
≈ e

−
(√

Nτε2

2ξ

)2

(3.18). Everything , assuming

that τ << 2ξ√
Nε2

.

From this result, we can identify the time at which the coherences disappears
and with them the superposition. According to the definition we have made of
quantum clocks at the beginning of this section as “quantum system in a superpo-
sition of energy eigenstates”, they do not perform as clocks anymore, their ability
to measure has been lost. This decoherence time in the Planck Units is given by

τD =
2ξ√
Nτε2

. (3.20)

In the initial units it takes the form:

tD =
2h̄c4x√
NG(∆E)2

. (3.21)

To get deeper on the understanding of this clock decoherence time tD we
perform a logarithmic plot of the decoherence time as a function of the difference
of energies involved in the process (∆E) and the separation between the clocks x.
Taking N = 1023 and G the Gravitational constant see Figure 2.
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Figure 2: Logarithmic density plot of the decoherence time tD as a function ∆E
and x.

Notice that for a macroscopic number of particles, and an energy gap between
the clocks of ∆E = 102 eV , the decoherence time is the order of the age of the
universe (tD = 1017 s), something not operational for our capabilities at the mo-
ment. For a fixed value of x, the larger energy gap between the clocks (a more
macroscopic total system), the decoherence time becomes shorter. For a shorter
decoherence time, the quantum characteristic of the system disappears long be-
fore than for systems with low energy gap between them. That is , in fact, the
entanglement between the clocks lasts further more in microscopic systems than
in macroscopic ones, as the decoherence phenomena appears rapidly to show only
the classical behaviour of the system.
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4 Classical limit in quantum clocks interacting

gravitationally

Our target in this section will be confirm that the classical definition of a
clock is achieved with our model. Showing that the entanglement in that limit is
negligible and a characteristic time (acting like a decoherence time) defines the
classical limit.

To understand the classical limit of our clock model, considered before as a
system in a superposition of energy eigenstates, we will consider the clock states
as spin coherent states.

4.1 Spin coherent states

As we previously discussed, a coherent state is a specific quantum state for the
quantum harmonic oscillator, which best resembles the classic harmonic oscillator.
In our case, we will consider spin coherent states which are specific quantum
states of a spin system that most closely resembles the classical behaviour of a
spin(Lee Loh and Kim, 2015). An that is the closest quantum state to the classical
state of clocks considered in this article.

The general theory of angular momentum shows that in a space with an ar-
bitrary angular momentum Ĵ , is always possible construct a basis set |j,m⟩ as
common eigenvectors of the operators of angular momentum J2 and Jz, as they
perform in the basis |j,m⟩: (for simplicity we take h̄ = 1)

J2 |j,m⟩ = j(j + 1) |j,m⟩ (4.1)

Jz |j,m⟩ = m |j,m⟩

With m ∈ (−j,−j + 1, ..., j − 1, j)

A spin coherent state is defined taking the maximal z - angular momentum
state, |j,m = j⟩, and rotating it an angle θ along the y axis first, and then per-
forming another rotation an angle φ along the z axis.

From classical mechanics, we know that angular momentum is the generator
of rotation, like the momentum is generator of translation or the Hamiltonian of
time evolution.(Sakurai and Commins, 1995)

In particular, for a two level system, the rotation in quantum space along the
n̂ axis an angle ϕ, of a ket |α⟩ is described, in the formalism of Pauli Matrix
(convenient for our case) by: |α⟩R = exp

(−iσ̄n̂ϕ
2

)
|α⟩. The operator that perform

the rotation is called rotation operator and can be written

D(n̂, ϕ) = exp

(
−iσ̄n̂ϕ

2

)
= 1 cos

(
ϕ

2

)
− iσ̄n̂ sin

(
ϕ

2

)
. (4.2)
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Which is the rotation operator according to a rotation along the n̂- axis a ϕ
angle. So, for our spin coherent state, we must perform two rotations, first one an
angle θ along the y- axis and another an angle φ along the z axis. To show this,
we will do it for the spin 1/2 case and it will agree with the generalization for the
|j,m⟩, described in (Sakurai and Commins, 1995).

So, according to the definition of spin coherent state mention before, the co-
herent state for a |j, j⟩ state will be, using the rotation operators

|j, j⟩ = D(z, φ)D(y, θ) |j, j⟩ = exp

(
−iσzφ

2

)
exp

(
−iσyθ

2

)
|j, j⟩ = (4.3)

=
[
1 cos

(φ
2

)
− iσz sin

(φ
2

)] [
1 cos

(
θ

2

)
− iσy sin

(
θ

2

)]
|j, j⟩ .

In particular, for the spin 1/2, using the matrix representation for the state∣∣1
2
, 1
2

〉
=

(
1
0

)
, according to equation (4.3), the coherent state will be

∣∣∣∣12 , 12
〉

= e−iφ/2 cos

(
θ

2

) ∣∣∣∣12 , 12
〉
+ eiφ/2 sin

(
θ

2

) ∣∣∣∣12 ,−1

2

〉
. (4.4)

In general, for a coherent state written as linear combination of |j,m⟩, using
the Wigner D matrix (Sakurai and Commins, 1995):

|j, θ, φ⟩ =
m=j∑
m=−j

(
2j!

j +m!j −m!

)1/2(
cos

θ

2

)j+m(
sin

θ

2

)j−m

e−imφ |j,m⟩ (4.5)

That in general, could be also written as

|j, θ, ϕ⟩ = (cos θ/2 |0⟩+ eiφ sin θ/2 |1⟩)⊗2j. (4.6)

Is important to emphasize our desire of choosing a quantum states that char-
acterize the pointer of our clock in a precise way. To that, we have chosen the
spin angular momentum and, in particular, the spin coherent states, as we want
to study the classical limit of our model.

Now, understanding why we have chosen those states, we can follow with the
Hamiltonian and how our two systems (two clocks) evolve. We will conclude that
the gravitational interaction affects our systems characterized by the spin angular
momentum j.
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4.2 POVM’s “Positive Operator-Valued Measurements”

To proceed further we shall introduced, the so called, POVM . The common
kind of measurement study in basics courses of quantum mechanics are the ones
where the system is projected in one of the eigenstates of the observable we are
measuring. Those type of measurement are refer as Von Neumann measurements
(or PVM “Projective-Valued Measurement”), and are only one of the possible
kind of measurements that can be performed to quantum systems. (Jacobs and
Steck, 2006)

This kind of measurements (the POVM’s) can be used sending a probe system
to interact unitarily with our subject of study, and then performing a PVM to
this probe system.

They are described by a set of non-negative operators {Mk} which satisfy

∑
k

Mk = I. (4.7)

When the POVM is done to a quantum state described by ρ, the probability
of obtaining the outcome k is given by

pk = Tr(Mkρ). (4.8)

We have interest in describe a POVM to measure our system, defining an
operator which is going to discern between the set of orthogonal states and return
exactly the position of the pointer clock.

With this in mind, we define for our system a POVM defined by the set of
operators {Mk}2π/Rk=1 with

Mk =
2j + 1

4π

∫ π

0

dθ sinθ

∫ kR

(k−1)R
dφ |θ, φ⟩ ⟨θ, φ| . (4.9)

With this definition for the operators, when a measurement is done to a state
|θ, φ, j⟩, the result gives us exactly the angle φ in which the state is located, with
a resolution of R. The result of the measurement tell us if the angle φ is inside
the bin of dimension R. If the state is not in that section of the circumference,
the result of the measurement will be 0. We use the angle φ as it is the one that
takes the values from [0, 2π] as the pointer, the spin indicates the fragmentation
of the angle, and that is, in fact, a way of time measurement.

According to the probability of the result of a measurement (4.8) with this

definition of the {Mk}2π/Rk=1 :

pk = Tr(Mkρ) =
2j + 1

4π

∫ π

0

∫ kR

(k−1)R
dθdφ sin θ ⟨θ, φ| ρ |θ, φ⟩ . (4.10)
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Where the product ⟨θ, φ| ρ |θ, φ⟩ (the trace of the density matrix over the
basis coherent states {|θ, φ⟩}) can be renamed as the Husimi function Qp(θ, φ) of
the density matrix ρ. It is one of the simplest distributions of quasiprobability in
phase space. Therefore, it will quantify the probability of finding the clock pointer
in certain place. This Husimi function, has a characteristic width proportional
to j−1/2, so, due to it, the experimental resolution R should be R >> j−1/2 to
distinguish the classical behaviour, with no quantum fluctuations.

In the next section, we will introduce this coarse- grained measurement to our
two-clocks system and the evolution of the system as coherent states, to discuss
how the classical time dilation of relativistic effects appears in the limit of a coarse
grained measurement and clocks in coherent states.

4.3 Two-clock model in the classical limit

Let us consider that our initial state of the clock is in a spin coherent state
characterized by θ = π/2 and φ = 0, according to (4.5) and (4.6).

|ψin⟩ = |θ = π/2, φ = 0, j⟩ =
m=j∑
m=−j

(
2j!

j +m!j −m!

)1/2
1

(
√
2)2j

|j,m⟩ (4.11)

Which it is, in fact, the extension to angular momentum of the initial state (3.2)
defined in section 3

|ψin⟩ = |θ = π/2, φ = 0, j⟩ =
[

1√
2
(|0⟩+ |1⟩)

]⊗2j
.

The generalization of the Hamiltonian (3.1), for the angular momentum j and
the angular momentum in the z direction Ĵz, for the two level system (j = 1/2)
is written as Hint = ∆E(1

2
1 − Ĵz), and for a system with spin j:

Hfree = ∆E(j1 − Ĵz) (4.12)

Let us now consider two clocks, labeled as A and B. The clocks interact grav-
itationally, in the same the way we have described in the two clocks section 3.1:

Ĥ = ĤA + ĤB − G

c4x
ĤAĤB, (4.13)

where, each one (HA and HB) are described by a j spin system Hamiltonian
according to (4.12), HA = ∆E(jA1 − ˆJzA) and HB = ∆E(jB1 − ˆJzB).

Choosing the initial state of our two clocks system, as |ψin⟩ in (4.11)

|ψin⟩ = |θ = π/2, φ = 0, jA⟩ ⊗ |θ = π/2, φ = 0, jB⟩ = (4.14)
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=
∑m=jA

m=−jA

∑m=jB
m=−jB

(
2jA!

jA+mA!jA−mA!

)1/2 (
2jB !

jB+mB !jB−mB !

)1/2
1

(
√
2)2jA

1
(
√
2)2jB

|jA,mA⟩ |jB,mB⟩ .

To study the entanglement between the two clocks, let us study the time
evolution of the system.

Considering, the time evolution of the initial state, as well as we made in

previous sections, with the unitary time evolution operator U = exp
(
− i

h̄
Ĥt
)

Conforming, the evolution of our initial state given by (4.14):

|ψ⟩ = U |ψin⟩ =
m=jA∑
m=−jA

m=jB∑
m=−jB

(
2jA!

jA +mA!jA −mA!

)1/2(
2jB!

jB +mB!jB −mB!

)1/2

×

(4.15)

× 1

2jA
1

2jB
e

−it
h̄

[
∆E(jA−mA)+∆E(jB−mB)−G∆E2

c4x
(jA−mA)(jB−mB)

]
|jA,mA⟩ |jB,mB⟩ .

We should know the reduced state for the B clock at time t, as it will give to
us information about the entanglement between both clocks

ρB = TrA |ψ⟩ ⟨ψ| =
m=jA∑
m=−jA

⟨jA,m|ψ⟩ ⟨ψ|jA,m⟩ = (4.16)

=
∑
m

∑
mAmB

∑
m′

Am′
B

(
2jA!

jA +mA!jA −mA!

)1/2(
2jA!

jA +m′A!jA −m′A!

)1/2

×

×
(

2jB!

jB +mB!jB −mB!

)1/2(
2jB!

jB +m′B!jB −m′B!

)1/2

×

× 1

22jA
1

22jB
exp

(
−it
h̄

[
∆E(jA −mA) + ∆E(jB −mB)−

G∆E2

c4x
(jA −mA)(jB −mB)

])
×

× exp

(
it

h̄

[
∆E(jA −m′A) + ∆E(jB −m′B)−

G∆E2

c4x
(jA −m′A)(jB −m′B)

])
×

×⟨jA,m|jA,mA⟩ |jB,mB⟩ ⟨jBm′B| ⟨jAm′A|jAm⟩ ,
where the products ⟨jA,m|jA,mA⟩ and ⟨jAm′A|jAm⟩ due to orthogonalization are
δ(mA,m) = (0, 1)(0 if mA ̸= m or 1 if mA = m) and δ(m′A,m) = (0, 1) (0 if
m′A ̸= m or 1 if m′A = m). So, rewriting it with this conditions, and simplifying,
(4.16) :

ρB =
∑
m

∑
mBm′

B

(
2jA!

j +m!j −m!

)(
2jB!

jB +mB!jB −mB!

)1/2(
2jB!

jB +m′B!jB −m′B!

)1/2

×

(4.17)
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× 1

4jA
1

4jB
e

−it
h̄

[
−∆EmB−G∆E2

c4x
(jA−m)mB

]
e

it
h̄

[
−∆Em′

B−
G∆E2

c4x
(jA−m)m′

B

]
|jBmB⟩ ⟨jBm′B|

Rewriting e
−it
h̄

[
−∆Em′

B−
G∆E2

c4x
(jA−m)m′

B

]
= e−imBφk . With φk =

−t
h̄
∆E

(
1− G∆E

c4x
(j −m)

)
And with this result, we can change the variable (jA −m) by k as:

jA∑
m=−jA

f(jA −m) =

2jA∑
k=0

f(k), (4.18)

So, introducing this new variables it follows

ρB =
1

4jA

2jA∑
k=0

∑
mBm′

B

e−imBφk

(
2jA
k

)(
2jB!

jB +mB!jB −mB!

)1/2

× (4.19)

×
(

2jB!

jB +m′B!jB −m′B!

)1/2

eim
′
Bφk |jBmB⟩ ⟨jBm′B| .

We can identify the first part:

|θ = π/2, φ = φk, jB⟩ = e−imBφk

(
2jA
k

)(
2jB!

jB +mB!jB −mB!

)1/2

|jBmB⟩ (4.20)

And the last part:

⟨θ = π/2, φ = φk, jB| =
(

2jB!

jB +m′B!jB −m′B!

)1/2

eim
′
Bφk ⟨jBm′B| (4.21)

Where the reduced state for the clock B at time t finally is

ρB =
1

4jA

2jA∑
k=0

(
2jA
k

)
|θ = π/2, φk, jB⟩ ⟨θ = π/2, φk, jB| (4.22)

Where,

φk =
−t
h̄
∆E

(
1− G∆E

c4x
k

)
. (4.23)

This result shows that the reduced state for the clock B shows is a sum of
coherent states, which leads to a mixing of states, each one with different phase
φk. As matter of fact this possible to properly define the classical limit. When
the interaction of both clocks appears, the coherent states in ρB, that are mixed,
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evolve differently in time, with different time dilation factors, as they have different
phases that are function of the different k.

The evolution of the clock, is characterized by two effects, one is the complete
movement of the clock, that corresponds with the pointer with more probability
for detection, the one with the phase φjA = −t

h̄
∆E

(
1− G∆E

c4x
jA
)
.Where in this

phase the first term −t
h̄
∆E represents the free movement of the clock, and the

second term, t
h̄
G∆E2

c4x
jA the interaction term.

The second effect, is due to the separation of the coherent states with time,
as they tend to spread from each other, resulting to a mixing of the reduced
state. This contribution of the difference between coherent states we can define it
through the separation angle between them: ∆φ = φ2jA −φ0 =

2GjA(∆E)2t
c4xh̄

, which
is proportional to jA, and for that fact, the contribution to each state is different
due to the binomial distribution, because, for larger jA,we could approximate the

probability (Husimi function) to a Gaussian function p(k) ≈
√

1
πjA

exp
(

k−jA√
jA

)2
that has a characteristic width proportional to

√
jA and not to jA.

In fact, this effective separation angle between coherent states, defines the
characteristic time which delimit the quantum effects.

This result, gives a value of ∆φeff = G
√
2jA(∆E)2t
h̄c4x

.

From this, we could depict a characteristic time t∗

t∗ =
h̄c4x

G
√
2jA(∆E)2

(4.24)

We can differentiate between two regimes

For a time t << t∗.

According to the POVM, all the coherent states in ρB are inside one bin of
dimension R >> j−1/2 (the experimental resolution), and there are not quantum
effects when time is measured. The only time dilation factor of the clock B is due
to the average energy of the clock A. Here, entanglement is negligible, and this is,
in fact, the classical limit of our system.

For times t > t∗.

The coherent states could be located at different bins, when the measurement
is done, and it shows the effects of the quantum entanglement between the clocks.

If we compare with the previous result in section 3.1, we distinguish the dis-
sipation of the coherences here as well, where the difference of phases between
coherent states defines what operationally, was defined as a decoherence time in
the past. Here it is showed as a characteristic time which distinct the rates at
which entanglement became negligible and the classic behaviour come to light.
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4.4 Analysis of the uncertainty when measuring time

In section 3, we made an analysis about the uncertainty when measuring time
with our clock model and the result was given by equation (3.3). After the study
of interacting clocks in the classical limit of the past section 4.3, we are going to
achieve the same result for the case of two clocks.

We will consider now two interacting clocks, the A one, characterized by jA =
1/2 and the B one, with jB >> 1. This is the case the clock B will have coherent
states that approximates to the classical limit, while clock A is purely quantum.
For an analysis of the effects of time dilation between both clocks, we consider
that the time dilation on B due to clock A is non-negligible, and the other case,
the dilation effect on A due to cock B can be neglected. That is, G∆EA

(c4x)
≫

1 and GjB∆EB

(c4x)
≪ 1.

According to this, the reduced state of clock B will be given, specifying for the
case of (4.22), with φk =

−t
h̄
∆EB

(
1− Gk∆EA

c4x

)
k = 0, 1

ρB =
1

2
(|θ = π/2, φ0, jB⟩ ⟨θ = π/2, φ0, jB|+ |θ = π/2, φ1, jB⟩ ⟨θ = π/2, φ1, jB|)

(4.25)

This reduced state of clock B simpler than in the past case, as jA only takes
the value jA = 1/2.

To pull out information of the system about time, it is needed to build an oper-
ator that give us the pointer position of clock B, and will return time. This is, an
operator that will work as Mk (4.9) worked previously in the coarse- grained mea-
surement, but, for this case, defining an operator which will give us information
about the uncertainty when measure time with this operator.

This one, is given in the article we are following (Ruiz et al., 2017), to be

T jB =
h̄(2jB + 1)

4π∆EB

∫ π

0

dθ sinθ

∫ 2π

0

dϕ ϕ |θ, ϕ, jB⟩ ⟨θ, ϕ, jB| (4.26)

The variance of this operator just defined, is represented in the limit when
jB → ∞, so, at this case, due to the way their are defined, the coherent states are
orthonormal,and

∣∣θ = π
2
, φk, jB

〉
is eigenstate of the operator with the eigenvalue

h̄φk/∆EB for φk ∈ (0, 2π), k = 0, 1. So, the variance of the operator T jB can be
written as

∆T jB =
h̄

2∆EB

(φ1 − φ0) =
G∆EAt

2c4x
(4.27)

If we consider now, mesuring time on clock A, as it has jA = 1/2, the op-
erator that will give us the probability of measuring one unit of time is A =
h̄/∆EA |−⟩ ⟨−|. For the state of clock A, the reduced state is, according to (4.22)
with jA = 1/2, and φk =

−t
h̄
∆EA

(
1− G∆EB

c4x
k
)
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ρA =
1

4jB

2jB∑
k=0

(
2jB
k

) ∣∣∣θ = π

2
, φk, 1/2

〉〈
θ =

π

2
, φk, 1/2

∣∣∣ (4.28)

Therefore the dTA will be the time it takes for the average of TA to change sig-
nificantly, being this a method to measure time uncertainty. dTA will be given by
dTA = h̄/∆EA, because we have consider that the dilation effect off clock B on
clock A is neglible, so φ1 do not contribute on dTA.

Whit both considerations, the result is written

dTA∆T
jB =

h̄Gt

2c4x
(4.29)

That is the equation we conclude before, in (3.3) considering only the uncer-
tainty of measuring time with our definition of clock (t⊥) and the gravitational
effects (∆t) with a factor π/2.

To conclude, we confirm that between clocks located at nearby worldlines,
an effect of time dilation and uncertainty in the time measuring with clocks lo-
cated near from each other appears. And this agree with the uncertainty when
considering a measure time at points of different gravitational fields.
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5 Conclusions

In order to summarize everything we have achieve in this work, we started
studying, how decoherence appears in open quantum systems, following the ref-
erence of (Breuer et al., 2002). Open quantum systems and the interaction with
their surroundings creates correlations between the environmental states and the
system. This interaction, embodied in the Hamiltonian through the interaction
term is key for study the decoherence phenomena. As the evolution of the system
presents entanglement between system-environment, when studying the reduced
state density matrix, the phenomena comes to light. The coherences, change in
time according to the decoherence function, the one that shows to us the rate at
which the coherences get destroyed. In our study of the decoherence function in
the section 2.2 we understood the case of a thermal reservoir interacting with our
system, and how different time scales are relevant in a decoherence process.

With this more theoretical analysis and understanding how decoherence ap-
pears in quantum systems, we followed and reviewed the article (Ruiz et al.,
2017) where, considering clocks as quantum systems (with an operational concept
of clocks), they get entangled through gravitational interaction, and, as well as
in the first sections 2.2, the reduced state of the system (3.17) shows decoherence
with a characteristic time scale (3.21). This shows us how the clocks located at
nearby worldlines, where the gravitational interaction is to be considered between
them, leads to an uncertainty when we are using the clocks to measure time.

In the classical limit, we studied the case of two interacting clocks represented
by spin coherent states, and through POVM the result was that the relativistic
effects by the pass of time appeared. As well we could see that was a charac-
teristic time which delimited when the quantum effects arises on the clock that
was interacting with the other and the certain intervals where the quantum effect
could not be noticed and the classical behaviour appeared.

To conclude, we show how all this treatment leads to an uncertainty in measur-
ing time with clocks that are interacting gravitationally, and makes our precision
conditioned by taking into account this effects. Emphasising that the clocks are
not ideal objects that could rid of the quantum and relativistic effects. Therefore,
the article reviewed makes us question about if the notion of time intervals when
it is measured in nearby worldlines is well defined, because using clocks that are
nearby located, makes that their measurement of time has a gravitatory effect due
to the interaction between different clocks.

Is unbelievable how a simple reasoning, simplifying the clock as a simple two
level system and studying it behaviour as if it were an open quantum system
interacting with the other clocks, so deep results are achieved. The theory is
simple, but its application and ways to bring to other questions are endless.
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