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 Abstract 

 The object of this project is to explore machine  learning and NLP poten�al to the 
 address matching sub-field of geographic informa�on science. To achieve this a deep 
 study about word and sentence embeddings models was made, how they work and 
 how they can be used to generate numerical representa�ons of an address. 

 For each word or sentence embedding model we generate vector representa�on of 
 addresses in the database  and calculate the cosine similarity between them in order 
 to know which ones  represent  the same geographic posi�on or not. 

 On the other hand we introduce the confusion matrix  for  evalua�ng   performance of 
 each model on a dataset of already matched addresses created  from ISTAC [1] data 
 sources and make a comparison study between  the models. 

 Finally, a use case example will be shown by choosing the most performing  model 
 among those one studied above. This last one can be a debut for building a powerful 
 tool for matching address pairs in all Canary Islands. 

 Key words  :  machine learning, NLP, language model,  address matching, word 
 embedding, similarity 
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 Chapter 1 : Introduc�on 

 Address matching, the process of  assigning physical loca�on coordinates to addresses in 
 databases, becomes a core func�on in  various loca�on-based businesses like take-out 
 services, express delivery, customers merging, fraud iden�fica�on, lead outreach etc. 
 This makes the need to match two lists of  addresses a common occurrence in many 
 companies, organisa�ons and government bodies. 

 In par�cular, the  ISTAC  [1] in their objec�ve  to facilitate the obtaining of spa�al sta�s�cs, 
 as well as the produc�on of mul�-source sta�s�cs through the  Integrated Data System of 
 Canary Islands Sta�cal Plan 2018-202  , is georeferencing  informa�on from different sources 
 in the geosta�s�cal reference of  Canary Islands. 
 A database  covering all the georeferenced municipali�es of the Canary Islands is used, 
 however the periodical update of the data, as well as the integra�on of new sources of 
 informa�on into the system requires to match addresses of each registry with the set of 
 those that have already been georeferenced. 

 However, address matching is  an extremely complicated  task resul�ng in a number of 
 challenges such as: address component types, noisy databases, inconsistent and replete with 
 missing values on databases, input error made by users, text-based type … etc. 

 Despite the importance of matching  addresses in the above-men�oned sectors  we 
 no�ce a great lack of open robust solu�ons. Recent innova�ons in machine learning, 
 par�cularly  in natural language processing (NLP), have been introduced in the wider area of 
 address matching with significant poten�al. 

 In this project, we will focus on bringing solu�ons about ISTAC’s [1]  address matching 
 problems exposed above, with machine learning and NLP techniques. 
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 1.1 Backgrounds 

 During years , in the specific field of address matching, notable research has been 
 achieved for resolving address records into “matched” and “not matched”. In par�cular there 
 has been advanced research into quan�ta�ve methods  for determining the extent of 
 matching between pairs of text-based records, with numerous string-similarity measures 
 developed, including Levenshtein  and Jaro-Winkler. 

 By contrast a group of researchers developed the concept of ‘similarity join’, whereby two 
 databases are tested by each combina�on of record pairs against a similarity measure 
 func�on, with those pairs that exceed a preset threshold being recorded. They 
 acknowledged that despite the availability of numerous similarity or ‘distance’ func�ons, no 
 one measure excels in every applica�on [2]. 

 The ISTAC [1], in their georeferencing works[22], uses a technique based on Record 
 Linkage that consists  of comparing normalised addresses with other records that have 
 already been geo-referenced. Currently, they use the  R package “RecordLinkage” to evaluate 
 similari�es and assign a weight indica�ng the similarity between the compared records. 

 The research reported in [4], [2]  shows that machine-learning techniques can be used to 
 either enhance or replace the tradi�onal rule-based solu�ons that are commonly applied to 
 address matching . 

 In the first paper [4]  it’s about two par�cular  innova�ons into the address matching 
 workflow: condi�onal random fields (CRFs) and word (address) embedding. 
 The  second paper [2]  introduces a framework  called Post Match, the related work is a 
 combina�on of the open source library  “Libpostal” for  address-parsing with a post-parse 
 process  and the Jaro-Winkler edit distance algorithm together with XGBoost machine 
 learning classifica�on. 

 In both cases there is an  applica�on of bi-class algorithms for several �mes a bi-class 
 algorithm to decide whether one address matches or not to another. This, applied for each 
 address with respect to the reference address pool, makes the problem very computa�onally 
 expensive. 
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 1.2 Objec�ves 

 The main objec�ves of this project are : 

 ➢  Study of machine learning approaches  into  the field of  address matching 
 ➢  Study of natural language processing: text analysis and word embeddings 
 ➢  Implement differents  models  for  numerical representa�on of text-based data and 

 introduce a metric to evaluate them 
 ➢  Apply  those models to ISTAC’s  address datasets  and make a compara�ve study 
 ➢  Build  a tool able to resolve address pairs into match and non-match using text 

 similarity 

 1.3 Scope 

 Due to the lack of power resources caused by the difficulty of processing address 
 components  and the �me reserved for this  work we have to set some limita�ons . 
 We will focus only on the addresses of  Santa Brígida Municipality  located in Gran Canaria 
 where we have a register of 3600 unique addresses (SantaBrigidareferencia set) and another 
 register of 16024 (SantaBrigida set) that have unique addresses with varia�ons  of them. For 
 example, below we have a collec�on of addresses, of which number 1 belongs to 
 SantaBrigidareferencia and 1,2,3,4 are in SantaBrigida with 2,3,4 as varia�ons of 1 . 

 1.  CAMINO ACEQUIA TAFIRA 6 SANTA BRIGIDA 
 2.  CAMINO ACEQUIA TAFIRA MADROÑAL 4 SANTA BRIGIDA 
 3.  CALLE CAMINO ACEQUIA TAFIRA 4 SANTA BRIGIDA 
 4.  CALLE ACEQUIA TAFIRA 15 SANTA BRIGIDA 
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 Chapter 2 : State of the art 

 2.1 Address matching  Challenges 

 One of the biggest unstructured data points is an address, this  makes address matching 
 a downstream challenge.  Here are the most likely issues  we will run into while trying to 
 match addresses: 

 ➢  Input errors made by users  : 
 In many cases, addresses are input incorrectly by users, including misspellings, missing 

 spaces, incorrect labels (“CALLE” vs “AVENIDA”), abbrevia�on formats (“C/” and “AV”), 
 synonyms, and more. All of these make it difficult to have standardised data within a single 
 database, let alone across mul�ple databases. 

 The following table show  the most common input  errors: 

 Input Error  Example 

 Misspelling  29 CALE NAVA 

 Miss Space  29CALLE Nava 

 Incorrect label  29 AVENIDA Nava 

 abbrevia�on  29 C/ Nava 

 tokeniza�on  Nava CALLE 29 

 Tabla  2.1  : Address matching  most common input errors 

 While these errors may seem easy to no�ce at a glance, it is very challenging to program a 
 system to iden�fy each difference. More than that, it requires significant computa�onal 
 power, and will take a lot of �me to process. These errors can lead to significant errors when 
 a�emp�ng to perform address matching, as the records will not match. 
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 ➢  Problem to link two datasets together 

 For all the reasons  discussed above, some�mes  we can face difficul�es to relate two 
 addresses and to connect datasets. When this occurs, we end up with the following 
 dispari�es between our records : 

 Input address string  Reference data to match against (AddressBase) 

 Unstructured text  Structured, tokenized 

 Messy, containing typos, etc.  Complete & correct (more or less) 

 Incomplete  Snapshot of addresses at a given �me 

 Range from historic to very recent 
 addresses, including businesses 

 Organisa�on/business names are not always 
 part of the address. Changes due to the 
 Historical Memory Law and other reasons 

 Tabla 2.2  : Input address  vs reference data to match [5] 

 As we can see, the task of matching addresses becomes complicated  when we have to 
 compare records that are o�en forma�ed and input differently. Because of this, it makes the 
 simple task of matching addresses much more complicated than predicted. 
 In real business loca�on based  these issues with linking datasets will cause major issues 
 with your workflow, slowing up your business and causing errors in delivery, billing, and 
 more [5] 

 ➢  Data preprocessing  Failing 

 One of the most  common problems in address matching is data preprocessing. In many 
 cases we fail to correctly preprocess our data. However this step is very important  and 
 having cleaning  data before processing  is essen�al for ge�ng quality results. 

 ➢  Require of significant computa�onal power processing  algorithms 
 The  automa�za�on of the address matching process through  programs s�ll  requires a 

 large  amount of computa�onal power and �me to run.  During the process various 
 comparisons and  calcula�ons are made. When conven�onal techniques are used, based on 
 similarity between the strings,  each character needs  to be compared, and they need to be 
 processed one at a �me. Data o�en needs to be preprocessed beforehand as well. 
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 2.2 Introduc�on to natural language processing 

 Natural language processing (NLP) is a subfield of Ar�ficial Intelligence that uses 
 algorithms to interpret and manipulate human language. The goal is to make a computer 
 able to understand  human language processing and content (text, document ..) in the same 
 way humans can. 
 NLP can be used in many fields  such as speech recogni�on, knowledge representa�on, text 
 classifica�on … etc [6],[7] 

 2.2.1 Terminologies 

 Corpus 
 A corpus is a large, structured set of machine-readable texts produced in a natural 

 communica�ve se�ng. If we have a bunch of sentences in our dataset, all the sentences will 
 come into the corpus, and the corpus would be like a paragraph with a mixture of sentences. 
 We just have to know that Corpus is a collec�on of documents. In our case of study the 
 corresponding corpus is a set of addresses [7]. 
 Documents 

 It is a unique text different from the corpus. If we have 100 sentences, each sentence is a 
 document. Mathema�cal Representa�on of Documents is Vector [7]. In this project we will 
 consider each address as a document. 
 Vocabulary 

 Vocabulary is the collec�on of unique words involved in the corpus. Let’s take this 
 following example: 

 sentence 1 = CALLE NAVA Y GRIMÓN 
 sentence 2 = CALLE EL HAMBRE 
 Vocabulary = { CALLE, NAVA ,Y, GRIMÓN, EL, HAMBRE } 

 Words 
 All the words in the corpus .Let’s take the previous  example 

 sentence 1 = CALLE NAVA Y GRIMÓN 
 sentence 2 = CALLE El HAMBRE 
 words = { CALLE, NAVA, Y, GRIMÓN, CALLE, EL, HAMBRE } 

 N-gram 
 In the field of computa�onal linguis�cs, an  n-gram is a con�nuous sequence of n items 

 from a given sample of text or speech [8]. For this given address: CALLE NAVA Y GRIMON, we 
 have: 

 1-gram set: CALLE, NAVA, Y, GRIMON 
 2-gram set: CALLE NAVA, NAVA Y, Y GRIMON 

 16 
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 Char N-gram 

 Character n-grams are found in text documents by represen�ng the document as a 
 sequence of characters. These n-grams are then extracted from this sequence in order to 
 extract features through a trained model [9]. For this given address: CALLE NAVA Y GRIMON, 
 we have: 

 Char 1-gram set: C,A, L, L, E, N, A, V, A, Y, G, R, I, M, O, N 
 Char 2-gram set: CA, AL, LL, LE, EN, NA, … 

 2.2.2  Text preprocessing in  NLP 

 Generally, in  natural language preprocessing  we have specific techniques for 
 preprocessing  and understanding texts. But this depends  on the  problem  we are resolving 
 or the type of text. For example, when we deal with sen�ment analysis based on social 
 media content it’s important to analyse emo�cons and emojis. It has usually been treated as 
 a classifica�on problem etc.  Let’s describe  the  key steps of processing text in NLP : 

 Preprocessing 
 ➢  Removal of Noise, URLs, Hashtag and User-men�ons 
 ➢  Lowercasing 
 ➢  Replacing Emo�cons and Emojis 
 ➢  Replacing elongated  characters 
 ➢  Correc�on of Spellings 
 ➢  Removing the Punctua�on 
 ➢  …etc 

 Stemming 
 Stemming is the technique to replace and remove the suffixes and affixes to get the root, 

 base or stem word. We may find similar words in the corpus but with different spellings like 
 having, have, etc. All those are similar in meaning, so to make them into a base word, we use 
 a concept called stemming, which converts words to their base word [7] 

 Lemma�za�on 
 Lemma�za�on is a technique similar to stemming. In stemming root words may or may 

 not have the meaning, but in lemma�za�on, root word surely would have a meaning, it uses 
 linguis�c knowledge to transform words into their base forms [7]. 

 17 
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 Parsing 
 Parsing refers to the formal analysis of a sentence by a computer into its cons�tuents, 

 which results in a parse tree showing their syntac�c rela�on to one another in visual form, 
 which can be used for further processing and understanding [6]. 

 2.2.3  Syntac�c and seman�c analysis 

 Syntac�c analysis (syntax) and seman�c analysis (seman�c)  are the two primary 
 techniques that lead to the understanding of natural language. Language is a set of valid 
 sentences but, what makes a sentence valid?: syntax and seman�cs. 

 Syntax  is the gramma�cal structure of a text  whereas  seman�c  is the meaning being 
 conveyed. A sentence that is syntac�cally correct, however, is not always seman�cally 
 correct [6]. 

 2.3 Word and sentence embedding  techniques 
 A�er processing text data the next step is to extract features. To achieve this goal we have to 
 use  some techniques for represen�ng text into vectors,  so computers can understand the 
 corpus easily. Those are word  and sentence embedding  techniques. 

 2.3.1 Word embeddings 
 In natural language processing  (NLP),  word  embedding  is a term used for the 

 representa�on of words for text analysis, typically in the form of a real-valued vector that 
 encodes the meaning of the word such that the words that are closer in the vector space are 
 expected to be similar in meaning [10]. Word embeddings can be obtained using various 
 methods, let’s deep dive into those methods. 

 2.3.1.1 One-Hot Encoding  &  Bag of words 

 One-Hot Encoding  and Bag of Words  form part  of the most  straigh�orward way to 
 numerically represent words. 
 For  One-Hot Encoding  , the idea is to create a vector  with the size of the total number of 
 unique words in the corpus.  Each unique word has a unique feature and will be represented 
 by a 1 with 0s everywhere else. In the case of  Bag  of words  representa�on (also called 
 count vectorizing [11]), each word is represented by its count instead of 1 [12].  Let’s look at 
 an easy example to understand the concepts previously explained. We could be interested in 
 analysing the tables 2.3 and 2.4: 

 18 
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 word  Calle  Nava  …..  ……  ….  Word n 

 Calle  1  0  0  0  ….  0 

 Nava  0  1  0  0  ……  0 

 Tabla 2.3  :  One-Hot  Encoding illustra�on 

 Address  Calle  Nava  y  Grimon  el  Hambre 

 1  1  1  1  1  0  0 

 2  1  0  0  0  1  1 

 Tabla 2.4  :  Bag of words illustra�on 

 2.3.1.2 Term Frequency-Inverse Document  Frequency : TF-IDF 

 TF-IDF  is a sta�s�cal measure that  evaluates how relevant a word is to a document in a 
 collec�on of documents. This is done by mul�plying two metrics: how many �mes a word 
 appears in a document (TF), and the inverse document (IDF) of the word across a set of 
 documents [9]. IDF has been used to penalise very commonly used words that do not 
 provide seman�c informa�on, such as ar�cles, preposi�ons, etc. 

 The TF-IDF value of a term  t  in  a given document  d  from a set of documents  D  is : 

 𝑇𝐹 −  𝐼𝐷𝐹  𝑡 ,  𝑑 ,     𝐷 ( )   =  𝑇𝐹  𝑡 ,  𝐷 ( ) ×     𝐼𝐷𝐹  𝑡 ,  𝐷 ( )

 Where  is the term count within the  document  and  𝑇𝐹  𝑡 ,  𝐷 ( )
 ,  is  document count across the corpus and  is     𝐼𝐷𝐹  𝑡 ,  𝐷    ( ) =  𝑙𝑜𝑔  𝐷 

{ 𝑑 ϵ 𝐷 :    𝑡 ϵ 𝐷 }( ) { 𝑑 ϵ 𝐷 :     𝑡 ϵ 𝐷 }  𝐷 

 corpus cardinal. 

 Let’s calculate  in  the following :.  𝑇𝐹 −  𝐼𝐷𝐹  "  𝐶𝑎𝑙𝑙𝑒  "    { 𝑑 
 1 
,  𝑑 

 2 
},     𝐷 ( )

 Address 1 (d1) : Calle Nava y Grimon 
 Address 2 (d2) : Calle el Hambre 
 Corpus D = [  Address 1, Address 2 ] 

 19 
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 document  TF  IDF  TF-IDF 

 d1  1 
 4  𝑙𝑜𝑔  2 

 1 ( )  1 
 4 ×  𝑙𝑜𝑔  2 

 1 ( )
 d2  1 

 4  𝑙𝑜𝑔  2 
 1 ( )  1 

 3 ×  𝑙𝑜𝑔  2 
 1 ( )

 Tabla 2.5  : Calcula�on of  𝑇𝐹 −  𝐼𝐷𝐹  "  𝐶𝑎𝑙𝑙𝑒  "    { 𝑑 
 1 
,  𝑑 

 2 
},     𝐷 ( )

 2.3.1.3 Word2Vec 

 Word2vec  is one of the most popular technique  to learn word embeddings based on 
 neural network .The neural network aim to predict the distribu�on of word contexts in the 
 corpus  and simultaneously learn  the word representa�on.  A  𝑝  𝑤  |     𝐶𝑜𝑛𝑡𝑒𝑥𝑡     𝑜𝑓     𝑤 ( )
 single-layer neural network with a linear ac�va�on func�on is used, the contexts are 
 represented by a succession of previous words of the window size  chosen:  𝑛 ( )   
 𝑝  𝑤 

 𝑖 
 |  𝑤 

 𝑖 − 𝑛 
,  𝑤 

 𝑖 − 𝑛 + 1 
   ,    ...,     𝑤 

 𝑖 − 1 ( )
 We have the representa�on of the words  in a con�nuous mul�dimensional number 

 space, words with similar contexts will be next to each other in the new space. It takes as 
 input the text corpus and outputs a set of feature vectors that represent words in that 
 corpus.  It uses  two neural network-based methods : 

 ➢  Con�nuous  Bag Of Words (CBOW) 
 ➢  Skip-Gram 

 Figure 2.1  :  CBOW & Skip-Gram model [13] 
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 The CBOW  Model  takes the context of each word  as the input and tries to predict the 

 word corresponding to the context.  Here, context simply  means the surrounding words  . 

 Skip-Gram  uses the target word, the word we  want to generate the representa�on for, to 
 predict the context. In the process of predic�ng the context words, the model learns the 
 vector representa�on of the target word . 

 Figure 2.2  : CBOW model  with one word in the context [12] 

 Considering the following address : Address :  “Plaza de la paz” 

 Let’s say we use the word ‘Plaza’ as the input to the neural network and we are trying to 
 predict the word ‘paz’. We will use the one-hot encoding of the input word ‘plaza’, then 
 measure and op�mise for the output error of the target word ‘paz”.In this process of trying 
 to predict the target word,this shallow network learns its vector representa�on. As the same 
 way the model used a single word to predict the target, it can use mul�ple context to do the 
 like the in the  architecture in figure  : 
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 Figure 2.3  : CBOW model with mul�ple  words in the context [12] 

 Figure 2.4  : Skip-Gram  model using target words [12] 
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 The choice of using CBOW or Skip-Gram when training a  word2vec  model will depend on 
 the  case we intend to resolve. CBOW is be�er at learning syntac�c rela�onships between 
 words while skip-gram is be�er at understanding the seman�c rela�onships. However 
 Skip-gram works be�er when working with a small amount of data, focuses on seman�c 
 similarity of words, and represents rare words well. On the other hand, CBOW is faster, 
 focuses more on the morphological similarity of words, and needs more data to achieve 
 similar performance. 

 2.3.1.4 FastText 

 FastText is a proposal model by  Facebook AI Research(FAIR)  for learning word 
 embeddings and text classifica�ons. This model allows crea�ng unsupervised learning or 
 supervised learning algorithms for obtaining vector representa�ons for words. FastText 
 supports both  CBOW  and  Skip-gram  models. 

 Fastext tries to  include the morphological structure of words because this carries 
 importance about the meaning and such structure is not taken into account by tradi�onal 
 word embeddings like word2vec, which train unique word embedding for every individual 
 word.  FastText a�empts to solve this by trea�ng  each word as the aggrega�on of its 
 subwords. For the sake of simplicity and language-independence, subwords are taken to be 
 the character n-grams of the word. The vector for a word is simply taken to be the sum of all 
 vectors of its component char-ngrams [14]. For example, the fastText representa�on of the 
 word  “CALLE”  when using 3-grams corresponds to the collec�on of trigrams of the string 
 <CALLE>: <CA, CAL, ALL, LLE, LE>. 

 The algorithm always starts the string of each word with "<" and ends them with ">". This 
 representa�on helps to extract morphological informa�on from the words such as suffixes 
 and prefixes. With the generated n-grams a skip-gram model is trained to create the word 
 representa�ons [15]. 
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 2.3.2 Sentence embeddings 

 So far we have discussed how word embeddings represent the meaning of the words in a 
 text document. But some�mes we need to go a step further and encode the meaning of the 
 whole sentence  to readily understand the context in  which the words are used. 
 A straigh�orward approach for crea�ng sentence embeddings is to use a word embedding 
 model to encode all words of the given sentence and  take the average of all the word 
 vectors  . While this provides a strong baseline, it  falls short of capturing informa�on related 
 to word order and other aspects of overall sentence seman�cs. 

 2.3.2.1 Doc2vec 
 Doc2vec is a model for crea�ng numerical representa�on of a document, it extends the 

 idea of word2vec and as this last one, doc2vec has two variants : 

 ➢  Distributed Memory model (IDM) 

 Figure 2.5  :  Doc2vec  Distributed Memory model [16] 

 Each word and sentence of the training corpus are  one-hot encoded  and stored in 
 matrices D and W, respec�vely. The training process involves passing a sliding window over 
 the sentence, trying to predict the next word based on the previous words and the sentence 
 vector (or Paragraph Matrix in the figure above). This predic�on of the next word is done by 
 concatena�ng the sentence and word vectors and passing the result into a so�max layer. 
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 The sentence vectors change with sentences, while the word vectors remain the same. 
 Both are updated during training. 
 The inference process also involves the same sliding window approach. The difference is that 
 all the vectors of the models are fixed except the sentence vector. A�er all the predic�ons of 
 the next word are computed for a sentence, the sentence embedding is the resultant 
 sentence vector [12]. 

 ➢  Distributed Bag of Words (DBOW) model 

 Figure 2.6  :  Doc2vec distributed bag of words model [16] 

 The DBOW model ignores the word order and has a simpler architecture. Each sentence in 
 the training corpus is converted into a one-hot representa�on. During training, a random 
 sentence is selected from the corpus, and from the sentence, a random number of words. 
 The model tries to predict these words using only the sentence ID, and the sentence vector 
 is updated (Paragraph ID and paragraph matrix in the figure). During inference, a new 
 sentence ID is trained with random words from the sentence. The sentence vector is 
 updated in each step, and the resul�ng sentence vector is the embedding for that sentence 
 [12]. 

 As a comparison between the two doc2vec models we can follow  the direc�on of the 
 authors in the original paper [16]  who affirm that the DM model “is consistently be�er 
 than” DBOW . However other studies [17] showed that the DBOW approach is be�er for 
 more tasks. In other ways we have to know that  the  DM model takes into account the word 
 order, the DBOW model doesn’t. Also, the DBOW model doesn’t use word vectors so the 
 seman�cs of the words are not preserved. 
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 2.3.2.2 BERT :  Bidirec�onal Encoder Representa�ons from Transformers 

 BERT is a transformers-based  language representa�on model pre-training developed by 
 Google. It’s designed to pretrain deep bidirec�onal representa�ons from unlabeled text by 
 jointly condi�oning on both le� and right context in all layers [18]. 

 BERT provides a way to pre-train models that consider contexts both to the right and le� 
 of words using the Masked LM (MLM) technique. In BERT, MLM instead of using pre- or 
 post-word sequences, the en�re sequence is used, from which a percentage of words to be 
 predicted is removed. The algorithm works on pairs of sentences, once the words have been 
 predicted, BERT uses the predic�on of the next sentence. This part of the algorithm predicts 
 whether the second sentence is the next sentence according to the original text. 
 The algorithm embeds metadata to indicate start and end of segments, separa�on between 
 sentences, the masked words, etc. as can be seen in the example: 

 [CLS] the [MASK] has blue spots [SEP] it rolls [MASK] the parking lot [SEP]  [19] 

 Figure  2.7  : BERT mask LM [19] 
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 Within the implementa�on of BERT we have two steps :  pre-training  and  fine-tuning  . 
 During pre-training the model is trained on unlabeled data over different pre-training tasks. 
 For finetuning, the BERT model is first ini�alised with the pre-trained parameters, and all of 
 the parameters are fine-tuned using labelled data from the downstream tasks. Each 
 downstream task has separate fine-tuned models, even though they are ini�alised with the 
 same pre-trained parameters [18]. 

 Figure 2.8  : pre-training  and fine-tuning procedures for BERT [18] 

 This is just the  ini�al part  of BERT implementa�on and whole steps are described in the 
 original paper[18] but we have  to keep in mind that  BERT is one of the best  general 
 language models and produces good results on sentence embeddings. 

 2.4 Text Similarity and measures 

 Similarity is the distance between two vectors where the vector dimensions represent 
 the  features of two objects. In simple terms, similarity is the measure of how different or 
 alike two data objects are. If the distance is small, the objects are said to have a high degree 
 of similarity and vice versa. Generally, it is measured in the range 0 to 1. This score in the 
 range of [0, 1] is called the similarity score [12]. 
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 As the same  text similarity  is how different  or alike two texts or sentences are. However 
 as humans it is very  obvious  to us  that  two sentences  mean the same thing despite being 
 wri�en in completely different formats. But algorithms and to come to that same conclusion 
 we have first to solve the problem of text representa�on by conver�ng it into feature vectors 
 using a suitable text embedding technique above. Once we have the text representa�on, we 
 can compute the similarity score using one of the many distance/similarity measures [12]. 
 Let’s dive deeper into the text  similarity measures  . 

 Jaccard Index 

 Jaccard index, also known as Jaccard similarity coefficient, treats the data objects like 
 sets. It is defined as the size of the intersec�on of two sets divided by the size of the union. 

 In the case in figure 2.9  : 

 Figure 2.9  :  Jaccard distance on two sets  [20] 

 The jaccard distance as :  𝐽  𝐴 ,  𝐵 ( ) =  𝐴 ∩ 𝐵 | |
 𝐴 ∪ 𝐵 | |    =  𝐴 ∩ 𝐵 | |

 𝐴 | |+  𝐵 | |−  𝐴 ∩ 𝐵 | |    
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 Euclidean Distance 

 Euclidean distance, or L2 norm, uses the Pythagoras theorem  to calculate the distance 
 between two points as indicated in the figure 2.10. Generally speaking, when people talk 
 about distance, they refer to Euclidean distance. It below : 

 Figure 2.10  :  Euclidean distance representa�on [12] 

 The larger the distance  d  between two vectors,  the lower the similarity score and vice 
 versa .The distances can vary from 0 to infinity, we need to use some way to normalise them 
 to the range of 0 to 1. 

 Although we have our typical normalisa�on formula that uses mean and standard 
 devia�on, it is sensi�ve to outliers. That means if there are a few extremely large distances, 
 every other distance will become smaller as a consequence of the normalisa�on opera�on. 

 So the best op�on here is to use something like the Euler’s constant  [12].  1 

 𝑒  𝑑 ( )
 Levenshtein distance 

 The Levenshtein distance is a string metric for measuring the difference between two 
 sequences. Informally, the Levenshtein distance between two words is the minimum number 
 of single-character edits (i.e. inser�ons, dele�ons or subs�tu�ons) required to change one 
 word into the other [21]. 

 29 



 Máster Universitario en Ciberseguridad e Inteligencia de los datos 

 Mathema�cally, the Levenshtein distance between two strings a, b (of length |a| and |b| 
 respec�vely) is given by the formula below: 

 Figure 2.11  Levenshtein distance formula [21] 

 Cosine Similarity 

 Cosine Similarity computes the similarity of two vectors as the cosine of the angle between 
 two vectors. It determines whether two vectors are poin�ng in roughly the same direc�on. 
 So if the angle between the vectors is 0 degrees, then the cosine similarity is 1 [12]. 

 Figure 2.12  :  angle of vectors  [12] θ  𝑣 ,  𝑤 ( )

 It is given as :  . Where  represents the length of the vector  ,  𝑐𝑜𝑠  𝑣 ,  𝑤 ( ) =  𝑣 • 𝑤 
 𝑣 | || |×  𝑤 | || |

 𝑣 | || |  𝑣 

 represents the length of the vector  and ‘  ’ denotes the dot product operator.  𝑤 | || |  𝑤 •
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 Chapter 3 : Methodology 

 In order to achieve the objec�ves set for the realisa�on of this project it's necessary to 
 find the right  methodologies. 
 Several mee�ngs were held with the tutor and the co-tutor. At first an explana�on of the 
 topic was made, secondly we defined the process and the necessary tasks  to achieve for 
 producing results. During the development of the project we frequently held mee�ngs for 
 checking tasks progression,  raising doubts and verifying that the steps taken were the right 
 ones. The main idea is that at each review the project should show some evolu�on with 
 respect to the previous check, which is in line with the Scrum planning model. 

 3-1  Process defini�on 
 In the ar�cles studied ([2], [4]), they apply machine learning techniques over two 

 sub-tasks : address normalisa�on and address classifica�on into matched and not matched. 
 For each address to be georeference (or match) they  generate a classifica�on problem for 

 each of the addresses that serve as a reference in this case. 

 During our inves�ga�ons in order to find machine learning opportuni�es in the address 
 matching field a lot of approaches were tested but the most promising one remains the use 
 of word or sentence embedding coupled to text similarity measure. 

 Our  proposal in this work consists of determining the similarity of each address with the 
 reference addresses through the embeddings generated using the different algorithms 
 exposed above. We consider an exis�ng matching between two addresses  when the 
 similarity in the representa�on space exceeds a threshold. 

 Our approach is to  measure  the distances between addresses, but by using language 
 models, complex rela�onships in words such as seman�cs and morphology are considered 
 and not only similari�es at the character level. 

 However, there are different techniques of word embedding, so our process will naturally 
 be in the first �me a study of each one, in a second �me implement them using address 
 dataset and finally make a prac�cal comparison. 
 In other hands, we define a performance evalua�on procedure similar to those applied in 
 machine learning classifica�on,we set a confusion matrix  and evaluate  the metrics accuracy, 
 precision and recall . 
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 The  figures 3.1  shows the key steps of our work process 

 Figure 3.1  : Project process 

 As shown in  the figure  we firstly generated address embeddings for each model 
 Wor2vec, Fastext, Doc2vec and BERT, and secondly  classify addresses into match or no 
 match  through the similarity. Finally we evaluate the performance of each model in the 
 objec�ve to make a comparison. 
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 Similarity 

 A�er ge�ng the vector representa�on(embedding) of each address  we introduce the 
 cosine similarity as a measure of the similarity between addresses. 

 Classifica�on 

 For classifying addresses into matched or no matched we will compare the result of the 
 similarity calcula�on to a fixed threshold value. 

 Performance Evalua�on 

 Our ini�al dataset provides the status of  matching for addresses by an  iden�fica�on 
 number( uuid_idt) so a classical  method would  be the use of a machine learning 
 classifica�on algorithm and extract the performance. But a lack of varia�on on our dataset 
 mo�vates us to do a manual  evalua�on calcula�ng  true posi�ves, false posi�ves, true 
 nega�ve and false nega�ve  from classifica�on results and known status of addresses 

 3.2 Implementa�on planning 

 In order to correctly implement the defined process for this project a planning was 
 made the table 3.1  gives the details of needed tasks to implement en-to-end  the 
 drescripted process . 
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 Task  Start date  End  date 

 Data set crea�on  10/06/2022  14/06/2022 

 Implement wor2vec 
 models 

 15/06/2022  17/06/2022 

 Performance and 
 opera�on analysis 

 18/06/2022  20/06/2022 

 Improvements  21/06/2022  26/06/2022 

 Implement  fastext models  27/06/2022  30/06/20022 

 Performance and 
 opera�on analysis 

 1/07/2022  3/07/2022 

 Implement doc2vec model  04/07/2022  9/07/2022 

 Performance and 
 opera�on analysis 

 10/07/2022  15/07/2022 

 Improvements  16/07/2022  20/07/2022 

 Implement BERT model  21/07/2022  31/07/2022 

 Performance and 
 opera�on analysis 

 1/08/2022  8/08/2022 

 Improvements  9/08/2022  14/08/2022 

 Comparison study  15/08/2022  28/08/2022 

 Table  3.1  :  Implementa�on planning 
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 Chapter 4 : Development 

 4.1 Dataset Crea�on 

 The ISTAC [1]  provides a csv file with normalised and georeferenced addresses that 
 currently appear in  their Integrated Data System. 
 The variables included in the file correspond to the different elements that make up an 
 address, as well as an iden�fica�on code(uuid_idt) shared by all the addresses for which the 
 matching has been posi�ve according to their algorithms. Among the variables we find 
 territory codes(“códigos de territorio”), the  normalised and unnormalised type of road(“�po 
 de via”), the normalised and unnormalised road name(“nombre de via”), road code(“código 
 de la vía”), normalised and unnormalised portal number. 
 Also we can find   informa�on about the technique used to  generate the matching and a 
 categorical variable with values: AVERAGE, HIGH or VERY_HIGH, which indicates the quality 
 of the link . 
 This dataset is  from all the municipali�es in the Canary Islands  but in our case we will 
 extract a part from one municipality called Santa Brígida.We will train our models using this 
 dataset of 16024 addresses in order to build  word embeddings. 

 Figure  4.1  :  Dataset registers 

 From this  dataset we select relevant columns that we will need  in the rest of the work 

 Figure 4.2  : selec�ng columns forming an address at Santabrigida 
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 Column  descrip�on 

 uuid_idt  Iden�ficador compar�do entre las 
 direcciones que causan match 

 tvia  Tipo de vía 

 nvia  Nombre de vía normalizado 

 numer  Número de portal normalizado 

 codnum  Código de municipio 

 nommun  Nombre de municipio 

 direccion  Unión de los campos: 
 tvia+nvia+numer+nommun, en caso de 
 disponer de todos ellos 

 Table  4.1  : Columns descrip�ons (spanish) [22] 

 Create dataset  :  once we have  a good sample of our  dataset we can export it in csv format 
 for evalua�ng performance of  our  models 

 Figure 4.3  : Dataset crea�on 

 Finally,  we have the dataset “Santabrigida” (16024 addresses)  that we will use to train 
 our word and sentence embedding models. 
 To evaluate the performance of the  models and compare them, we will use the dataset 
 “muestra” which is a frac�on of this dataset from “Santabrigida”. 
 We make this reduc�on of the data because  of a lack of resources and as exposed in chapter 
 3 the performance evalua�on is very costly . 
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 4.2 Libraries: Gensim, NLTK and Sentence Transformers 

 In addi�on to the  basic libraries for data  analysis  we used some special libraries during 
 the project with  specifics roles  for each one : 

 Gensim 
 Gensim is an open source  python library for topic modelling  able to train large-scale 

 seman�c NLP models , represent text as  vectors and find  related documents. 
 Gensim runs on Linux, Windows and Mac OS X, and  should run on any other pla�orm that 
 supports Python 3.6+ and NumPy[23]. 
 We can install it by running this command  :  pip install  gensim 

 In this project we use gensim to train wor2vec , FastText and doc2vec models for 
 genera�ng  vector representa�on of  addresses  and calculate  the similarity. 

 The figure below shows a basic  syntax of impor�ng  and training gensim models 

 Figure 4.4  :  Gensim training models example 

 NLTK : Natural language processing Tool-kit 

 NLTK is a leading pla�orm for building python programs to work with human language 
 data. It provides a suite of text processing u�li�es for classifica�on, tokeniza�on, stemming, 
 tagging, parsing .. etc. 
 In this project we use NLTK to preprocess our address dataset and in par�cular to tokenize 
 data before passing it to models. 

 The figure 4.5  shows a basic  syntax of tokenisa�on addresses with NLTK 
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 Figure 4.5  : NLTK tokeniza�on example usage 

 Sentence Transformers 

 SentenceTransformers is a Python framework  for state-of-the-art sentence, text and image 
 embeddings. It can be used to compute sentence / text embeddings for more than 100 
 languages. These embeddings can then be compared e.g. with cosine-similarity to find 
 sentences with a similar meaning. This can be useful for seman�c textual  similar, seman�c 
 research or paraphase mining [24]. 

 Sentence Transformers can be installed by running this command: 
 pip install -U sentence-transformers 

 It recommended to have python 3.6 or higher, and at least Pytorch 1.3.6 remain that 
 sentence-transformers are based on Pytorch and transformers. 

 In this project we use sentence transformers for implemen�ng  the BERT model. The figure 
 shows  an example of sentence-transformers implemen�ng a BERT model 

 Figure 4.6  : Example Usage Sentence-Transformers 
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 4.2 Implementa�on 

 4.2.1 Data descrip�on and preprocessing 
 From the data crea�on process above we generate this present data on which  one we will 

 build our word  and sentence embedding models and evaluate performance. 

 Figure 4.7  : Created dataset 

 Before star�ng work with the data let’s check  missing  values and make various 
 descrip�ons through graphics and sta�s�cs. 

 Figure  4.8  : missing values and registers  numbers 
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 As we can see the dataset doesn’t present  missing values, so we don’t need to apply a 
 technique to fill out missing values. Our next step  is to take a look at the variable nvia : 
 “nombre de via “. 

 The  figure 4.9 shows  the count word of nvia  in each address  row. 

 Figure 4.9  : nvia word count 

 Once we have for each nvia the number of words we can represent the distribu�on graphic of words 

 Figure 4.10  : distribu�on word count of nvia variable 
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 In our last part of descrip�ng data we will show the most used words of the variables nvia 
 and  tvia on addresses. The words that appear the most are the higher dimensions the most 
 and vice versa. 

 Figure 4.11  :  Most commonly  used word on addresses (nvia) 
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 Figure 4.12  :  Most commonly  used word on addresses (tvia) 

 Once  we understand the data the next step is preprocessing, firstly we  format addresses. 
 In principle an address is an concentena�on of the variables tvia, nvia, nume, codmun and 
 nommun but we have to remember that we are working with data from one municipality 
 (Santa Brígida). It means that all our addresses have the same value on the variable 
 codmun(35021) and  nommun (Santa Brígida). That’s why it will be necessary to remove 
 them from the address in order to  get the root of an address. 
 So, we are going to create a address column without  the two variables cited above 
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 Figure 4.13  : Crea�on of new address column 

 Now we have address data  almost ready to be trained but for some models like wor2vec 
 and fas�ext it’s preferable to pass them the data in a certain format that’s why we will 
 tokenize the data before the training phase. 

 Figure 4.14  : Tokeniza�on addresses 

 4.2.2 Modelling 

 In NLP instead of always training your own model it is recommended in some cases to use 
 pre-trained models.The advantage of these models is that they have been trained in a larger 
 corpus of words so they gain in maturity. We can find these models in differents public 
 repositories or research publica�ons.In this project, in addi�on to our own trained we a 
 word2vec , fastext  and BERT pre-trained model for the Spanish language 

 As already men�oned, in this project we work with wor2vec, fastText, doc2vec and BERT 
 model. For word2vec and fastText, first we train our own model and second we load 
 pre-trained models. In the case of doc2vec we also train our own model but for BERT we 
 load a spanish  BERT model. 
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 ➢  word2vec 
 Train model 

 A word2vec model uses a set of parameters that affect both the training speed and the 
 quality. During our training phase we adjust the parameters several �mes in order to have a 
 good model. The figure below shows the way to train the model. 

 Figure  4.15  : Training wor2vec  model 

 It’s important to no�ce that word2vec sets some parameters by  default,  in our case  we 
 use the CBOW variant which  is the default variant implemented by wor2vec. The model 
 receives the dataset in the right format as the first parameter here this last one is  data  which 
 is the result of our tokenized addresses. The parameters  min_count  is for ignoring the word 
 that does not appear a certain number of �mes in the corpus. By default the value is 5  but 
 this can pose a problem in our case that’s why  we put the minimum value 1. The  size 
 determines  the number of dimensions (N) of the N-dimensional space that gensim 
 Word2Vec maps the words onto; we chose a 100-dimensional space. The  workers 
 parameters determine the number of cores to use for the training. It takes effect when we 
 set it to 1. If we put another value we have to install some tool like Cytron. 

 Load pretrained  Model 
 To use a pre trained  word2vec model we just need to download the corresponding  model 

 In most cases they are in vector or bin format and we can find a lot of pre-trained model 
 from the communi�es or IT companies  like Facebook , Google …etc 
 In this project we use a pre-trained word2vec for Spanish Language [25], the figure below 
 the code to execute for loading this model. 

 Figure 4.16  : Loading word2vec  pre-trained model 
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 ➢  FastText 

 Train Model 

 Like word2vec , fastText model uses a set of parameters that affect both the training speed 
 and the quality  .  We train the fastText  model  in  the same way we did with wor2vec 
 The model receives the dataset in the right format as the first parameter here this last one is 
 data  which is the result of our tokenized addresses.  The parameters  min_count  is for 
 ignoring the word  that does not appear a certain number of �mes in the corpus. 
 The  size  determines  the number of dimensions (N)  of the N-dimensional space that gensim 
 Word2Vec maps the words onto;  we chose a 100-dimensional space. The  workers 
 parameters determine the number of cores to use for the training. 

 Figure 4.17  :  Training word2vec  model 

 Load Model 

 For the pre-trained fasText model [26], depending on the format that we have downloaded 
 the model (vec or bin) there is a way to load it. In our case we download  a  pre-trained 
 model for Spanish language  in vector format because the bin format  needs complex 
 transforma�ons. 

 Figure 4.18  : Loading  FastText  pre-trained model 
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 ➢  doc2vec 

 The process of training  a doc2vec model is similar to word2vec but here we have some 
 addi�onal steps. Below we have the step to train  the model 

 Model ini�aliza�on 

 Figure 4.19 :  Ini�alise  doc2vec model 
 The parameters  vector_size  and  min_count  represent  the same as on wor2vec and 

 fastText  but here we use addi�onal parameters  epochs  for  se�ng the number of itera�on 
 over the corpus into 10. 

 Tagged documents 

 Figure 4.20  :  tagged  document 

 Different to wor2vec where the model directly receives  addresses(documents)  in a 
 format of  list of  addresses ( addr variable in figure 4.20 ). A tag has been added to each 
 address (document) before passing to the model for building vocabulary and  training . 
 The vocabulary is  just a list of all of the unique words extracted from the training corpus. 

 Training model 

 Figure 4.21  : Training doc2vec  model 
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 ➢  BERT 

 In this project we will use a BERT model for Spanish language [27]. Below we have the 
 steps to follow : 

 Install and import Transformers 

 Figure 4.22  :  Installing and loading Transformer 

 Load the model 

 Figure 4.23  : Loading BERT model 
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 4.2.3 Vectoriza�on and similarity calculs 

 Once we have the trained and pre-trained  models we can vectorize each  address in the 
 dataset and  calculate the similari�es in order to classify into matched and not matched. 
 For word2vec and FastTex we cannot directly get the vector representa�on of a whole 
 address, we have a vector per word, so we  will  average  the word  vectors. 
 The func�on below  will receive  a list of addresses and a model to generate the 
 corresponding  vector representa�on of each address . 

 Figure 4.24 :  Func�on for genera�ng  vector per document(address) 

 Figure 4.25 :  Applying the func�on  with the trained wor2vec model 
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 We can see the corresponding vector of the  address : CAMINO TEJAR 28 

 Figure 4.26  :  Vector representa�on  of an address  with word2vec 

 With doc2vec and BERT we directly generate the vector  representa�on of the whole 
 address. 

 In order to  measure the similarity between  addresses we  evaluate the cosine  similarity 
 between  their  represented vectors. However, we will introduce a heatmap to represent the 
 similari�es. 

 Beforehand we will define two func�ons respec�vely for similari�es calcula�ons  and 
 heatmap crea�on 

 Figure 4.27  :  func�on  for similari�es calcula�ons 

 49 



 Máster Universitario en Ciberseguridad e Inteligencia de los datos 

 Figure 4.28  :  Func�on  for heatmaps crea�on 

 The figure 4.29 represents the heatmap  of  the  similarity between addresses using our 
 trained word2vec model . 
 The graphics for each models is available in the appendices  6.1 

 Figure 4.29  Heatmap of similarity  using  wor2vec trained model 
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 4.3  Results 
 In order  to compare the models  we will define, as discussed in chapter 3, a procedure for 
 performance evalua�on similar to those applied in machine learning classifica�on 
 algorithms. A confusion matrix is defined and the metrics accuracy, precision and recall are 
 evaluated. 
 The func�on in the figure 4.30  shows the different steps for crea�ng  the confusion matrix 

 Figure 4.30  func�on  for  creating confusion matrix 

 The func�on receives as parameters  address vectors and the list of  address uuids. 
 The func�on process by calcula�ng the cosine similarity between addresses one by one and 
 comparing the result with the fixed threshold  (0.9 ). The threshold has been fixed to this 
 value a�er tes�ng the performance of the models with several values between 0.7, 0.8 and 
 0.9 . 
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 The table 4.2 resume the results : 

 Model  Accuracy  Precision  Recall 

 Trained wor2vec  0.675  0.023  0.93 

 Pre-trained wor2vec  0.789  0.034  0.92 

 Trained FastText  0.552  0.017  0.94 

 Pre-trained FastText  0.976  0.233  0.848 

 Trained doc2vec  0.996  0.694  0.848 

 BERT  0.997  0.80  0.848 

 Tabla 4.2  : Results resuming 
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 In general the model trained with address dataset presents acceptable performance. In 
 the case of pre-trained models only  BERT is giving acceptable results. The accuracy obtained 
 with word2vec and fastText is very low, taking a high value of recall.  This means that these 
 models predict as “match” addresses that “no match” (precision), however, they predict as 
 “match” addresses that match (recall). On the other hand, doc2vec outperforms the two 
 previous models and finally, the results obtained with BERT improves the performance 
 reaching promising values. 

 Doc2vec with BERT form  the most performing models, the trained word2vec and fastText 
 present almost the  same results while their pre-trained  fail to perform. 
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 Chapter 5 : Conclusions  and future development 

 5.1  Conclusions 

 In this project we  explore the use  of machine  learning techniques in the field of address 
 matching.I n par�cular, with addresses in text-based format, we introduce natural language 
 processing approaches and generate numerical representa�ons for each pair of addresses. 

 In order to  generate numerical representa�ons of addresses  we  study several word and 
 sentence  embedding models  such as wor2vec , fastText , doc2vec and BERT. 
 In a first �me we train these models with real address datasets from ISTAC [1], in a second 
 �me we use pre-trained models for the Spanish language pre-trained  by other communi�es 
 and with a large corpus of data. 

 We introduce  the cosine similarity as a metric  for resolving address records into match 
 and not match and finally evaluate the performances. 

 The specific studies during this project show  great poten�al  for the use of  machine 
 learning and NLP in the field of address matching  but it's really important in the 
 implementa�on processes to accurate data and choose the right models. 

 The results obtained lead us to the conclusion that it is promising  to solve the address 
 matching problem through the similarity of the vectors that generate the language models. 
 They also reveal the need for models generated with large numbers of documents, in our 
 tests the guarantees are offered by the BERT model for the Spanish used, but they also 
 suggest that genera�ng a doc2vec model with a much larger volume of addresses can lead to 
 good system performance. 
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 5.2  Future developments 

 ➢  This study has been restricted  to the municipality of Santa Brigida, but in future 
 works, with more available  resources, we plan to  extend it into all municipali�es of 
 the Canary Islands in order to confirm our generic method. 

 ➢  As we did with the different models comparing their performance  using cosine 
 similarity it should be realised as a comparison, a study based on  the different 
 similarity metrics such as euclidean distance,  levenshtein distance ….etc 

 ➢  In the case of having a dataset with a great pool of varia�ons for each address,  it 
 should consider  each pool of addresses as a machine learning classifica�on problem. 
 In this case, we will use machine learning classifica�on algorithms like XGBoost, 
 random forest ….etc 

 ➢  Generate language models with the data for all Canary Islands addresses in the 
 Canary Islands Integrated Data System 

 ➢  Explore algorithms to improve efficiency in the comparison of the similarity of all 
 addresses in order to extend the results to datasets that include a significant volume 
 of addresses, for example for the whole of the Canary Islands. 
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 Chapter 6 : Appendices 

 6.1  Dataset crea�on  code source 

 At the following Colab notebook we have the python code to created the dataset that will 
 be use  in the project 

 Google  Colab Link 

 6.2  Project code  source 

 Below is a link to the project on Google Collaboratory where you can view and test the 
 Python code that has been shown throughout this project. 

 Google  colab Link 

 6.3  Data sources 

 At the following link we have a shared  google drive folder that contains all the data files  in 
 csv format used for this project.We can find the “Santabrigida.csv” file  used for crea�ng the 
 base dataset “muestra.csv”. 

 Google  drive Link 

 6.4  Pre-trained models 

 At the following link we have a shared  google drive folder that contains all the pre-trained 
 models used on this project. 

 Google drive Link 
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