
 Máster Universitario en Ciberseguridad e Inteligencia de Datos

 Trabajo de Fin de Máster

 Machine learning and NLP
 approaches in address matching

 Lamine SYNE

 La Laguna, 7 de sep�embre del 2022

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 D. Isabel Sánchez Berriel , con N.I.F. 42.885.838-S profesora Contratada Doctora adscrita al
 Departamento de Ingeniería Informá�ca y de Sistemas de la Universidad de La Laguna, como
 tutora

 D. Luz Marina Moreno de Antonio , con N.I.F. 45.457.492-Q profesora Contratada Doctora
 adscrita al Departamento de Ingeniería Informá�ca y de Sistemas de la Universidad de La
 Laguna, como cotutora

 C E R T I F I C A (N)

 Que la presente memoria �tulada:
 “Machine learning and NLP approaches in address matching”

 Ha sido realizada bajo su dirección por D. Lamine SYNE , con N.I.F. Y- 90 77 440 -K.

 Y para que así conste, en cumplimiento de la legislación vigente y a los efectos
 oportunos firman la presente en La Laguna a 7 sep�embre del 2022

 1

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 Acknowledgments

 I would like to thank my tutors Isabel Sanchez Berriel and Luz Marina Moreno de
 Antonio for their supervision and guidance throughout this project.

 I would like to thank the director of the master of Cybersecurity and Data Intelligence master
 at La Laguna University, Pino Caballero Gil for her precious help during the year.

 Finally, I would like to thank the Canary Government for giving me the chance to live this
 experience through the PBCA program.

 2

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 Licence

 ©This work is licensed under a Crea�ve Commons
 A�ribu�on-ShareAlike 4.0 Interna�onal.

 3

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 Abstract

 The object of this project is to explore machine learning and NLP poten�al to the
 address matching sub-field of geographic informa�on science. To achieve this a deep
 study about word and sentence embeddings models was made, how they work and
 how they can be used to generate numerical representa�ons of an address.

 For each word or sentence embedding model we generate vector representa�on of
 addresses in the database and calculate the cosine similarity between them in order
 to know which ones represent the same geographic posi�on or not.

 On the other hand we introduce the confusion matrix for evalua�ng performance of
 each model on a dataset of already matched addresses created from ISTAC [1] data
 sources and make a comparison study between the models.

 Finally, a use case example will be shown by choosing the most performing model
 among those one studied above. This last one can be a debut for building a powerful
 tool for matching address pairs in all Canary Islands.

 Key words : machine learning, NLP, language model, address matching, word
 embedding, similarity

 4

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 List of Figures 7

 List of Tables 10

 Chapter 1 : Introduc�on 11
 1.1 Backgrounds 12
 1.2 Objec�ves 13
 1.3 Scope 13

 Chapter 2 : State of the art 14
 2.1 Address matching Challenges 14
 2.2 Introduc�on to natural language processing 16

 2.2.1 Terminologies 16
 2.2.2 Text preprocessing in NLP 17
 2.2.3 Syntac�c and seman�c analysis 18

 2.3 Word and sentence embedding techniques 18
 2.3.1 Word embeddings 18

 2.3.1.1 One-Hot Encoding & Bag of words 18
 2.3.1.2 Term Frequency-Inverse Document Frequency : TF-IDF 19
 2.3.1.3 Word2Vec 20
 2.3.1.4 FastText 23

 2.3.2 Sentence embeddings 24
 2.3.2.1 Doc2vec 24
 2.3.2.2 BERT : Bidirec�onal Encoder Representa�ons from Transformers 26

 2.4 Text Similarity and measures 27

 Chapter 3 : Methodology 31
 3-1 Process defini�on 31
 3.2 Implementa�on planning 33

 Chapter 4 : Development 35
 4.1 Dataset Crea�on 35
 4.2 Libraries: Gensim, NLTK and Sentence Transformers 37
 4.2 Implementa�on 39

 4.2.1 Data descrip�on and preprocessing 39

 5

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 4.2.2 Modelling 43
 4.2.3 Vectoriza�on and similarity calculs 48

 4.3 Results 51

 Chapter 5 : Conclusions and future development 54
 5.1 Conclusions 54
 5.2 Future developments 55

 Chapter 6 : Appendices 56
 6.1 Dataset crea�on code source 56
 6.2 Project code source 56
 6.3 Data sources 56
 6.4 Pre-trained models 56

 Bibliography 57

 6

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 List of Figures

 Figure 2.1 : CBOW & Skip-Gram model ………………………………………………………………20

 Figure 2.2 : CBOW model with one word in the context……………………………………..21

 Figure 2.3 : CBOW model with mul�ple words in the context……………………………..22

 Figure 2.4 : Skip-Gram model using target words…………………………………………………22

 Figure 2.5 : Doc2vec Distributed Memory model………………………………………………..24

 Figure 2.6 : Doc2vec distributed bag of words model…………………………………………..25

 Figure 2.7 : BERT mask LM………………………………………………………………………………… 26

 Figure 2.8 : pre-training and fine-tuning procedures for BERT……………………………..27

 Figure 2.9 : Jaccard distance on two sets……………………………………………………………28

 Figure 2.10 : Euclidean distance representa�on………………………………………………….29

 Figure 2.11 Levenshtein distance formula…………………………………………………………30

 Figure 2.12 : angle of vectors ……………………………………………………………….30 θ 𝑣 , 𝑤 ()

 Figure 3.1 : Project process………………………………………………………………………………….32

 Figure 4.1 : Dataset registers………………………………………………………………………………35

 Figure 4.2 : selec�ng columns forming an address at Santabrigida………………………36

 Figure 4.4 : Gensim training models example……………………………………………………….37

 Figure 4.5 : NLTK tokeniza�on example usage………………………………………………………38

 7

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 Figure 4.6 : Example Usage Sentence-Transformers………………………………………………38

 Figure 4.7 : created dataset……………………………………………………………………………………39

 Figure 4.8 : missing values and registers numbers…………………………………………………39

 Figure 4.9 : nvia word count…………………………………………………………………………………..40

 Figure 4.10 : distribu�on word count of nvia variable………………………………………………40

 Figure 4.11 : Most commonly used word on addresses (nvia)....................................41

 Figure 4.12 : Most commonly used word on addresses (tvia).....................................42

 Figure 4.13 : Crea�on of new address column………………………………………………………….42

 Figure 4.14 : Tokeniza�on addresses…………………………………………………………………………43

 Figure 4.15 : Training wor2vec model………………………………………………………………………44

 Figure 4.16 : Loading word2vec pre-trained model………………………………………………….44

 Figure 4.17 : Training word2vec model…………………………………………………………………….45

 Figure 4.18 : Loading FastText pre-trained model…………………………………………………….45

 Figure 4.19 : Ini�alise doc2vec model……………………………………………………………………..46

 Figure 4.20 : tagged document……………………………………………………………………………….46

 Figure 4.21 : Training doc2vec model……………………………………………………………………..46

 Figure 4.22 : Installing and loading Transformer………………………………………………………47

 Figure 4.23 : Loading BERT model……………………………………………………………….……………47

 Figure 4.24 : func�on for genera�ng vector per document(address)...........................48

 8

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 Figure 4.25 : applying the func�on with the trained wor2vec model……………….…48

 Figure 4.26 : Vector representa�on of an address with word2vec……………………49

 Figure 4.27 : func�on for similari�es calcula�ons……………………………………………..49

 Figure 4.28 : func�on for heatmaps crea�on……………………………………………………50

 Figure 4.29 Heatmap of similarity using wor2vec trained model……………………..50

 Figure 4.30 func�on for crea�ng confusion matrix……………………………………………51

 9

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 List of Tables

 Tabla 2.1 : Address matching most common input errors ………………………………….14

 Tabla 2.2 : input address vs reference data to match………………………………………….15

 Tabla 2.3 : One-Hot Encoding illustra�on…………………………………………………………….19

 Tabla 2.4 : Bag of words illustra�on……………………………………………………………………...19

 Tabla 2.5 : Calcula�on of TF (“Calle”,d1,D) & TF-ID F(“Calle”,d1,D)..........................20

 Table 3.1 : Implementa�on planning………………………………………………………………….34

 Table 4.1 : Columns descrip�ons (spanish)..36

 Tabla 4.2 : Results resuming……………………………………………………………………………….52

 10

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 Chapter 1 : Introduc�on

 Address matching, the process of assigning physical loca�on coordinates to addresses in
 databases, becomes a core func�on in various loca�on-based businesses like take-out
 services, express delivery, customers merging, fraud iden�fica�on, lead outreach etc.
 This makes the need to match two lists of addresses a common occurrence in many
 companies, organisa�ons and government bodies.

 In par�cular, the ISTAC [1] in their objec�ve to facilitate the obtaining of spa�al sta�s�cs,
 as well as the produc�on of mul�-source sta�s�cs through the Integrated Data System of
 Canary Islands Sta�cal Plan 2018-202 , is georeferencing informa�on from different sources
 in the geosta�s�cal reference of Canary Islands.
 A database covering all the georeferenced municipali�es of the Canary Islands is used,
 however the periodical update of the data, as well as the integra�on of new sources of
 informa�on into the system requires to match addresses of each registry with the set of
 those that have already been georeferenced.

 However, address matching is an extremely complicated task resul�ng in a number of
 challenges such as: address component types, noisy databases, inconsistent and replete with
 missing values on databases, input error made by users, text-based type … etc.

 Despite the importance of matching addresses in the above-men�oned sectors we
 no�ce a great lack of open robust solu�ons. Recent innova�ons in machine learning,
 par�cularly in natural language processing (NLP), have been introduced in the wider area of
 address matching with significant poten�al.

 In this project, we will focus on bringing solu�ons about ISTAC’s [1] address matching
 problems exposed above, with machine learning and NLP techniques.

 11

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 1.1 Backgrounds

 During years , in the specific field of address matching, notable research has been
 achieved for resolving address records into “matched” and “not matched”. In par�cular there
 has been advanced research into quan�ta�ve methods for determining the extent of
 matching between pairs of text-based records, with numerous string-similarity measures
 developed, including Levenshtein and Jaro-Winkler.

 By contrast a group of researchers developed the concept of ‘similarity join’, whereby two
 databases are tested by each combina�on of record pairs against a similarity measure
 func�on, with those pairs that exceed a preset threshold being recorded. They
 acknowledged that despite the availability of numerous similarity or ‘distance’ func�ons, no
 one measure excels in every applica�on [2].

 The ISTAC [1], in their georeferencing works[22], uses a technique based on Record
 Linkage that consists of comparing normalised addresses with other records that have
 already been geo-referenced. Currently, they use the R package “RecordLinkage” to evaluate
 similari�es and assign a weight indica�ng the similarity between the compared records.

 The research reported in [4], [2] shows that machine-learning techniques can be used to
 either enhance or replace the tradi�onal rule-based solu�ons that are commonly applied to
 address matching .

 In the first paper [4] it’s about two par�cular innova�ons into the address matching
 workflow: condi�onal random fields (CRFs) and word (address) embedding.
 The second paper [2] introduces a framework called Post Match, the related work is a
 combina�on of the open source library “Libpostal” for address-parsing with a post-parse
 process and the Jaro-Winkler edit distance algorithm together with XGBoost machine
 learning classifica�on.

 In both cases there is an applica�on of bi-class algorithms for several �mes a bi-class
 algorithm to decide whether one address matches or not to another. This, applied for each
 address with respect to the reference address pool, makes the problem very computa�onally
 expensive.

 12

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 1.2 Objec�ves

 The main objec�ves of this project are :

 ➢ Study of machine learning approaches into the field of address matching
 ➢ Study of natural language processing: text analysis and word embeddings
 ➢ Implement differents models for numerical representa�on of text-based data and

 introduce a metric to evaluate them
 ➢ Apply those models to ISTAC’s address datasets and make a compara�ve study
 ➢ Build a tool able to resolve address pairs into match and non-match using text

 similarity

 1.3 Scope

 Due to the lack of power resources caused by the difficulty of processing address
 components and the �me reserved for this work we have to set some limita�ons .
 We will focus only on the addresses of Santa Brígida Municipality located in Gran Canaria
 where we have a register of 3600 unique addresses (SantaBrigidareferencia set) and another
 register of 16024 (SantaBrigida set) that have unique addresses with varia�ons of them. For
 example, below we have a collec�on of addresses, of which number 1 belongs to
 SantaBrigidareferencia and 1,2,3,4 are in SantaBrigida with 2,3,4 as varia�ons of 1 .

 1. CAMINO ACEQUIA TAFIRA 6 SANTA BRIGIDA
 2. CAMINO ACEQUIA TAFIRA MADROÑAL 4 SANTA BRIGIDA
 3. CALLE CAMINO ACEQUIA TAFIRA 4 SANTA BRIGIDA
 4. CALLE ACEQUIA TAFIRA 15 SANTA BRIGIDA

 13

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 Chapter 2 : State of the art

 2.1 Address matching Challenges

 One of the biggest unstructured data points is an address, this makes address matching
 a downstream challenge. Here are the most likely issues we will run into while trying to
 match addresses:

 ➢ Input errors made by users :
 In many cases, addresses are input incorrectly by users, including misspellings, missing

 spaces, incorrect labels (“CALLE” vs “AVENIDA”), abbrevia�on formats (“C/” and “AV”),
 synonyms, and more. All of these make it difficult to have standardised data within a single
 database, let alone across mul�ple databases.

 The following table show the most common input errors:

 Input Error Example

 Misspelling 29 CALE NAVA

 Miss Space 29CALLE Nava

 Incorrect label 29 AVENIDA Nava

 abbrevia�on 29 C/ Nava

 tokeniza�on Nava CALLE 29

 Tabla 2.1 : Address matching most common input errors

 While these errors may seem easy to no�ce at a glance, it is very challenging to program a
 system to iden�fy each difference. More than that, it requires significant computa�onal
 power, and will take a lot of �me to process. These errors can lead to significant errors when
 a�emp�ng to perform address matching, as the records will not match.

 14

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 ➢ Problem to link two datasets together

 For all the reasons discussed above, some�mes we can face difficul�es to relate two
 addresses and to connect datasets. When this occurs, we end up with the following
 dispari�es between our records :

 Input address string Reference data to match against (AddressBase)

 Unstructured text Structured, tokenized

 Messy, containing typos, etc. Complete & correct (more or less)

 Incomplete Snapshot of addresses at a given �me

 Range from historic to very recent
 addresses, including businesses

 Organisa�on/business names are not always
 part of the address. Changes due to the
 Historical Memory Law and other reasons

 Tabla 2.2 : Input address vs reference data to match [5]

 As we can see, the task of matching addresses becomes complicated when we have to
 compare records that are o�en forma�ed and input differently. Because of this, it makes the
 simple task of matching addresses much more complicated than predicted.
 In real business loca�on based these issues with linking datasets will cause major issues
 with your workflow, slowing up your business and causing errors in delivery, billing, and
 more [5]

 ➢ Data preprocessing Failing

 One of the most common problems in address matching is data preprocessing. In many
 cases we fail to correctly preprocess our data. However this step is very important and
 having cleaning data before processing is essen�al for ge�ng quality results.

 ➢ Require of significant computa�onal power processing algorithms
 The automa�za�on of the address matching process through programs s�ll requires a

 large amount of computa�onal power and �me to run. During the process various
 comparisons and calcula�ons are made. When conven�onal techniques are used, based on
 similarity between the strings, each character needs to be compared, and they need to be
 processed one at a �me. Data o�en needs to be preprocessed beforehand as well.

 15

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 2.2 Introduc�on to natural language processing

 Natural language processing (NLP) is a subfield of Ar�ficial Intelligence that uses
 algorithms to interpret and manipulate human language. The goal is to make a computer
 able to understand human language processing and content (text, document ..) in the same
 way humans can.
 NLP can be used in many fields such as speech recogni�on, knowledge representa�on, text
 classifica�on … etc [6],[7]

 2.2.1 Terminologies

 Corpus
 A corpus is a large, structured set of machine-readable texts produced in a natural

 communica�ve se�ng. If we have a bunch of sentences in our dataset, all the sentences will
 come into the corpus, and the corpus would be like a paragraph with a mixture of sentences.
 We just have to know that Corpus is a collec�on of documents. In our case of study the
 corresponding corpus is a set of addresses [7].
 Documents

 It is a unique text different from the corpus. If we have 100 sentences, each sentence is a
 document. Mathema�cal Representa�on of Documents is Vector [7]. In this project we will
 consider each address as a document.
 Vocabulary

 Vocabulary is the collec�on of unique words involved in the corpus. Let’s take this
 following example:

 sentence 1 = CALLE NAVA Y GRIMÓN
 sentence 2 = CALLE EL HAMBRE
 Vocabulary = { CALLE, NAVA ,Y, GRIMÓN, EL, HAMBRE }

 Words
 All the words in the corpus .Let’s take the previous example

 sentence 1 = CALLE NAVA Y GRIMÓN
 sentence 2 = CALLE El HAMBRE
 words = { CALLE, NAVA, Y, GRIMÓN, CALLE, EL, HAMBRE }

 N-gram
 In the field of computa�onal linguis�cs, an n-gram is a con�nuous sequence of n items

 from a given sample of text or speech [8]. For this given address: CALLE NAVA Y GRIMON, we
 have:

 1-gram set: CALLE, NAVA, Y, GRIMON
 2-gram set: CALLE NAVA, NAVA Y, Y GRIMON

 16

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 Char N-gram

 Character n-grams are found in text documents by represen�ng the document as a
 sequence of characters. These n-grams are then extracted from this sequence in order to
 extract features through a trained model [9]. For this given address: CALLE NAVA Y GRIMON,
 we have:

 Char 1-gram set: C,A, L, L, E, N, A, V, A, Y, G, R, I, M, O, N
 Char 2-gram set: CA, AL, LL, LE, EN, NA, …

 2.2.2 Text preprocessing in NLP

 Generally, in natural language preprocessing we have specific techniques for
 preprocessing and understanding texts. But this depends on the problem we are resolving
 or the type of text. For example, when we deal with sen�ment analysis based on social
 media content it’s important to analyse emo�cons and emojis. It has usually been treated as
 a classifica�on problem etc. Let’s describe the key steps of processing text in NLP :

 Preprocessing
 ➢ Removal of Noise, URLs, Hashtag and User-men�ons
 ➢ Lowercasing
 ➢ Replacing Emo�cons and Emojis
 ➢ Replacing elongated characters
 ➢ Correc�on of Spellings
 ➢ Removing the Punctua�on
 ➢ …etc

 Stemming
 Stemming is the technique to replace and remove the suffixes and affixes to get the root,

 base or stem word. We may find similar words in the corpus but with different spellings like
 having, have, etc. All those are similar in meaning, so to make them into a base word, we use
 a concept called stemming, which converts words to their base word [7]

 Lemma�za�on
 Lemma�za�on is a technique similar to stemming. In stemming root words may or may

 not have the meaning, but in lemma�za�on, root word surely would have a meaning, it uses
 linguis�c knowledge to transform words into their base forms [7].

 17

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 Parsing
 Parsing refers to the formal analysis of a sentence by a computer into its cons�tuents,

 which results in a parse tree showing their syntac�c rela�on to one another in visual form,
 which can be used for further processing and understanding [6].

 2.2.3 Syntac�c and seman�c analysis

 Syntac�c analysis (syntax) and seman�c analysis (seman�c) are the two primary
 techniques that lead to the understanding of natural language. Language is a set of valid
 sentences but, what makes a sentence valid?: syntax and seman�cs.

 Syntax is the gramma�cal structure of a text whereas seman�c is the meaning being
 conveyed. A sentence that is syntac�cally correct, however, is not always seman�cally
 correct [6].

 2.3 Word and sentence embedding techniques
 A�er processing text data the next step is to extract features. To achieve this goal we have to
 use some techniques for represen�ng text into vectors, so computers can understand the
 corpus easily. Those are word and sentence embedding techniques.

 2.3.1 Word embeddings
 In natural language processing (NLP), word embedding is a term used for the

 representa�on of words for text analysis, typically in the form of a real-valued vector that
 encodes the meaning of the word such that the words that are closer in the vector space are
 expected to be similar in meaning [10]. Word embeddings can be obtained using various
 methods, let’s deep dive into those methods.

 2.3.1.1 One-Hot Encoding & Bag of words

 One-Hot Encoding and Bag of Words form part of the most straigh�orward way to
 numerically represent words.
 For One-Hot Encoding , the idea is to create a vector with the size of the total number of
 unique words in the corpus. Each unique word has a unique feature and will be represented
 by a 1 with 0s everywhere else. In the case of Bag of words representa�on (also called
 count vectorizing [11]), each word is represented by its count instead of 1 [12]. Let’s look at
 an easy example to understand the concepts previously explained. We could be interested in
 analysing the tables 2.3 and 2.4:

 18

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 word Calle Nava ….. …… …. Word n

 Calle 1 0 0 0 …. 0

 Nava 0 1 0 0 …… 0

 Tabla 2.3 : One-Hot Encoding illustra�on

 Address Calle Nava y Grimon el Hambre

 1 1 1 1 1 0 0

 2 1 0 0 0 1 1

 Tabla 2.4 : Bag of words illustra�on

 2.3.1.2 Term Frequency-Inverse Document Frequency : TF-IDF

 TF-IDF is a sta�s�cal measure that evaluates how relevant a word is to a document in a
 collec�on of documents. This is done by mul�plying two metrics: how many �mes a word
 appears in a document (TF), and the inverse document (IDF) of the word across a set of
 documents [9]. IDF has been used to penalise very commonly used words that do not
 provide seman�c informa�on, such as ar�cles, preposi�ons, etc.

 The TF-IDF value of a term t in a given document d from a set of documents D is :

 𝑇𝐹 − 𝐼𝐷𝐹 𝑡 , 𝑑 , 𝐷 () = 𝑇𝐹 𝑡 , 𝐷 () × 𝐼𝐷𝐹 𝑡 , 𝐷 ()

 Where is the term count within the document and 𝑇𝐹 𝑡 , 𝐷 ()
 , is document count across the corpus and is 𝐼𝐷𝐹 𝑡 , 𝐷 () = 𝑙𝑜𝑔 𝐷

{ 𝑑 ϵ 𝐷 : 𝑡 ϵ 𝐷 }() { 𝑑 ϵ 𝐷 : 𝑡 ϵ 𝐷 } 𝐷

 corpus cardinal.

 Let’s calculate in the following :. 𝑇𝐹 − 𝐼𝐷𝐹 " 𝐶𝑎𝑙𝑙𝑒 " { 𝑑
 1
, 𝑑

 2
}, 𝐷 ()

 Address 1 (d1) : Calle Nava y Grimon
 Address 2 (d2) : Calle el Hambre
 Corpus D = [Address 1, Address 2]

 19

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 document TF IDF TF-IDF

 d1 1
 4 𝑙𝑜𝑔 2

 1 () 1
 4 × 𝑙𝑜𝑔 2

 1 ()
 d2 1

 4 𝑙𝑜𝑔 2
 1 () 1

 3 × 𝑙𝑜𝑔 2
 1 ()

 Tabla 2.5 : Calcula�on of 𝑇𝐹 − 𝐼𝐷𝐹 " 𝐶𝑎𝑙𝑙𝑒 " { 𝑑
 1
, 𝑑

 2
}, 𝐷 ()

 2.3.1.3 Word2Vec

 Word2vec is one of the most popular technique to learn word embeddings based on
 neural network .The neural network aim to predict the distribu�on of word contexts in the
 corpus and simultaneously learn the word representa�on. A 𝑝 𝑤 | 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 𝑜𝑓 𝑤 ()
 single-layer neural network with a linear ac�va�on func�on is used, the contexts are
 represented by a succession of previous words of the window size chosen: 𝑛 ()
 𝑝 𝑤

 𝑖
 | 𝑤

 𝑖 − 𝑛
, 𝑤

 𝑖 − 𝑛 + 1
 , ..., 𝑤

 𝑖 − 1 ()
 We have the representa�on of the words in a con�nuous mul�dimensional number

 space, words with similar contexts will be next to each other in the new space. It takes as
 input the text corpus and outputs a set of feature vectors that represent words in that
 corpus. It uses two neural network-based methods :

 ➢ Con�nuous Bag Of Words (CBOW)
 ➢ Skip-Gram

 Figure 2.1 : CBOW & Skip-Gram model [13]

 20

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 The CBOW Model takes the context of each word as the input and tries to predict the

 word corresponding to the context. Here, context simply means the surrounding words .

 Skip-Gram uses the target word, the word we want to generate the representa�on for, to
 predict the context. In the process of predic�ng the context words, the model learns the
 vector representa�on of the target word .

 Figure 2.2 : CBOW model with one word in the context [12]

 Considering the following address : Address : “Plaza de la paz”

 Let’s say we use the word ‘Plaza’ as the input to the neural network and we are trying to
 predict the word ‘paz’. We will use the one-hot encoding of the input word ‘plaza’, then
 measure and op�mise for the output error of the target word ‘paz”.In this process of trying
 to predict the target word,this shallow network learns its vector representa�on. As the same
 way the model used a single word to predict the target, it can use mul�ple context to do the
 like the in the architecture in figure :

 21

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 Figure 2.3 : CBOW model with mul�ple words in the context [12]

 Figure 2.4 : Skip-Gram model using target words [12]

 22

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 The choice of using CBOW or Skip-Gram when training a word2vec model will depend on
 the case we intend to resolve. CBOW is be�er at learning syntac�c rela�onships between
 words while skip-gram is be�er at understanding the seman�c rela�onships. However
 Skip-gram works be�er when working with a small amount of data, focuses on seman�c
 similarity of words, and represents rare words well. On the other hand, CBOW is faster,
 focuses more on the morphological similarity of words, and needs more data to achieve
 similar performance.

 2.3.1.4 FastText

 FastText is a proposal model by Facebook AI Research(FAIR) for learning word
 embeddings and text classifica�ons. This model allows crea�ng unsupervised learning or
 supervised learning algorithms for obtaining vector representa�ons for words. FastText
 supports both CBOW and Skip-gram models.

 Fastext tries to include the morphological structure of words because this carries
 importance about the meaning and such structure is not taken into account by tradi�onal
 word embeddings like word2vec, which train unique word embedding for every individual
 word. FastText a�empts to solve this by trea�ng each word as the aggrega�on of its
 subwords. For the sake of simplicity and language-independence, subwords are taken to be
 the character n-grams of the word. The vector for a word is simply taken to be the sum of all
 vectors of its component char-ngrams [14]. For example, the fastText representa�on of the
 word “CALLE” when using 3-grams corresponds to the collec�on of trigrams of the string
 <CALLE>: <CA, CAL, ALL, LLE, LE>.

 The algorithm always starts the string of each word with "<" and ends them with ">". This
 representa�on helps to extract morphological informa�on from the words such as suffixes
 and prefixes. With the generated n-grams a skip-gram model is trained to create the word
 representa�ons [15].

 23

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 2.3.2 Sentence embeddings

 So far we have discussed how word embeddings represent the meaning of the words in a
 text document. But some�mes we need to go a step further and encode the meaning of the
 whole sentence to readily understand the context in which the words are used.
 A straigh�orward approach for crea�ng sentence embeddings is to use a word embedding
 model to encode all words of the given sentence and take the average of all the word
 vectors . While this provides a strong baseline, it falls short of capturing informa�on related
 to word order and other aspects of overall sentence seman�cs.

 2.3.2.1 Doc2vec
 Doc2vec is a model for crea�ng numerical representa�on of a document, it extends the

 idea of word2vec and as this last one, doc2vec has two variants :

 ➢ Distributed Memory model (IDM)

 Figure 2.5 : Doc2vec Distributed Memory model [16]

 Each word and sentence of the training corpus are one-hot encoded and stored in
 matrices D and W, respec�vely. The training process involves passing a sliding window over
 the sentence, trying to predict the next word based on the previous words and the sentence
 vector (or Paragraph Matrix in the figure above). This predic�on of the next word is done by
 concatena�ng the sentence and word vectors and passing the result into a so�max layer.

 24

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 The sentence vectors change with sentences, while the word vectors remain the same.
 Both are updated during training.
 The inference process also involves the same sliding window approach. The difference is that
 all the vectors of the models are fixed except the sentence vector. A�er all the predic�ons of
 the next word are computed for a sentence, the sentence embedding is the resultant
 sentence vector [12].

 ➢ Distributed Bag of Words (DBOW) model

 Figure 2.6 : Doc2vec distributed bag of words model [16]

 The DBOW model ignores the word order and has a simpler architecture. Each sentence in
 the training corpus is converted into a one-hot representa�on. During training, a random
 sentence is selected from the corpus, and from the sentence, a random number of words.
 The model tries to predict these words using only the sentence ID, and the sentence vector
 is updated (Paragraph ID and paragraph matrix in the figure). During inference, a new
 sentence ID is trained with random words from the sentence. The sentence vector is
 updated in each step, and the resul�ng sentence vector is the embedding for that sentence
 [12].

 As a comparison between the two doc2vec models we can follow the direc�on of the
 authors in the original paper [16] who affirm that the DM model “is consistently be�er
 than” DBOW . However other studies [17] showed that the DBOW approach is be�er for
 more tasks. In other ways we have to know that the DM model takes into account the word
 order, the DBOW model doesn’t. Also, the DBOW model doesn’t use word vectors so the
 seman�cs of the words are not preserved.

 25

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 2.3.2.2 BERT : Bidirec�onal Encoder Representa�ons from Transformers

 BERT is a transformers-based language representa�on model pre-training developed by
 Google. It’s designed to pretrain deep bidirec�onal representa�ons from unlabeled text by
 jointly condi�oning on both le� and right context in all layers [18].

 BERT provides a way to pre-train models that consider contexts both to the right and le�
 of words using the Masked LM (MLM) technique. In BERT, MLM instead of using pre- or
 post-word sequences, the en�re sequence is used, from which a percentage of words to be
 predicted is removed. The algorithm works on pairs of sentences, once the words have been
 predicted, BERT uses the predic�on of the next sentence. This part of the algorithm predicts
 whether the second sentence is the next sentence according to the original text.
 The algorithm embeds metadata to indicate start and end of segments, separa�on between
 sentences, the masked words, etc. as can be seen in the example:

 [CLS] the [MASK] has blue spots [SEP] it rolls [MASK] the parking lot [SEP] [19]

 Figure 2.7 : BERT mask LM [19]

 26

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 Within the implementa�on of BERT we have two steps : pre-training and fine-tuning .
 During pre-training the model is trained on unlabeled data over different pre-training tasks.
 For finetuning, the BERT model is first ini�alised with the pre-trained parameters, and all of
 the parameters are fine-tuned using labelled data from the downstream tasks. Each
 downstream task has separate fine-tuned models, even though they are ini�alised with the
 same pre-trained parameters [18].

 Figure 2.8 : pre-training and fine-tuning procedures for BERT [18]

 This is just the ini�al part of BERT implementa�on and whole steps are described in the
 original paper[18] but we have to keep in mind that BERT is one of the best general
 language models and produces good results on sentence embeddings.

 2.4 Text Similarity and measures

 Similarity is the distance between two vectors where the vector dimensions represent
 the features of two objects. In simple terms, similarity is the measure of how different or
 alike two data objects are. If the distance is small, the objects are said to have a high degree
 of similarity and vice versa. Generally, it is measured in the range 0 to 1. This score in the
 range of [0, 1] is called the similarity score [12].

 27

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 As the same text similarity is how different or alike two texts or sentences are. However
 as humans it is very obvious to us that two sentences mean the same thing despite being
 wri�en in completely different formats. But algorithms and to come to that same conclusion
 we have first to solve the problem of text representa�on by conver�ng it into feature vectors
 using a suitable text embedding technique above. Once we have the text representa�on, we
 can compute the similarity score using one of the many distance/similarity measures [12].
 Let’s dive deeper into the text similarity measures .

 Jaccard Index

 Jaccard index, also known as Jaccard similarity coefficient, treats the data objects like
 sets. It is defined as the size of the intersec�on of two sets divided by the size of the union.

 In the case in figure 2.9 :

 Figure 2.9 : Jaccard distance on two sets [20]

 The jaccard distance as : 𝐽 𝐴 , 𝐵 () = 𝐴 ∩ 𝐵 | |
 𝐴 ∪ 𝐵 | | = 𝐴 ∩ 𝐵 | |

 𝐴 | |+ 𝐵 | |− 𝐴 ∩ 𝐵 | |

 28

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 Euclidean Distance

 Euclidean distance, or L2 norm, uses the Pythagoras theorem to calculate the distance
 between two points as indicated in the figure 2.10. Generally speaking, when people talk
 about distance, they refer to Euclidean distance. It below :

 Figure 2.10 : Euclidean distance representa�on [12]

 The larger the distance d between two vectors, the lower the similarity score and vice
 versa .The distances can vary from 0 to infinity, we need to use some way to normalise them
 to the range of 0 to 1.

 Although we have our typical normalisa�on formula that uses mean and standard
 devia�on, it is sensi�ve to outliers. That means if there are a few extremely large distances,
 every other distance will become smaller as a consequence of the normalisa�on opera�on.

 So the best op�on here is to use something like the Euler’s constant [12]. 1

 𝑒 𝑑 ()
 Levenshtein distance

 The Levenshtein distance is a string metric for measuring the difference between two
 sequences. Informally, the Levenshtein distance between two words is the minimum number
 of single-character edits (i.e. inser�ons, dele�ons or subs�tu�ons) required to change one
 word into the other [21].

 29

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 Mathema�cally, the Levenshtein distance between two strings a, b (of length |a| and |b|
 respec�vely) is given by the formula below:

 Figure 2.11 Levenshtein distance formula [21]

 Cosine Similarity

 Cosine Similarity computes the similarity of two vectors as the cosine of the angle between
 two vectors. It determines whether two vectors are poin�ng in roughly the same direc�on.
 So if the angle between the vectors is 0 degrees, then the cosine similarity is 1 [12].

 Figure 2.12 : angle of vectors [12] θ 𝑣 , 𝑤 ()

 It is given as : . Where represents the length of the vector , 𝑐𝑜𝑠 𝑣 , 𝑤 () = 𝑣 • 𝑤
 𝑣 | || |× 𝑤 | || |

 𝑣 | || | 𝑣

 represents the length of the vector and ‘ ’ denotes the dot product operator. 𝑤 | || | 𝑤 •

 30

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 Chapter 3 : Methodology

 In order to achieve the objec�ves set for the realisa�on of this project it's necessary to
 find the right methodologies.
 Several mee�ngs were held with the tutor and the co-tutor. At first an explana�on of the
 topic was made, secondly we defined the process and the necessary tasks to achieve for
 producing results. During the development of the project we frequently held mee�ngs for
 checking tasks progression, raising doubts and verifying that the steps taken were the right
 ones. The main idea is that at each review the project should show some evolu�on with
 respect to the previous check, which is in line with the Scrum planning model.

 3-1 Process defini�on
 In the ar�cles studied ([2], [4]), they apply machine learning techniques over two

 sub-tasks : address normalisa�on and address classifica�on into matched and not matched.
 For each address to be georeference (or match) they generate a classifica�on problem for

 each of the addresses that serve as a reference in this case.

 During our inves�ga�ons in order to find machine learning opportuni�es in the address
 matching field a lot of approaches were tested but the most promising one remains the use
 of word or sentence embedding coupled to text similarity measure.

 Our proposal in this work consists of determining the similarity of each address with the
 reference addresses through the embeddings generated using the different algorithms
 exposed above. We consider an exis�ng matching between two addresses when the
 similarity in the representa�on space exceeds a threshold.

 Our approach is to measure the distances between addresses, but by using language
 models, complex rela�onships in words such as seman�cs and morphology are considered
 and not only similari�es at the character level.

 However, there are different techniques of word embedding, so our process will naturally
 be in the first �me a study of each one, in a second �me implement them using address
 dataset and finally make a prac�cal comparison.
 In other hands, we define a performance evalua�on procedure similar to those applied in
 machine learning classifica�on,we set a confusion matrix and evaluate the metrics accuracy,
 precision and recall .

 31

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 The figures 3.1 shows the key steps of our work process

 Figure 3.1 : Project process

 As shown in the figure we firstly generated address embeddings for each model
 Wor2vec, Fastext, Doc2vec and BERT, and secondly classify addresses into match or no
 match through the similarity. Finally we evaluate the performance of each model in the
 objec�ve to make a comparison.

 32

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 Similarity

 A�er ge�ng the vector representa�on(embedding) of each address we introduce the
 cosine similarity as a measure of the similarity between addresses.

 Classifica�on

 For classifying addresses into matched or no matched we will compare the result of the
 similarity calcula�on to a fixed threshold value.

 Performance Evalua�on

 Our ini�al dataset provides the status of matching for addresses by an iden�fica�on
 number(uuid_idt) so a classical method would be the use of a machine learning
 classifica�on algorithm and extract the performance. But a lack of varia�on on our dataset
 mo�vates us to do a manual evalua�on calcula�ng true posi�ves, false posi�ves, true
 nega�ve and false nega�ve from classifica�on results and known status of addresses

 3.2 Implementa�on planning

 In order to correctly implement the defined process for this project a planning was
 made the table 3.1 gives the details of needed tasks to implement en-to-end the
 drescripted process .

 33

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 Task Start date End date

 Data set crea�on 10/06/2022 14/06/2022

 Implement wor2vec
 models

 15/06/2022 17/06/2022

 Performance and
 opera�on analysis

 18/06/2022 20/06/2022

 Improvements 21/06/2022 26/06/2022

 Implement fastext models 27/06/2022 30/06/20022

 Performance and
 opera�on analysis

 1/07/2022 3/07/2022

 Implement doc2vec model 04/07/2022 9/07/2022

 Performance and
 opera�on analysis

 10/07/2022 15/07/2022

 Improvements 16/07/2022 20/07/2022

 Implement BERT model 21/07/2022 31/07/2022

 Performance and
 opera�on analysis

 1/08/2022 8/08/2022

 Improvements 9/08/2022 14/08/2022

 Comparison study 15/08/2022 28/08/2022

 Table 3.1 : Implementa�on planning

 34

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 Chapter 4 : Development

 4.1 Dataset Crea�on

 The ISTAC [1] provides a csv file with normalised and georeferenced addresses that
 currently appear in their Integrated Data System.
 The variables included in the file correspond to the different elements that make up an
 address, as well as an iden�fica�on code(uuid_idt) shared by all the addresses for which the
 matching has been posi�ve according to their algorithms. Among the variables we find
 territory codes(“códigos de territorio”), the normalised and unnormalised type of road(“�po
 de via”), the normalised and unnormalised road name(“nombre de via”), road code(“código
 de la vía”), normalised and unnormalised portal number.
 Also we can find informa�on about the technique used to generate the matching and a
 categorical variable with values: AVERAGE, HIGH or VERY_HIGH, which indicates the quality
 of the link .
 This dataset is from all the municipali�es in the Canary Islands but in our case we will
 extract a part from one municipality called Santa Brígida.We will train our models using this
 dataset of 16024 addresses in order to build word embeddings.

 Figure 4.1 : Dataset registers

 From this dataset we select relevant columns that we will need in the rest of the work

 Figure 4.2 : selec�ng columns forming an address at Santabrigida

 35

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 Column descrip�on

 uuid_idt Iden�ficador compar�do entre las
 direcciones que causan match

 tvia Tipo de vía

 nvia Nombre de vía normalizado

 numer Número de portal normalizado

 codnum Código de municipio

 nommun Nombre de municipio

 direccion Unión de los campos:
 tvia+nvia+numer+nommun, en caso de
 disponer de todos ellos

 Table 4.1 : Columns descrip�ons (spanish) [22]

 Create dataset : once we have a good sample of our dataset we can export it in csv format
 for evalua�ng performance of our models

 Figure 4.3 : Dataset crea�on

 Finally, we have the dataset “Santabrigida” (16024 addresses) that we will use to train
 our word and sentence embedding models.
 To evaluate the performance of the models and compare them, we will use the dataset
 “muestra” which is a frac�on of this dataset from “Santabrigida”.
 We make this reduc�on of the data because of a lack of resources and as exposed in chapter
 3 the performance evalua�on is very costly .

 36

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 4.2 Libraries: Gensim, NLTK and Sentence Transformers

 In addi�on to the basic libraries for data analysis we used some special libraries during
 the project with specifics roles for each one :

 Gensim
 Gensim is an open source python library for topic modelling able to train large-scale

 seman�c NLP models , represent text as vectors and find related documents.
 Gensim runs on Linux, Windows and Mac OS X, and should run on any other pla�orm that
 supports Python 3.6+ and NumPy[23].
 We can install it by running this command : pip install gensim

 In this project we use gensim to train wor2vec , FastText and doc2vec models for
 genera�ng vector representa�on of addresses and calculate the similarity.

 The figure below shows a basic syntax of impor�ng and training gensim models

 Figure 4.4 : Gensim training models example

 NLTK : Natural language processing Tool-kit

 NLTK is a leading pla�orm for building python programs to work with human language
 data. It provides a suite of text processing u�li�es for classifica�on, tokeniza�on, stemming,
 tagging, parsing .. etc.
 In this project we use NLTK to preprocess our address dataset and in par�cular to tokenize
 data before passing it to models.

 The figure 4.5 shows a basic syntax of tokenisa�on addresses with NLTK

 37

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 Figure 4.5 : NLTK tokeniza�on example usage

 Sentence Transformers

 SentenceTransformers is a Python framework for state-of-the-art sentence, text and image
 embeddings. It can be used to compute sentence / text embeddings for more than 100
 languages. These embeddings can then be compared e.g. with cosine-similarity to find
 sentences with a similar meaning. This can be useful for seman�c textual similar, seman�c
 research or paraphase mining [24].

 Sentence Transformers can be installed by running this command:
 pip install -U sentence-transformers

 It recommended to have python 3.6 or higher, and at least Pytorch 1.3.6 remain that
 sentence-transformers are based on Pytorch and transformers.

 In this project we use sentence transformers for implemen�ng the BERT model. The figure
 shows an example of sentence-transformers implemen�ng a BERT model

 Figure 4.6 : Example Usage Sentence-Transformers

 38

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 4.2 Implementa�on

 4.2.1 Data descrip�on and preprocessing
 From the data crea�on process above we generate this present data on which one we will

 build our word and sentence embedding models and evaluate performance.

 Figure 4.7 : Created dataset

 Before star�ng work with the data let’s check missing values and make various
 descrip�ons through graphics and sta�s�cs.

 Figure 4.8 : missing values and registers numbers

 39

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 As we can see the dataset doesn’t present missing values, so we don’t need to apply a
 technique to fill out missing values. Our next step is to take a look at the variable nvia :
 “nombre de via “.

 The figure 4.9 shows the count word of nvia in each address row.

 Figure 4.9 : nvia word count

 Once we have for each nvia the number of words we can represent the distribu�on graphic of words

 Figure 4.10 : distribu�on word count of nvia variable

 40

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 In our last part of descrip�ng data we will show the most used words of the variables nvia
 and tvia on addresses. The words that appear the most are the higher dimensions the most
 and vice versa.

 Figure 4.11 : Most commonly used word on addresses (nvia)

 41

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 Figure 4.12 : Most commonly used word on addresses (tvia)

 Once we understand the data the next step is preprocessing, firstly we format addresses.
 In principle an address is an concentena�on of the variables tvia, nvia, nume, codmun and
 nommun but we have to remember that we are working with data from one municipality
 (Santa Brígida). It means that all our addresses have the same value on the variable
 codmun(35021) and nommun (Santa Brígida). That’s why it will be necessary to remove
 them from the address in order to get the root of an address.
 So, we are going to create a address column without the two variables cited above

 42

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 Figure 4.13 : Crea�on of new address column

 Now we have address data almost ready to be trained but for some models like wor2vec
 and fas�ext it’s preferable to pass them the data in a certain format that’s why we will
 tokenize the data before the training phase.

 Figure 4.14 : Tokeniza�on addresses

 4.2.2 Modelling

 In NLP instead of always training your own model it is recommended in some cases to use
 pre-trained models.The advantage of these models is that they have been trained in a larger
 corpus of words so they gain in maturity. We can find these models in differents public
 repositories or research publica�ons.In this project, in addi�on to our own trained we a
 word2vec , fastext and BERT pre-trained model for the Spanish language

 As already men�oned, in this project we work with wor2vec, fastText, doc2vec and BERT
 model. For word2vec and fastText, first we train our own model and second we load
 pre-trained models. In the case of doc2vec we also train our own model but for BERT we
 load a spanish BERT model.

 43

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 ➢ word2vec
 Train model

 A word2vec model uses a set of parameters that affect both the training speed and the
 quality. During our training phase we adjust the parameters several �mes in order to have a
 good model. The figure below shows the way to train the model.

 Figure 4.15 : Training wor2vec model

 It’s important to no�ce that word2vec sets some parameters by default, in our case we
 use the CBOW variant which is the default variant implemented by wor2vec. The model
 receives the dataset in the right format as the first parameter here this last one is data which
 is the result of our tokenized addresses. The parameters min_count is for ignoring the word
 that does not appear a certain number of �mes in the corpus. By default the value is 5 but
 this can pose a problem in our case that’s why we put the minimum value 1. The size
 determines the number of dimensions (N) of the N-dimensional space that gensim
 Word2Vec maps the words onto; we chose a 100-dimensional space. The workers
 parameters determine the number of cores to use for the training. It takes effect when we
 set it to 1. If we put another value we have to install some tool like Cytron.

 Load pretrained Model
 To use a pre trained word2vec model we just need to download the corresponding model

 In most cases they are in vector or bin format and we can find a lot of pre-trained model
 from the communi�es or IT companies like Facebook , Google …etc
 In this project we use a pre-trained word2vec for Spanish Language [25], the figure below
 the code to execute for loading this model.

 Figure 4.16 : Loading word2vec pre-trained model

 44

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 ➢ FastText

 Train Model

 Like word2vec , fastText model uses a set of parameters that affect both the training speed
 and the quality . We train the fastText model in the same way we did with wor2vec
 The model receives the dataset in the right format as the first parameter here this last one is
 data which is the result of our tokenized addresses. The parameters min_count is for
 ignoring the word that does not appear a certain number of �mes in the corpus.
 The size determines the number of dimensions (N) of the N-dimensional space that gensim
 Word2Vec maps the words onto; we chose a 100-dimensional space. The workers
 parameters determine the number of cores to use for the training.

 Figure 4.17 : Training word2vec model

 Load Model

 For the pre-trained fasText model [26], depending on the format that we have downloaded
 the model (vec or bin) there is a way to load it. In our case we download a pre-trained
 model for Spanish language in vector format because the bin format needs complex
 transforma�ons.

 Figure 4.18 : Loading FastText pre-trained model

 45

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 ➢ doc2vec

 The process of training a doc2vec model is similar to word2vec but here we have some
 addi�onal steps. Below we have the step to train the model

 Model ini�aliza�on

 Figure 4.19 : Ini�alise doc2vec model
 The parameters vector_size and min_count represent the same as on wor2vec and

 fastText but here we use addi�onal parameters epochs for se�ng the number of itera�on
 over the corpus into 10.

 Tagged documents

 Figure 4.20 : tagged document

 Different to wor2vec where the model directly receives addresses(documents) in a
 format of list of addresses (addr variable in figure 4.20). A tag has been added to each
 address (document) before passing to the model for building vocabulary and training .
 The vocabulary is just a list of all of the unique words extracted from the training corpus.

 Training model

 Figure 4.21 : Training doc2vec model

 46

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 ➢ BERT

 In this project we will use a BERT model for Spanish language [27]. Below we have the
 steps to follow :

 Install and import Transformers

 Figure 4.22 : Installing and loading Transformer

 Load the model

 Figure 4.23 : Loading BERT model

 47

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 4.2.3 Vectoriza�on and similarity calculs

 Once we have the trained and pre-trained models we can vectorize each address in the
 dataset and calculate the similari�es in order to classify into matched and not matched.
 For word2vec and FastTex we cannot directly get the vector representa�on of a whole
 address, we have a vector per word, so we will average the word vectors.
 The func�on below will receive a list of addresses and a model to generate the
 corresponding vector representa�on of each address .

 Figure 4.24 : Func�on for genera�ng vector per document(address)

 Figure 4.25 : Applying the func�on with the trained wor2vec model

 48

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 We can see the corresponding vector of the address : CAMINO TEJAR 28

 Figure 4.26 : Vector representa�on of an address with word2vec

 With doc2vec and BERT we directly generate the vector representa�on of the whole
 address.

 In order to measure the similarity between addresses we evaluate the cosine similarity
 between their represented vectors. However, we will introduce a heatmap to represent the
 similari�es.

 Beforehand we will define two func�ons respec�vely for similari�es calcula�ons and
 heatmap crea�on

 Figure 4.27 : func�on for similari�es calcula�ons

 49

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 Figure 4.28 : Func�on for heatmaps crea�on

 The figure 4.29 represents the heatmap of the similarity between addresses using our
 trained word2vec model .
 The graphics for each models is available in the appendices 6.1

 Figure 4.29 Heatmap of similarity using wor2vec trained model

 50

https://colab.research.google.com/drive/1l_7ejQwxn8U3XTjgv_50l70BPFhskSiz?usp=sharing

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 4.3 Results
 In order to compare the models we will define, as discussed in chapter 3, a procedure for
 performance evalua�on similar to those applied in machine learning classifica�on
 algorithms. A confusion matrix is defined and the metrics accuracy, precision and recall are
 evaluated.
 The func�on in the figure 4.30 shows the different steps for crea�ng the confusion matrix

 Figure 4.30 func�on for creating confusion matrix

 The func�on receives as parameters address vectors and the list of address uuids.
 The func�on process by calcula�ng the cosine similarity between addresses one by one and
 comparing the result with the fixed threshold (0.9). The threshold has been fixed to this
 value a�er tes�ng the performance of the models with several values between 0.7, 0.8 and
 0.9 .

 51

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 The table 4.2 resume the results :

 Model Accuracy Precision Recall

 Trained wor2vec 0.675 0.023 0.93

 Pre-trained wor2vec 0.789 0.034 0.92

 Trained FastText 0.552 0.017 0.94

 Pre-trained FastText 0.976 0.233 0.848

 Trained doc2vec 0.996 0.694 0.848

 BERT 0.997 0.80 0.848

 Tabla 4.2 : Results resuming

 52

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 In general the model trained with address dataset presents acceptable performance. In
 the case of pre-trained models only BERT is giving acceptable results. The accuracy obtained
 with word2vec and fastText is very low, taking a high value of recall. This means that these
 models predict as “match” addresses that “no match” (precision), however, they predict as
 “match” addresses that match (recall). On the other hand, doc2vec outperforms the two
 previous models and finally, the results obtained with BERT improves the performance
 reaching promising values.

 Doc2vec with BERT form the most performing models, the trained word2vec and fastText
 present almost the same results while their pre-trained fail to perform.

 53

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 Chapter 5 : Conclusions and future development

 5.1 Conclusions

 In this project we explore the use of machine learning techniques in the field of address
 matching.I n par�cular, with addresses in text-based format, we introduce natural language
 processing approaches and generate numerical representa�ons for each pair of addresses.

 In order to generate numerical representa�ons of addresses we study several word and
 sentence embedding models such as wor2vec , fastText , doc2vec and BERT.
 In a first �me we train these models with real address datasets from ISTAC [1], in a second
 �me we use pre-trained models for the Spanish language pre-trained by other communi�es
 and with a large corpus of data.

 We introduce the cosine similarity as a metric for resolving address records into match
 and not match and finally evaluate the performances.

 The specific studies during this project show great poten�al for the use of machine
 learning and NLP in the field of address matching but it's really important in the
 implementa�on processes to accurate data and choose the right models.

 The results obtained lead us to the conclusion that it is promising to solve the address
 matching problem through the similarity of the vectors that generate the language models.
 They also reveal the need for models generated with large numbers of documents, in our
 tests the guarantees are offered by the BERT model for the Spanish used, but they also
 suggest that genera�ng a doc2vec model with a much larger volume of addresses can lead to
 good system performance.

 54

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 5.2 Future developments

 ➢ This study has been restricted to the municipality of Santa Brigida, but in future
 works, with more available resources, we plan to extend it into all municipali�es of
 the Canary Islands in order to confirm our generic method.

 ➢ As we did with the different models comparing their performance using cosine
 similarity it should be realised as a comparison, a study based on the different
 similarity metrics such as euclidean distance, levenshtein distance ….etc

 ➢ In the case of having a dataset with a great pool of varia�ons for each address, it
 should consider each pool of addresses as a machine learning classifica�on problem.
 In this case, we will use machine learning classifica�on algorithms like XGBoost,
 random forest ….etc

 ➢ Generate language models with the data for all Canary Islands addresses in the
 Canary Islands Integrated Data System

 ➢ Explore algorithms to improve efficiency in the comparison of the similarity of all
 addresses in order to extend the results to datasets that include a significant volume
 of addresses, for example for the whole of the Canary Islands.

 55

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 Chapter 6 : Appendices

 6.1 Dataset crea�on code source

 At the following Colab notebook we have the python code to created the dataset that will
 be use in the project

 Google Colab Link

 6.2 Project code source

 Below is a link to the project on Google Collaboratory where you can view and test the
 Python code that has been shown throughout this project.

 Google colab Link

 6.3 Data sources

 At the following link we have a shared google drive folder that contains all the data files in
 csv format used for this project.We can find the “Santabrigida.csv” file used for crea�ng the
 base dataset “muestra.csv”.

 Google drive Link

 6.4 Pre-trained models

 At the following link we have a shared google drive folder that contains all the pre-trained
 models used on this project.

 Google drive Link

 56

https://colab.research.google.com/drive/1Ao9hkjJM9IWtDkICtB5DqR1Zf9KilGYB?usp=sharing
https://colab.research.google.com/drive/1l_7ejQwxn8U3XTjgv_50l70BPFhskSiz?usp=sharing
https://drive.google.com/drive/folders/15QexsmiZTC7fu8kVBVpN34sy_yabCvax?usp=sharing
https://drive.google.com/drive/folders/1qZDtxAXomV6pFVVBHWkdUDnWEfosgUe9?usp=sharing

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 Bibliography

 [1] . ISTAC (Ins�tuto Canario de Estadís�ca) official website
 h�p://www.gobiernodecanarias.org/istac/

 [2] . PostMatch : A Framework for Efficient Address Matching
 Springer Nature Singapore Pte Ltd. 2021 Y.Xu et al. (Eds) : AusDM 2021, CCIS 1504,pp.
 136-151,2021.
 h�ps://doi.org/10.1007/978-981-16-8531-6_10

 [3] ISTAC Sistema-georreferenciación
 h�ps://jecas.es/wp-content/uploads/2021/11/21.4.ISTAC_Sistema-georreferenciacion.pdf

 [4] . Comber S , Arribas-Bel D. Machine learning innova�ons in address matching : A prac�cal
 comparison of wor2vec and CRFs. Transac�on in GIS . 2019;23:334-348.
 h�ps://doi.org/10.1111/tgis.12522

 [5] . The ul�mate guide to address matching (online)
 h�ps://www.placekey.io/blog

 [6]. Introduc�on to NLP
 h�ps://buil�n.com/data-science/introduc�on-nlp

 [7] . Theory behind the basics of NLP
 h�ps://www.analy�csvidhya.com/blog/2022/08/theory-behind-the-basics-of-nlp/
 [8] . Wikipedia : n-gram
 h�ps://en.wikipedia.org/wiki/N-gram

 [9] Char n-gram
 h�ps://subscrip�on.packtpub.com/book/big-data-and-business-intelligence/978178712678
 7/9/ch09lvl1sec56/character-n-grams#:~:text=An%20n%2Dgram%20is%20a,high%20quality
 %20for%20authorship%20a�ribu�on.

 [10] . Word Embedding, Wikipedia
 h�ps://en.wikipedia.org/wiki/Word_embedding

 57

http://www.gobiernodecanarias.org/istac/
https://doi.org/10.1007/978-981-16-8531-6_10
https://jecas.es/wp-content/uploads/2021/11/21.4.ISTAC_Sistema-georreferenciacion.pdf
https://onlinelibrary.wiley.com/doi/full/10.1111/tgis.12522
https://www.placekey.io/blog
https://builtin.com/data-science/introduction-nlp
https://www.analyticsvidhya.com/blog/2022/08/theory-behind-the-basics-of-nlp/
https://en.wikipedia.org/wiki/N-gram
https://subscription.packtpub.com/book/big-data-and-business-intelligence/9781787126787/9/ch09lvl1sec56/character-n-grams#:~:text=An%20n%2Dgram%20is%20a,high%20quality%20for%20authorship%20attribution.
https://subscription.packtpub.com/book/big-data-and-business-intelligence/9781787126787/9/ch09lvl1sec56/character-n-grams#:~:text=An%20n%2Dgram%20is%20a,high%20quality%20for%20authorship%20attribution.
https://subscription.packtpub.com/book/big-data-and-business-intelligence/9781787126787/9/ch09lvl1sec56/character-n-grams#:~:text=An%20n%2Dgram%20is%20a,high%20quality%20for%20authorship%20attribution.
https://en.wikipedia.org/wiki/Word_embedding

 Máster Universitario en Ciberseguridad e Inteligencia de los datos
 [11] . Countvectorizer, scikit-learn
 h�p://scikit-learn.org/stable/modules/generated/sklearn.feature_extrac�on.text.CountVect
 orizer.html

 [12] . Ul�mate guide to Text similarity with python
 h�ps://newscatcherapi.com/blog/ul�mate-guide-to-text-similarity-with-python

 [13] : Efficient Es�ma�on of Word Representa�ons in Vector Space (Research paper)
 h�ps://arxiv.org/pdf/1301.3781.pdf

 [14] Fastext Model
 h�ps://radimrehurek.com/gensim/auto_examples/tutorials/run_fas�ext.html#:~:text=The%
 20main%20principle%20behind%20fastText,embedding%20for%20every%20individual%20w
 ord.

 [15] Fastext
 h�ps://blogs.sap.com/2019/07/03/glove-and-fas�ext-two-popular-word-vector-models-in-nl
 p/

 [16] Distributed Representa�ons of Sentences and Documents (Research paper)
 h�ps://cs.stanford.edu/~quocle/paragraph_vector.pdf

 [17] An Empirical Evalua�on of doc2vec with Prac�cal Insights into Document Embedding
 Genera�on
 h�ps://arxiv.org/abs/1607.05368

 [18] BERT: Pre-training of Deep Bidirec�onal Transformers for Language Understanding
 h�ps://arxiv.org/pdf/1810.04805.pdf

 [19] BERT Explained State of the art language model for NLP
 h�ps://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b
 21a9b6270

 [20] . Jaccard Index ,Wikipedia
 h�ps://en.wikipedia.org/wiki/Jaccard_index

 [21] The Levenshtein Algorithm

 h�ps://www.cuelogic.com/blog/the-levenshtein-algorithm#:~:text=The%20Levenshtein%20
 distance%20is%20a,one%20word%20into%20the%20other.

 58

http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://newscatcherapi.com/blog/ultimate-guide-to-text-similarity-with-python
https://arxiv.org/pdf/1301.3781.pdf
https://radimrehurek.com/gensim/auto_examples/tutorials/run_fasttext.html#:~:text=The%20main%20principle%20behind%20fastText,embedding%20for%20every%20individual%20word.
https://radimrehurek.com/gensim/auto_examples/tutorials/run_fasttext.html#:~:text=The%20main%20principle%20behind%20fastText,embedding%20for%20every%20individual%20word.
https://radimrehurek.com/gensim/auto_examples/tutorials/run_fasttext.html#:~:text=The%20main%20principle%20behind%20fastText,embedding%20for%20every%20individual%20word.
https://blogs.sap.com/2019/07/03/glove-and-fasttext-two-popular-word-vector-models-in-nlp/
https://blogs.sap.com/2019/07/03/glove-and-fasttext-two-popular-word-vector-models-in-nlp/
https://cs.stanford.edu/~quocle/paragraph_vector.pdf
https://arxiv.org/abs/1607.05368
https://arxiv.org/pdf/1810.04805.pdf
https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270
https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270
https://en.wikipedia.org/wiki/Jaccard_index
https://www.cuelogic.com/blog/the-levenshtein-algorithm#:~:text=The%20Levenshtein%20distance%20is%20a,one%20word%20into%20the%20other.
https://www.cuelogic.com/blog/the-levenshtein-algorithm#:~:text=The%20Levenshtein%20distance%20is%20a,one%20word%20into%20the%20other.

 Máster Universitario en Ciberseguridad e Inteligencia de los datos

 [22] González Yanes, A., Betancor Villalba, R., Hernández García, M.S. (2021). Título. XXI
 Jornadas de Estadís�ca de las Comunidades Autónomas, JECAS. Las Palmas de Gran Canaria:
 ISTAC.
 Retrieved from h�ps://jecas.es/sistema-de-georreferenciacion-para-fines-estadis�cos/

 [23] Gensim documenta�on
 https://radimrehurek.com/gensim/

 [24] Sentence transformers Documenta�on
 h�ps://www.sbert.net

 [25] Wor2vec pretrained model for spanish language
 h�ps://github.com/aitoralmeida/spanish_word2vec

 [26] FastText pretrained Models
 h�ps://fas�ext.cc/docs/en/crawl-vectors.html

 [27] BERT Spanish Model
 h�ps://huggingface.co/hackathon-pln-es/paraphrase-spanish-dis�lroberta

 59

https://jecas.es/sistema-de-georreferenciacion-para-fines-estadisticos/
https://radimrehurek.com/gensim/
https://www.sbert.net/
https://github.com/aitoralmeida/spanish_word2vec
https://fasttext.cc/docs/en/crawl-vectors.html
https://huggingface.co/hackathon-pln-es/paraphrase-spanish-distilroberta

