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Resumen (Español)

El objetivo de este trabajo es estudiar las propiedades de sólidos cristalinos, en particu-
lar las propiedades termodinámicas, desde primeros principios - esto es, tomando como
punto de partida solo la red cristalina y la naturaleza cuántica de las particulas y con-
struyendo un modelo consistente sobre estos puntos que describan con suficiente precisión
las propiedades encontradas por métodos experimentales, e incluso predecir esas misma
propiedades en materiales que, por alguna razón, son dificiles de obtener en cantidades
suficientes para realizar estudios experimentales, imposibles de analizar con métodos ex-
perimentales por tener propiedades que impidan los procesos experimentales o localizados
en condiciones imposibles de recrear en laboratorio (como sería, por ejemplo, el núcleo de
La Tierra).

Este trabajo se encuentra dividido en dos partes. En la primera parte describiremos, sin
entrar en detalle, la teoría que apoya estos métodos - haciendo énfasis en la Teoría del
Funcional de la Densidad (DFT) - y el proceso de simulación que, implementado correcta-
mente en un sistema informático, nos permite obtener las propiedades anteriormente men-
cionadas. Partiendo de las bases de la mecánica cuántica, se modela un sólido cristalino
apoyándonos en los dos teoremas de Hohenberg-Kohn, que proporcionan una formulación
del operador hamiltoniano para el mismo en la que todas sus propiedades dependen de
la densidad de electrones en el estado fundamental del sólido. El potencial externo en
este hamiltoniano será entonces aquel que minimice la energía, que es un funcional de la
densidad electrónica - de ahí el nombre “Teoría del Funcional de la Densidad” - y por
tanto minimizar éste será el objetivo básico de nuestras simulaciones. Para simplificar
este cálculo, que en principio es muy complejo, se recurre a varios métodos para reducir el
número de cálculos requeridos para obtener un resultado manteniendo una alta precisión
en los mismos: se elige una base de ondas planas para expandir las funciones de onda
electrónicas, se recurre al teorema de Bloch para reducir los cálculos a la primera zona de
Brillouin, se eligen unos puntos especiales de esta zona usando el esquema de Monkhorst-
Pack y se corta el desarrollo en ondas planas a una energía de corte, que se verifica que es
suficiente para que el desarollo converga dentro de las tolerancias admitidas.

Una vez se obtiene esta densidad del estado fundamental, se puede obtener la estructura
cristalina optimizada y de ahí sacar los fonones a través del método de fonón congelado,
obteniendo la matriz dinámica del cristal y diagonalizando. Por último, se presenta la
base teórica para la obtención de las propiedades termodinámicas del sólido a través de
la mecánica estadística, considerando los fonones del sólido como un gas ideal de Bose-
Einstein extrayendo las funciones termodinámicas de la densidad de estados de fonones ya
obtenida.

A partir de entonces nos centraremos en la simulación y análisis de las propiedades de
la calcopirita CdGeP2 (en el grupo espacial I4̄2d), material con posibles aplicaciones tec-
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nológicas, en particular celdas solares. Utilizaremos el método anteriormente mencionado
para estudiar sus propiedades estructurales, como las longitudes de los vectores de la red
y los coeficientes de compresión, así como el módulo de bulk o de compresibilidadde vol-
umen; y las propiedades termodinámicas. Hemos comprobado que los valores obtenidos
están en muy acuerdo con los valores experimentales obtenidos por difracción de rayos X
o predecidos en la literatura y comprobado que se cumplen en gran medida leyes como la
Ley de Dulong-Petit para el calor específico.

El proceso a seguir es conceptualmente simple: empezando con algunos valores de los
vectores de la red y las posiciones átomicas en la celda unidad obtenidos en la literatura,
simulamos la estructura cristalina usando el software Vienna Ab-initio Simulation Package
(VASP) a varias presiones y usamos esos datos, junto con el software PHONON, para
encontrar las representaciones irreducibles y la frecuencia de los fonones en el punto Γ
de Brillouin diagonalizando la matriz dinámica resultante de ligeros desplazamientos de
las posiciones de los átomos en la celda unidad. Luego, se simula una supercelda de
2x2x2 para obtener relaciones de dispersión de phonones en toda la zona de Brillouin y
la densidad de estados de fonones. Una vez obtenida la densidad de estados de fonones,
podemos calcular la entropía, la energía interna, la energía libre y la capacidad calorífica,
junto a otras muchas propiedades.

Las propiedades estructurales del cristal las obtendremos de dos maneras: los coeficientes
de compresión, ajustando las longitudes de los vectores de la celda unidad como función
de la presión y calculando sus derivadas, y el módulo de bulk, ajustando la energía frente
al volumen a una ecuación de estado apropiada para las condiciones de nuestro sistema -
en este caso, emplearemos la ecuación de Murnaghan de segundo orden.

Podemos entonces verificar que, de hecho, los valores obtenidos con este método computa-
cional son muy similares a aquellos obtenidos con métodos experimentales, y sirve como
indicador del gran valor de las simulaciones ab-initio en el estudio teórico y desarrollo de
potencialmente nuevos materiales a la carta, así como en la predicción de propiedades de
materiales en condiciones extremas de presión.

Parte del estudio realizado consistió en analizar el cambio en las frecuencias de los fonones
cuando el cristal está sometido a altas presiones. Puesto que se ha simulado la estructura
optimizada para varias presiones, es posible obtener los fonones en Γ sin recurrir a una
supercelda, y estudiar la evolución de la frecuencia de los fonones frente al aumento de la
presión aplicada. Como resultado de este estudio detectamos que en este sistema aparece
un fonón tipo E activo Raman e infrarrojo con frecuencia imaginaria a partir de aproxi-
madamente 14 GPa. Este resultado predice que la calcopirita CdGeP2no debe ser estable
a partir de esa presión y es probable que suceda un cambio de fase, bien a otra estructura
estable o bien que se produzca una amorfización del cristal.

En conclusión, en este trabajo mostramos como mediante el uso de simulaciones mecano-
cuánticas desde primeros principios podemos obtener con gran precisión las propiedades
estructurales y dinámicas del sistema estudiado. Además, debido al carácter predictivo
del método hemos determinado el rango de estabilidad dinámica del cristal.
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Abstract

The purpose of this work is to study the properties, in particular thermodynamic proper-
ties, of crystalline solids from first principles - that is, taking into account just the lattice
of the crystal and the quantum nature of the particles and building a consistent model on
top of those facts that describe with enough precision the properties of the crystal found
with experimental methods, and even predict those properties in materials that, for one
reason or another, are hard to obtain, impossible to analize with experimental methods,
or located in conditions impossible to recreate in a laboratory (as would be, for example,
the enormous pressure at the Earth’s core).

We will describe, not in extreme detail, the theory that supports these methods - making
emphasis in the Density Functional Theory (DTF) - and the simulation procedure that,
properly implemented computationally, allows us to obtain the aforementioned properties.

The focus of this work will then shift to simulate and analyze the properties of the CdGeP2
chalcopyrite (I4̄2d space group), a material with several proposed technological applica-
tions, especially in solar cells. Using this ab-initio method to find its thermodynamic
properties, verifying that the values obtained are within the margins of the experimental
values obtained by X-Ray diffraction or predicted in literature.

The procedure followed was conceptually simple: starting from some experimental values
obtained from literature, we simulated the structure using the Vienna Ab-initio Simulation
Package (VASP) at various pressures and used that data, along with the PHONON
software, to find the irreducible representations and the phonons’ frequency at Brillouin’s Γ
point diagonalizing the dynamical matrix resultant of slight displacements on the positions
of atoms in the primitive cell.

Once obtained, the same software is capable of providing the phonon density of states
of the cell, entropy, internal energy, free energy and heat capacity, among many other
properties. These values obtained with PHONON were then plotted using Python scripts.

We can then verify that, indeed, the values obtained with this computational method are
very similar to those obtained with experimental methods, and serves as a indicator of
the value of ab-initio simulations in the theoretical study and development of potentially
new, a-la-carte materials.

Part of the study realized was to analize the change of the phonons’ frequencies when the
crystal is subjected to high pressures, resulting in the appearance of an E-type Raman
and Infrared-active phonon giving imaginary values at ≈ 14 GPa. This indicates that the
CdGeP2 chalcopyrite is dynamically unstable above this pressure, and that probably a
phase transition to another stable structure or an amorphization would take place.
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1 Theory Description

1.1 Overview

Solid is one of the basic states of matter in nature. As all matter is composed
by atoms, a solid is the state of matter in which the interatomic forces are strong
enough to rigidly tie them together. These same atoms of the solid can organized
themselves in several ways, but we can distinguish two big groups: not organized at
all or with short reach order - amorphous solids - or in a long reach order - crystalline
solids. The latter ones have the most interest from the point of condensed matter
physics, as many of the properties of the solid are not solely dependent of the atomic
species that compose it, but of the way they are organized inside the crystal and
the interactions between atoms resultant of this structure. As such, the study of
condensed matter is the study of crystals and their properties.
There are several ways to approach this problem, seemingly simple but complex
in its execution. The method we are following in this work is a study from first
principles - that is, parting from the formalism of quantum mechanics from zero
and building a consistent theory from there.

1.2 Density Functional Theory

A crystalline solid is a system consisting of a set of atomic nuclei with electrons
interacting via electrostatic forces, and ultimately described by this hamiltionian:

Ĥ = −
∑
I

~2

2MI

∇2
I −

~2

2me

∑
i

∇2
i + 1

2
∑

I,J(I 6=J)

ZIZJe
2

|RI −RJ |
+

+1
2

∑
i,j(i 6=j)

e2

|ri − rj|
−
∑
i,I

ZIe
2

|RI − ri|

With this expression, it would only be a matter of solving the stationary Schrödinger
equation to solve this problem and find all of the properties of condensed matter
from first principles:

ĤΨ(RI ; ri) = EΨ(RI ; ri)
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1.2 Density Functional Theory

However, this many-body problem is not trivial and carries severe computational
overhead, to the point of not being feasable to solve in a reasonable time span. As
such, it is necessary to find another approach from which to solve this problem.
One of such approaches is the adiabatic approximation, that allows the simplification
of the hamiltionian considering that, as the atomic cores move slowly in comparison
to the electron gas around it, these core are to all effects static, and their influence
on the electrons can be aggregated in an effective potential Vext(r) as such:

Ĥ = − ~2

2me

∑
i

∇2
i + 1

2
∑

i,j(i 6=j)

e2

|ri − rj|
−
∑
i

Vext(ri)

The other approach we will employ is the Density Functional Theory (DFT), which
is based in the two Hohenberg-Kohn theorems [1], described as follows:

1. For any system of particles interacting inside an external potential Vext(r), this
potential is uniquely determined by the ground state particle density n0(r).
From here it follows that since the hamiltionan of the system is determined
by this potential, all the properties of the solid are also characterized by this
particle density.

2. Any such potential is uniquely determined by a functional E[n] of the particle
density n(r). By minimizing this functional, one can find the energy and the
electron density of the ground state.

In atomic units, this functional is described as:

E[n] =
ˆ
Vext(r)n(r)dr + F [n]

with the condition that
´
n(r)dr = N (N being the total number of electrons in

the system) and where F [n] is a universal functional, independent of the external
potential, that includes the kinetic energy of the system and the electron-electron
interactions. This functional, however, has an unknown form, but it has to include
the Hartree energy in some manner.
Kohn and Sham [2] noted that in a system of N non-interacting electrons, F [n] is
just the kinetic energy functional. With these two premises, the complete functional
expression for interacting electrons can be written as:

E[n] =
ˆ
Vext(r)n(r) + 1

2

ˆ
n(r)n(r′)
|r − r′|

drdr′ + TS[n] + Eexc[n]

where the second term is the Hartree energy, TS[n] is the kinetic energy functional,
and Eexc[n] is the exchange-correlation energy.
To find the ground-state density of this N-electron system, we must then solve the
following set of one-particle equations, the Kohn-Sham equations (KS), enforcing
self-consistency:
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1.2 Density Functional Theory

{
−1

2∇
2 + Veff (r)

}
ψi(r) = εiψi(r) ; i = 1 . . . N

In this set of equations, the electron density of the ground-state will be n(r) =∑N
i=1 |ψi(r)|2, and we have introduced an effective potential given by:

Veff (r) = Vext(r) + 1
2

ˆ
n(r)
|r − r′|

dr′ + µexc(n(r)) ; µexc(n(r)) = ∂Eexc[n(r)]
∂n(r)

If the exchange-correlation energy functional Eexc[n] were known, the solution to the
KS equations would give us the electron density of the ground state and the energy
of the system. This exact functional is, unfortunately, unknown. However, we can
adopt a reasonable approximation if we consider the electron density n(r) to vary
slowly, hence adopting a local density approximation (LDA):

Eexc[n] =
ˆ
n(r)εexc(n(r))dr

In this approximation, the exchange-correlation density at each point is considered
the same as that of an homogeneous electron gas of density εexc(n(r)). While there
are some better approximations for solids and molecules and LDA is sufficient in
most cases to obtain the properties that we seek with this method, we used instead
a more sophisticated approximation, from the family of generalized gradient ap-
proximations (GGA), which give an expression for the exchange-correlation energy
functional not only dependent on the electron density, but also on its gradient.
Now, once we have these expressions, it is time to solve the KS equations and obtain
the ground-state electron density, which will allow us to obtain all the thermody-
namic properties of macroscopic systems from first principles. The main way to
approach this problem is to expand the possible wave functions ψi(r) in a conve-
nient basis to solve the equations computationally. Three main basis are the most
common ones used in this process, each with advantages and disadvantages:
• Plane waves basis: very simple and easy to implement, and it implies the

use of the Fourier transform to switch between real and reciprocal spaces,
operation with many efficient computational algorithms already developed. It
posesses the disadvantage of needing a large number of plane waves to obtain
convergence in the results.
• Linear combinations of atomic orbitals (LCAOs): needs a very low amount of

orbitals to reach convergency, preferred in chemistry.
• Atomic sphere methods: consists in dividing the space in several regions, where

the nuclear regions present atomic-like properties and the inter-atomic regions
present a smooth variation of said properties. This approach provides the best
elements of both plane waves and LCAOs, but carries a heavy computational
cost and algorithmic complexity.
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1.3 The Dynamical Matrix. Phonons.

In this work, we used a plane waves basis to solve the KS equations. In order to
reduce the computational power required to obtain results, it is often the case to
replace the Coulomb potential created by the nucleus and the inner electrons with a
pseudopotential, constructed in such a way that it removes the radial nodes in the
nucleus region and maintains the same shape as the real potential outside a certain
cutoff radious. The analytical expressions of these pseudopotentials are found in
literature for each atom and position.
The periodicity of the crystal also comes into effect when we take into account the
shape that the electronic wave functions would have. A priori, we know that by
Bloch’s theorem the wave function in a periodic solid must be a product of a plane
wave and a function of the periodicity of the crystal, which can be expressed as:

ψn,k(r) =
∑
G

Cn,k+Ge
i(k+G)·r

where the sum runs over the reciprocal laticce vectors G, n is the band number and
k are points in the first Brillouin zone. To simplify the problem of computing these
wave functions for every k point in the Brillouin zone, there are several methods
to reduce the number of k points to a finite set of “special k points”, like the
Monkhorst-Pack scheme.
At this point, the series for a certain k point would still be infinite. In practice,
this series can be made finite due to the fact that the coefficients Cn,k+G are more
important at lower kinetic energies ~2

2me |k + G|2 than at higher energies, so it is
possible to cut the series at a particular cutoff energy Ecutoff :

~2

2me

|k +G|2 < Ecutoff

This cutoff energy will have to be adjusted until the convergence of the sum is
reached to reduce the error that it produces in the simulations.
From here, the process becomes iterative: using the pseudopotential chosen for our
system of study V pseudo

eff and an initial guess for the electronic charge density nin(r),
we solve the KS equations to obtain their eigenstates and a new electronic density
nout(r), and feed this new electronic density back to the KS equations until self-
consistency is reached. Once this process is done, it is necessary to check that we
have obtained the optimized relaxed geometry of the structure, considering that for
this to be the case, the forces on the atoms must be zero. These forces can be
determined by the Hellmann-Feynmann theorem. [3]

1.3 The Dynamical Matrix. Phonons.

From the relaxed structure obtained with DFT, it is possible now to obtain infor-
mation about the vibrational properties of the solid in study. These vibrational
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1.3 The Dynamical Matrix. Phonons.

properties provide with information about all kinds of thermal, electrical and me-
chanical properties of the solid, and can be modeled as a set of normal vibrational
modes that comprise all the possible vibrations in the structure: we call these modes
phonons.
To obtain these normal modes, let us consider an infinite crystal, periodic, with N
(in the order of Avogadro’s number) unit cells and n atoms per cell. We can write
a small displacement in the atom j in the cell given by the lattice vector L around
its equilibrium position r0(jL) as:

ujL = rjL − r0,jL

We can expand the energy of the crystal in a Taylor series of the displacements
around the equilibrium as:

E = E0 + 1
2
∑
jj′LL′

uTjLDjLj′L′uj′L′ + . . .

where E0 is the static energy at the equilibrium, uTjL is the transpose of ujL, and
the 3x3 matrix DjLj′L is the matrix of the second derivatives of the energy with
respect to the displacements of the atoms, represented as:

(DjLj′L′)αβ = ∂2E

∂(ujL)α∂(uj′L′)β

where α and β run over the Cartesian coordinates.
If we truncate this expansion to second order (that is to say, a harmonic approxi-
mation), the equation of motion for each atom is given by:

mjüjL = F jL = −
∑
j′L′
DjLj′L′uj′L′

wheremj is the mass of the atom j and F jL the force on the atom at the jL position.
There are 3nN equations, three for each atom (one per coordinate). The solutions, as
any harmonic system should, have the the form of plane waves. Imposing periodic
boundary conditions on the crystal, the k index appears, that represents the k
vectors of the first Brillouin cell:

ujL = εkνje
i(k·L−ωkνt)

The ν index counts the number of solutions for each k, and goes from 1 to 3n. ωkν
is the frequency of the wave. If we replace this solutions in the equation of motion
in L = 0 (origin of unit cell):
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1.4 From Phonons to Thermodynamics.

mjω
2
kνεkνj =

∑
j′

(∑
L′
Dj0j′L′ei(k·L

′)
)
εkνj′

In order to simplify this equation and remove its mass dependence, we can define
ηkνjas:

εkνj = 1
√
mj

ηkjν

and replace the matrix for its discrete Fourier transform as:

Djj′(k) = 1
√
mjmj′

∑
L′
Dj0j′L′eik·L

′

resulting in the following equation:

ω2
kνηkνj =

∑
j′
Djj′(k)ηkνj′

All of the 3× 3 matrices for the n atoms can be collected in a single 3n× 3n matrix
D(k), called the dynamical matrix. Its Fourier transform to the real space is also
a 3n × 3n matrix, similar to the second derivative matrix, but weighted with the
atomic masses. In this case, this matrix is called the force-constant matrix :

C(L)jαj′β = 1
√
mjmj′

∂2E

∂(uj0)α∂(uj′L′)β

Merging all the atomic coordinates in the dispacement vector ηkν we obtain an
eigenvalue equation:

ω2
kνηkν = D(k)ηkν ,

whose diagonalization allows the calculation of the phonon frecuencies at each k
point (ωkν) and the eigenvectors ηkν , called polarization vectors or normal modes.
The method we used to obtain these phonons in practice is called the frozen-phonon
method, or direct method, and it will be explained in sec. 2.1.

1.4 From Phonons to Thermodynamics.

Once the phonons are obtained, we can obtain the thermodynamic properties of the
solid by considering these pseudoparticles as a “gas”, specifically a Bose-Einstein
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1.4 From Phonons to Thermodynamics.

gas. From statistical mechanics we obtain that the partition function of this Bose
gas is:

Q =
∑
{ni}

e−βE{ni}

where E{ni} is the energy of the system for any given set of occupation numbers.
For a phonon, this energy can be expressed as the energy of a harmonic oscillator:

E{ni} =
3N∑
i=1

ni~ωi ⇒ Q =
3N∏
i=1

1
1− e−β~ωi

From here, the internal energy of the system is trivially:

U = − ∂

∂β
logQ =

3N∑
i=1

~ωi
eβ~ωi − 1

On the limit V →∞, the sum becomes an integral:

U =
ˆ ∞

0
dωg(ω) ~ω

eβ~ω − 1

where g(ω) is the phonon density of states. In an analytical problem, this function
can be approximated in several ways, like in the Einstein’s model or Debye’s model.
However, finding the phonons ab-initio has the advantage that the phonon density
of states can be computed numerically directly from the dispersion curve.
After the internal energy is obtained, all the thermodynamic properties are simply
derivatives or integrals of this one function [4].
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2 Procedure and results

2.1 Description of the procedure

The main purpose of this work is to use the techniques described in the previous
chapter, supported by specialized software, to obtain the properties of the chalcopy-
rite CdGeP2, that crystallizes at normal conditions in the I4̄2d space group (shown
in Fig. 2.1). The interest on the cadmium chalcopyrites is due to their possible ap-
plication in the enhancement of solar cells, as they show promise for increasing the
efficiency of frequency-conversion procedure in solar power generation [5].
To achieve this goal, the first step is to find the optimized crystalline structure
of the unit cell of the material at 0K and 0GPa of pressure. This simulation will
be done using the Vienna Ab-initio Simulation Package (VASP) [6]. To start, it
is required to possess a starting point for the software to perform the iterative
relaxation process implemented in its internal algorithms. This starting point is
usually, if possible, experimental data of the lattice vectors and atomic positions
within the unit cell obtained from literature. However, this method also works giving
a rough guess of the structure to start the process, or even using random search
methods, genetic algorithms, metadynamics, etc. to provide a starting point. But
having experimental data does serve a purpose for this methos: it saves computer
time and makes the simulation easier in general.
It is also valuable to simulate the structure at different pressures (or different vol-
umes, as it is equivalent) to find structural properties like the compression coeffi-
cients and the bulk modulus of the crystal. The compression coefficients αi for each
of the lattice vectors (a, b, c) are computed fitting the lattice vector lengths to the
pressure applied and using the definition:

αi = − 1
i0

(
∂i

∂P

)
T

; i ∈ {a, b, c}

where i0 is the value of the lattice vector length at 0 GPa of pressure.
The bulk modulus (B0 > 0), defined as the resistance of the material to changing
its volume with pressure :

B0 = −V0
∂P

∂V
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2.1 Description of the procedure

Figure 2.1: CdGeP2 chalcopyrite. Red represents cadmium, blue are germanium
atoms and green are phosphorus.

is found in a more roundabout manner. From the energy of the ground-state ob-
tained with VASP for different volumes, it is possible to obtain the bulk modulus
directly by fitting this expression to a series expansion of the energy against volu-
men. The most appropiate equation of state in the high-pressure conditions that we
are working on is the Murnaghan equation of state, applied in a 2nd order expansion
[7].
Once the relaxed structure of the unit cell is found, the next step is to find the
phonons of the material. To obtain these, we use the frozen-phonon method, which
consists in taking snapshots of small displacements of the atoms in the lattice and
computing the Hellmann-Feynmann forces on the atoms to finally obtain the inter-
atomic force constants and the dynamic matrix.
Because we want the phonons in all the points of the reciprocal space and not only
in the zone center Γ, we need to simulate a larger system1, so we extend the VASP

1This is because in the unit cell, which is replicated to infinity in all directions, the distances in
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2.1 Description of the procedure

simulation of the unit cell at 0K and 0GPa of pressure to a 2x2x2 supercell in the
same conditions. Once the relaxed structure of this supercell is found, we need to
find the dynamic matrix Dijk of this system instead.
The way to approach this problem is as follows: we displace the atoms of the cell
a certain amount, one at a time, and simulate the Hellmann-Feynmann forces with
VASP (with no iteration this time, as we do not want a relaxed cell structure in
this case). However, this process would take too long if we simulated all of the
possible displacements (128 atoms in the 2x2x2 supercell at 3 possible directions per
atom implies 700+ simulations, both positive and negative), so we use symmetry
properties to reduce the number of simulations required2.
Once the Hellmann-Feynmann forces are extracted, the results are provided to the
PHONON [8] software, that diagonalizes the dynamic matrix and finds the frequency
of the phonons and the density of states of ths system. With the phonon density
of states g(ω) we can calculate the internal energy U , the Helmholtz free energy F ,
the heat capacity Cv and the entropy of the crystal S with the known expressions:

U = N

2 r
ˆ ∞

0
dωg(ω)(~ω)coth

(
~ω

2kBT

)

F = NrkBT

ˆ ∞
0

dωg(ω)(~ω)ln
[
2sinh

(
~ω

2kBT

)]

S = NrkB

ˆ ∞
0

dωg(ω)(~ω)
{(

~ω
2kBT

)[
coth

(
~ω

2kBT

)
− 1

]
− ln

[
1− exp

(
− ~ω
kBT

)]}

Cv = NrkB

ˆ ∞
0

dωg(ω)
(

~ω
2kBT

)2 exp
(

~ω
kBT

)
[
exp

(
~ω
kBT

)
− 1

]2
where r is the number of degrees of freedom in the crystal, kB is the Boltzmann
constant, N is the number of primitive unit cells, ~ is the reduced Planck constant
andT is the temperature.

the Brillouin zone, that go by 2π/r, approach 0 for big r values. So in this case, the theory
would only be exact in k = 0, the Γ point. If we make the simulated lattice bigger, its reciprocal
lattice gets smaller, so the points outside Γ are closer to it and the approximations to the values
to the phonons in those points becomes more accurate.

2Using the symmetry of the crystal, we can reduce the number of atoms to move to one for each
Wyckoff position of the space group, as they are equivalent in their surroundings. Furthermore,
the geometrical shape of the cell can reduce as well the number of computations in the presence
of equivalent directions by only making the displacements in one of those equivalent directions
(ex: is a = b 6= c, making a displacement in a would be equivalent to making one in b and
viceversa).
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2.2 Computational details

It is important before presenting our results that we specify the details and param-
eters used by the performed simulations. Our energy calculations were performed,
as previously described, in the Density Functional Theory (DFT) [1] framework as
implemented in the Vienna Ab-initio Simulation package (VASP) [6]. The pseudopo-
tentials used were employed with the projector augmented wave scheme (PAW) [9]
to take in full account the nodal character of the electron density in the proximities
of the atomic core. The energy cutoff required for the set of plane waves to achieve
high precision was set to 370 eV . The exchange-correlation energy was described in
the generalized-gradient approximation (GGA) with the Perdew-Burke-Ernzernhof
prescription for solids (PBEsol) [10]. To integrate in the Brillouin zone we used
dense meshes of Monkhorst-Pack special k points [11]: 8x8x4 meshes - obtaining a
set of 20 special k points - ensuring a convergence of the total energy to 1 meV per
formula unit.
After the structures were fully optimized with the procedure described in sec. 2.1, the
forces on the atoms were less than 0.004 eV/Å and the deviation of the stress tensor
components from the diagonal hidrostatic pressure form was lower than 0.1 GPa.

2.3 Results

2.3.1 Crystalline structure and compression coefficients.

Provided the experimental data of the lattice vectors and the atomic positions in
the unit cell found in literature, the first step of the process is to find the relaxed
structure of the crystal at 0 GPa. In this case, we can see that evidently the
simulated values do not differ much from the previous data in Tab. 2.1.

Experimental data[12] Simulated relaxed structure
Volume (Å3) 354.434 355.367

a (Å) 5.738 5.723
b (Å) 5.738 5.723
c (Å) 10.765 10.848

Table 2.1: Simulated values against the experimental data for the lattice vectors
and volume of the cell.

We simulate the same structure at different pressures and plot its energy against
the volume (Fig. 2.2). Pressure, being a direct derivative of energy with respect
of volume, pressure-volume will roughly, but not exactly, follow the same minima
relationship as energy-volume. In this manner, we also fit this experimental data to
Murnaghan’s equation of state to find its bulk modulus B0. We can observe that
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the second order Murnaghan fit is very adequate as the equation of state for this
system, and that the relaxed structure volume is very close to the energy minimum
in this fit.

Figure 2.2: Energy of the structure plotted against its volume. .

Reference data [13] Simulated relaxed structure
B0(GPa) 72.0 73.15
Table 2.2: Bulk modulus comparison with reference data.

In this same exercise, we could obtain the length of the lattice vectors (shown in
Fig. 2.3) in order to calculate compression coefficients for each of the directions.
It is noticeable that the longer axis is more compressible than both of the others.
From the data obtained, we fit the values to a second order polynomial and used the
expressions in sec. 2.1, obtaining the values in Tab. 2.3. It is clear that the coefficients
obtained in this manner are in very good agreement with those on literature.

Reference data Simulated relaxed structure
αa 0.0043 0.00405
αb 0.0043 0.00405
αc 0.0045 0.00490

Table 2.3: Compression coefficient comparison with reference data from Gautam
et al[13], expressed in GPa−1.

15



2.3 Results

(a) (b)

Figure 2.3: (a) Lattice vectors as a function of pressure and (b) normalized to the
value at 0 GPa.

From these results we can conclude that the chalcopyrite CdGeP2is a moderately
hard material, due to its 75 GPa bulk modulus, that compresses roughly at an equal
rate in all directions.

2.3.2 Phonons at 0 GPa

Once the small displacements required to obtain the dynamic matrix of the sys-
tem are simulated, the corresponding Hellmann-Feynmann forces are used by the
PHONON software, that diagonalizes the dynamical matrix and provides the phonons
at Γ and also the dispersion curves and density of states, if given the supercell data.
The phonon frecuencies and their irreducible representations are presented at Tab. 2.4,
where we can distinguish three regions at Γ: the low frequency zone around 0 ∼
125 cm−1, a medium frequency zone at 150 ∼ 217 cm−1, and a high frequency zone
in 280 ∼ 380 cm−1. This fact is even more evident in Fig. 2.11 and Fig. 2.10.
It is of note that all of the phonons obtained are transversal optical and none are
longitudinal. This is due to the frozen-phonon method used to obtain them: it is
not capable to distinguish between transversal and longitudinal phonons. The way
to find this LO-TO splitting requires the simulation and use of effective Böhr charge
in the crystal, implying an extra simulation of the supercell for each displacement,
which is beyond the scope of this present work.
The dispersion curves (Fig. 2.4) show how the acoustic phonons (B2, E) go to 0 at Γ.
It bears importance to mention that it is not easily distinguishable how the phonons
overlap and split in these curves, and while it is possible to distinguish them by
analizing the displacement patterns from the eigenvectors obtained by DFT, this is
also beyond the scope of ths work.
In the phonon density of states (Fig. 2.5) we observe an interesting detail. If we
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Type Multiplicity Frecuency (cm−1 ± 3) Irreducible representations
TA 1 0 B2(Raman/Infrared)
TA 2 0.233 E(Raman/Infrared)
TO 2 59.107 E(Raman/Infrared)
TO 1 83.024 B1(Raman)
TO 1 86.026 B2(Raman/Infrared)
TO 2 115.213 E(Raman/Infrared)
TO 2 177.756 E(Raman/Infrared)
TO 1 217.484 B1(Raman)
TO 2 288.433 E(Raman/Infrared)
TO 1 289.300 B2(Raman/Infrared)
TO 1 296.505 A2
TO 1 311.015 A1(Raman)
TO 1 343.404 A2
TO 2 344.171 E(Raman/Infrared)
TO 1 361.183 B1(Raman)
TO 2 367.854 E(Raman/Infrared)
TO 1 379.629 B2(Raman/Infrared)

Table 2.4: Phonons of CdGeP2 at the zone center(Γ). Multiplicity is the number
of times this phonon appears in the cell, that is, it is degenerated.

imagined the vibrations in a solid as a set of springs, it would be evident that the
springs whose mass is lower would oscillate at higher frecuencies - that is exactly
what we observe here, as the lighter atoms (of phosphorus) contibute states at the
high frecuencies and the heavier atoms (cadmium) contribute at low frecuencies,
with germanium somewhere in between.
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Figure 2.4: Dispersion relation of CdGeP2.

Figure 2.5: Phonon density of states of CdGeP2, total and split by atom species.
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2.3.3 Thermodynamic properties

From the phonons, the thermodynamic properties of the crystal are obtained imme-
diately - entropy (Fig. 2.6), internal energy (Fig. 2.7), free energy (Fig. 2.8) and heat
capacity (Fig. 2.9). The most notable fact is the verification of the Dulong-Petit
Law. a classical thermodynamics law that states that, at high temperatures, heat
capacity is constant at ≈ 6 cal/mol·K. The small differences in this law are related
to anharmonic effects that we have not taken into account for this work.

Figure 2.6: Entropy of the unit cell of CdGeP2 from ≈ 0 K to 1000 K.

Figure 2.7: Internal energy of the unit cell of CdGeP2 from ≈ 0 K to 1000 K.
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Figure 2.8: Internal energy of the unit cell of CdGeP2 from ≈ 0 K to 1000 K.

Figure 2.9: Heat capacity of CdGeP2 from ≈ 0 K to 1000 K.
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2.3.4 High pressure study

An important part of this work is the study of the material at high pressures. The
main purpose of a study of this kind is to characterize the behaviour of substances
in extreme conditions not available for direct study in a laboratory. This includes
new electrical, thermical or mechanical properties, or crystalline phase changes that
may be of interest (i.e., graphite to diamond).
Those phase changes can be observed by obtaining the phonons at the pressure
points of interest. One such study in Brillouin’s Γ point is represented in Fig. 2.10.
In this graph, we can see clearly that one of the phonon frequencies goes into the
imaginary numbers at around ≈ 14 GPa of pressure. As phonons are nothing
more than the vibrations of the atoms inside the crystalline lattice, this implies a
dynamical instability in the structure - that is, this particular structure should not
physically exist past this pressure - so a phase change must have taken place.
In Fig. 2.11 we can see clearly that a phonon goes well into imaginary numbers all
along a significant area around Γ at 14.9 GPa.

Figure 2.10: Change of the phonons’ frecuencies in Γ from 0 to ≈ 17 GPa.

21
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Figure 2.11: Dispersion curves of CdGeP2 at 14.9 GPa.

2.4 Conclusion

Using DFT, an ab-initio method to analyze the properties of solids, we studied
that the structural parameters obtained in a simulation are in agreement with ex-
perimental values of the same compound. We studied as well the thermodynamic
properties of this crystal at ambient pressure and verified Dulong-Petit Law. Finally,
we obtained the phonons and their evolution under pressure, which resulted in the
prediction of a phase change or amorphization of the chalcopyrite at high enough
pressures.
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