Universidad
de La Laguna

Master Universitario en Ciberseguridad e Inteligencia de Datos

Trabajo de Fin de Master

Machine learning and NLP
approaches in address matching

Lamine SYNE

La Laguna, 7 de septiembre del 2022

Master Universitario en Ciberseguridad e Inteligencia de los datos

D. Isabel Sanchez Berriel, con N.I.F. 42.885.838-S profesora Contratada Doctora adscrita al
Departamento de Ingenieria Informatica y de Sistemas de la Universidad de La Laguna, como
tutora

D. Luz Marina Moreno de Antonio, con N.I.F. 45.457.492-Q profesora Contratada Doctora
adscrita al Departamento de Ingenieria Informatica y de Sistemas de la Universidad de La
Laguna, como cotutora

CERTIFICA(N)

Que la presente memoria titulada:
“Machine learning and NLP approaches in address matching”

Ha sido realizada bajo su direccién por D. Lamine SYNE, con N.I.F. Y- 90 77 440 -K.

Y para que asi conste, en cumplimiento de la legislaciéon vigente y a los efectos
oportunos firman la presente en La Laguna a 7 septiembre del 2022

Master Universitario en Ciberseguridad e Inteligencia de los datos

Acknowledgments

| would like to thank my tutors Isabel Sanchez Berriel and Luz Marina Moreno de
Antonio for their supervision and guidance throughout this project.

| would like to thank the director of the master of Cybersecurity and Data Intelligence master
at La Laguna University, Pino Caballero Gil for her precious help during the year.

Finally, | would like to thank the Canary Government for giving me the chance to live this
experience through the PBCA program.

Master Universitario en Ciberseguridad e Inteligencia de los datos

Licence

H©

©This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International.

Master Universitario en Ciberseguridad e Inteligencia de los datos

Abstract

The object of this project is to explore machine learning and NLP potential to the
address matching sub-field of geographic information science. To achieve this a deep
study about word and sentence embeddings models was made, how they work and
how they can be used to generate numerical representations of an address.

For each word or sentence embedding model we generate vector representation of
addresses in the database and calculate the cosine similarity between them in order
to know which ones represent the same geographic position or not.

On the other hand we introduce the confusion matrix for evaluating performance of
each model on a dataset of already matched addresses created from ISTAC [1] data
sources and make a comparison study between the models.

Finally, a use case example will be shown by choosing the most performing model
among those one studied above. This last one can be a debut for building a powerful
tool for matching address pairs in all Canary Islands.

Key words : machine learning, NLP, language model, address matching, word
embedding, similarity

Master Universitario en Ciberseguridad e Inteligencia de los datos

List of Figures
List of Tables

Chapter 1 : Introduction
1.1 Backgrounds
1.2 Objectives
1.3 Scope

Chapter 2 : State of the art

2.1 Address matching Challenges

2.2 Introduction to natural language processing
2.2.1 Terminologies
2.2.2 Text preprocessing in NLP
2.2.3 Syntactic and semantic analysis

2.3 Word and sentence embedding techniques
2.3.1 Word embeddings

2.3.1.1 One-Hot Encoding & Bag of words
2.3.1.2 Term Frequency-Inverse Document Frequency : TF-IDF

2.3.1.3 Word2Vec
2.3.1.4 FastText

2.3.2 Sentence embeddings
2.3.2.1 Doc2vec

2.3.2.2 BERT : Bidirectional Encoder Representations from Transformers

2.4 Text Similarity and measures

Chapter 3 : Methodology
3-1 Process definition
3.2 Implementation planning

Chapter 4 : Development
4.1 Dataset Creation

4.2 Libraries: Gensim, NLTK and Sentence Transformers

4.2 Implementation
4.2.1 Data description and preprocessing

10

11
12
13
13

14
14
16
16
17
18
18
18
18
19
20
23
24
24

27

31
31
33

35
35
37
39
39

Master Universitario en Ciberseguridad e Inteligencia de los datos

4.2.2 Modelling 43

4.2.3 Vectorization and similarity calculs 48

4.3 Results 51
Chapter 5 : Conclusions and future development 54
5.1 Conclusions 54
5.2 Future developments 55
Chapter 6 : Appendices 56
6.1 Dataset creation code source 56

6.2 Project code source 56

6.3 Data sources 56

6.4 Pre-trained models 56
Bibliography 57

Master Universitario en Ciberseguridad e Inteligencia de los datos

List of Figures

Figure 2.1 : CBOW & SKip-Gram modelcucoueeeineiececeerreetiee et erreerve s 20
Figure 2.2 : CBOW model with one word in the context........cceeeevvvevveivecceveiieenrennnns 21
Figure 2.3 : CBOW model with multiple words in the context.........cccocevvveivecernnnnns 22
Figure 2.4 : Skip-Gram model using target WOords.......cccouveeeueieinineninene e eneeeene 22
Figure 2.5 : Doc2vec Distributed Memory model........c.cccoveeveveevveiicienenre e 24
Figure 2.6 : Doc2vec distributed bag of words model...........ccccueveinivieeiveceeeceeee. 25
Figure 2.7 : BERT MaASK LIM......uceiiece ettt sttt st s s en s e nees 26
Figure 2.8 : pre-training and fine-tuning procedures for BERT.........ccccovevvrrrercvnnnns 27
Figure 2.9 : Jaccard diStance 0N tWO SELS.........ccveveevreeieciicenre e b ereeneens 28
Figure 2.10 : Euclidean distance representation.........ccccvvveiecvicsse e ecesveeeeec e, 29
Figure 2.11 Levenshtein distance formula........ccociviieienenenesnss e 30
Figure 2.12 : 0 angle of vectors (;, W) ... 30
FISUIE 3.1 : PrOjECt PrOCESS. ..uceie ettt st e et ettt et st e s et ee e se s e e e st saes 32
FIigUre 4.1 : Dataset rEZISTEIS...cciviiiicierie vttt ettt e st sa e e e e saeeeaeeereas 35
Figure 4.2 : selecting columns forming an address at Santabrigida.........ccceceeeeuenenn. 36
Figure 4.4 : Gensim training models eXample.......ccoveeiveie e e 37
Figure 4.5 : NLTK tokenization example USAge.......ccccevurereieieiieiniinineisecseese e 38

Master Universitario en Ciberseguridad e Inteligencia de los datos

Figure 4.6 : Example Usage Sentence-Transformers.........cooevevevevenevenvencenceeseienens 38
Figure 4.7 : created dataset. ...t st s e e s 39
Figure 4.8 : missing values and registers NUMbDErS.........cccvecivveve e, 39
Figure 4.9 : nVia WOrd COUNT.......ccoiiiie ettt e st st e e er s e e s 40
Figure 4.10 : distribution word count of nvia variable.........cccccoceeveveiiininnnnrceee 40
Figure 4.11 : Most commonly used word on addresses (NVia).........cccceeeecevnrrrrveeneen.. 41
Figure 4.12 : Most commonly used word on addresses (tVia).........cccceevvvvvrrrrrvvveennnnn. 42
Figure 4.13 : Creation of new address column........ccoccevirieiiciese e e 42
Figure 4.14 : TOkenization addreSSeS......ccuvivirereririeniee ettt sre e 43
Figure 4.15 : Training WOr2vec MOEl........ooeireieeceinreeticieceerte et e sae st svesneerees 44
Figure 4.16 : Loading word2vec pre-trained model.........ccoovvrrieeccnce e, 44
Figure 4.17 : Training word2vec mMOdel......cccce ittt et s eeees 45
Figure 4.18 : Loading FastText pre-trained model.........cocovvveeircinenieeeeeeeere e 45
Figure 4.19 : Initialise dOC2VEC MOEL......cccoveireieieeereeticeeecte ettt et et seeenaenes 46
Figure 4.20 : tagged dOCUMENT.......cce e ettt e st s s sr s e e e e e 46
Figure 4.21 : Training doC2VEC MOAEL...ccciiiiiieiiieiieiieiirtsr ettt s s 46
Figure 4.22 : Installing and loading Transformer.........ouvveviveevcveccecsecce e 47
Figure 4.23 : Loading BERT MOAEL.......oviiiiieeerececeieeettee ettt eereerve e s eee b sveeneens a7
Figure 4.24 : function for generating vector per document(address).........ccccccvvveeeennee 48

Master Universitario en Ciberseguridad e Inteligencia de los datos

Figure 4.25 : applying the function with the trained wor2vec model...................... 48
Figure 4.26 : Vector representation of an address with word2vec........................ 49
Figure 4.27 : function for similarities calculations.........c.cocvvevveirevvenene e, 49
Figure 4.28 : function for heatmaps creation........cceceeeeceeveeecccccece e, 50
Figure 4.29 Heatmap of similarity using wor2vec trained model.........c.cccvvuenene. 50
Figure 4.30 function for creating confusion MatriX........cccoeceveceeceeveeneeenceereeere e, 51

Master Universitario en Ciberseguridad e Inteligencia de los datos

List of Tables

Tabla 2.1: Address matching most common input errorscccceceevevveveceeceenee e, 14

Tabla 2.2 : input address vs reference data to match..........ccoeeeveinieiccein e, 15

Tabla 2.3 : One-Hot Encoding illustration.........cccoeeeeeeieiecce e 19
Tabla 2.4: Bag of words illustration..........ccceoeceeceeceneee e 19
Tabla 2.5 : Calculation of TF(“Calle”,d1,D) & TF-IDF(“Calle”,d1,D)...c...c..ccccevvverunnnns 20
Table 3.1 : Implementation PlanNiNg.......ccceceeireieieee e e e e 34
Table 4.1 : Columns descriptions (SPanish).......eeeeeeieeeeeiiiiiieiicceeeeeeeee e 36
Tabla 4.2 : RESUILS rESUMING.....ciiieeieeeiee ettt e st st sre et ees e e e st stesneenenraes 52

10

Master Universitario en Ciberseguridad e Inteligencia de los datos

Chapter 1 : Introduction

Address matching, the process of assigning physical location coordinates to addresses in
databases, becomes a core function in various location-based businesses like take-out
services, express delivery, customers merging, fraud identification, lead outreach etc.

This makes the need to match two lists of addresses a common occurrence in many
companies, organisations and government bodies.

In particular, the ISTAC [1] in their objective to facilitate the obtaining of spatial statistics,
as well as the production of multi-source statistics through the Integrated Data System of
Canary Islands Statical Plan 2018-202, is georeferencing information from different sources
in the geostatistical reference of Canary Islands.

A database covering all the georeferenced municipalities of the Canary Islands is used,

however the periodical update of the data, as well as the integration of new sources of
information into the system requires to match addresses of each registry with the set of
those that have already been georeferenced.

However, address matching is an extremely complicated task resulting in a number of
challenges such as: address component types, noisy databases, inconsistent and replete with
missing values on databases, input error made by users, text-based type ... etc.

Despite the importance of matching addresses in the above-mentioned sectors we
notice a great lack of open robust solutions. Recent innovations in machine learning,
particularly in natural language processing (NLP), have been introduced in the wider area of
address matching with significant potential.

In this project, we will focus on bringing solutions about ISTAC’s [1] address matching
problems exposed above, with machine learning and NLP techniques.

11

Master Universitario en Ciberseguridad e Inteligencia de los datos

1.1 Backgrounds

During years, in the specific field of address matching, notable research has been
achieved for resolving address records into “matched” and “not matched”. In particular there
has been advanced research into quantitative methods for determining the extent of
matching between pairs of text-based records, with numerous string-similarity measures
developed, including Levenshtein and Jaro-Winkler.

By contrast a group of researchers developed the concept of ‘similarity join’, whereby two
databases are tested by each combination of record pairs against a similarity measure
function, with those pairs that exceed a preset threshold being recorded. They
acknowledged that despite the availability of numerous similarity or ‘distance’ functions, no
one measure excels in every application [2].

The ISTAC [1], in their georeferencing works[22], uses a technique based on Record
Linkage that consists of comparing normalised addresses with other records that have
already been geo-referenced. Currently, they use the R package “RecordLinkage” to evaluate
similarities and assign a weight indicating the similarity between the compared records.

The research reported in [4], [2] shows that machine-learning techniques can be used to
either enhance or replace the traditional rule-based solutions that are commonly applied to
address matching .

In the first paper [4] it’s about two particular innovations into the address matching
workflow: conditional random fields (CRFs) and word (address) embedding.

The second paper [2] introduces a framework called Post Match, the related work is a
combination of the open source library “Libpostal” for address-parsing with a post-parse
process and the Jaro-Winkler edit distance algorithm together with XGBoost machine
learning classification.

In both cases there is an application of bi-class algorithms for several times a bi-class
algorithm to decide whether one address matches or not to another. This, applied for each
address with respect to the reference address pool, makes the problem very computationally
expensive.

12

Master Universitario en Ciberseguridad e Inteligencia de los datos

1.2 Objectives

The main objectives of this project are :

A\

Study of machine learning approaches into the field of address matching

A\

Study of natural language processing: text analysis and word embeddings

A\

Implement differents models for numerical representation of text-based data and
introduce a metric to evaluate them

Apply those models to ISTAC’s address datasets and make a comparative study
Build a tool able to resolve address pairs into match and non-match using text

A\

\

similarity
1.3 Scope

Due to the lack of power resources caused by the difficulty of processing address
components and the time reserved for this work we have to set some limitations .
We will focus only on the addresses of Santa Brigida Municipality located in Gran Canaria
where we have a register of 3600 unique addresses (SantaBrigidareferencia set) and another
register of 16024 (SantaBrigida set) that have unique addresses with variations of them. For
example, below we have a collection of addresses, of which number 1 belongs to
SantaBrigidareferencia and 1,2,3,4 are in SantaBrigida with 2,3,4 as variations of 1.

CAMINO ACEQUIA TAFIRA 6 SANTA BRIGIDA

CAMINO ACEQUIA TAFIRA MADRONAL 4 SANTA BRIGIDA
CALLE CAMINO ACEQUIA TAFIRA 4 SANTA BRIGIDA
CALLE ACEQUIA TAFIRA 15 SANTA BRIGIDA

P wnN e

13

Master Universitario en Ciberseguridad e Inteligencia de los datos

Chapter 2 : State of the art

2.1 Address matching Challenges

One of the biggest unstructured data points is an address, this makes address matching
a downstream challenge. Here are the most likely issues we will run into while trying to
match addresses:

> |Input errors made by users :

In many cases, addresses are input incorrectly by users, including misspellings, missing
spaces, incorrect labels (“CALLE” vs “AVENIDA”), abbreviation formats (“C/” and “AV”),
synonyms, and more. All of these make it difficult to have standardised data within a single
database, let alone across multiple databases.

The following table show the most common input errors:

Input Error Example
Misspelling 29 CALE NAVA
Miss Space 29CALLE Nava
Incorrect label 29 AVENIDA Nava
abbreviation 29 C/ Nava
tokenization Nava CALLE 29

Tabla 2.1 : Address matching most common input errors

While these errors may seem easy to notice at a glance, it is very challenging to program a
system to identify each difference. More than that, it requires significant computational
power, and will take a lot of time to process. These errors can lead to significant errors when
attempting to perform address matching, as the records will not match.

14

Master Universitario en Ciberseguridad e Inteligencia de los datos
> Problem to link two datasets together
For all the reasons discussed above, sometimes we can face difficulties to relate two

addresses and to connect datasets. When this occurs, we end up with the following
disparities between our records :

Input address string Reference data to match against (AddressBase)
Unstructured text Structured, tokenized

Messy, containing typos, etc. Complete & correct (more or less)

Incomplete Snapshot of addresses at a given time

Organisation/business names are not always
Range from historic to very recent part of the address. Changes due to the
addresses, including businesses Historical Memory Law and other reasons

Tabla 2.2 : Input address vs reference data to match [5]

As we can see, the task of matching addresses becomes complicated when we have to
compare records that are often formatted and input differently. Because of this, it makes the
simple task of matching addresses much more complicated than predicted.

In real business location based these issues with linking datasets will cause major issues
with your workflow, slowing up your business and causing errors in delivery, billing, and
more [5]

> Data preprocessing Failing

One of the most common problems in address matching is data preprocessing. In many
cases we fail to correctly preprocess our data. However this step is very important and
having cleaning data before processing is essential for getting quality results.

> Require of significant computational power processing algorithms

The automatization of the address matching process through programs still requires a
large amount of computational power and time to run. During the process various
comparisons and calculations are made. When conventional techniques are used, based on
similarity between the strings, each character needs to be compared, and they need to be
processed one at a time. Data often needs to be preprocessed beforehand as well.

15

Master Universitario en Ciberseguridad e Inteligencia de los datos

2.2 Introduction to natural language processing

Natural language processing (NLP) is a subfield of Artificial Intelligence that uses
algorithms to interpret and manipulate human language. The goal is to make a computer
able to understand human language processing and content (text, document ..) in the same
way humans can.

NLP can be used in many fields such as speech recognition, knowledge representation, text
classification ... etc [6],[7]

2.2.1 Terminologies

Corpus
A corpus is a large, structured set of machine-readable texts produced in a natural
communicative setting. If we have a bunch of sentences in our dataset, all the sentences will
come into the corpus, and the corpus would be like a paragraph with a mixture of sentences.
We just have to know that Corpus is a collection of documents. In our case of study the
corresponding corpus is a set of addresses [7].
Documents
It is a unique text different from the corpus. If we have 100 sentences, each sentence is a
document. Mathematical Representation of Documents is Vector [7]. In this project we will
consider each address as a document.
Vocabulary
Vocabulary is the collection of unique words involved in the corpus. Let’s take this
following example:
sentence 1 = CALLE NAVA Y GRIMON
sentence 2 = CALLE EL HAMBRE
Vocabulary = { CALLE, NAVA Y, GRIMON, EL, HAMBRE }
Words
All the words in the corpus .Let’s take the previous example
sentence 1 = CALLE NAVA Y GRIMON
sentence 2 = CALLE El HAMBRE
words = { CALLE, NAVA, Y, GRIMON, CALLE, EL, HAMBRE }
N-gram
In the field of computational linguistics, an n-gram is a continuous sequence of n items
from a given sample of text or speech [8]. For this given address: CALLE NAVA Y GRIMON, we
have:
1-gram set: CALLE, NAVA, Y, GRIMON
2-gram set: CALLE NAVA, NAVAY, Y GRIMON

16

Master Universitario en Ciberseguridad e Inteligencia de los datos

Char N-gram

Character n-grams are found in text documents by representing the document as a
sequence of characters. These n-grams are then extracted from this sequence in order to
extract features through a trained model [9]. For this given address: CALLE NAVA Y GRIMON,
we have:

Char 1-gramset: CA,L,L,E,N,A,V,A,Y,G,R,|,M, O, N
Char 2-gram set: CA, AL, LL, LE, EN, NA, ...

2.2.2 Text preprocessing in NLP

Generally, in natural language preprocessing we have specific techniques for
preprocessing and understanding texts. But this depends on the problem we are resolving
or the type of text. For example, when we deal with sentiment analysis based on social
media content it’s important to analyse emoticons and emaojis. It has usually been treated as
a classification problem etc. Let’s describe the key steps of processing text in NLP :

Preprocessing
> Removal of Noise, URLs, Hashtag and User-mentions
Lowercasing
Replacing Emoticons and Emojis
Replacing elongated characters
Correction of Spellings
Removing the Punctuation

YYVYVYVYY

...etc

Stemming

Stemming is the technique to replace and remove the suffixes and affixes to get the root,
base or stem word. We may find similar words in the corpus but with different spellings like
having, have, etc. All those are similar in meaning, so to make them into a base word, we use
a concept called stemming, which converts words to their base word [7]

Lemmatization

Lemmatization is a technique similar to stemming. In stemming root words may or may
not have the meaning, but in lemmatization, root word surely would have a meaning, it uses
linguistic knowledge to transform words into their base forms [7].

17

Master Universitario en Ciberseguridad e Inteligencia de los datos

Parsing

Parsing refers to the formal analysis of a sentence by a computer into its constituents,
which results in a parse tree showing their syntactic relation to one another in visual form,
which can be used for further processing and understanding [6].

2.2.3 Syntactic and semantic analysis

Syntactic analysis (syntax) and semantic analysis (semantic) are the two primary
techniques that lead to the understanding of natural language. Language is a set of valid
sentences but, what makes a sentence valid?: syntax and semantics.

Syntax is the grammatical structure of a text whereas semantic is the meaning being
conveyed. A sentence that is syntactically correct, however, is not always semantically
correct [6].

2.3 Word and sentence embedding techniques

After processing text data the next step is to extract features. To achieve this goal we have to
use some techniques for representing text into vectors, so computers can understand the
corpus easily. Those are word and sentence embedding techniques.

2.3.1 Word embeddings

In natural language processing (NLP), word embedding is a term used for the
representation of words for text analysis, typically in the form of a real-valued vector that
encodes the meaning of the word such that the words that are closer in the vector space are
expected to be similar in meaning [10]. Word embeddings can be obtained using various
methods, let’s deep dive into those methods.

2.3.1.1 One-Hot Encoding & Bag of words

One-Hot Encoding and Bag of Words form part of the most straightforward way to
numerically represent words.
For One-Hot Encoding, the idea is to create a vector with the size of the total number of
unique words in the corpus. Each unique word has a unique feature and will be represented
by a 1 with Os everywhere else. In the case of Bag of words representation (also called
count vectorizing [11]), each word is represented by its count instead of 1 [12]. Let’s look at
an easy example to understand the concepts previously explained. We could be interested in
analysing the tables 2.3 and 2.4:

18

Master Universitario en Ciberseguridad e Inteligencia de los datos

word Calle Nava |... | Word n
Calle 1 0 0 0 0
Nava 0 1 0 o ... 0

Tabla 2.3 : One-Hot Encoding illustration
Address Calle Nava y Grimon el Hambre
1 1 1 1 1 0 0
2 1 0 0 0 1 1

Tabla 2.4: Bag of words illustration

2.3.1.2 Term Frequency-Inverse Document Frequency : TF-IDF

TF-IDF is a statistical measure that evaluates how relevant a word is to a document in a
collection of documents. This is done by multiplying two metrics: how many times a word
appears in a document (TF), and the inverse document (IDF) of the word across a set of
documents [9]. IDF has been used to penalise very commonly used words that do not
provide semantic information, such as articles, prepositions, etc.

The TF-IDF value of a term tin a given document d from a set of documents D is:
TF — IDF(t,d, D) = TF(t,D) X IDF(t,D)

Where TF(t, D) is the term count within the document and

IDF(t,D) = log(

{de;;tw}) ,{deD: teD}is document count across the corpus and D is

corpus cardinal.

Let’s calculate TF — IDF("Calle" {d1’ dz}' D) in the following :.

Address 1 (d1) : Calle Nava y Grimon
Address 2 (d2) : Calle el Hambre
Corpus D = [Address 1, Address 2]

19

Master Universitario en Ciberseguridad e Inteligencia de los datos

document TF IDF TF-IDF
“ + ooff) [xmfd)
§ + ool [Exw(l)

Tabla 2.5 : Calculation of TF — IDF("Calle" {d1’ dz}, D)

2.3.1.3 Word2Vec

Word2vec is one of the most popular technique to learn word embeddings based on
neural network .The neural network aim to predict the distribution of word contexts in the
corpus p(w| Context of w) and simultaneously learn the word representation. A
single-layer neural network with a linear activation function is used, the contexts are
represented by a succession of previous words of the window size (n) chosen:

p(Wilwi—n’ Wips1r ™ Wi—l)

We have the representation of the words in a continuous multidimensional number
space, words with similar contexts will be next to each other in the new space. It takes as
input the text corpus and outputs a set of feature vectors that represent words in that
corpus. It uses two neural network-based methods :

> Continuous Bag Of Words (CBOW)

> Skip-Gram
Input Projection Output Input Projection Output
W(t-2) W(t-2)
W(t-1) W(t-1)
Wit) Wi(t) —=
W(t+1) W(t+1)
W(t+2) W(t+2)
CBOW Skip-gram

Figure 2.1 : CBOW & Skip-Gram model [13]

The CBOW Model takes the context of each word as the input and tries to predict the

word corresponding to the context. Here, context simply means the surrounding words.

Master Universitario en Ciberseguridad e Inteligencia de los datos

Skip-Gram uses the target word, the word we want to generate the representation for, to

predict the context. In the process of predicting the context words, the model learns the

vector representation of the target word .

Input layer

X
X2
X3

X

X

Figure 2.2 : CBOW model with one word in the context [12]

eXeXs]

(@]

@

Hidden layer

re — !
Wi, =

Output layer

|
il

[eNeXe]

@)

O

Considering the following address : Address : “Plaza de la paz”

Yy

Let’s say we use the word ‘Plaza’ as the input to the neural network and we are trying to

predict the word ‘paz’. We will use the one-hot encoding of the input word ‘plaza’, then

measure and optimise for the output error of the target word ‘paz”.In this process of trying
to predict the target word,this shallow network learns its vector representation. As the same
way the model used a single word to predict the target, it can use multiple context to do the

like the in the architecture in figure :

21

Master Universitario en Ciberseguridad e Inteligencia de los datos

a = Softmax

HE

Jraem

|yeeR

Figure 2.3: CBOW model with multiple words in the context [12]

a = Softmax

¥y, eRY

v € B

N =]

00|

Figure 2.4 : Skip-Gram model using target words [12]

22

Master Universitario en Ciberseguridad e Inteligencia de los datos

The choice of using CBOW or Skip-Gram when training a word2vec model will depend on
the case we intend to resolve. CBOW is better at learning syntactic relationships between
words while skip-gram is better at understanding the semantic relationships. However
Skip-gram works better when working with a small amount of data, focuses on semantic
similarity of words, and represents rare words well. On the other hand, CBOW is faster,
focuses more on the morphological similarity of words, and needs more data to achieve
similar performance.

2.3.1.4 FastText

FastText is a proposal model by Facebook Al Research(FAIR) for learning word
embeddings and text classifications. This model allows creating unsupervised learning or
supervised learning algorithms for obtaining vector representations for words. FastText
supports both CBOW and Skip-gram models.

Fastext tries to include the morphological structure of words because this carries
importance about the meaning and such structure is not taken into account by traditional
word embeddings like word2vec, which train unigue word embedding for every individual
word. FastText attempts to solve this by treating each word as the aggregation of its
subwords. For the sake of simplicity and language-independence, subwords are taken to be
the character n-grams of the word. The vector for a word is simply taken to be the sum of all
vectors of its component char-ngrams [14]. For example, the fastText representation of the
word “CALLE” when using 3-grams corresponds to the collection of trigrams of the string
<CALLE>: <CA, CAL, ALL, LLE, LE>.

The algorithm always starts the string of each word with "<" and ends them with ">". This
representation helps to extract morphological information from the words such as suffixes
and prefixes. With the generated n-grams a skip-gram model is trained to create the word
representations [15].

23

Master Universitario en Ciberseguridad e Inteligencia de los datos

2.3.2 Sentence embeddings

So far we have discussed how word embeddings represent the meaning of the words in a
text document. But sometimes we need to go a step further and encode the meaning of the
whole sentence to readily understand the context in which the words are used.

A straightforward approach for creating sentence embeddings is to use a word embedding
model to encode all words of the given sentence and take the average of all the word
vectors. While this provides a strong baseline, it falls short of capturing information related
to word order and other aspects of overall sentence semantics.

2.3.2.1 Doc2vec
Doc2vec is a model for creating numerical representation of a document, it extends the
idea of word2vec and as this last one, doc2vec has two variants :

> Distributed Memory model (IDM)

Classifier m

Average/Concatenate

A

t
Paragraph Matrix----- > * W W W
| | |

Paragraph +the cat sat
id

Figure 2.5 : Doc2vec Distributed Memory model [16]

Each word and sentence of the training corpus are one-hot encoded and stored in
matrices D and W, respectively. The training process involves passing a sliding window over
the sentence, trying to predict the next word based on the previous words and the sentence
vector (or Paragraph Matrix in the figure above). This prediction of the next word is done by
concatenating the sentence and word vectors and passing the result into a softmax layer.

24

Master Universitario en Ciberseguridad e Inteligencia de los datos

The sentence vectors change with sentences, while the word vectors remain the same.
Both are updated during training.
The inference process also involves the same sliding window approach. The difference is that
all the vectors of the models are fixed except the sentence vector. After all the predictions of
the next word are computed for a sentence, the sentence embedding is the resultant
sentence vector [12].

> Distributed Bag of Words (DBOW) model

Classifier [the| | cat| |sat] |on |

Paragraph Matrix ----=---- >

Paragraph
id

Figure 2.6 : Doc2vec distributed bag of words model [16]

The DBOW model ignores the word order and has a simpler architecture. Each sentence in
the training corpus is converted into a one-hot representation. During training, a random
sentence is selected from the corpus, and from the sentence, a random number of words.
The model tries to predict these words using only the sentence ID, and the sentence vector
is updated (Paragraph ID and paragraph matrix in the figure). During inference, a new
sentence ID is trained with random words from the sentence. The sentence vector is
updated in each step, and the resulting sentence vector is the embedding for that sentence
[12].

As a comparison between the two doc2vec models we can follow the direction of the
authors in the original paper [16] who affirm that the DM model “is consistently better
than” DBOW . However other studies [17] showed that the DBOW approach is better for
more tasks. In other ways we have to know that the DM model takes into account the word
order, the DBOW model doesn’t. Also, the DBOW model doesn’t use word vectors so the
semantics of the words are not preserved.

25

Master Universitario en Ciberseguridad e Inteligencia de los datos

2.3.2.2 BERT : Bidirectional Encoder Representations from Transformers

BERT is a transformers-based language representation model pre-training developed by
Google. It’s designed to pretrain deep bidirectional representations from unlabeled text by
jointly conditioning on both left and right context in all layers [18].

BERT provides a way to pre-train models that consider contexts both to the right and left
of words using the Masked LM (MLM) technique. In BERT, MLM instead of using pre- or
post-word sequences, the entire sequence is used, from which a percentage of words to be
predicted is removed. The algorithm works on pairs of sentences, once the words have been
predicted, BERT uses the prediction of the next sentence. This part of the algorithm predicts
whether the second sentence is the next sentence according to the original text.

The algorithm embeds metadata to indicate start and end of segments, separation between
sentences, the masked words, etc. as can be seen in the example:
[CLS] the [MASK] has blue spots [SEP] it rolls [MASK] the parking lot [SEP] [19]

Embedding

w) Cws]
ovoosbs | i T i 1

softmax [

Classification Layer: Fully-connected layer + GELU + Norm]

I I T I T

Lo J (o) (o J (o J [o]

I T I

Transformer encoder

Embedding T T I T T
[

w) (] (w) (] (Cwe)
L, LooL Ll

Figure 2.7 : BERT mask LM [19]

26

Master Universitario en Ciberseguridad e Inteligencia de los datos

Within the implementation of BERT we have two steps : pre-training and fine-tuning .
During pre-training the model is trained on unlabeled data over different pre-training tasks.
For finetuning, the BERT model is first initialised with the pre-trained parameters, and all of
the parameters are fine-tuned using labelled data from the downstream tasks. Each
downstream task has separate fine-tuned models, even though they are initialised with the
same pre-trained parameters [18].

NP kLM o1 ™ I/ﬁ;,/ﬁgﬂl,.-/s’;unfﬁ s:amsndsm\,
BERT £ BERT
el [alE=lE]. & mle]. [8)[EllE]- [&

(=)o) CewlCem)() - (o) (ea)(o) - =G 69

Masked Sentence A * Masked Sentence B f | | | Quesion ' Paragraph |
\ Unlabeled Sentence A and B Pair / \\ \h-_ \\\-.,_ Question Answer Pair r/
Pre-training Fine-Tuning

Figure 2.8 : pre-training and fine-tuning procedures for BERT [18]

This is just the initial part of BERT implementation and whole steps are described in the
original paper[18] but we have to keep in mind that BERT is one of the best general
language models and produces good results on sentence embeddings.

2.4 Text Similarity and measures

Similarity is the distance between two vectors where the vector dimensions represent
the features of two objects. In simple terms, similarity is the measure of how different or
alike two data objects are. If the distance is small, the objects are said to have a high degree
of similarity and vice versa. Generally, it is measured in the range 0 to 1. This score in the
range of [0, 1] is called the similarity score [12].

27

Master Universitario en Ciberseguridad e Inteligencia de los datos

As the same text similarity is how different or alike two texts or sentences are. However
as humans it is very obvious to us that two sentences mean the same thing despite being
written in completely different formats. But algorithms and to come to that same conclusion
we have first to solve the problem of text representation by converting it into feature vectors
using a suitable text embedding technique above. Once we have the text representation, we
can compute the similarity score using one of the many distance/similarity measures [12].
Let’s dive deeper into the text similarity measures.

Jaccard Index

Jaccard index, also known as Jaccard similarity coefficient, treats the data objects like
sets. It is defined as the size of the intersection of two sets divided by the size of the union.

In the case in figure 2.9 :

Figure 2.9 : Jaccard distance on two sets [20]

l[AnB] |ANB|

The jaccard distanceas: J(A4,B) = 0B = TAIT|BI-1AnE]

28

Master Universitario en Ciberseguridad e Inteligencia de los datos

Euclidean Distance

Euclidean distance, or L2 norm, uses the Pythagoras theorem to calculate the distance
between two points as indicated in the figure 2.10. Generally speaking, when people talk
about distance, they refer to Euclidean distance. It below :

(X1,y1)1

Y-y

X1 - Xz (XQF}(Q)
Figure 2.10 : Euclidean distance representation [12]

The larger the distance d between two vectors, the lower the similarity score and vice
versa .The distances can vary from 0 to infinity, we need to use some way to normalise them
to the range of O to 1.

Although we have our typical normalisation formula that uses mean and standard
deviation, it is sensitive to outliers. That means if there are a few extremely large distances,
every other distance will become smaller as a consequence of the normalisation operation.

So the best option here is to use something like the Euler’s constant (Ld) [12].
e

Levenshtein distance

The Levenshtein distance is a string metric for measuring the difference between two
sequences. Informally, the Levenshtein distance between two words is the minimum number
of single-character edits (i.e. insertions, deletions or substitutions) required to change one
word into the other [21].

29

Master Universitario en Ciberseguridad e Inteligencia de los datos

Mathematically, the Levenshtein distance between two strings a, b (of length |a| and |b]|
respectively) is given by the formula below:

(max(z,) if min(z, 7) = 0,
o levap(i—1,7) + 1
levas(z,7) =< . . o
min { lev,, (7,7 — 1) + 1 otherwise.
\ levap(i — 1,7 — 1) + 1(g;)

Figure 2.11 Levenshtein distance formula [21]

Cosine Similarity

Cosine Similarity computes the similarity of two vectors as the cosine of the angle between
two vectors. It determines whether two vectors are pointing in roughly the same direction.
So if the angle between the vectors is 0 degrees, then the cosine similarity is 1 [12].

*'W

Figure 2.12 : 0 angle of vectors (;, %) [12]

vew

Tl Where ||;|| represents the length of the vector v,
v w

It is given as : cos(;, W) =

||W||represents the length of the vector w and ‘e’ denotes the dot product operator.

30

Master Universitario en Ciberseguridad e Inteligencia de los datos

Chapter 3 : Methodology

In order to achieve the objectives set for the realisation of this project it's necessary to
find the right methodologies.
Several meetings were held with the tutor and the co-tutor. At first an explanation of the
topic was made, secondly we defined the process and the necessary tasks to achieve for
producing results. During the development of the project we frequently held meetings for
checking tasks progression, raising doubts and verifying that the steps taken were the right
ones. The main idea is that at each review the project should show some evolution with
respect to the previous check, which is in line with the Scrum planning model.

3-1 Process definition

In the articles studied ([2], [4]), they apply machine learning techniques over two
sub-tasks : address normalisation and address classification into matched and not matched.
For each address to be georeference (or match) they generate a classification problem for
each of the addresses that serve as a reference in this case.

During our investigations in order to find machine learning opportunities in the address
matching field a lot of approaches were tested but the most promising one remains the use
of word or sentence embedding coupled to text similarity measure.

Our proposal in this work consists of determining the similarity of each address with the
reference addresses through the embeddings generated using the different algorithms
exposed above. We consider an existing matching between two addresses when the
similarity in the representation space exceeds a threshold.

Our approach is to measure the distances between addresses, but by using language
models, complex relationships in words such as semantics and morphology are considered
and not only similarities at the character level.

However, there are different techniques of word embedding, so our process will naturally
be in the first time a study of each one, in a second time implement them using address
dataset and finally make a practical comparison.

In other hands, we define a performance evaluation procedure similar to those applied in
machine learning classification,we set a confusion matrix and evaluate the metrics accuracy,
precision and recall .

31

Master Universitario en Ciberseguridad e Inteligencia de los datos

The figures 3.1 shows the key steps of our work process

Matched status
known

data processing
Apply
Embedding
models

Embeds a
document 2

__.| Performance
Evaluation

Classification

Figure 3.1 : Project process

As shown in the figure we firstly generated address embeddings for each model
Wor2vec, Fastext, Doc2vec and BERT, and secondly classify addresses into match or no
match through the similarity. Finally we evaluate the performance of each model in the
objective to make a comparison.

32

Master Universitario en Ciberseguridad e Inteligencia de los datos

Similarity

After getting the vector representation(embedding) of each address we introduce the
cosine similarity as a measure of the similarity between addresses.

Classification

For classifying addresses into matched or no matched we will compare the result of the
similarity calculation to a fixed threshold value.

Performance Evaluation

Our initial dataset provides the status of matching for addresses by an identification
number(uuid_idt) so a classical method would be the use of a machine learning
classification algorithm and extract the performance. But a lack of variation on our dataset
motivates us to do a manual evaluation calculating true positives, false positives, true
negative and false negative from classification results and known status of addresses

3.2 Implementation planning

In order to correctly implement the defined process for this project a planning was
made the table 3.1 gives the details of needed tasks to implement en-to-end the
drescripted process .

33

Master Universitario en Ciberseguridad e Inteligencia de los datos

Task Start date End date
Data set creation 10/06/2022 14/06/2022
Implement wor2vec 15/06/2022 17/06/2022
models

Performance and 18/06/2022 20/06/2022
operation analysis

Improvements 21/06/2022 26/06/2022
Implement fastext models | 27/06/2022 30/06/20022
Performance and 1/07/2022 3/07/2022
operation analysis

Implement doc2vec model | 04/07/2022 9/07/2022
Performance and 10/07/2022 15/07/2022
operation analysis

Improvements 16/07/2022 20/07/2022
Implement BERT model 21/07/2022 31/07/2022
Performance and 1/08/2022 8/08/2022
operation analysis

Improvements 9/08/2022 14/08/2022
Comparison study 15/08/2022 28/08/2022

Table 3.1 : Implementation planning

34

Master Universitario en Ciberseguridad e Inteligencia de los datos

Chapter 4 : Development

4.1 Dataset Creation

The ISTAC [1] provides a csv file with normalised and georeferenced addresses that
currently appear in their Integrated Data System.
The variables included in the file correspond to the different elements that make up an
address, as well as an identification code(uuid_idt) shared by all the addresses for which the
matching has been positive according to their algorithms. Among the variables we find
territory codes(“codigos de territorio”), the normalised and unnormalised type of road(“tipo
de via”), the normalised and unnormalised road name(“nombre de via”), road code(“cddigo
de la via”), normalised and unnormalised portal number.
Also we can find information about the technique used to generate the matching and a
categorical variable with values: AVERAGE, HIGH or VERY_HIGH, which indicates the quality
of the link .
This dataset is from all the municipalities in the Canary Islands but in our case we will
extract a part from one municipality called Santa Brigida.We will train our models using this
dataset of 16024 addresses in order to build word embeddings.

o santaBrigida = pd.read_csv('/content/sample data/direcciones_SantaBrigida.csv', sep=",")
print({santaBrigida.shape)

(16024, 24)

Figure 4.1 : Dataset registers

From this dataset we select relevant columns that we will need in the rest of the work

santaBrigida = santaBrigida[['vuid_idt',"tvia’', 'nvia’, "numer’,'codmun’, "nommun’, direccion’]]
santaBrigida.head(3)

uuid_idt tvia nvia numer codmun nommun direccion
0 6072464c-3251-11e8-b2a5-4807cf5217b3 NaN SILOS 58 0 35021 Santa Brigida SILOS 58 SANTA BRIGIDA
1 69f2a3ab-3251-11e8-bd93-480icf5217b3 CALLE TEJAR 10 35021 Santa Brigida CALLE TEJAR 10 SANTA BRIGIDA

2 6fd61eba-3251-11e8-b6de-480fcf5217b3 CALLE RASO 23 35021 SantaBrigida CALLE RASO 23 SANTA BRIGIDA

Figure 4.2 : selecting columns forming an address at Santabrigida

35

Master Universitario en Ciberseguridad e Inteligencia de los datos

Column description

uuid_idt Identificador compartido entre las
direcciones que causan match

tvia Tipo de via

nvia Nombre de via normalizado
numer Numero de portal normalizado
codnum Cdédigo de municipio

nommun Nombre de municipio
direccion Unidn de los campos:

tvia+nvia+thumer+nommun, en caso de
disponer de todos ellos

Table 4.1 : Columns descriptions (spanish) [22]

Create dataset : once we have a good sample of our dataset we can export it in csv format
for evaluating performance of our models

name="muestra’
select.to_csv('/content/sample_data/ +name+'.csv')

Figure 4.3 : Dataset creation

Finally, we have the dataset “Santabrigida” (16024 addresses) that we will use to train
our word and sentence embedding models.
To evaluate the performance of the models and compare them, we will use the dataset
“muestra” which is a fraction of this dataset from “Santabrigida”.
We make this reduction of the data because of a lack of resources and as exposed in chapter
3 the performance evaluation is very costly .

36

Master Universitario en Ciberseguridad e Inteligencia de los datos

4.2 Libraries: Gensim, NLTK and Sentence Transformers

In addition to the basic libraries for data analysis we used some special libraries during
the project with specifics roles for each one:

Gensim

Gensim is an open source python library for topic modelling able to train large-scale
semantic NLP models , represent text as vectors and find related documents.
Gensim runs on Linux, Windows and Mac OS X, and should run on any other platform that
supports Python 3.6+ and NumPy[23].
We can install it by running this command : pip install gensim

In this project we use gensim to train wor2vec, FastText and doc2vec models for
generating vector representation of addresses and calculate the similarity.

The figure below shows a basic syntax of importing and training gensim models

from gensim.models import Word2Vec,fasttext,doc2vec
addresses=["CALLE NAVA ¥ GRIMON","PLAZA DEL ADELANTO"]
model= Word2Vec(sentences=addresses, min_count=1,size= 188,workers=3, window =3)

Figure 4.4 : Gensim training models example
NLTK : Natural language processing Tool-kit
NLTK is a leading platform for building python programs to work with human language
data. It provides a suite of text processing utilities for classification, tokenization, stemming,
tagging, parsing .. etc.
In this project we use NLTK to preprocess our address dataset and in particular to tokenize

data before passing it to models.

The figure 4.5 shows a basic syntax of tokenisation addresses with NLTK

37

Master Universitario en Ciberseguridad e Inteligencia de los datos

import nltk

address = """PLAZA DEL ADELANTO """
tokens = nltk.word tokenize(address)
tokens

["PLAZA", "DEL', 'ADELANTOD']

Figure 4.5 : NLTK tokenization example usage

Sentence Transformers

SentenceTransformers is a Python framework for state-of-the-art sentence, text and image
embeddings. It can be used to compute sentence / text embeddings for more than 100
languages. These embeddings can then be compared e.g. with cosine-similarity to find
sentences with a similar meaning. This can be useful for semantic textual similar, semantic
research or paraphase mining [24].

Sentence Transformers can be installed by running this command:

pip install -U sentence-transformers

It recommended to have python 3.6 or higher, and at least Pytorch 1.3.6 remain that
sentence-transformers are based on Pytorch and transformers.

In this project we use sentence transformers for implementing the BERT model. The figure
shows an example of sentence-transformers implementing a BERT model

from sentence transformers import SentenceTransformer
model = SentenceTransformer('small bert/bert _en uncased L-4 H-512 A-8")

#0ur sentences we like to encode
sentences = ["CALLE MAVA Y GRIMON®,
"PLAZA DEL ADELENTADO']

#Sentences are encoded by calling model.encode()
embeddings = model.encode(sentences)

Figure 4.6 : Example Usage Sentence-Transformers

38

4.2 Implementation

Master Universitario en Ciberseguridad e Inteligencia de los datos

4.2.1 Data description and preprocessing

From the data creation process above we generate this present data on which one we will

build our word and sentence embedding models and evaluate performance.

uuid_idt

T4ed2308-3251-
11e5-a29c-
4807ci5217b3

28ef08aa-bdfc-4ac4d-
9a21-372fad2c7621

6a39815e7-3251-
11e8-babe-
480fcf5217b3

67ab5779-3251-
11e8-bb6f-
480fcf5217b3

6739cf67-3251-11e8-
9c16-480fcf5217h3

tvia

CAMINC

PASEQ

CALLE

CALLE

CALLE

nvia

TEJAR

GUINIGUADA

ALFEREZ VICENTE
MONZON BARBER

SAN JOSE VEGA

BUEMNAVISTA

numer

28

44

56

61

codmun

35021

35021

35021

35021

35021

Figure 4.7 : Created dataset

nommun

Santa
Brigida

Santa
Brigida

Santa
Brigida

Santa
Brigida

Santa
Brigida

direccion

CAMINO TEJAR 26
SANTA BRIGIDA

PASEQ GUINIGUADA 44
SANTA BRIGIDA

CALLE ALFEREZ
VICENTE MONZON
BARBER 10 SANTAB...

CALLE SAN JOSE VEGA
86 SANTA BRIGIDA

CALLE BUENAVISTA 61
SANTA BRIGIDA

Before starting work with the data let’s check missing values and make various

descriptions through graphics and statistics.

print
print
print
print

L

Distribution of missing walues for each variable:

index
uuid_idt
tvia

nvia

numer

codmun
nommun
direccion
DIRECC
dtype: inte4

8

mom M D D m o

Registers:

(145, 9)

"Distribution of missing values for each wariable: ")
muestra.isnull().sum())

...................... "y

"Registers: ",muestra.shape)

Figure 4.8 : missing values and registers numbers

39

Master Universitario en Ciberseguridad e Inteligencia de los datos

As we can see the dataset doesn’t present missing values, so we don’t need to apply a
technique to fill out missing values. Our next step is to take a look at the variable nvia :
“nombre de via “.

The figure 4.9 shows the count word of nvia in each address row.

nvia nvia_count

] TEJAR 1
1 GUINIGUADA 1
2 ALFEREZ VICENTE MONZON BARBER 4
3 SAN JOSE VEGA 3
4 BUENAVISTA 1

Figure 4.9 : nvia word count

Once we have for each nvia the number of words we can represent the distribution graphic of words

Figure 4.10 : distribution word count of nvia variable

40

Master Universitario en Ciberseguridad e Inteligencia de los datos

In our last part of descripting data we will show the most used words of the variables nvia

and tvia on addresses. The words that appear the most are the higher dimensions the most
and vice versa.

CAJAL wora ALISIOS
l‘,!,E'JF.En[EI{‘] TEOBALDO BARRA! WM:I-AJ I NAS T E
EﬁUESTA

i LOGOTERASFLEITA
PIUILLOGOT [ENTTSCAL
OATA LAYA AL

LAT

-

M IRLO CASSD

GUANCHE

BANDAMA
" CRUZ

PINO;@&NTOE
GAM .:Hm-.m PDRTADA“’

‘g"‘“EB{V‘O SPING 3

Figure 4.11 : Most commonly used word on addresses (nvia)

Jﬁﬁh&A

SHUMBR A

L]

2z
ER
GRAN

T
—
-
=
L
<L
o
i
]
- |
L
—
(a4
-
o
o=

E —
=
%m
)
wnr
(JJ

41

Master Universitario en Ciberseguridad e Inteligencia de los datos

COMPLEJO

AVENIDA

CARRETERA

Figure 4.12 : Most commonly used word on addresses (tvia)

Once we understand the data the next step is preprocessing, firstly we format addresses.
In principle an address is an concentenation of the variables tvia, nvia, nume, codmun and
nommun but we have to remember that we are working with data from one municipality
(Santa Brigida). It means that all our addresses have the same value on the variable
codmun(35021) and nommun (Santa Brigida). That’s why it will be necessary to remove
them from the address in order to get the root of an address.

So, we are going to create a address column without the two variables cited above

muestra = pd.read_csv('/content/sample_data/muestra.csv’, sep=",")
muestra.drop('Unnamed: @', inplace=True, axis=1)

muastral 'DIRECC']= muestral'tvia']+" " + muestra['nviz']+" " + muestral 'numer'].map(str)
muastra.head(3)

index uuid_idt tvia nvia numer codmun nommun direccion DIRECC
T4ed2308-3251-
0 10893 11e8-a29c- CAMINO TEJAR 25 35021 El?l’a::;z CA;KE?ATBE;.TGRISi CAMING TEJAR 28
4801cf521703 9

28ef08aa-bdfc-
1 134 4acd4-9a21- PASEQ GUINIGUADA 44 35021
372fad2c7621

Santa PASEO GUINIGUADA 44 PASEQ GUINIGUADA
Brigida SANTA BRIGIDA 44

42

Master Universitario en Ciberseguridad e Inteligencia de los datos

Figure 4.13 : Creation of new address column

Now we have address data almost ready to be trained but for some models like wor2vec
and fasttext it’s preferable to pass them the data in a certain format that’s why we will
tokenize the data before the training phase.

#Before training the model we have to put adresses dataset rightformat format
direcciones=datos['direccion’].to list()

data = []

iterate through each address

for 1 in direcciones:

temp = []

tokenize the address into words

for j in word_tokenize(i):
temp=[t for t in temp if len(t) » 1]
temp.append(j)

data.append(temp)
data

Figure 4.14 : Tokenization addresses

4.2.2 Modelling

In NLP instead of always training your own model it is recommended in some cases to use
pre-trained models.The advantage of these models is that they have been trained in a larger
corpus of words so they gain in maturity. We can find these models in differents public
repositories or research publications.In this project, in addition to our own trained we a
word2vec , fastext and BERT pre-trained model for the Spanish language

As already mentioned, in this project we work with wor2vec, fastText, doc2vec and BERT
model. For word2vec and fastText, first we train our own model and second we load
pre-trained models. In the case of doc2vec we also train our own model but for BERT we
load a spanish BERT model.

43

Master Universitario en Ciberseguridad e Inteligencia de los datos

> word2vec
Train model

A word2vec model uses a set of parameters that affect both the training speed and the
quality. During our training phase we adjust the parameters several times in order to have a
good model. The figure below shows the way to train the model.

#Training model
w2v_modell= Word2Vec(data, min_count=1,size= 188,workers=1)

Figure 4.15 : Training wor2vec model

It’s important to notice that word2vec sets some parameters by default, in our case we
use the CBOW variant which is the default variant implemented by wor2vec. The model
receives the dataset in the right format as the first parameter here this last one is data which
is the result of our tokenized addresses. The parameters min_count is for ignoring the word
that does not appear a certain number of times in the corpus. By default the value is 5 but
this can pose a problem in our case that’s why we put the minimum value 1. The size
determines the number of dimensions (N) of the N-dimensional space that gensim
Word2Vec maps the words onto; we chose a 100-dimensional space. The workers
parameters determine the number of cores to use for the training. It takes effect when we
set it to 1. If we put another value we have to install some tool like Cytron.

Load pretrained Model

To use a pre trained word2vec model we just need to download the corresponding model
In most cases they are in vector or bin format and we can find a lot of pre-trained model
from the communities or IT companies like Facebook , Google ...etc
In this project we use a pre-trained word2vec for Spanish Language [25], the figure below
the code to execute for loading this model.

#lLoadingg pre-trained model
w2v_model? = Word2Vec.load("/content/drive/MyDrive/models/complete model/complete.model™)

Figure 4.16 : Loading word2vec pre-trained model

44

Master Universitario en Ciberseguridad e Inteligencia de los datos

> FastText

Train Model

Like word2vec, fastText model uses a set of parameters that affect both the training speed
and the quality. We train the fastText model in the same way we did with wor2vec

The model receives the dataset in the right format as the first parameter here this last one is
data which is the result of our tokenized addresses. The parameters min_count is for
ignoring the word that does not appear a certain number of times in the corpus.

The size determines the number of dimensions (N) of the N-dimensional space that gensim
Word2Vec maps the words onto; we chose a 100-dimensional space. The workers
parameters determine the number of cores to use for the training.

#Training Model
fast Text modell = FastText(data,size=188, min_count=1 workers = 1)

Figure 4.17 : Training word2vec model

Load Model

For the pre-trained fasText model [26], depending on the format that we have downloaded
the model (vec or bin) there is a way to load it. In our case we download a pre-trained
model for Spanish language in vector format because the bin format needs complex
transformations.

fastText_model_2 = KeyedVectors.load word2vec_format("/content/drive/MyDrive/models/fastText/cc.es.388.vec")

Figure 4.18 : Loading FastText pre-trained model

45

Master Universitario en Ciberseguridad e Inteligencia de los datos

> doc2vec

The process of training a doc2vec model is similar to word2vec but here we have some
additional steps. Below we have the step to train the model

Model initialization

#initialise the model
doc2vec_model = gensim.models.doc2vec.Doc2Vec(vector size=188, min_count=1, epochs=3@)

Figure 4.19 : Initialise doc2vec model
The parameters vector_size and min_count represent the same as on wor2vec and

fastText but here we use additional parameters epochs for setting the number of iteration
over the corpus into 10.

Tagged documents

#tag Document
def tagged document{list of list of words):
for i, list of words in enumerate(list of list of words):
yield gensim.models.doc2vec.TaggedDocument(list of words, [i])
training data = list{tagged document{addr))

Figure 4.20 : tagged document

Different to wor2vec where the model directly receives addresses(documents) in a
format of list of addresses (addr variable in figure 4.20). A tag has been added to each
address (document) before passing to the model for building vocabulary and training .
The vocabulary is just a list of all of the unique words extracted from the training corpus.

Training model

#building vocabulary
doc2vec_model.build vocab(training_data)
#Train the model

doc2vec_model.train(training_data, total_examples=doc2vec_model.corpus_count, epochs=doc2vec_model.epochs)

Figure 4.21 : Training doc2vec model

46

Master Universitario en Ciberseguridad e Inteligencia de los datos

> BERT

In this project we will use a BERT model for Spanish language [27]. Below we have the
steps to follow :

Install and import Transformers

#Installing Transformers
pip install -U sentence-transformers

#lLoading Tranformers
from sentence_transformers import SentenceTranstormer

Figure 4.22 : Installing and loading Transformer

Load the model

bert_model = SentenceTransformer('hackathon-pln-es/paraphrase-spanish-distilroberta’)

Figure 4.23 : Loading BERT model

47

Master Universitario en Ciberseguridad e Inteligencia de los datos

4.2.3 Vectorization and similarity calculs

Once we have the trained and pre-trained models we can vectorize each address in the
dataset and calculate the similarities in order to classify into matched and not matched.
For word2vec and FastTex we cannot directly get the vector representation of a whole
address, we have a vector per word, so we will average the word vectors.

The function below will receive a list of addresses and a model to generate the
corresponding vector representation of each address .

def vectorize(list of docs, model):
features = []

for tokens in list of docs:
zero_vector = np.zeros(model.vector size)
vectors = []
tor token in tokens:
it token in model.wv:
try:
vectors. append(model.wv[token])
except KeyError:
continue
if wectors:
vectors = np.asarray(vectors)
avg vec = vectors.mean(axis=8)
features.append(avg vec)
glse:
features.append(zero vector)
return features

Figure 4.24 : Function for generating vector per document(address)

w2v_model 2 vectors = vectorize(datas, model=w2v model2)
print{w2v_model 2 wvectors[@])

Figure 4.25 : Applying the function with the trained wor2vec model

48

Master Universitario en Ciberseguridad e Inteligencia de los datos

We can see the corresponding vector of the address : CAMINO TEJAR 28

[2.32487175 -©.06983898 -8.28631888 -9.8776924% 8.18695737 @.14868598
8.1528792 @.11858671 -@.42816576 -@.21292373 -0.20988278 @.13287305
-8.84321728 @.1939742 #.99000326 -0.07008602 ©.008358338 -8.26867136
8.25565834 -9.81817125 -0.90040450 -0.48466762 -9.89128344 -9.837163066
9.08863494 ©.28839432 @.32198122 8.14744426 -8.235508588 -9.25148622
8.0496901 -0.11978467 87221968 -@.1887378 2.857961e5 @.e5168315
-8.1925936 8.85685646 .81226194 -8.02997833 -0.16425471 0.10806c87828
-28.82159311 -0.2e773236 .28445613 @.23826954 -8.31417975 -2.845879%4
-2.18413143 -@.88262124 2.82941994 -8.091431266 -8.13296624 @.24946253
8.11183866 ©.84785863 -0.87558734 8.6518516 -8.15613616 4.88149436
-8.19185121 @.81418037 -0.14217716 @.16204579 -8.17794545 -0.86325928
-8.23334483 -0.91964324 -8.891258 -8.89385185 -8.14677541 -8.18551373
-8.89972171 @.12538482 6.18113841 @.35786174 ©.69967774 4.89975317
@.13189876 -©.1587868% -@.85598784 0.062495185 -8.86698349 4.82773413
8.066380864 -0.86857267 -0.85382111 -8.1386314 0.80786229 4.18132483
8.18147786 -8.12549684 #.16279471 -08.18182753 6.13775833 -8.67452685
8.19163716 -8.16254686 @8.13291274 ©8.16646385] CAMINO TEJAR 28

mm®

Figure 4.26 : Vector representation of an address with word2vec

With doc2vec and BERT we directly generate the vector representation of the whole
address.

In order to measure the similarity between addresses we evaluate the cosine similarity
between their represented vectors. However, we will introduce a heatmap to represent the
similarities.

Beforehand we will define two functions respectively for similarities calculations and
heatmap creation

def calcul similarity(vects,adr):

similarity = []

for 1 in range(len(adr)):
row = []
for j in range(len(adr)):

row.append(cos_similarity(vects[i],vects[]]))

similarity.append(row)

return similarity

Figure 4.27 : function for similarities calculations

49

Master Universitario en Ciberseguridad e Inteligencia de los datos

def create_heatmap(similarity,adr,cmap = "Y1GnBu"):
labels = [headline for headline in adr]
df = pd.DataFrame(similarity)
df.columns = labels
df.index = labels
fig, ax = plt.subplots(figsize=(5,5))
sns.heatmap(df, cmap=cmap)

Figure 4.28 : Function for heatmaps creation

The figure 4.29 represents the heatmap of the similarity between addresses using our
trained word2vec model .
The graphics for each models is available in the appendices 6.1

create_heatmap(caleul similarity(w2v_model 1 vectors,addresses),addresses)

CAMING TEJAR. 28

LUGAR LOMO ESPING 77

CALLE CAMING RASO BANDAMA 33
CAMIND TEJAR 32

CARRETERA PIQUILLD AL 28
AVEMNIDA LUCHA CANARLA 11
CALLE CAMIND VINAGRERA 15
CAMING CULATA 3

CALLE CAMING OLIVOS 85
CAMING LOMO VINCD 7

CALLE LOMITO ATALAYA S
CARRETERA HOYA CHIQUITA 97
CALLE CURA NAVARRD 56
CALLE LOMO ESPING 330
LUGAR PALMERAL B

CALLE PICOTA 29 0
CARRETERA A ATALAYA 158
PLAZA PIND 7

CALLE PIND SANTO ALTO LOMO CARRION 33
CAMINDG CUESTA GRAMA 1
LUGAR CASERID ESTANCOD 17
CALLE PICASS0 17
CARRETERA SAN JOSE VEGAS 7
CARRETERA AL PIQUILLD 7
CARRETERA CASILLAS 4

10

08

- 06

- 0.4

-02

= — Ny eg e ™
go808tcLanhaFedInaos
nTeRuEUS t}=uL§uW—m =
BIgEEssishagrasrroiis
Dégﬂﬁgngmcgﬂijgﬁgoﬂ

= EEflOmME 0T o "

EoYoyEEus o, uSTT 2w
soJedzssulioseesdaucy
P} GS A" USED = q}H

£2d0pU gEEEBE¢= SUZ

Ju = q—l:lq Dl.-ld: g =
54 8 258°° 943 3 of
=% £ S=2=4 2 ==
=7 I Luz3 E 23
z W 335 i 24
= o = < () 'd:j
= Juy = G
s | = E S

3 ° 3 g

=

=

Lk

Figure 4.29 Heatmap of similarity using wor2vec trained model

50

https://colab.research.google.com/drive/1l_7ejQwxn8U3XTjgv_50l70BPFhskSiz?usp=sharing

Master Universitario en Ciberseguridad e Inteligencia de los datos

4.3 Results

In order to compare the models we will define, as discussed in chapter 3, a procedure for
performance evaluation similar to those applied in machine learning classification
algorithms. A confusion matrix is defined and the metrics accuracy, precision and recall are
evaluated.

The function in the figure 4.30 shows the different steps for creating the confusion matrix

| def MatrixConfusion(vectors,uuid):
TP=a

for k in range(len(uuid)}):
row=[]
for j in range(len(uuid)):
if{cos_similarity(vectors[k],vectors[]j])>8.
TP=TP+1
if(cos_similarity(vectors[k],vectors[j])>8.9 and wuid[k]!=uuid[j]):
FP=FP+1
if(cos_similarity(vectors[k],vectors[j])<8.2 and wuid[k]==uuid[j]):
FN=FN+1
if({cos_similarity(vectors[k],vectors[]j])<8.9 and wuid[k]!=uuid[j]):
THN=TN+1
Accuracy = (TP+TN)/(TP+FP+TH+FN)
Precision = TP/(TP+FF)
Recall=TP/{TP+FN)
F1={2*TP)/((2*TP)+FP+FN)
print("****Confusion Matrix®**#*x")

0

and wuid[k]==uuid[j]):

print{"Accuracy : ",Accuracy)
print{"Precision : ",Precision)
print{“Recall : ",Recall)

print{"F1-Score : ",F1)

I PV 09 R R

Figure 4.30 function for creating confusion matrix

The function receives as parameters address vectors and the list of address uuids.
The function process by calculating the cosine similarity between addresses one by one and
comparing the result with the fixed threshold (0.9). The threshold has been fixed to this
value after testing the performance of the models with several values between 0.7, 0.8 and
0.9.

51

Master Universitario en Ciberseguridad e Inteligencia de los datos

The table 4.2 resume the results :

Model Accuracy Precision Recall
Trained wor2vec 0.675 0.023 0.93
Pre-trained wor2vec 0.789 0.034 0.92
Trained FastText 0.552 0.017 0.94
Pre-trained FastText 0.976 0.233 0.848
Trained doc2vec 0.996 0.694 0.848
BERT 0.997 0.80 0.848

Tabla 4.2 : Results resuming

52

Master Universitario en Ciberseguridad e Inteligencia de los datos

In general the model trained with address dataset presents acceptable performance. In
the case of pre-trained models only BERT is giving acceptable results. The accuracy obtained
with word2vec and fastText is very low, taking a high value of recall. This means that these
models predict as “match” addresses that “no match” (precision), however, they predict as
“match” addresses that match (recall). On the other hand, doc2vec outperforms the two

previous models and finally, the results obtained with BERT improves the performance
reaching promising values.

Doc2vec with BERT form the most performing models, the trained word2vec and fastText
present almost the same results while their pre-trained fail to perform.

53

Master Universitario en Ciberseguridad e Inteligencia de los datos

Chapter 5 : Conclusions and future development
5.1 Conclusions

In this project we explore the use of machine learning techniques in the field of address
matching.l n particular, with addresses in text-based format, we introduce natural language
processing approaches and generate numerical representations for each pair of addresses.

In order to generate numerical representations of addresses we study several word and
sentence embedding models such as wor2vec, fastText , doc2vec and BERT.
In a first time we train these models with real address datasets from ISTAC [1], in a second
time we use pre-trained models for the Spanish language pre-trained by other communities
and with a large corpus of data.

We introduce the cosine similarity as a metric for resolving address records into match
and not match and finally evaluate the performances.

The specific studies during this project show great potential for the use of machine
learning and NLP in the field of address matching but it's really important in the
implementation processes to accurate data and choose the right models.

The results obtained lead us to the conclusion that it is promising to solve the address
matching problem through the similarity of the vectors that generate the language models.
They also reveal the need for models generated with large numbers of documents, in our
tests the guarantees are offered by the BERT model for the Spanish used, but they also
suggest that generating a doc2vec model with a much larger volume of addresses can lead to
good system performance.

54

Master Universitario en Ciberseguridad e Inteligencia de los datos

5.2 Future developments

>

This study has been restricted to the municipality of Santa Brigida, but in future
works, with more available resources, we plan to extend it into all municipalities of
the Canary Islands in order to confirm our generic method.

As we did with the different models comparing their performance using cosine
similarity it should be realised as a comparison, a study based on the different
similarity metrics such as euclidean distance, levenshtein distanceetc

In the case of having a dataset with a great pool of variations for each address, it
should consider each pool of addresses as a machine learning classification problem.
In this case, we will use machine learning classification algorithms like XGBoost,
random forestetc

Generate language models with the data for all Canary Islands addresses in the
Canary Islands Integrated Data System

Explore algorithms to improve efficiency in the comparison of the similarity of all

addresses in order to extend the results to datasets that include a significant volume
of addresses, for example for the whole of the Canary Islands.

55

Master Universitario en Ciberseguridad e Inteligencia de los datos

Chapter 6 : Appendices

6.1 Dataset creation code source

At the following Colab notebook we have the python code to created the dataset that will
be use in the project
Google Colab Link

6.2 Project code source

Below is a link to the project on Google Collaboratory where you can view and test the
Python code that has been shown throughout this project.

Google colab Link

6.3 Data sources

At the following link we have a shared google drive folder that contains all the data files in
csv format used for this project.We can find the “Santabrigida.csv” file used for creating the
base dataset “muestra.csv”.

Google drive Link

6.4 Pre-trained models

At the following link we have a shared google drive folder that contains all the pre-trained
models used on this project.

Google drive Link

56

https://colab.research.google.com/drive/1Ao9hkjJM9IWtDkICtB5DqR1Zf9KilGYB?usp=sharing
https://colab.research.google.com/drive/1l_7ejQwxn8U3XTjgv_50l70BPFhskSiz?usp=sharing
https://drive.google.com/drive/folders/15QexsmiZTC7fu8kVBVpN34sy_yabCvax?usp=sharing
https://drive.google.com/drive/folders/1qZDtxAXomV6pFVVBHWkdUDnWEfosgUe9?usp=sharing

Master Universitario en Ciberseguridad e Inteligencia de los datos

Bibliography

[1] . ISTAC (Instituto Canario de Estadistica) official website
http://www.gobiernodecanarias.org/istac/

[2]. PostMatch : A Framework for Efficient Address Matching

Springer Nature Singapore Pte Ltd. 2021 Y.Xu et al. (Eds) : AusDM 2021, CCIS 1504,pp.
136-151,2021.

https://doi.org/10.1007/978-981-16-8531-6_10

[3] ISTAC Sistema-georreferenciacion
https://jecas.es/wp-content/uploads/2021/11/21.4.1STAC Sistema-georreferenciacion.pdf

[4]. Comber S, Arribas-Bel D. Machine learning innovations in address matching : A practical
comparison of wor2vec and CRFs.Transaction in GIS . 2019;23:334-348.
https://doi.org/10.1111/tgis. 12522

[5]. The ultimate guide to address matching (online)
https://www.placekey.io/blog

[6]. Introduction to NLP
https://builtin.com/data-science/introduction-nlp

[7]. Theory behind the basics of NLP
https://www.analyticsvidhya.com/blog/2022/08/theory-behind-the-basics-of-nlp/
[8]. Wikipedia : n-gram

https://en.wikipedia.org/wiki/N-gram

[9] Char n-gram
https://subscription.packtpub.com/book/big-data-and-business-intelligence/978178712678
7/9/ch09lvllsec56/character-n-grams#:~:text=An%20n%2Dgram%20is%20a,high%20quality
%20for%20authorship%20attribution.

[10]. Word Embedding, Wikipedia
https://en.wikipedia.org/wiki/Word_embeddin

57

http://www.gobiernodecanarias.org/istac/
https://doi.org/10.1007/978-981-16-8531-6_10
https://jecas.es/wp-content/uploads/2021/11/21.4.ISTAC_Sistema-georreferenciacion.pdf
https://onlinelibrary.wiley.com/doi/full/10.1111/tgis.12522
https://www.placekey.io/blog
https://builtin.com/data-science/introduction-nlp
https://www.analyticsvidhya.com/blog/2022/08/theory-behind-the-basics-of-nlp/
https://en.wikipedia.org/wiki/N-gram
https://subscription.packtpub.com/book/big-data-and-business-intelligence/9781787126787/9/ch09lvl1sec56/character-n-grams#:~:text=An%20n%2Dgram%20is%20a,high%20quality%20for%20authorship%20attribution.
https://subscription.packtpub.com/book/big-data-and-business-intelligence/9781787126787/9/ch09lvl1sec56/character-n-grams#:~:text=An%20n%2Dgram%20is%20a,high%20quality%20for%20authorship%20attribution.
https://subscription.packtpub.com/book/big-data-and-business-intelligence/9781787126787/9/ch09lvl1sec56/character-n-grams#:~:text=An%20n%2Dgram%20is%20a,high%20quality%20for%20authorship%20attribution.
https://en.wikipedia.org/wiki/Word_embedding

Master Universitario en Ciberseguridad e Inteligencia de los datos
[11]. Countvectorizer, scikit-learn
http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVect

orizer.html

[12]. Ultimate guide to Text similarity with python
https://newscatcherapi.com/blog/ultimate-guide-to-text-similarity-with-python

[13]: Efficient Estimation of Word Representations in Vector Space (Research paper)
https://arxiv.org/pdf/1301.3781.pdf

[14] Fastext Model

https://radimrehurek.com/gensim/auto examples/tutorials/run fasttext.html#:~:text=The%
20main%20principle%20behind%20fastText,embedding%20for%20every%20individual%20w
ord.

[15] Fastext
https://blogs.sap.com/2019/07/03/glove-and-fasttext-two-popular-word-vector-models-in-nl

p/

[16] Distributed Representations of Sentences and Documents (Research paper)
https://cs.stanford.edu/~quocle/paragraph_vector.pdf

[17] An Empirical Evaluation of doc2vec with Practical Insights into Document Embedding
Generation
https://arxiv.org/abs/1607.05368

[18] BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
https://arxiv.org/pdf/1810.04805.pdf

[19] BERT Explained State of the art language model for NLP

https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b
21a9b6270

[20]. Jaccard Index Wikipedia
https://en.wikipedia.org/wiki/Jaccard_index

[21] The Levenshtein Algorithm

https://www.cuelogic.com/blog/the-levenshtein-algorithm#:~:text=The%20Levenshtein%20
distance%20is%20a,0ne%20word%20into%20the%200ther.

58

http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://newscatcherapi.com/blog/ultimate-guide-to-text-similarity-with-python
https://arxiv.org/pdf/1301.3781.pdf
https://radimrehurek.com/gensim/auto_examples/tutorials/run_fasttext.html#:~:text=The%20main%20principle%20behind%20fastText,embedding%20for%20every%20individual%20word.
https://radimrehurek.com/gensim/auto_examples/tutorials/run_fasttext.html#:~:text=The%20main%20principle%20behind%20fastText,embedding%20for%20every%20individual%20word.
https://radimrehurek.com/gensim/auto_examples/tutorials/run_fasttext.html#:~:text=The%20main%20principle%20behind%20fastText,embedding%20for%20every%20individual%20word.
https://blogs.sap.com/2019/07/03/glove-and-fasttext-two-popular-word-vector-models-in-nlp/
https://blogs.sap.com/2019/07/03/glove-and-fasttext-two-popular-word-vector-models-in-nlp/
https://cs.stanford.edu/~quocle/paragraph_vector.pdf
https://arxiv.org/abs/1607.05368
https://arxiv.org/pdf/1810.04805.pdf
https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270
https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270
https://en.wikipedia.org/wiki/Jaccard_index
https://www.cuelogic.com/blog/the-levenshtein-algorithm#:~:text=The%20Levenshtein%20distance%20is%20a,one%20word%20into%20the%20other.
https://www.cuelogic.com/blog/the-levenshtein-algorithm#:~:text=The%20Levenshtein%20distance%20is%20a,one%20word%20into%20the%20other.

Master Universitario en Ciberseguridad e Inteligencia de los datos

[22] Gonzalez Yanes, A., Betancor Villalba, R., Hernandez Garcia, M.S. (2021). Titulo. XXI
Jornadas de Estadistica de las Comunidades Auténomas, JECAS. Las Palmas de Gran Canaria:
ISTAC.

Retrieved from https://jecas.es/sistema-de-georreferenciacion-para-fines-estadisticos/

[23] Gensim documentation
https://radimrehurek.com/gensim/

[24] Sentence transformers Documentation
https://www.sbert.net

[25] Wor2vec pretrained model for spanish language
https://github.com/aitoralmeida/spanish_word2vec

[26] FastText pretrained Models
https://fasttext.cc/docs/en/crawl-vectors.html

[27] BERT Spanish Model
https://huggingface.co/hackathon-pln-es/paraphrase-spanish-distilroberta

59

https://jecas.es/sistema-de-georreferenciacion-para-fines-estadisticos/
https://radimrehurek.com/gensim/
https://www.sbert.net/
https://github.com/aitoralmeida/spanish_word2vec
https://fasttext.cc/docs/en/crawl-vectors.html
https://huggingface.co/hackathon-pln-es/paraphrase-spanish-distilroberta

