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INTRODUCTION 

Automated video monitoring of pollination in the field 

Studies of plant-pollinator interactions usually involve collecting data from 

observations, which presents several difficulties. These include problems in 

achieving a sufficient sampling effort because manual observations are time-

consuming and logistically limited by labour force and environmental conditions. 

The observer must identify the flower visitors at the time of census or collect them 

for identification later in the laboratory, with the risk of impacting the pollinators’ 

populations. Moreover, the presence of an observer may affect the pollinator's 

behaviour (Pegoraro et al. 2020). Using video recording systems to monitor 

animal activity is not a new field (Green & Anderson, 1961; Carthew & Slater, 

1991), but it takes advantage of widespread video monitoring technologies to 

facilitate the collection of wildlife data. It can thus be an essential complementary 

tool to achieve a more realistic data set. 

Camera traps are commonly used to monitor biodiversity. These cameras are a 

valuable tool to monitor, for instance, plant-frugivore interactions, as they were 

designed for hunting with optimal optics to focus on animals like birds, mammals 

and reptiles (Gogarten et al. 2020; Pegoraro et al. 2020; Ahumanda et al. 2013). 

Currently, there are no camera traps able to optimally record plant-pollinator 

interactions, as the flower visitors are primarily insects. The recent emerging low-

cost automated recording devices, such as some single-board computers 

(Raspberry Pi), are perfect for attaching a considerable assortment of cameras 

and choosing the optimal camera to focus on little flowers and insects (Pegoraro 

et al. 2020). Providing portable energy and protecting it from the field, this 

gadget is perfect for recording plant-animal interactions. Camera traps can 
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provide huge amounts of videos, and their classification is time-consuming 

(Norouzzadeh et al. 2018). Furthermore, camera traps contain a motion sensor, 

and the camera starts recording when an animal appears and when the plant 

shakes because of the wind, amassing useless videos. Conversely, Raspberry Pi 

has the option to run a deep learning network to detect potential pollinators and 

start recording when they appear automatically (Borowiec et al. 2022). Thus, 

applying new technologies in the field can lead to more precise data from the 

ecosystems. 

Applications of deep learning in ecology 

Deep learning is already considered in ecology, with 589 studies published since 

2019 (Borowiec et al. 2022). Ecology researchers and conservationists 

increasingly collect large amounts of data using emerging tools such as low-cost 

automated recording devices (Pegoraro et al. 2020). Deep learning is a promising 

computational approach that can deal with analyses of large datasets (Lamba et 

al. 2019). Moreover, deep learning is an optimal solution to reduce mechanical 

tasks like reviewing many camera trap videos (Norouzzadeh et al. 2018). 

Acquiring data on ecological networks is currently very time demanding and 

expensive. Automating the data acquisition and analysis process increases 

ecological network studies' efficiency and improves the results' reliability. Deep 

learning-based neural networks can be an optimal solution for developing a 

methodology where computer-controlled cameras can instantly film and 

recognize a floral visitor and even create a list of which appears in each video 

without needing review. This way, automatic field data of plant-animal 

interactions, such as pollination, can be created. Signaroli et al. (2022) used 

cameras controlled by Raspberry Pi to record fish behaviours and then developed 
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a neural network based on deep learning, which identified such behaviours, 

achieving a 93% accuracy. There are already several studies that automatically 

identify species of different taxa via deep learning: bacteria (Satoto et al., 2020), 

protozoans (Hsiang et al., 2019), plants (Schuettpelz et al., 2017; Younis et al., 

2018), insects (Marques et al., 2018; Boer and Vos, 2018; Valan et al., 2019; 

Hansen et al., 2020), and vertebrates (Villon et al., 2018; Norouzzadeh et al., 

2018). This method, thus, can be used to recognize flower visitors automatically 

(Fig. 1). 

The urgent need to study Mediterranean pollinator communities  

Understanding the insect pollinator diversity patterns is the first step to 

protecting it (Tur et al. 2016; Lázaro et al. 2010). Pollinators are vital in terrestrial 

ecosystems because approximately 94% of wild plant species in the four tropical 

regions and 78% of temperate regions depend on pollinators to reproduce 

(Ollerton et al. 2011). Despite their importance, pollinating insects are among the 

species most vulnerable to human changes in recent years. More than half of the 

planet's insect species, and therefore their pollination supply, are rapidly 

declining, and a third are already on the verge of extinction due to anthropogenic 

causes such as habitat destruction, the introduction of invasive alien species or 

climate change (Sánchez-Bayo & Wyckhuys, 2019). The Iberian-Balearic region 

is one of the most diverse areas in the world, especially in bees, although it has 

been much less studied than the regions of central and northern Europe (but see 

Petanidou & Vokou 1993; Potts et al. 2006; Tur et al. 2013; Castro-Urgal & 

Traveset 2016; Beltrán & Traveset 2018; Azpiazu et al. 2020). Although insect 

pollination is preferentially associated with bees (Hymenoptera; Anthophila), 

other groups such as beetles, lepidopterans, dipterans, and hemipterans act as 
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effective pollinators (Proctor et al., 1996; Weiss 2001; Willmer 2011; Rader et al., 

2016). In Mediterranean environments, these pollinators are quantitatively and 

qualitatively as crucial as bees and are generally affected by landscape changes, 

including agricultural intensification (Herrera, 1988; Gómez et al., 2007; Reverté 

et al., 2016). Therefore, the functions of all wild pollinators are of equal 

importance, as they contribute in an additive way to pollination and are necessary 

to optimize the global service of crop pollination and contribute to the 

maintainance of many plant species (Stefanescu et al., 2018). Studies on plant-

pollinator interaction networks at the local community level are essential to 

developing proper conservation management and to favour the pollination 

services they all provide to natural terrestrial and agricultural ecosystems. Given 

the continuing decline of both pollinators and the plants on which they depend 

(Biesmeijer et al. 2006), it is crucial to implement effective methods that increase 

the efficiency of field sampling (Pornon et al. 2016). 

In this study, we chose Cabrera island (Balearic Islands, Western 

Mediterranean), where the pollinators’ communities are understudied, and 

where the endemic lizard, Podarcis lilfordi, plays an essential role as a pollinator 

(Fig. 2; Traveset & Sáez, 1997; Fuster & Traveset 2020). Cabrera is the largest 

island (1569 ha) of the Archipelago of Cabrera, being a National Park since 1992.  

 

Manual and automatic censuses for a pollinator community study 

For the first time, we applied automated cameras and deep learning in a study of 

the pollinators at a community level. We recorded plant-pollinator interactions 

with manual censuses and automated cameras in two habitats and four study 

sites on Cabrera. We also developed and evaluated the accuracy of a neural 

network based on deep learning for automatically detecting any possible insect 
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flower visitor. The insects are classified as either a “butterfly” or simply as ‘insect’ 

if it belongs to any of the other functional groups (bees, coleopterans, dipterans, 

hoverflies, hemipterans, ants, others).  

Specifically, we want to answer the following questions: 

(1) Is it possible to develop a neural network based on deep 

learning that allow us to recognise insect pollinators? If the neural 

network recognises the two categories properly, it will be the first step to avoiding 

video reviewing plant-pollinator interactions collected in the field. 

(2) Can we obtain complementary pollinator activity 

information with the censuses performed by the automated cameras? 

Placing cameras in front of flowering plants might record more and new plant-

animal interactions that we may miss by manual censuses, as human presence 

might alter the visits of some animal taxa (e.g. birds, lizards, insects).  

(3) How do the plant-pollinator networks differ when 

considering data from the automated cameras and only manual 

censuses? Manual and automated censuses are applied to a pollinator 

community study for the first time. Data analysis will be performed twice, 

considering only manual data and adding the data obtained from the automated 

cameras. 

(4) How does plant-pollinator network structure differ among 

sites? As the different study sites show a particular floral composition, 

differences in pollinator diversity and in the structure of the pollination networks 

are expected. 
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Figure 1. A workflow for the classification of images of pollinators using deep learning. 

 

Figure 2. Podarcis lilfordi on an inflorescence of Daucus carota sub. majoricus in 

Cabrera Island.  
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METHODS 

Development of the automated monitoring system 

Prototype camera assembly 

The assembly has a camera with an optimal optical resolution for small objects 

such as little insects and flowers. This camera is controlled by a single-board 

computer, which can program the cycles of video desired to perform in the field. 

A power bank was used to supply the energy for the single-board computer, and 

a plastic box protected the whole assembly in the field.  

Considering our requirements and budget, the 5MP Module V2 camera 

controlled by a Raspberry Pi 4 (single-board computer) was the optimal option. 

With this assembly, we obtained a 1080p/30-frame video (Figure 3). We used a 

portable battery with these features: 1000mAh Li-polymer battery; 5.0V-2.1A to 

obtain six hours of autonomy. The videos were saved into a 32 GB USB.  

         

Figure 3. The prototype assembly: A) A single-board computer (Raspberry Pi) with a 

camera, power bank and a USB. B) The prototype within a plastic box and on a tripod, 

recording plant-pollinator interactions. 

We used a Raspberry Pi 4, which has the following features: A high-performance 

64-bit quad-core processor. Dual display support with resolutions up to 4K via a 

pair of micro-HDMI ports. Hardware video decoding up to 4Kp60. 4 GB of RAM. 

A B 
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A connection to the dual-band wireless local area network 2.4/5.0 GHz. Bluetooth 

5.0 / Gigabit Ethernet / USB 3.0 / PoE features (via a separate HAT PoE add-on 

module). A camera Module V2 is attached; this features 5MP Camera Module V2 

for Raspberry Pi, which is an alternative and fully compatible with the official 

ones. High-Definition video camera for Raspberry Pi. 5MPixel sensor with 

Omnivision OV5647 sensor in a fixed-focus lens. Software autofocus lens: B0176. 

Integral IR filter. Still picture resolution: 2592 x 1944. Max video resolution: 

1080p. USB 3.0 quick development and evaluation board for sensors like 

OV5647.  

Programming for automatic censuses 

We have programmed the crontab to automate the Raspberry Pi 4 with a ‘.ssh’ 

file. This way, when the Raspberry Pi 4 is turned on automatically orders the 

camera to start recording cycles of 10 minutes-videos, one hour and a half 

straight. The camera performs autofocus which was programmed through Python 

3.0 (https://www.python.org/). 

Photo-library development and image tagging 

To develop the neural network capable of extracting features from the objects 

appearing in an image and classifying the butterflies as: “butterfly” and other 

insects than butterflies as: “insect”, we created a reference image bank. We built 

a photographic library of 12,000 images containing insect pollinators, 6,000 

containing only butterflies. Many of them were obtained from the pollinator 

webpage of the terrestrial ecology laboratory at IMEDEA 

(http://polinib.info/?lang=en). Also, single-board computer-controlled cameras 

provided us with videos of plant-pollinator interactions of past field campaigns 

(from Menorca, Mallorca and Tenerife islands). The objects from the frames were 
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tagged with the program LabelImg (https://github.com/tzutalin/labelImg) as 

“butterfly” or “insect” (all insects which were not a butterfly). The photo library 

was introduced to the deep learning neural network with the package Tensorflow 

(https://www.tensorflow.org/) managed using Python 3.0. 

Neural network based on deep learning development 

For the development of the neural network based on deep learning, called Faster 

R-CNN Inception-V2, we used a computer located at IMEDEA (UIB-CSIC) 

research centre, which has the following characteristics: Product name: MW51-

HP0-00; Graphics processor: 65: 00.0; VGA compatible driver: NVIDIA 

Corporation GV100GL; Driver version: 430.64; CUDA (Unified Calculation 

Device Architecture) Version: 10.1. The Faster R-CNN proceeds in four steps 

managed through Python 3 (Fig. 4): 

1) Base network: From the bank of 18,000 images of insects we provide, R-

CNN creates features to extract them from the images that will be used in the 

following steps. 

2) Select proposal square (Regional proposal network): using the functions 

R-CNN, find a defined number of regions and marks with a box "object", 

differentiating it from the background. 

3) Region of interest pooling: The feature map created by CNN 

preformatted in the first step is used to extract relevant new features from the 

object inside the boxes created in step 2. 

4) New R-CNN neural network object. In our study, the "objects" will be 

the pollinators, such as the categories: “butterfly” and “insect”. The trained 

deep learning neural network will classify the two categories according to pixel 

https://github.com/tzutalin/labelImg
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similarity when appearing in the videos obtained from the cameras placed in 

the field.  

 

Figure 4. The four steps of a Faster R-CNN illustrated. 

Validation of the neural network based on deep learning 

For this step, we pooled pictures from the field campaigns in Cabrera island, 

where we know the objects. These pictures were new to the algorithm. This pool 

was introduced through Tensorflow, and the neural network classified the 

objects. Through Python 3.0, we obtained the metrics to evaluate the accuracy of 

the neural network. The accuracy takes into account the true positives (TP), false 

positives (FP), and false negatives (FN) to obtain the metrics of the neural 

network: 

- Threshold: The validation creates nine different models, considering 

detections with an accuracy higher than 10%, 20% up to 90%.   

- Precision: is the ratio of True Positives rightly classified to a total number of 

classified positive samples (either correctly or incorrectly).  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

- Recall: is the ratio between the numbers of Positive samples accurately 

classified as Positive to the total number of Positive samples. The recall 

measures the capacity to detect positive samples. 
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𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

- F1 score: combines the precision and recall metrics into one metric.  

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ·
 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

- Intersection over Union (IoU): is the area overlap/area union (Fig. 5) 

 

Figure 5. Diagram of the Intersection over Union (I0U), and a picture of our bank of 

images with the predicted box (red) and the ground truth (green). 

Community diversity and structure of pollinator communities 

Study areas 

Data were obtained from four locations in Cabrera (Fig. 6): (1) a coastal dune 

system -Espalmador-, located at the north-eastern coast of the island (39.131161, 

2.925352; Coastal dune 1, D1 hereafter); (2) a rocky coast at the eastern part of 

Cabrera, -Ensiola- (39.131161, 2.925352; Rocky coastal 1, R1 hereafter); (3) 

another coastal dune at the northwest of the island -La Olla- (39.151304, 

2.965555; Coastal dune 2, D2 hereafter); (4) and another rocky coast at the north, 

-Cala Gandulf- (39.148246, 2.942302; Rocky coastal 2, R2 hereafter). The dune 

system vegetation presents herbaceous species such as Cakile maritima and 
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Teucrium maritimum. Helichrysum stoechas, Limonium minutum and Daucus 

carota subesp. majoricus predominate in the rocky coastal system. 

 

Figure 6. A) Western Mediterranean Sea where Cabrera Archipelago is indicated with a 

black square. B) The study sites' locations on Cabrera island picture, with a 

representative picture of each study site and habitat indicated. 

Sampling procedures 

Manual censuses of pollinator visits to flowers were performed in 50 x 2 m belt 

transects in each study site. In each census, the following variables were recorded: 

(1) taxonomic identity of the plant species observed, (2) taxonomic identity of the 

insect species visiting the flowers (unidentified species were captured and taken 

to the laboratory for later identification by expert taxonomists; only insects 
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contacting the flowers and, thus, potentially pollinating them were recorded), (3) 

number of visits of each pollinator species to the plant, and (4) number of flowers 

contacted by each pollinator. Total time spent censusing plant-pollinator 

interactions was 480 minutes in D1, 450 minutes in D2, 1200 minutes in the R1 

and 850 minutes in the R2. We performed different sample efforts depending on 

the flower abundance of each community. We censused from April to the end of 

June, four days during the first half of the month and four days at the end of the 

month. All plant species in bloom were sampled between 10:00 am and 5:00 pm, 

on sunny and non-windy days. Automated censuses were performed by placing 

the cameras in front of flowering plants, in the same study areas, recording an 

hour and a half, 10-minute cycles and 1-minute pauses on the same days and time 

of day that manual censuses were performed. 

Insect species were identified through pictures and utilising the collection from 

IMEDEA (Research Centre in Mallorca, Spain); the doubtful species were caught 

after the census and later identified by an entomologist.  

Diversity and network parameters 

We registered the number of flowers, number of plant-insect interactions, 

number of vertebrate interactions. With these data, we obtained: (1) Species 

richness: is the number of species appearing within a community. (2) Shannon 

index diversity (H’): is a widely used index to obtain the alpha diversity that 

considers the number of species and the abundance of individuals in the 

community. It ranges from 0 (low diversity) to 4.5~5 (high diversity). It was 

obtained with vegan package (v.2.5-6; Oksanen et al. 2013) through R software 

(https://www.r-project.org/). 
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We also constructed a bipartite network by pooling all plant-pollinator 

interactions for each study site (D1, D2, R1 and R2). We did this twice, with and 

without considering the data obtained from the automated monitoring. Each 

bipartite network consists of (a) nodes representing the observable pollinators 

and the flowering plant species they visited; (b) a set of links connecting those 

nodes, with different widths proportionally to the weight of each node. The 

weight was quantified as the frequency of occurrence of each pollinator: 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑜𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 =
𝑁º 𝑜𝑓 𝑝𝑙𝑎𝑛𝑡𝑠 𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒 𝑓𝑙𝑜𝑤𝑒𝑟 𝑣𝑖𝑠𝑖𝑡𝑜𝑟 𝑎𝑝𝑝𝑒𝑎𝑟𝑠

𝑛º 𝑜𝑓 𝑐𝑒𝑛𝑠𝑢𝑠𝑒𝑑 𝑝𝑙𝑎𝑛𝑡𝑠
 

Frequency of occurrence was the best option as we obtained data from two 

different methods (manual and automated censuses). To build the plant-

pollinators networks, we used the bipartite package (v.2.3; Dormann et al 2009) 

run in the R software, with which we obtained the following parameters: 

-       Quantitative connectance (Cq): is the ratio of interactions that occur out of 

all possible ones. It is a measure of the network generalisation level that informs 

how connected all species are in the community. 

-       Weighted NODF (wNODF; Weighted Nestedness based on Overlap and 

Decreasing Fill): measures the nestedness of networks. Nestedness estimates the 

trend of specialist species (with fewer interactions) to interact with a subset of the 

interaction partners of more generalist species (most connected ones). It ranges 

from zero (not nested network) to 100 (highly nested network). 

-      Network specialisation (H2'): measures the selectiveness of a network. It 

meanders between zero (opportunistic, high niche overlapping) and unity 

(selective, high niche differentiation). Selectiveness is when a specie interacts 

with low abundant species. 
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-       Interaction evenness (IE): measures the uniformity of interactions between 

species based on Shannon's evenness. It ranges from zero (fully variable) to unity 

(entirely uniform). 

RESULTS 

Automated monitoring of the plant-animal interactions 

We developed an automatic camera which provides proper quality pollinator 

interaction pictures in the field, as shown in figure 7.  

The neural network based on deep learning programmed can automatically 

recognise insects in the pictures and classify the butterflies as “butterfly” and 

other insects as “insect” (Fig. 7). We performed the validation of the Faster R-

CNN (Tab. 1) where the model with a threshold of 0.9 (considering detections 

with a reliability of 90%) obtained the highest F1 score (accuracy) of 78,7%, where 

the precision and recall are balanced (Tab.1). The FN increases as well as the 

precision. Lower values of FP and TP imply lower recall values. However, FP 

presents the most downward trend, while TP and FN hardly fluctuate. The 

precision increase from 0.51 to 0.77, and the recall remains with similar values 

in all models, increasing the F1 score. 

Table 1. Metrics from the validation of the neural network based on deep learning Faster 

R-CNN. Where TP means true positive, FP false positive and FN false negative. 

Threshold Nº detections TP FP FN Precision Recall F1 score 

0.1 3089 1579 1510 255 0.511 0.861 0.641 

0.2 2748 1569 1179 265 0.571 0.856 0.685 

0.3 2584 1559 1025 275 0.603 0.850 0.706 

0.4 2444 1555 889 279 0.636 0.848 0.727 

0.5 2344 1551 793 283 0.662 0.846 0.742 

0.6 2244 1542 702 292 0.687 0.841 0.756 

0.7 2151 1527 624 307 0.710 0.833 0.766 

0.8 2027 1506 521 328 0.743 0.821 0.780 

0.9 1914 1475 439 359 0.771 0.804 0.787 
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Figure 7. Pictures obtained with a camera controlled by a Raspberry Pi 4: A) Vanessa 

cardui on Teucrium capitatum recognised as a “butterfly” and B) the balearic endemic 

wasp B) Ancistrocerus ebusitanus as an “insect” by the Faster R-CNN we trained, both 

with a 99% accuracy.  

Community diversity and structure of pollinator communities 

We recorded a total of 2980 minutes (49,70 h) manually and 1534 interactions, 

while the cameras recorded 1335 minutes (22,25h) and 764 interactions (Tab. 2). 

We obtained a different rate of vertebrate interactions when comparing manual 

censuses and automated censuses. Both species richness and Shannon diversity 

(H’) were higher in the rocky coastal communities than in the coastal dunes (Tab. 

2). For both parameters, the automated camera provided complementary 

information (Tab. 2). Hoverflies and bees were the groups showing the highest 

species richness in all study sites (Fig. 8). Syrphidae was the most prevalent 

family and was more diverse than bees. Lasioglossum was the most predominant 

genus among the bees. 

The plant-pollinator networks’ metrics presented little variability (Tab. 2) and 

different structures (Fig. 9) when considering only manual and both censuses 

(manual plus automatic). When comparing communities, Cq was similar in each 

community network, although the D2 showed the highest values. From all 

A B 
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network parameters, the wNODF in D1 had the largest difference when 

comparing both data sets (manual and manual plus automatic, Tab. 2), increasing 

from 18.27 to 31.29. However, all communities displayed wNODF low values (< 

50). When considering both datasets, R2 seems to be the most specialised 

community, i.e. showed the highest selectiveness (H2’ values) and the lowest 

generalisation (Cq values), while R1 had the lowest H2’ values. R2 showed the 

lowest values in interaction evenness (IE) when considering manual and both 

data, and all communities had values between 0.6 and 0.7. 

Some pollinators were detected exclusively by the automated cameras, such as 

Lasioglossum minutissimum (interacting with Cakile maritima and Limonium 

minutum) in the D2; an unidentified species of wasp (interacting with 

Helichrysum stoechas) was filmed in the R1; unidentified coleopterans and 

dipterans (interacting with Teucrium capitatum) were recorded in the R2. At the 

same study site, the bird Phoenicurus ochruros was registered only with the 

cameras interacting with C. maritima (Fig. 10). Furthermore, the cameras 

provided new interactions among already registered species compared to the 

manual censuses. For instance, the automatic cameras recorded more lizard 

interactions than the manual censuses. (Tab. 2; Fig. 11). Moreover, the cameras 

provided more interactions for D. carota and Sedum sediforme in D1 (Fig. 9). 

Also, the orchid Anacamptis pyramidalis and T. capitatum showed a few 

interactions only registered with the cameras (Fig. 9). This pattern was consistent 

among communities. 
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Table 2. Time invested in total interactions, vertebrate interactions and species richness 

found in each study site. The left value belongs to the manual census, and the right value 

to the automated census, except in Shannon diversity (H’) and Species richness, where 

the left value is obtained from both methods. 

  
Time 

(min) 

nº 

flowers 

nº 

interactions 

nº vertebrate 

interactions 

Species 

richness 

 

H’ 

D1 480 / 360 263 171 / 180 13 / 18 26 / 29 3.034 / 3.234 

D2 450 / 550 703 251 / 201 1 / 0 28 / 38 3.093 / 3.165 

R1 1200 / 185 9466 624 / 259 23 / 16 61 / 63 3.840 / 3.883 

R2 850 / 240 2741 488 / 124 12 / 3 51 / 54 3.381 /3.426 

 

Table 3. Network parameters for each community studied: Quantitative connectance 

(Cq); weighted NODF (wNODF); Network selectiveness (H2’) and interaction evenness 

(IE). The right value belongs to the manual census whereas the left value corresponds 

to the census performed by automatic cameras.  

 Cq wNODF H2’ IE 

D1 0.3 / 0.269 18.269 / 31.29 0.597 / 0.457 0.692 / 0.677 

D2 0.365 / 0.385 29.114 / 31.309 0.568 / 0.547 0.691 / 0.693 

R1 0.264 / 0.269 41.517 / 40.765 0.447 / 0.433 0.678 / 0.682 

R2 0.28 / 0.249 19.844 / 19.499 0.583 / 0.579 0.655 / 0.654 

 

 

Figure 8. The percentage of the species richness of each functional group: bee (BE), 

coleoptera (CO), dipterans (DI), hoverflies (HO), lepidopterans (LE), others (OT), 

vertebrates (VE) and wasps (WA) in each community. The rocky coastal communities: 

are R1 and R2, and the dune systems: are D1 and D2 on the left side. 
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Figure 9. Two plant-pollinator networks of the coastal dune community 1, where plants 

in green and pollinators in yellow, species indicated with codes. The first network was 

obtained with the manual censuses and the second one pooling data using both 

methodologies (manual and automated censuses). 
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Figure 10. Two frames from videos of a Phoenicurus ochruros visiting a flower of Cakile 

maritima in Cabrera island were recorded by automated cameras controlled by a 

Raspberry Pi 4. 

 

Figure 11. Plant-lizard interactions (Podarcis lilfordi sicking A: Cistus monspeliensis 

flower; B: feeding on a flower of Astralagus balearicus) in Cabrera island were 

recorded by automated cameras controlled by a Raspberry Pi 4. 

 

DISCUSSION 

Increasing the sampling efficiency of species interactions during fieldwork 

without investing more time or funds is much desired, especially in areas where 

sampling is difficult and biodiversity is low (and thus, the probability of detecting 

interactions by direct observations is low). This is, for instance, the case of island 

ecosystems, highly vulnerable in the context of global change. Island pollinator 

interactions, specifically, are not easy to document.  In this study, we developed 

automated cameras and tested them in a plant-pollinator network study on 

Cabrera Island. We showed that such cameras allow an increase in the sampling 

A B 
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efficiency and permit to gather complementary data to that of direct manual 

censuses. 

Automatic monitoring of plant-pollinator interactions 

We trained a Faster R-CNN able to detect flower visitors as "insect" or directly as 

"butterfly" with proper accuracy (F1 score = 0,787 with a threshold of 0.9). This 

F1 score is close to previous published studies (Signaroli et al. 2022; Norouzzadeh 

et al. 2018; Marques et al., 2018; Boer and Vos, 2018; Valan et al., 2019; Hansen 

et al., 2020), which is the first step to reduce video reviewing. Even though neural 

networks increase the accuracy as more pictures are tagged, obtaining a neural 

network able to recognise taxa at the species level is not yet affordable. For this, 

we would need a giant bank of labelled images for each species. Our study showed 

that it is possible to reduce, although not avoid, video reviewing. In other words, 

we had to review only the frames containing flower visitors, sorted as "insect" or 

"butterfly", but not all videos. 

It is important to consider that, occasionally, the Faster R-CNN does not detect 

some insects in the pictures, considered as false negatives (FN), or others are 

detected when they are not there, i.e., false positives (FP). Depending on the 

study's aim, FP is more important than FN, and vice versa; in some cases, the goal 

may be to have both variables balanced. As identifying species was not affordable 

at the moment, we revised only the frames detected as positives (i.e. containing a 

flower visitor), sorted within a functional group. Reducing the FN is essential to 

avoid losing information. FN is information that will not be revised and contains 

flower visitors, and FP are pictures without flower visitors that will be revised; in 

that case, a model with a high recall (FP > FN) will be desired, so the first neural 

network model in Table 1 will be the most useful. The next step is to increase the 
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F1 score and reduce the FN when considering the model with a threshold of 0.1 

(see Tab. 1). 

Application of manual and automatic censusing in a study case 

Automated cameras provided more plant-pollinator interactions than manual 

censuses per time invested (Tab. 2). Specifically, the number of visits by lizards, 

birds and lepidopterans was higher when cameras were used. This might be due 

to the effect of human presence, which can disturb in different ways plant-insect 

interactions and plant-vertebrate interactions, although not all insects and 

vertebrates respond equally to human presence. Furthermore, more data 

accumulated with the automated cameras provide more interactions and, thus, 

more realistic information on animals visiting the flowers of the different plant 

species. 

Interestingly, we found that the plant-pollinator networks showed a different 

structure when comparing the datasets obtained with both methods. At the 

species level, for instance, H. stoechas presented more interactions than D. 

carota in the network obtained from manual censuses (Figure 9). When adding 

the data set from the automated cameras, D. carota seems to have a more central 

position in the network as the most generalist of the plant community. Hence, as 

more interactions are registered, more accurate information on the specific role 

of each species in the network will be found. At the network level, D2 was found 

to be the most generalised community as it presented higher values of 

quantitative connectance (Cq), consistently with both datasets. The highest Cq 

indicates that this community is probably the most resilient community, or in 

other words, it is less vulnerable to disturbances that affect species loss (due to 

the high level of species generalization). On the other hand, D1 showed higher 
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values of interaction evenness (IE) than the rocky coastal communities, i.e. the 

interactions in D1 were more homogeneous than in either of the two rocky coastal 

communities. This might be related to the smaller network size, due in turn to the 

fewer plant species present in the area. The plant-pollinator networks of each 

study site showed low values of weighted NODF (wNODF <50), indicating a 

reduced nestedness and thus low resilience of the plant-pollinator networks to 

perturbations (Rohr et al. 2014). Island communities are, in general, vulnerable 

to disturbances due to the lower network complexity compared to mainland areas 

(Traveset et al. 2019). The R2 is the most vulnerable pollinator community, 

presenting low nestedness values (<20). D2 showed a huge difference for the 

wNODF when comparing results considering the manual dataset or the dataset 

obtained from both. The automated cameras could trigger that difference as 

providing new interactions implies complementary information for the 

communities. 

The loss of one species has more impact on a network with a low number of 

species than on a network with many nodes and highly nested. In small islands 

such as Cabrera, the pollination is performed mainly by small insects, such as 

small bees in the genus Lasioglossum, small hoverflies and small flies in a narrow 

space of time, where plants usually adopt a generalised strategy, interacting with 

a wide array of pollinators (Olesen et al. 2008). For instance, D. carota, H. 

stoechas, T. capitatum or C. maritima are the most generalised plant species 

with a higher diversity of interactions and occupy central positions in the 

networks. The different total species richness (or network size) among 

communities can be explained by floral richness, as the rocky coastal 

communities have more plant species than the dune systems. 
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Conclusions 

Although some video review has to be performed, it is worth placing automated 

cameras, as they increase efficiency and provide complementary information. 

However, we are not proposing to replace manual censuses with automated 

cameras but we suggest combining both methodologies. 

The potential of automated cameras to provide complementary information in 

plant-pollinator networks should be confirmed with a more extensive dataset. 

The pollinator communities from Cabrera Island, which are understudied, seem 

to be vulnerable to disturbances, with low resilience, as we found simple low 

number of species and interactions, especially in the dune communities.  
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