

Análisis y gestión del inventario de una empresa en el sector agroalimentario

Analysis and inventory management of a company in the agri-food industry

Juan Miguel Mendoza Cruz

Trabajo de Fin de Grado

Facultad de Ciencias

Sección de Matemáticas

Universidad de La Laguna

Dr. D. **Joaquín Sicilia Rodríguez**, con N.I.F. 42033231-H, profesor Catedrático de Universidad adscrito al Departamento de Matemáticas, Estadística e Investigación Operativa de la Universidad de La Laguna

CERTIFICA

Que la presente memoria titulada:

"Análisis y gestión del inventario de una empresa en el sector agroalimentario."

ha sido realizada bajo su dirección por D. Juan Miguel Mendoza Cruz, con N.I.F. 54.055.366-F.

Y para que así conste, en cumplimiento de la legislación vigente y a los efectos oportunos firman la presente en La Laguna a 13 de septiembre de 2016

Agradecimientos

A los responsables y directivos de la empresa que nos ofrecieron su colaboración y su valiosa ayuda.

A D. Joaquín Sicilia, tutor de este trabajo, por las horas dedicadas y la paciencia necesaria para que el trabajo se desarrollase de forma correcta y eficiente.

A mi familia, y especialmente a mi pareja, por el apoyo y los ánimos que me dieron para no abandonar durante este largo proceso.

Resumen

El uso de las matemáticas para la administración y el control de los recursos disponibles en la actividad empresarial se ha incrementado considerablemente a lo largo de los últimos años. Entre esos recursos destaca la gestión de los inventarios. Mantener un inventario para cubrir futuras ventas es algo común en la actividad comercial y representa una parte significativa de la inversión empresarial. Por tanto, la forma o manera de gestionar este elemento puede marcar la diferencia entre un buen y un mal resultado empresarial.

El objetivo de este trabajo ha consistido en aplicar a una situación real los conocimientos sobre modelos de gestión de stock adquiridos durante el estudio del Grado en Matemáticas. Para ello, se ha contactado con una empresa del sector agroalimentario, radicada en las Islas Canarias, con el fin de analizar y optimizar su política de inventario. El estudio se concreta en determinar la cantidad necesaria para reponer los stocks de dos de los productos que comercializa la empresa. Tras estudiar la demanda de cada uno de ellos, se observa que existen fluctuaciones aleatorias, las cuales no pueden controlarse con certeza, pero si podrán medirse y pronosticarse para limitar los riesgos en la toma de decisiones sobre el abastecimiento y control de los inventarios. Teniendo en cuenta que debemos trabajar con demanda aleatoria, se ha expuesto y aplicado un modelo probabilístico de gestión de stock que nos permite estudiar la evolución del inventario de los productos.

Finalmente se han comparado los resultados de nuestra política de gestión de inventarios con los datos suministrados por la empresa, viendo que la nueva política permitiría un notable ahorro en el gasto relacionado con la administración y control de los productos en stock.

Palabras clave: Inventario, gestión, optimizar, empresa, demanda.

Abstract

The use of mathematics to the management and control of resources available in business activity has increased considerably during the last years. These resources include the inventory management. Keeping an inventory for future sale is common in business and it represents an important portion of the business investment. Therefore, the way to manage this element can make the difference between a good and a bad business result.

The objective of this report has been to apply knowledge that gives us the Inventory Theory (acquired during the study of the Math Degree) to a real situation. For that, we made contact with a company in the agri-food industry, based in the Canary Islands, to analyze and optimize its inventory policy. The aim is to determine the amount needed to replenish the stocks of two of the products sold by the company. After studying the demand for each of them, we found random fluctuations. This fluctuations can not be controlled with certainty but can be measured and predicted to limit the risks in making decisions about replenishments and inventory control. Given that we work with random demand, it has exposed and implemented a probabilistic inventory management model that allows us to study the evolution of product inventory.

Finally, we have compared the results of our inventory management policy with the data provided to us by the company. Here we saw that the new policy would allow considerable savings in the expenses derived from the management of inventories.

Keywords: Inventory, probabilistic, company, optimize

Índice general

1.	Motivación y objetivos	1
2.	Fundamentos teóricos	3
	2.1. Introducción	3
	2.2. Funciones del inventario	3
	2.3. Objetivos de los modelos de gestión de inventario	4
	2.4. Elementos del inventario	4
	2.5. Políticas de inventario	5
	2.6. Algunos modelos de gestión de stock sin considerar roturas	6
	2.6.1. Sistema clásico determinístico de tamaño del lote (Modelo EOQ)	6
	2.6.2. Sistema probabilístico de periodo de gestión	8
3.	Planteamiento del problema y cálculo de los costes unitarios	12
	3.1. Descripción del problema	12
4.	Análisis de la demanda	16
	4.1. Demanda del Producto 1	16
	4.2. Demanda del Producto 2	18
5.	Resolución del problema y análisis de los resultados	21
	5.1. Aplicación del modelo. Producto 1	21
	5.2. Aplicación del modelo. Producto 2	22
	5.3. Demanda semanal	23
	5.3.1. Producto 1	23
	5.3.2. Producto 2	25
	5.4. Aplicando A(t) no constante para el Producto 1	26
	5.5. Aplicando A(t) no constante para el Producto 2	28
	5.6. Análisis de los resultados	30
6.	Conclusiones y trabajos futuros	34
Α.	Datos proporcionados por la empresa	35
	A.1. Datos de venta	35
	A.1.1. Producto 1	35

		A.1.2. Producto 2	38
	A.2.	Datos de reposición	40
		A.2.1. Producto 1	40
		A.2.2. Producto 2	41
	A.3.	Nivel de stock	42
		A.3.1. Producto 1	42
		A.3.2. Producto 2	45
в.	Dist		18
	B.1.	Distribución Gamma	48
		B.1.1. Propiedades de la distribución	48
	B.2.	Ajuste de bondad con χ^2 de Pearson	49
			51
	C.1.	Producto 1	51
	C_{2}	Producto 2	50

Capítulo 1

Motivación y objetivos

En toda empresa se pueden distinguir tres tipos de recursos: humanos, materiales y técnicos que al combinarlos constituyen el funcionamiento de la empresa. Dentro de los recursos materiales se encuentran los inventarios que representan una parte significativa de las inversiones que tienen las empresas. Mantener un inventario de artículos para cubrir una futura demanda es una maniobra casi obligatoria en la mayoría de compañías de cualquier sector. Para muchas, el mantenimiento de los stocks representan uno de los costes principales de su actividad empresarial. Además de un costo elevado y arriesgado en la inversión, hay que sumarle los gastos que genera la reposición y el almacenaje. De este modo se crea la necesidad de gestionar los inventarios de manera adecuada con el fin de satisfacer los requerimientos del departamento de producción y cubrir la demanda futura de clientes.

Aquí es donde entran en juego los modelos de gestión de stock, modelos matemáticos que intentan determinar la planificación y organización que implique el mínimo gasto, adaptándose a las diferentes condiciones que se presenten en cada situación. Fue en la asignatura de Modelos de Investigación Operativa donde descubrí la utilidad de esta rama de las matemáticas y la importancia que ésta cobra en la realidad empresarial actual. El hecho de que los conocimientos adquiridos en esta asignatura pudieran ser útiles en el ámbito comercial fue lo que me motivó a la elección de esta línea de trabajo. El interés en el mundo empresarial hizo que quisiera ver de primera mano cómo llevar la teoría a la práctica con un ejemplo real. Por ello, contactamos con una empresa muy importante en su sector, que comercializa diferentes productos en toda Canarias, buscando su colaboración con el fin de obtener los datos necesarios para poder desarrollar el trabajo. La empresa amablemente se prestó a colaborar con la condición de no revelar el nombre de la misma ni de sus productos dada la confidencialidad de los datos que nos aportaron (producción, demanda, costos organización, etc.).

En este trabajo se presentan cinco capítulos en los que estudiaremos y analizaremos las características del inventario de dos productos de la empresa, con el fin de encontrar y proponer una gestión óptima de los mismos. En el siguiente capítulo presentaremos los fundamentos teóricos, en los que basaremos el estudio. Haremos una breve introducción

sobre lo que son los modelos de gestión de inventario y desarrollaremos aquellos que, posteriormente, serán utilizados. En el tercer capítulo mostraremos las características de la empresa y plantearemos el problema a resolver. En el cuarto, estudiaremos cómo es su demanda con el fin de establecer el modelo más adecuado. Por último, obtendremos las mejores políticas de inventario tras aplicar el modelo y analizaremos los resultados obtenidos, comparándolos con los datos proporcionados por la empresa.

Capítulo 2

Fundamentos teóricos

2.1. Introducción

Se entiende por inventario un conjunto de bienes materiales que están almacenados, poseen valor económico y que son susceptibles de ser vendidos o usados en la logística de servicio. Estos bienes, son necesarios para cumplir a tiempo con la demanda, pero los costos asociados al mantenimiento y reposición de los mismos pueden ser elevados. El objetivo de la teoría de inventarios es realizar una gestión adecuada, formulando un modelo matemático que describa el comportamiento del sistema, para desarrollar una política óptima que permita reducir al mínimo los costos relacionados con el inventario, a la vez que se cumplen las necesidades de mantenimiento para cubrir la demanda de los clientes.

2.2. Funciones del inventario

Los inventarios son una parte fundamental en el desarrollo interno de cualquier organización que venda o distribuya productos (sin importar su actividad económica, dimensión, etc.), puesto que gracias a su buen manejo podemos flexibilizar las operaciones que realizamos en cuanto al control en la fabricación y comercialización de muestras mercancías. Por lo tanto, son tomados como una necesidad absoluta en la organización de nuestras existencias. Los inventarios permiten:

- Almacenamiento de bienes para cubrir una demanda anticipada.
- Separar los procesos de producción y distribución.
- Obtener ventajas en los descuentos por cantidad.
- Protegerse de la inflación y cambios de precio.
- Suavizar los requerimientos de producción.

2.3. Objetivos de los modelos de gestión de inventario

Cualquiera que sea el modelo de inventario el objetivo que se persigue es responder a dos preguntas clave: ¿Cuánto pedir? y ¿Cuándo realizar el pedido?. Conocer las respuestas nos permitirá:

- Reducir los gastos: Al calcular el tamaño de pedido óptimo y las fechas en las que se debe realizar, se reducen los costos por relacionados con la reposición y el mantenimiento de los productos.
- Ajustarse a la variación de la demanda de productos: Normalmente la demanda varía y no puede conocerse con precisión. Podemos satisfacer las demandas de los clientes, aunque esta cambie, y mantener un stock de seguridad que nos permita cubrir las ventas que no estén previstas.
- Salvar posibles retrasos en la entrega: Son múltiples los factores que pueden originar un retraso en el pedido que realizamos como huelgas, escasez de la materia, acumulación de pedidos, averías, etc. Si no hubiera inventarios, el producto iría directamente del departamento de producción al de venta. Cualquier problema que ocurriera en el proceso productivo retrasaría la entrega del producto.

2.4. Elementos del inventario

Los principales componentes a considerar en un modelo de gestión de stock son:

- Demanda: La demanda de un producto representa la cantidad o el número de unidades que será necesario extraer del inventario para satisfacer los pedidos de los clientes durante un periodo específico. Se puede distinguir entre:
 - Demanda determinista: Cuando se conoce con certeza la cantidad solicitada por los clientes.
 - Demanda aleatoria: Cuando dicha cantidad está sujeta a incertidumbre y variabilidad.
- Reposiciones: Son las cantidades añadidas al inventario para reponer las existencias. Estas cantidades representan los tamaños de los lotes que se solicitan para reponer los inventarios.
- Periodo de gestión o planificación (t): representa el periodo de tiempo entre reposiciones consecutivas del inventario.
- Tiempo de entrega o de retardo (L): Es el tiempo que transcurre entre la solicitud del pedido para reponer nuestro producto y la recepción del mismo en el almacén.
- Costos Asociados: Los costos que afectan a las decisiones de la gestión de inventarios son:

- Costo de mantenimiento (c₁): Aquí se incluye el dinero invertido en los productos, el costo de almacenamiento (alquiler, seguros, vigilancia, etc.), el mantenimiento de los artículos (limpieza, luz, climatización, etc.) y el posible deterioro de estos.
- Costo de rotura (c₂): Cuando las existencias de un artículo están agotadas, los pedidos de ese artículo deben esperar hasta que se reponga las existencias o cancelarse el pedido. Esto genera un costo al perder la venta, y también un esfuerzo administrativo o tiempo adicional para recuperar la venta, además de la posible pérdida de clientes.
- Costo de reposición (c_3) : En este coste se incluyen los gastos generados por la reposición de los artículos. Por ejemplo los costos del transporte, impuestos, seguros, etc.
- Restricciones: Trabas administrativas, económicas, temporales o físicas que influyen en la demanda. Podemos encontrarnos con un almacén pequeño que nos limita la cantidad a almacenar o bien productos que no pueden ser repuestos en un determinado intervalo de tiempo o también una temprana caducidad de los artículos que obliga a una mayor rotación de los mismos.

2.5. Políticas de inventario

Para responder las preguntas de cuándo y cuánto pedir tendremos que tener en cuenta la demanda, el periodo de gestión y considerar los costes relacionados. El problema es que no hay un modelo específico que sirva para todo. A la primera pregunta referida al tiempo se puede responder de dos formas:

- 1. El inventario se repone cuando la cantidad en el inventario sea igual o menor a S unidades (S = punto de pedido o punto de reposición).
- 2. El inventario se repone cada t unidades de tiempo (periodo de gestión o periodo de planificación).

Para la segunda pregunta referida a la cantidad con la que debemos reponer el inventario, se puede contestar también de dos formas:

- 1. La cantidad que se añade al inventario es q unidades (q = tamaño del lote o cantidad de pedido) .
- 2. Se añade al inventario una cantidad tal que al incorporar al inventario, el nivel de este alcanza el valor de S unidades (S = nivel de inventario).

Por tanto s, t, q y S son variables de decisión del problema del inventario.

Para describir una política de gestión de stocks bastará pues con indicar, mediante un par ordenado, cuándo y cuánto se pide. Así, una política (s,q) significará que se solicita un pedido de tamaño fijo de q unidades cada vez que la posición del stock sea inferior a s

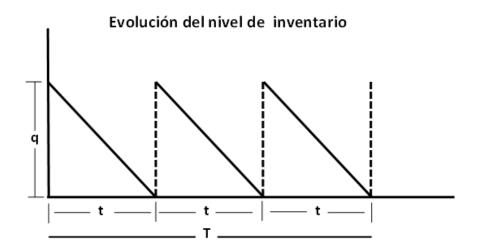
unidades. Otras políticas posibles son: (t,S) con la cual se lleva a cabo un pedido cada t unidades de tiempo, de tamaño igual a la diferencia entre la cobertura S y el nivel de stock detectado; la política (s,S), la cual implica la solicitud de un pedido de un tamaño suficiente para abastecer la cobertura S cada vez que la posición del stock sea inferior al punto de pedido s; y la política (t,q), en la que se solicitaría un pedido fijo de q unidades cada t unidades de tiempo.

2.6. Algunos modelos de gestión de stock sin considerar roturas

2.6.1. Sistema clásico determinístico de tamaño del lote (Modelo EOQ)

Las características que rigen este sistema son:

- 1. Demanda determinista con patrón uniforme de acuerdo con una razón de demanda constante e igual a r unidades/unidades de tiempo.
- 2. El punto de reposición es s = 0 (No se permiten roturas).
- 3. El tamaño de reposición q es constante pero no está determinado. Será la variable de decisión del problema.
- 4. La razón de reposición es $p = \infty$ (instantánea).
- 5. Periodo de retardo nulo L=0.
- 6. costos unitarios:
 - $c_1 = \text{Costo unitario de mantenimiento}$, con dimensión $[c_1] = \frac{[\$]}{[QT]}$
 - El coste unitario de rotura c_2 es cero ya que no se permiten roturas
 - $c_3 = \text{Costo de reposición por pedido, con dimensión } [c_3] = [\$]$


El periodo de gestión t debe ser tal que la cantidad demandada sea igual a la cantidad solicitada en dicho periodo

$$rt = q \Rightarrow t = \frac{q}{r}$$

Función de coste: $C(q) = c_1(q) + c_3(q) = c_1I_1 + c_3I_3$, siendo $I_1 = N^o$ medio de unidades en stock e $I_3 = N^o$ medio de reposiciones.

Teniendo en cuenta las características anteriores a lo largo del periodo [0, t] el nivel de inventario I(t) en el instante t viene recogido en la siguiente expresión

$$I(t) = q - rt$$
, con $0 \le T \le t$

Cuando el nivel del inventario llegue a cero, automáticamente se repone el inventario con q unidades y vuelve a comenzar un nuevo ciclo del inventario.

Teniendo en cuanta que

$$I_1 = \frac{Cantidad\ en\ stock}{Periodo\ de\ gestion} = \frac{q\frac{t}{2}}{t} = \frac{q}{2}$$

$$I_3 = \frac{N^0 \ de \ reposiciones}{Periodo \ de \ qestion} = \frac{1}{t} = \frac{r}{q}$$

El coste total por unidad de tiempo de la gestión de inventario es

$$C(q) = c_1(q) + c_3(q) = c_1I_1 + c_3I_3 = c_1\frac{q}{2} + c_3\frac{r}{q}$$

Por tanto nuestro objetivo será minimizar $C(q) = c_1 \frac{q}{2} + c_3 \frac{r}{q}, q > 0$ Derivando e igualando a cero, tenemos:

$$C'(q) = 0 \Rightarrow \frac{c_1}{2} - \frac{c_3 r}{q^2} = 0 \Rightarrow q^2 = \frac{2c_3 r}{c_1} \Rightarrow q_0 = \sqrt{\frac{2c_3 r}{c_1}}$$

Nótese que $C'''(q) = 2\frac{2c_3r}{q^3} > 0$. Por tanto $\Rightarrow q_0$ es un punto mínimo.

Como consecuencia q_0 será el tamaño del lote óptimo. El periodo óptimo de gestión es:

$$t_0 = \frac{q_0}{r} = \frac{1}{r} \sqrt{\frac{2c_3r}{c_1}} = \sqrt{\frac{2c_3}{c_1r}}$$

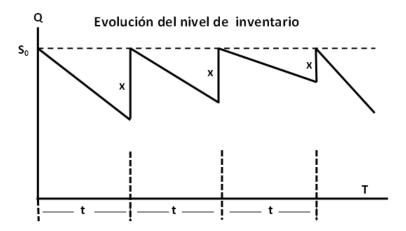
Para determinar el coste mínimo C_0 , sustituimos q_0 en la función de coste. Así obtenemos,

$$C_o = C(q_0) = \frac{c_1}{2} \sqrt{\frac{2c_3r}{c_1}} + \frac{c_3r}{\sqrt{\frac{2c_3r}{c_1}}} = \frac{2c_3r}{\sqrt{\frac{2c_3r}{c_1}}} = \sqrt{2rc_1c_3}$$

El coste mínimo de mantenimiento es

$$C_0^1 = c_1 \frac{q_0}{2} = \sqrt{\frac{2c_3rc_1^2}{4c_1}} = \frac{1}{2}\sqrt{2rc_1c_3} = \frac{C_0}{2}$$

y el coste mínimo de reposición


$$C_0^3 = c_3 \frac{r}{q_0} = \sqrt{\frac{(rc_3)^2 c_1}{2rc_3}} = \sqrt{\frac{2rc_1c_3}{4}} = \frac{1}{2}\sqrt{2rc_1c_3} = \frac{C_0}{2}$$

Este es un sistema de nivelación de costos porque la solución óptima se alcanza cuando el costo de mantenimiento coincide con el de reposición.

2.6.2. Sistema probabilístico de periodo de gestión

Las características que rigen este sistema son:

- 1. Demanda aleatoria. Sea x la variable que representa la demanda de los clientes.
- 2. No se permiten roturas.
- 3. f(x) es la función de densidad de la demanda de x durante el periodo de gestión t, y $\overline{x}(t)$ su media. La demanda máxima posible la representa x_{max} .
- 4. El tamaño de reposición q no es constante.
- 5. La razón de reposición es $p = \infty$ (instantánea).
- 6. S_0 es el nivel de inventario al comienzo del periodo de gestión. Este nivel coincidirá con la demanda máxima $S_0 = x_{max}(t)$
- 7. Periodo de retardo nulo L=0.
- 8. costos unitarios:
 - $c_1 = \text{Costos unitarios de mantenimiento con dimensión } [c_1] = \frac{[\$]}{[QT]}$
 - $c_2 = 0$ (no se permiten roturas)
 - $c_3 = \text{Costo de reposición por pedido, con dimensión } [c_3] = [\$]$
- 9. El promedio de demanda será: $r = \frac{\overline{x}(t)}{t}$, constante conocida.

La cantidad media en stock en cualquier periodo de gestión en el cual hay una demanda x es $S_0 - \frac{x}{2}$. Así la cantidad media esperada de stock es

$$I_1(t) = \int_{x_{min}}^{x_{max}} (S_0 - \frac{x}{2}) f(x) \ dx = S_0 - \frac{\overline{x}(t)}{2} = S_0 - \frac{rt}{2}$$

El número de reposiciones por unidad de tiempo es $I_3(t) = \frac{1}{t}$. La función del coste total de la gestión del inventario es

$$C(t) = c_1 \cdot I_1(t) + c_3 \cdot I_3(t)$$

Por lo tanto si sustituimos $I_1(t)$ e $I_3(t)$ en la función del coste total, tenemos

$$C(t) = c_1(S_0 - \frac{rt}{2}) + \frac{c_3}{t} = c_1\left[x_{max}(t) - \frac{rt}{2}\right] + \frac{c_3}{t}$$

Para encontrar el periodo de gestión óptimo es necesario conocer la relación entre $x_{max}(t)$ y $\overline{x}(t)$.

Así suponemos que

$$x_{max}(t) = \overline{x}(t)A(t) = rtA(t)$$

donde A(t) una función que representa el cociente entre la demanda máxima y la demanda media a lo largo del periodo de gestión t. Lógicamente siempre $A(t) \ge 1$.

Sustituimos el valor de $x_{max}(t)$ en la función de coste, y tenemos

$$C(t) = c_1 \left[A(t) - \frac{1}{2} \right] rt + \frac{c_3}{t}$$

Consideremos ahora dos casos especiales para la función.

Caso A. A(t) = k, siendo k constante.

Si asumimos que dicho valor es constante la función de costo quedaría

$$C(t) = c_1 \left[k - \frac{1}{2} \right] rt + \frac{c_3}{t}$$

Por lo tanto la solución óptima del sistema será

$$t_0 = \sqrt{\frac{2c_3}{c_1 r(2k-1)}}$$
$$S_0 = k\sqrt{\frac{2rc_3}{c_1(2k-1)}}$$
$$C_0 = \sqrt{2c_1 c_3 r(2k-1)}$$

Cuando la demanda es determinística, entonces k=1 y el sistema se reduce la sistema de tamaño del lote explicado en 2.6.1.

Caso B.
$$A(t) = a + \frac{b}{t} \operatorname{con} a \ge 1$$

En las aplicaciones reales A(t) generalmente depende de t. Es lógico pensar que a mayor t menor valor de A(t). Suponiendo esto, si admitimos que

$$A(t) = a + \frac{b}{t}$$

donde a y b son constantes.

Entonces la ecuación de costo queda

$$C(t) = c_1(a + \frac{b}{t} - \frac{1}{2})rt + \frac{c_3}{t} = (a - \frac{1}{2})c_1rt + c_1br + \frac{c_3}{t}$$

y la solución óptima del sistema es

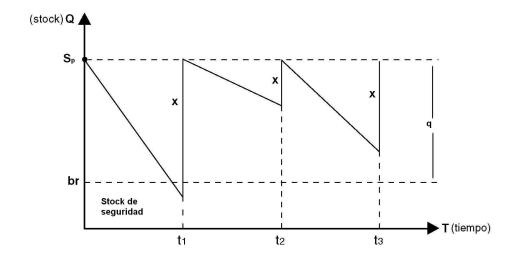
$$t_0 = \sqrt{\frac{c_3}{(a - \frac{1}{2})c_1 r}}$$

$$S_0 = \sqrt{\frac{rc_3 a^2}{(a - \frac{1}{2})c_1}} + br$$

$$C_0 = \sqrt{(4a - 2)rc_1 c_3} + c_1 br$$

En el caso de considerar el parámetro a=1 tendríamos $A(t)=1+\frac{b}{t}$ y la función de coste es

$$C(t) = \frac{c_1 rt}{2} + c_1 br + \frac{c_3}{t}$$


Las soluciones óptimas serían

$$t_0 = \sqrt{\frac{2c_3}{c_1 r}}$$

$$S_0 = \sqrt{\frac{2rc_3}{c_1}} + br$$

$$C_0 = \sqrt{2rc_1c_3} + c_1br$$

Es interesante comparar este sistema con el de tamaño del lote. Si en la función de costo del sistema 2.6.1 sustituimos la q por rt obtenemos

$$C(t) = \frac{c_1 rt}{2} + \frac{c_3}{t}$$

Comparando esta ecuación con la función de coste del sistema actual observamos que la única diferencia entre ellas es el término c_1br . El valor de br debe ser considerado como un stock de seguridad, como se indica en la siguiente figura

Capítulo 3

Planteamiento del problema y cálculo de los costes unitarios

Para desarrollar este trabajo, hemos recopilado los datos de dos productos alimenticios de una empresa dedicada a la producción de productos agroalimentarios derivados de frutos, verduras y hortalizas. Se nos ha proporcionado una gran cantidad de datos por lo que la compañía ha preferido que no se revele el nombre de la misma ni se indique los productos elegidos para el proyecto.

Es una empresa familiar de ámbito regional y pionera en la industria de su sector en la islas. Tras comenzar en la década de los años 70, hoy pueden ofrecer una gama de más de 60 productos en distintos formatos. Productos que ellos mismos elaboran desde su planta de producción en Tenerife y que distribuyen por todas las islas. Para ello cuentan con alta tecnología de producción, almacenes y con más de 100 empleados.

Considerando esa novedad de productos es muy importante gestionar de forma eficiente la producción, almacenamiento y venta de éstos para que se pueda atender la demanda de los clientes con el menor gasto posible. Nuestro objetivo es encontrar cuáles son las mejores políticas en la reposición de dos de sus productos más vendidos, aplicando un modelo teórico de gestión de stock. Finalizaremos comparando los resultados obtenidos con los manejados por la empresa.

3.1. Descripción del problema

Como punto de partida se nos ha proporcionado los datos de venta y reposición de dos productos, que llamaremos Producto 1 y Producto 2 a lo largo del año 2014. Estos datos se encuentran detallados en el apéndice A de este documento. A partir de los mismos, podemos observar cómo varía el stock a lo largo del año. Su filosofía de empresa les impide permitir roturas lo cual requiere disponer de suficientes existencias para atender la demanda de los productos. Esto ha de ser tenido en cuenta ya que por ello no contaremos con el costo de rotura a lo largo del problema. Eso incrementará el costo de mantenimiento dado

la necesidad de una mayor cantidad de producto en stock. Eliminando el costo de rotura del problema debemos centrarnos en los otros dos a tener en cuenta: el de mantenimiento C_1 y el de reposición C_3

Comenzaremos comentando que para almacenar los productos se dispone de un local de $2600m^2$ y el tamaño de las cajas de los productos considerados es

■ **Producto 1:** 3723 × 15 cm (anchura × profundidad × alto)

• Producto 2: $32 \times 23 \times 22$ cm

Para estimar el costo de almacenamiento hemos solicitado los gastos que conlleva el mantenimiento del almacén y el espacio que representa cada caja en él. Con ello podremos estimar el valor de mantener una caja de cada uno de nuestros productos en stock. Los datos anuales que se nos han proporcionado son:

■ Gastos de alquiler: 109200€/año

■ **Agua:** 50€/año

Luz: 700€/año

■ Seguridad y vigilancia: 41000€/año

■ **Seguros:** 38000€/año

■ Impuesto sobre Bienes Inmuebles: 28000€/año

■ Tasa de Residuos Urbanos: 2100€/año

■ Gestión de residuos: 11400€/año

Todos estos gastos hacen un total de 230450€ al año, lo que supone 19204€/mes (631,36986€/día) para mantener el lugar de almacenamiento. Como se manejan múltiples productos, estimaremos el costo que supone mantener cada uno en función del espacio que ocupe en el almacén. Sabemos que el local tiene un tamaño de $2600m^2$. La altura máxima hasta la que podemos apilar las cajas es de 3,96m (el resultado de apilar 18 cajas del Producto 2), por lo que en total disponemos de $10296m^3$.

En el caso del Producto 1 cada caja tiene un volumen de $0,012765m^3$ y en el del Producto 2 el volumen es de $0,016192m^3$. Llamemos c_{11} al costo que supone mantener cada caja del Producto 1 y c_{12} al costo que supone mantener una caja del Producto 2. Teniendo en cuenta lo anterior podemos decir que

$$c_{12} = \frac{631,36986*0,016192}{10296} = 0,000993 {\Huge \mbox{\it e}}/caja~y~d\'ia$$

Con los costos unitarios de mantenimiento (c_1) ya calculados pasamos a hallar los de reposición (c_3) . El Producto 1 se almacena en cajas de 24 envases, mientras que el Producto 2 se almacena en cajas de 12 envases. El coste de producción de una caja del Producto 1 es aproximadamente de 6,50 y el coste de producir una caja del Producto 2 está en torno a los 9,50.

Lo más común al reponer un producto es que éste tenga un costo asociado al servicio del transporte desde la empresa que lo produce. Dado que nuestra compañía fabrica su propio producto dicho coste no existe, pero tenemos otros gastos asociados a la producción del mismo. Los gastos relativos al funcionamiento de la maquinaria de producción que se nos proporcionan:

• Energía:

• Electricidad: 120000€/año

• Fuel: 60000€/año

■ **Agua:** 7500€/año

■ Limpieza de la planta de producción: 100€/tirada; tiempo empleado: 45 minutos; número de empleados: 2

■ Desgaste y amortización de la maquinaria: 80000€/año

• Costo del producto desechado al arranque: Se desechan unos 48 botes de cada producto por termino medio, por tanto

Producto 1: 6.5/2448 = 13€
 Producto 2: 9.5/1248 = 38€

 Tiempo empleado para el calibrado de las máquinas antes de arrancar la producción: 20 minutos

■ Gastos en trabajadores que utiliza la maquinaria: 220000€/año

Con lo que cada vez que repongamos cualquier producto, independientemente de la cantidad que produzcamos, debemos sumar los gastos que suponen limpiar la maquinaria, desechar los primeros envases y el tiempo que tarda la máquina en arrancar y calibrarse. Para calcular el valor de 20 minutos de trabajo de la máquina sumaremos los gastos que genera anualmente su uso y los dividiremos por las horas de producción.

Electricidad, desgaste y trabajadores hacen un total de 420000€/año. Al arrancar no se utiliza ni el agua ni fuel por lo que no se suman aquí. La planta de producción está activa durante 245 días de media al año, con jornadas de 8 horas. Con esto sabemos que produce un gasto de 214, 2857€/hora. Como el tiempo empleado en calibrase la máquina es de 20 minutos el arranque tiene un costo de 71,43€

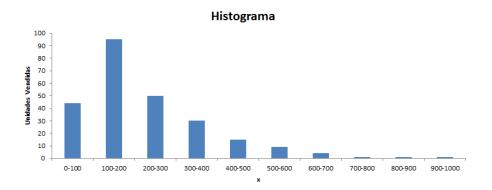
Entonces, si llamamos c_{31} al costo de reposición del Producto 1 y c_{32} al costo de reposición del Producto 2, tenemos

$$c_{31} = 100 + 13 + 71,43 = 184,43$$
 \in y $c_{32} = 100 + 38 + 71,43 = 209,43$ \in

En el siguiente capítulo comenzaremos estudiando cuál es el comportamiento de la demanda para en función de ella, determinar los niveles de inventario adecuado para cada producto.

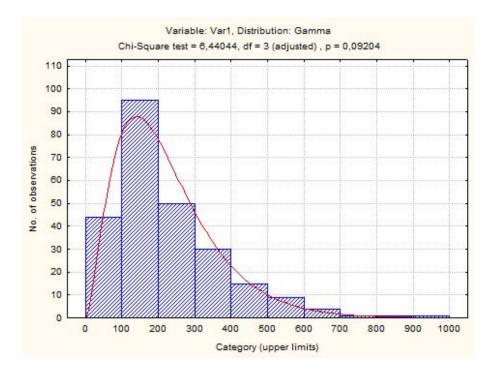
Capítulo 4

Análisis de la demanda


En este capítulo estudiaremos como se distribuyen las ventas de los dos productos que estamos analizando en esta memoria. Lo que se pretende es detectar que tipo de distribución se ajusta mejor a los datos disponibles sobre las ventas de estos productos a lo largo del 2014. Para ello, estudiaremos diversas distribuciones conocidas para determinar cuál de ellas puede representar mejor las ventas diarias de esos productos. Aplicaremos la prueba de bondad de ajuste a través de la distribución χ^2 de Pearson como medida para aceptar o rechazar si las ventas se ajustan o no a cierta distribución. Nos apoyaremos en programas como Excel o Statistica para realizar el análisis de los datos y comprobar cuál es la mejor distribución que represente las ventas.

4.1. Demanda del Producto 1

Sea x la variable aleatoria que representa la demanda del Producto 1 por día. Es una variable positiva cuyo valor máximo obtenida de los datos suministrados (Apéndice A.1.1) es $x_{max} = 927$. Esta demanda se ha agrupado por intervalos (diez intervalos de amplitud 100) y su distribución de frecuencia absolutas n_i , con i = 1, 2, ..., 10 se muestra en la tabla siguiente:


X	n_i
0-100	44
100-200	95
200-300	50
300-400	30
400-500	15
500-600	9
600-700	4
700-800	1
800-900	1
900-1000	1

De esta tabla obtenemos el siguiente histograma.

Descartamos la distribuciones discretas puesto que las ventas se agrupan por intervalos y se consideran variables continuas. Observando el histograma podemos descartar algunas distribuciones como la normal o la exponencial y ver que otras como la distribución Gamma serán firmes candidatas.

Pasamos nuestros datos de ventas al programa Statistica y probamos un ajuste con la distribución Gamma $\Gamma(\lambda, \beta)$ con los parámetros $\lambda = 2,6779496863148$ y $\beta = 83,4713217885765$, esto es $\Gamma(2,6779496863148; 83,4713217885765)$. Los resultados obtenidos se muestran en la gráfica y en la tabla siguientes:

	Variable: Var1, Distribution: Gamma (Spreadsheet1)								
	l	Chi-Square = 6,44044, df = 3 (adjusted) , p = 0,09204							
Upper	Observed	Cumulative	Percent	Cumul. %	Expected	Cumulative	Percent	Cumul. %	Observed-
Boundary	Frequency	Observed	Observed	Observed	Frequency	Expected	Expected	Expected	Expected
<= 100,00000	44	44	17,60000	17,6000	43,07135	43,0714	17,22854	17,2285	0,9286
200,00000	95	139	38,00000	55,6000	84,74289	127,8142	33,89716	51,1257	10,2571
300,00000	50	189	20,00000	75,6000	62,19627	190,0105	24,87851	76,0042	-12,1963
400,00000	30	219	12,00000	87,6000	33,52914	223,5396	13,41166	89,4159	-3,5291
500,00000	15	234	6,00000	93,6000	15,56803	239,1077	6,22721	95,6431	-0,5680
600,00000	9	243	3,60000	97,2000	6,61872	245,7264	2,64749	98,2906	2,3813
700,00000	4	247	1,60000	98,8000	2,65492	248,3813	1,06197	99,3525	1,3451
800,00000	1	248	0,40000	99,2000	1,02188	249,4032	0,40875	99,7613	-0,0219
900,00000	1	249	0,40000	99,6000	0,38139	249,7846	0,15256	99,9138	0,6186
< Infinity	1	250	0,40000	100,0000	0,21541	250,0000	0,08616	100,0000	0,7846

El valor teórico de χ^2 que encontramos en las tablas con tres grados de libertad y un nivel de significación $\alpha=0,05$ es

$$\chi^2_{0.05:3} = 7,815$$

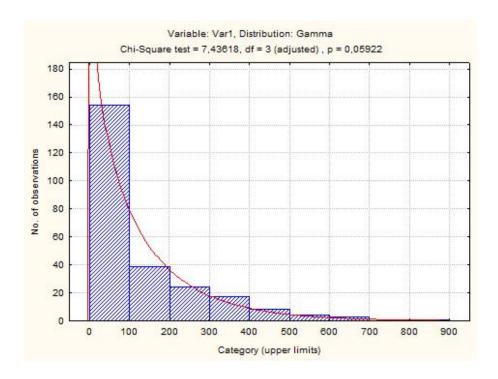
Luego como el valor observado de la $\chi^2(6,44044)$ es menor que el valor teórico esperado afirmamos que las ventas diarias se puede considerar que se distribuyen como una $\Gamma(2,6779496863148;83,4713217885765)$ con un nivel de significación de $\alpha=0,05$.

Esto es está en referencia a las ventas diarias pero, ¿qué pasa con las ventas en un periodo de t días?. En este caso la distribución Gamma cumple que, si tenemos dos variables aleatorias con distribución Gamma que tiene un parámetro λ común, la suma de dichas variables sigue también una Gamma con el mismo parámetro λ y siendo el otro parámetro suma de los parámetro de cada Gamma.

$$X \sim \Gamma(\lambda, \beta_1)$$
 $y Y \sim \Gamma(\lambda, \beta_2) \Rightarrow X + Y \sim \Gamma(\lambda, \beta_1 + \beta_2)$

Por tanto si tenemos un número t de variables con distribuciones gamma, se tiene

$$\sum_{i=1}^{t} \Gamma_i(\lambda, \beta) = \Gamma(\lambda, t\beta)$$


Con lo que para un periodo de t días nuestra distribución será $\Gamma(\lambda, t\beta)$, con $\lambda=2,6779496863148$ y $\beta=83,4713217885765$

4.2. Demanda del Producto 2

Sea y la variable aleatoria que representa la demanda del Producto 2 por día. También es una variable positiva cuyo valor máximo obtenido de los datos suministrado es $y_{max} = 868$. Esta demanda se ha agrupado por intervalos y su distribución de frecuencias absolutas m_i se muestra en la tabla siguiente.

У	m_i
0-100	154
100-200	39
200-300	24
300-400	17
400-500	8
500-600	4
600-700	3
700-800	0
800-900	1

Al igual que con el producto anterior, llevamos nuestros datos al programa Statistica para realizar un test de ajuste. En este caso nuestra función gamma es $\Gamma(\lambda,\beta)=\Gamma(0,801951401093143,157,002032577503)$. Los resultados que nos devuelve el programa son:

	Variable: Var1, Distribution: Gamma (Spreadsheet1) Chi-Square = 7,43618, df = 3 (adjusted), p = 0,05922								
Upper	Observed	Cumulative	Percent	Cumul. %	Expected	Cumulative	Percent	Cumul. %	Observed-
Boundary	Frequency	Observed	Observed	Observed	Frequency	Expected	Expected	Expected	Expected
<= 100,00000	154	154	61,60000	61,6000	143,2182	143,2182	57,28730	57,2873	10,7818
200,00000	39	193	15,60000	77,2000	54,7303	197,9486	21,89214	79,1794	-15,7303
300,00000	24	217	9,60000	86,8000	26,0079	223,9565	10,40316	89,5826	-2,0079
400,00000	17	234	6,80000	93,6000	12,8432	236,7997	5,13727	94,7199	4,1568
500,00000	8	242	3,20000	96,8000	6,4567	243,2563	2,58266	97,3025	1,5433
600,00000	4	246	1,60000	98,4000	3,2800	246,5363	1,31200	98,6145	0,7200
700,00000	3	249	1,20000	99,6000	1,6777	248,2141	0,67109	99,2856	1,3223
800,00000	0	249	0,00000	99,6000	0,8623	249,0764	0,34493	99,6306	-0,8623
< Infinity	1	250	0,40000	100,0000	0,9236	250,0000	0,36944	100,0000	0,0764

Los grados de libertad y el nivel de significación son los mismos que para el Producto 1, por tanto el valor teórico sigue siendo $\chi^2_{0,05;3}=7,815$.

Como nuestro valor observado de la $\chi^2(7,43618)$ es menor que el valor teórico, se puede considerar que las ventas diarias del Producto 2 se distribuyen, a un nivel de significación de $\alpha=0,05$, como una gamma $\Gamma(0,801951401093143,157,002032577503)$.

Como hemos comentado la función Gamma es reproductiva respecto al segundo parámetro, así para un periodo de t días nuestra distribución será $\Gamma(0.801951401093143, 157.002032577503t)$.

Con las características de funcionamiento de nuestra empresa conocidas y los datos de la demanda analizados, nos disponemos en el siguiente capítulo a aplicar el modelo de gestión de stock que mejor se ajuste a nuestro problema.

Capítulo 5

Resolución del problema y análisis de los resultados

5.1. Aplicación del modelo. Producto 1

La demanda, como hemos visto, sigue una distribución conocida pero no es uniforme. Además hemos comentado que la empresa no admite roturas. Una vez fabricado el producto, está disponible inmediatamente para su venta. Con esto entendemos que el modelo probabilístico de gestión explicado en 2.6.2 es el mejor que podemos aplicar en esta ocasión. Tal y como se recogió en el capítulo 2, la función de coste de este modelo depende de c_1 y c_3 y viene dada por:

$$C(t) = c_1 \left[A(t) - \frac{1}{2} \right] rt + \frac{c_3}{t}$$

Ya hemos calculado c_1 y c_3 , por lo que nos queda saber cuál es el valor que toma A(t). En el apartado 2.6.2 mostramos que $A(t) = \frac{x_{max}(t)}{\overline{x}(t)}$. En el estudio de la demanda vimos que $x_{max} = 927$ por lo que $x_{max}(t) = 927t$. Como la demanda sigue una distribución Gamma, la media de ésta será la media de la distribución. En el Apéndice B.1.1 observamos que dicha media es $\lambda\beta$. Por tanto, teniendo en cuenta la reproductividad de Gamma respecto al segundo parámetro, a lo largo de un periodo de t unidades de tiempo, tenemos que $\overline{x}(t) = \lambda\beta t = 223,532t$. Entonces

$$A(t) = \frac{x_{max}(t)}{\overline{x}(t)} = \frac{927t}{\lambda \beta t} = \frac{927}{223,532} = 4,147$$

Nos fijamos en que A(t) no depende del tiempo t, es constante, y por tanto nos encontramos en el caso A de nuestro modelo. Entonces nuestra función de coste

$$C(t) = c_1 \left[k - \frac{1}{2} \right] rt + \frac{c_3}{t} = 0,000783 \left[4,147 - \frac{1}{2} \right] 223,532t + \frac{184,43}{t} = 0,6381t + \frac{184,43}{t}$$

Si derivamos e igualamos a cero tenemos,

$$C'(t) = 0,6381 + \frac{-184,43}{t^2} = 0 \implies t_0 = \sqrt{184,43/0,6381} = 17,0003 \ dias$$

Si hallamos la segunda derivada $C''(t) = \frac{369,63}{t^3}$ observamos que siempre es positiva ya que t > 0 y, por tanto, nuestro t_0 es nuestro periodo de gestión óptimo. Sustituyendo este valor en la función de coste, el inventario generará un gasto

$$C_0 = 0.6381 \cdot 17,0003 + \frac{184,43}{17,0003} = 21,697$$

Una vez encontrado el punto de reposición nos falta conocer el nivel de inventario S_0 adecuado para el comienzo del nuevo periodo y con ello saber la cantidad a reponer q. En este caso será variable porque dependerá de la cantidad que haya en stock en el momento de la reposición. Como mismo se define en las características de este modelo se tiene

$$S_0 = x_{max}(t) = A(t)\overline{x}(t) = krt_0 = 4{,}147 \cdot 223{,}532 \cdot 17{,}0003 = 15759{,}06$$

De este modo reponer aproximadamente cada 17 días laborales elevando el nivel inventario a una cantidad de 15759 cajas sería lo óptimo para el Producto 1.

5.2. Aplicación del modelo. Producto 2

Este producto reúne la mismas características que el anterior, por lo tanto aplicaremos el mismo modelo. Nuestra función de coste sigue siendo

$$C(t) = c_1 \left[A(t) - \frac{1}{2} \right] rt + \frac{c_3}{t}$$

En el capítulo 3 hallamos los valores de c_1 y c_3 y nos queda por resolver A(t). En el apartado de la demanda vimos que $y_{max} = 868$ y por tanto $y_{max}(t) = 868t$. Nuestro promedio de ventas diarias es $r = \lambda \beta = 125,908$. Entonces

$$A(t) = \frac{y_{max}(t)}{\overline{y}(t)} = \frac{868t}{125,908t} = 6,894$$

Nuestro A(t) vuelve a ser constante por lo que de nuevo nuestra función de coste queda

$$C(t) = c_1 \left[k - \frac{1}{2} \right] rt + \frac{c_3}{t} = 0,000993 \left[6,894 - \frac{1}{2} \right] 125,908t + \frac{209,43}{t} = 0,7993t + \frac{209,43}{t}$$

Derivando e igualando a cero obtenemos,

$$C'(t) = 0,7993 + \frac{-209,43}{t^2} = 0 \implies t_0 = \sqrt{209,43/0,7993} = 16,186 \ dias$$

La segunda derivada es positiva y por tanto t_0 es el periodo de gestión óptimo ya que minimiza la función. Con esto el costo será

$$C_0 = 0.7993 \cdot 16,186 + \frac{209,43}{16,186} = 25,876$$

Nos queda conocer cuál es nuestro nivel de inventario para el comienzo de cada periodo. Este es

$$S_0 = y_{max}(t) = A(t)\overline{y}(t) = krt_0 = 6,894 \cdot 125,908 \cdot 16,186 = 14049,61$$

De esta manera, concluimos que lo óptimo para este caso es reponer cada 16 días laborales elevando el nivel de inventario hasta 14050 cajas.

Al escoger nuestra unidad de tiempo como un día, nuestra demanda máxima resulta ser un valor muy alto y lejano de la media de ventas en ambos productos. Como no podemos permitir roturas, esto nos obliga a mantener un nivel de stock bastante alto aumentando el costo de mantenimiento. Si tomamos unidades de tiempo mayores, esos valores tan alejados de la media provocados por una demanda atípica en unos pocos días al año, reducirán su efecto en el nivel de demanda máximo. Por tanto, el nivel de inventario que debemos mantener será menor y consecuentemente su costo también.

Todo esto se comprueba analíticamente en el siguiente epígrafe.

5.3. Demanda semanal

5.3.1. Producto 1

Nos disponemos ahora a aplicar nuestro modelo considerando una demanda semanal. Para ello se interpreta que la semana está compuesta de cinco días laborales consecutivos. Sabemos que la distribución gamma, por ser reproductiva respecto al segundo parámetro, sigue ajustándose a la demanda en este nuevo periodo de tiempo. No obstante lo comprobamos a continuación.

Sea w la variable aleatoria que representa la demanda de lo clientes por semana del producto. Su valor máximo observando los nuevos datos (Apéndice C.1) es $w_{max} = 2240$. La demanda agrupada por intervalos y su distribución de frecuencia absoluta se muestra en la tabla siguiente

W	n_i
500-700	3
700-900	12
900-1100	13
1100-1300	9
1300-1500	4
1500-1700	6
1700-1900	1
1900-2100	1
2100-2300	1

Usando de nuevo al programa Statistica, para la demanda semanal, obtenemos un ajuste de distribución a una gamma $\Gamma(\lambda,\beta)=\Gamma(11,4117449892458,97,9394475650531)$. El programa nos devuelve que nuestro valor observado es $\chi^2=2,87499$ con dos grados de libertad.

El valor teórico esperado para dos grados de libertad y un nivel de significación $\alpha=0,05$ es $\chi^2_{0,05;2}=5,99$. Por consiguiente, el valor de nuestro ajuste es menor que el teórico y, en consecuencia, podemos decir que la demanda semanal también se distribuye como una gamma.

Con la distribución de la demanda conocida vamos a resolver nuestro modelo. Recordemos que nuestra función de coste es

$$C(t) = c_1 \left[A(t) - \frac{1}{2} \right] rt + \frac{c_3}{t}$$

Nuestro c_1 ahora es semanal y su valor es $c_1 = 0,0055$. Nos queda conocer el valor que toma A(t) en esta ocasión. Por un lado tenemos que $w_{max} = 2240$. Por otro, la media que toma la distribución es $r = \lambda \beta = 1117,66$. Entonces

$$A(t) = \frac{w_{max}(t)}{\overline{w}(t)} = \frac{2240t}{1117,66t} = 2,0042$$

Este A(t) = k = 2,0042 constante nos lleva a la función de coste

$$C(t) = 0,0055 \left[2,0042 - \frac{1}{2} \right] 1117,66t + \frac{184,43}{t} = 9,237t + \frac{184,43}{t}$$

Si derivamos e igualamos a cero, obtenemos

$$C'(t) = 9.237 + \frac{-184.43}{t^2} = 0 \implies t_0 = \sqrt{184.43/9.237} = 4.47 semanas$$

La segunda derivada al igual que en el caso anterior es positiva (C''(t) > 0) y, por tanto, nuestro t_0 minimiza la función. l inventario generará un gasto de

$$C_0 = 9,237 \cdot 4,47 + \frac{184,43}{447} = 82,55$$

Nuestro nivel de inventario óptimo al comienzo de cada periodo será

$$S_0 = w_{max}(t) = A(t)\overline{y}(t) = krt_0 = 2,0042 \cdot 1117,66 \cdot 4,47 = 10012,86$$

Por tanto con este modelo debemos reponer cada cuatro semanas y media llevando en cada reposición el nivel de inventario hasta 10013 cajas.

5.3.2. Producto 2

Una vez aplicado el modelo semanal con el Producto 1 es el turno de Producto 2. Como hemos visto en el caso anterior nuestra demanda sigue ajustándose a una distribución gamma. Partiendo de este hecho calculamos a continuación el valor de A(t).

Sea z la variable aleatoria que representa la demanda por semana del Producto 2. Su valor máximo es $z_{max}=1165$ como podemos ver en el apéndice A.1.2. La media que toma la distribución es r=629,54. Entonces

$$A(t) = \frac{z_{max}(t)}{\overline{z}(t)} = \frac{1165t}{629,54t} = 1,8506$$

Teniendo en cuenta que nuestro costo de mantenimiento semanal es $c_1 = 0,00695$ se determina la función de costo siguiente

$$C(t) = c_1 \left[k - \frac{1}{2} \right] rt + \frac{c_3}{t} = 0,00695 \left[1,8506 - \frac{1}{2} \right] 629,54t + \frac{209,43}{t} = 5,9097t + \frac{209,43}{t}$$

Si derivamos e igualamos a cero, se obtiene

$$C'(t) = 5,9097 + \frac{-209,43}{t^2} = 0 \implies t_0 = \sqrt{209,43/5,9097} = 5,953 \text{ semanas}$$

De nuevo C''(t) > 0 y por tanto nuestro t_0 minimiza la función. Entonces nuestro inventario generará el gasto siguiente

$$C_0 = 5,9097 \cdot 5,953 + \frac{209,43}{5,953} = 70,36$$

El nivel de inventario adecuado al comienzo de cada periodo será

$$S_0 = w_{max}(t) = A(t)\overline{y}(t) = krt_0 = 1,8506 \cdot 629,54 \cdot 5,953 = 6935,40$$

Como resultado debemos reponer cada 6 semanas elevando el nivel de inventario hasta 6935 cajas.

Así, vemos que, en ambos casos, el valor de A(t) se ha reducido y con ello el nivel de inventario a mantener como era de esperar.

En los casos anteriores hemos establecido que la demanda sigue una distribución Gamma y a partir de este hecho nuestro A(t) es constante. En la siguiente sección no asumiremos que la demanda sigue una distribución Gamma y hallaremos A(t) directamente a partir de los datos, obteniendo $x_{max}(t)$ y $\overline{x}(t)$ para diferentes valores de t.

5.4. Aplicando A(t) no constante para el Producto 1

Para obtener nuestro nuevo A(t) con la ayuda de Excel, agruparemos la demanda diaria en distinto número de días, es decir, elaboraremos una primera tabla en la que se recoja la demanda cada dos días consecutivos, luego otra cada tres, y así hasta quince. Luego hallaremos de cada una los valores promedios $\overline{x}(t)$, máximos $x_{max}(t)$ y su correspondiente valor A(t). En la tabla siguiente se recogen los resultados obtenidos además de los valores de r.

\mathbf{t}	$\overline{\mathrm{x}}(\mathrm{t})$	$x_{max}(t)$	A(t)	$r=\overline{x}(t)/t$
1	223,53	927	4,14709435	223,53
2	447,064	1165	2,605890879	223,532
3	670,47	1375	2,050800185	223,49
4	890,242	1688	1,896113641	$222,\!5605$
5	1117,76	2240	2,004008016	$223,\!552$
6	1328,95122	2228	1,676509993	221,49187
7	1553,029	2453	1,579494008	221,861286
8	1780,484	2657	1,49229086	$222,\!5605$
9	1978,407	2821	1,425894672	219,823
10	2235,32	3457	1,546534724	$223,\!532$
11	2422,318	3744	1,545626957	220,210727
12	2646,45	3838	1,450244667	$220,\!5375$
13	2886,053	4259	1,475717875	222,004077
14	3095,529	4638	1,498289953	221,109214
15	3335,6	4864	1,458208418	222,373333

Primero observamos que el valor de r
 casi no varía por lo que podemos considerar que es constante, r=222,033 (cogemos su valor medio). Vemos en la tabla como A(t) disminuye rápidamente y luego se frena y permanece casi constante. Para ver cual es el mejor ajuste que podemos aplicar, realizamos un gráfico de dispersión.

De la gráfica concluimos que A(t) puede ser una función del tipo $a+\frac{b}{t}$. Entonces utilizaremos la regresión para tratar de aproximar A(t) a la curva $a+\frac{b}{t}$. Como la función anterior no es una recta, realizaremos un cambio de variable con el fin de poder aplicar la regresión lineal. Por tanto

$$A(t) = a + \frac{b}{t} = a + bw \Rightarrow w = \frac{1}{t}$$

Con lo cual los datos para la regresión son

w	$\mathbf{A}(\mathbf{t})$
1	4,14709435
1/2	2,60589088
1/3	2,05080018
1/4	1,89611364
1/5	2,00400802
1/6	1,67650999
1/7	1,57949401
1/8	1,49229086
1/9	1,42589467
1/10	1,54653472
1/11	1,54562696
1/12	1,45024467
1/13	1,47571787
1/14	1,49828995
1/15	1,45820842

Los introducimos en Excel, aplicamos la regresión y este nos devuelve que los parámetros son a=1,22152568679717 y b=2,87196390497452 con un coeficiente de determinación $R^2=0,98516026482563$ muy cercano a 1, lo cual nos indica que el ajuste es bueno. Así podemos establecer que

$$A(t) = a + \frac{b}{t} = 1,22152568679717 + \frac{2,87196390497452}{t}$$

Una vez hallada nuestra nueva función A(t) observamos que podemos aplicar en el caso B del sistema probabilístico de periodo de gestión, con lo que nuestra función de costo es ahora

$$C(t) = (a - \frac{1}{2})c_1rt + c_1br + \frac{c_3}{t} = 0,126t + 0,5025 + \frac{184,43}{t}$$

Si derivamos e igualamos a 0

$$C'(t) = 0.126 - \frac{184.43}{t^2} = 0 \implies t_0 = \sqrt{184.43/0.126} = 38,22 \text{ dias}$$

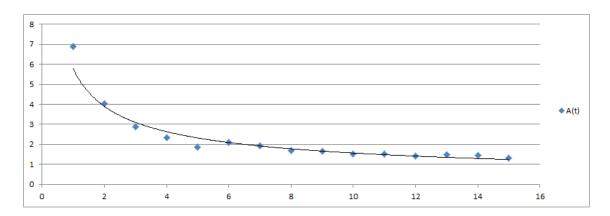
.

Como $C'''(t) \geq 0$, t_0 es nuestro periodo de gestión óptimo y genera un costo de

$$C_0 = 0,126 \cdot 38,22 + 0,5025 + \frac{184,43}{38,22} = 10,153$$

Así obtenemos un nivel de inventario al comienzo del periodo de gestión de

$$S_0 = \sqrt{\frac{rc_3a^2}{(a-\frac{1}{2})c_1}} + br = \sqrt{\frac{223,532 \cdot 184,43 \cdot 1,22^2}{(1,22-\frac{1}{2})0,000783}} + 2,87 \cdot 223,532 = 11078,22$$


Como resultado tenemos que para realizar una gestión óptima del inventario deberemos establecer un periodo de gestión de 38 días laborales elevando el nivel de inventario hasta las 11078 cajas.

5.5. Aplicando A(t) no constante para el Producto 2

De nuevo nos disponemos a agrupar la demanda diaria en distinto número de días con el fin de obtener el valor A(t), aunque esta vez será para nuestro producto 2. Por tanto al igual que antes, realizamos la tabla con los resultados de $\overline{y}(t)$, $y_{max}(t)$, $y_{max}(t)$, $y_{max}(t)$

t	$\overline{\mathrm{x}}(\mathrm{t})$	$x_{max}(t)$	A(t)	$r=\overline{x}(t)/t$
1	125,908	868	6,893922547	125,908
2	251,816	1013	4,022778537	125,908
3	379,108	1090	2,875170136	126,369333
4	499,635	1164	2,329700681	124,90875
5	629,54	1165	1,85055755	125,908
6	749,45238	1557	2,07751692	124,90873
7	874,361	1691	1,933983789	124,908714
8	983,656	1662	1,689615069	122,957
9	1124,179	1841	1,637639557	124,908778
10	1259,08	1915	1,520951806	125,908
11	1368,565	2065	1,508879739	124,415
12	1498,905	2128	1,41970305	124,90875
13	1573,85	2350	1,493153731	121,065385
14	1748,722	2517	1,439336841	124,908714
15	1851,588	2414	1,303745758	123,4392

Podemos ver que A(t) parece tener el mismo comportamiento que para el Producto 1. El siguiente gráfico de dispersión nos dará una mejor visión

Observando el gráfico confirmamos que la función A(t) parece tener el mismo comportamiento que en caso anterior, por lo que realizaremos la regresión sobre la misma función $a+\frac{b}{t}$. Como antes aplicamos un cambio de variable para efectuar la regresión lineal, con lo cual

$$A(t) = a + \frac{b}{t} = a + bz \Rightarrow z = \frac{1}{t}$$

$\mathbf{A}(\mathbf{t})$
6,89392255
4,02277854
2,87517014
2,32970068
1,85055755
2,07751692
1,93398379
1,68961507
1,63763956
1,52095181
1,50887974
1,41970305
1,49315373
1,43933684
1,30374576

Ejecutamos la regresión lineal y obtenemos los valores a=0,953492498211677 y b=5,93517453995343 con un coeficiente de determinación $R^2=0,994656046540064$. El valor del coeficiente de determinación es casi 1 por lo que el ajuste es muy bueno y con ello podemos establecer que la función es

$$A(t) = a + \frac{b}{t} = 0,953492498211677 + \frac{5,93517453995343}{t}$$

Con este resultado nos encontramos nuevamente en el Caso B del modelo y nuestra función a optimizar es

$$C(t) = \left(a - \frac{1}{2}\right)c_1rt + c_1br + \frac{c_3}{t} = 0,05669t + 0,742\frac{209,43}{t}$$

Si derivamos e igualamos a 0, obtenemos

$$C'(t) = 0.05669 - \frac{209.43}{t^2} = 0 \implies t_0 = \sqrt{209.43/0.05669} = 60,7784 \ dias$$

Como $C'''(t) \ge 0$, t_0 es nuestro periodo de gestión óptimo. Ello genera un costo de

$$C_0 = 0.05669 \cdot 60.7784 + 0.742 + \frac{209.908}{60.7784} = 7.64$$

El nivel del inventario al comienzo de cada periodo de gestión debe ser

$$S_0 = \sqrt{\frac{rc_3a^2}{(a-\frac{1}{2})c_1}} + br = \sqrt{\frac{125,908 \cdot 209,43 \cdot 0,953492498211677^2}{(0,953492498211677 - \frac{1}{2})0,000993}} + 5,935 \cdot 125,908 = 8043,886 + 125,908 +$$

Tras esto concluimos que, para que nuestra gestión del inventario sea óptima, debemos reponer el inventario cada 61 días laborales elevando el número de productos en stock a 8044.

Una vez hemos concluido el estudio de nuestro problema vamos a comparar los resultados obtenidos con los que maneja la empresa.

5.6. Análisis de los resultados

Hemos analizado el problema y se han determinado cuáles son los periodos de gestión y los niveles de stock necesarios para que los gastos asociados a nuestro inventario sean mínimos. Pero, ¿cuánto ahorro supondría?, ¿cuál de los modelos utilizados es mejor?. Para conocer las respuestas a estas preguntas hallaremos cuál fue el costo que le produjo a la compañía el mantenimiento y reposición de su inventario a lo largo del año 2014.

Primero veamos nuestro Producto 1. Durante dicho año, la empresa repuso su inventario en 33 ocasiones, como puede verse en la tabla del Apéndice A.2.1. A este producto se le había calculado un costo de reposición de $c_{31} = 184,43$, por lo que generó un gasto de 6086,19. Además, su gasto de mantenimiento era $c_{11} = 0,000783$ /caja y día. Observamos en el Apéndice A.3.1, que el nivel de inventario diario durante 2014 fue variando desde las 3442 hasta las 19931 cajas con una media de 12580 cajas en stock. Si multiplicamos esas cantidades que se mantuvieron en el inventario cada día por su costo c_{11} sabremos cuánto dinero supuso mantener este producto para el negocio. Si realizamos el cálculo, obtenemos que el mantenimiento del stock generó un gasto anual de 3584,62 con lo cual

.

podemos decir que la gestión de su inventario produjo un gasto total de 9670,81€.

Ya sabemos lo que gastó la empresa con su gestión, veamos ahora qué hubiera pasado si se hubiera aplicado nuestra política de gestión de stocks. De los cálculos que hicimos, en primer lugar compararemos con el primero, es decir, el caso con A(t) constante y demanda diaria. Este caso proponía reponer el inventario cada 17 días laborales, lo que al año supondría 14 reposiciones creando un gasto anual de 3135,31€. Por otro lado establecía que se debía elevar el inventario hasta las 15759 cajas con cada reposición. Si hubiéramos aplicado esta política de inventario a las ventas de 2014, el nivel de stock que se mantendría a diario variaría entre las 10805 y 15759 cajas con un promedio de 13990 cajas en stock. Esto ocasionaría un costo de 3986,04€, que sumado a los 3135,31€ de las reposiciones hacen un total de 7121,35€ anuales.

Cuando estudiamos la demanda de forma semanal el periodo de gestión óptimo pasa a ser de cuatro semanas y media, por lo que al año se debe reponer el inventario once veces. Esto redunda es un gasto de reposición de 2028, 73€. En cuanto al nivel de inventario, al comienzo del periodo de gestión se deben tener 10013 cajas. Así, con esta política, estudiando la variación de nivel de stock durante 2014, se observa que el nivel de inventario varía entre las 3400 y 10013 cajas con una media de 7792,95 cajas en stock. De este modo el gasto de mantenimiento a lo largo del año hubiera sido de 2220,4428€ que sumado al de reposición hace un total de 4249,1728€ anuales.

Si aplicamos el segundo modelo (Caso B), esto es considerando $A(t) = a + \frac{b}{t}$, deberíamos reponer el inventario 6 veces al año creando una gasto de 1106,58 $\mbox{\ensuremath{\in}}$. Además, esta política dictaba que deberíamos elevar el inventario hasta las 11078 cajas. Entonces aplicando esta estrategia, tenemos que nuestro stock en el año 2014 variaría entre las 842 y las 11078 cajas con un promedio de 6724. Con lo que se origina un gasto de mantenimiento de 1915,16 $\mbox{\ensuremath{\notin}}$ y un total de 3021,74 $\mbox{\ensuremath{\notin}}$ anuales.

Como vemos, todos los casos mejoran el costo de la gestión llevada por la empresa, creando un ahorro de más de 6000 para el caso de A(t) no constante. ¿Por qué se genera este ahorro? Vemos que para nuestro primer caso, aún manteniendo un mayor stock durante todo el año, tiene un costo considerablemente menor que el de la empresa. La diferencia está en que el costo de mantenimiento es muy inferior al de reposición, por lo que reponer un menor número de veces, aún elevando el nivel inventario, es mucho más rentable. Considerando demanda semanal la diferencia es aún mucho mayor. Como se había predicho, agrupar la demanda diaria amortigua el efecto desestabilizador de los valores atípicos, reduciendo el nivel de inventario a mantener y el número de reposiciones. Así se observa una diferencia de casi 3000 respecto al primer caso. Por último, en el último modelo no suponemos que la demanda siga una distribución, sino que estimamos A(t) directamente de los datos, ello implica un mejor ajuste de los datos generando el mejor resultado económico.

En cuanto al Producto 2 el inventario se repuso 28 veces en el año, lo que multiplicado a su costo de reposición $c_{32} = 209,43$, crea un gasto de 5864,04 \in . En las tablas del Apéndice

A.3.2 se encuentra reflejado la evolución diaria del nivel de inventario durante el año que nos ocupa. En ellas observamos como el nivel varía entre las 293 y la 9402 cajas y con un promedio de 4846 por día. Su costo de mantenimiento era $c_{12} = 0,000993$ c/caja y día, por lo que al multiplicar este valor por el nivel de stock de cada día obtenemos un total 1751,36. Esto, sumado al gasto de las reposiciones, supone un total de 7615,4 anuales.

Si aplicáramos nuestro modelo con A(t) constante deberíamos reponer el inventario 15 veces en el año, elevando el inventario hasta las 14050 cajas, asumiendo así un coste de 3141,45 $\mathin{\in}$. Aplicando esta política de inventario el nivel de stock durante dicho año se mueve entre las 11510 y las 14050 cajas con un nivel medio de 13159 por día. Esto ocasiona una gasto de mantenimiento de 4753,09 $\mathin{\in}$, sumando así un total de 7894,54 $\mathin{\in}$ anuales.

Asumiendo la demanda de forma semanal, deberíamos reponer el stock cada seis semanas, es decir, ocho veces al año produciendo un gasto de 1675,44. Cuando aplicamos esta política con $S_0 = 6935$ cajas tenemos que nuestro nivel de inventario varía entre las 2904 y las 6935 cajas a una media de 5130 por día. Dicho nivel de stock crea un gasto de mantenimiento de 1854,17. Sumando los costes generados obtenemos un total de 3529,61/ \bigcirc /año.

En cambio si se emplea el caso B, esto es, considerando A(t) no constante, lograremos una gestión más rentable, ya que como vimos en la sección 5.5 con éste se consigue un coste $C_0 = 7,64$. De este modo deberemos reponer el inventario 4 veces al año, lo que supone nada más que un gasto de 837,72 \in . Por otra parte, en esas reposiciones se debe aumentar el nivel del inventario hasta las 8044 cajas. Considerando nuevamente las ventas del año, bajo esta política, el stock oscila entre las 171 y las 8044 cajas con una media de 4314 cajas. De esta manera debemos asumir 1559,29 \in en concepto de gastos de mantenimiento, y un total por la gestión del inventario de 2397,01 \in anuales.

Para este producto encontramos una gran diferencia entre los dos casos que utilizamos. El caso de A(t) constante, vuelve a ser peor, e incluso genera un mayor gasto que el que se encuentra realizando la empresa considerando la demanda diaria. Al igual que antes, se estima que A(t) es constante tras ajustarlo a una gamma, pero unos pocos valores altos aislados, muy alejado de la media, hacen que la diferencia entre la demanda máxima y la media sea muy alta. Como nuestro modelo establece que $S_0 = y_{max}$, iniciamos cada periodo de gestión con un nivel inventario preparado para asumir una demanda máxima diaria durante dicho periodo, algo posible pero realmente improbable. Así, vemos como, para este caso, el valor mínimo del inventario es de 11510 cajas, lo que aún reponiendo menos veces que la empresa y siendo mucho menores los gastos de mantenimiento de los de reposición tenemos un costo más elevado que el actual.

Por otro lado, vemos que considerando la demanda semanal solucionamos la gran diferencia entre la demanda media y la máxima generada por los valores aislados, y los resultados obtenidos son totalmente diferentes. Así, donde antes aumentábamos el gasto ahora lo reducimos en más de 4000€. Aplicando el modelo del caso B vemos que de nue-

vo se ajusta mucho mejor tanto el nivel de inventario como el número de reposiciones, consiguiendo mejor resultado.

Capítulo 6

Conclusiones y trabajos futuros

Tras realizar el análisis y gestión del inventario de esta empresa, y viendo los resultados obtenidos, queda evidenciada la importancia del estudio de los modelos de gestión de stocks y de su aplicación a la empresa. Hemos visto los posibles ahorros en los costes de almacenaje y reposición que podríamos obtener para dos productos. Teniendo en cuenta que esta empresa maneja más de 60 referencias distintas, podemos imaginar cuál sería el impacto de aplicar estos modelos a todos ellos.

A lo largo del desarrollo del trabajo hemos analizado las características detalladas del inventario con el objetivo de determinar el modelo más adecuado que se ajuste a los datos de los productos. Finalmente, hemos aplicado diferentes modelos examinando los resultados de unos y otros. Las diferencias entre los gastos han sido claras. De esta manera advertimos que no hay una única posibilidad, ni un modelo ideal, sino que más bien hay que probar y buscar el que mejor se adapte al problema que se nos presente.

Por tanto, como posible trabajo futuro quedará la idea de convencer a la empresa a probar con un nuevo modelo en el que se permitiera la existencia de roturas ya que en muchos casos, puede significar mayor ahorro en la gestión del inventario de esos productos.

Además, como hemos nombrado antes, la empresa maneja más de 60 productos distintos, cada uno con sus características de producción y almacenaje. Entonces, otro posible trabajo futuro sería aplicar el mismo análisis que hemos realizado, a todos ellos, de manera coordinada. Aquí deberá investigarse cada producto para encontrar el modelo de gestión que mejor se adapte a las características de venta de cada uno de ellos. En suma, con este planteamiento se encontrarán nuevas restricciones ya que no podremos entender cada producto de manera individualizada, sino que habrá que tener en cuenta los días de reposición para coordinarse con la utilización de la planta de producción y la capacidad de almacenaje. De este modo nos encontraremos posiblemente con resultados distintos a los obtenidos, pero de igual modo obtendremos resultados donde la empresa siempre saldrá beneficiada.

Apéndice A

Datos proporcionados por la empresa

A.1. Datos de venta

A.1.1. Producto 1

Fecha	Nº de cajas	Fecha	Nº de cajas		Fecha	Nº de cajas
02/01/2014	127	05/02/2014	237	ĺ	10/03/2014	79
03/01/2014	327	06/02/2014	399		11/03/2014	104
07/01/2014	78	07/02/2014	126		12/03/2014	233
08/01/2014	236	10/02/2014	198		13/03/2014	90
09/01/2014	370	11/02/2014	154		14/03/2014	45
10/01/2014	146	12/02/2014	325		17/03/2014	190
13/01/2014	217	13/02/2014	213		18/03/2014	550
14/01/2014	204	14/02/2014	225		19/03/2014	139
15/01/2014	216	17/02/2014	106		20/03/2014	240
16/01/2014	422	18/02/2014	127		21/03/2014	183
17/01/2014	173	19/02/2014	219		24/03/2014	149
20/01/2014	197	20/02/2014	122		25/03/2014	162
21/01/2014	70	21/02/2014	305		26/03/2014	122
22/01/2014	220	24/02/2014	227		27/03/2014	127
23/01/2014	171	25/02/2014	110		28/03/2014	175
24/01/2014	136	26/02/2014	330		31/03/2014	324
27/01/2014	137	27/02/2014	437		01/04/2014	402
28/01/2014	52	28/02/2014	101		02/04/2014	179
29/01/2014	458	03/03/2014	95		03/04/2014	312
30/01/2014	366	05/03/2014	396		04/04/2014	129
31/01/2014	97	06/03/2014	138		07/04/2014	448
04/02/2014	645	07/03/2014	108		08/04/2014	110

Fecha	Nº de cajas	Fecha	Nº de cajas		Fecha	Nº de cajas
09/04/2014	129	11/06/2014	224	וֹוֹ	07/08/2014	149
10/04/2014	352	12/06/2014	410		08/08/2014	69
11/04/2014	168	13/06/2014	84		11/08/2014	38
14/04/2014	148	16/06/2014	218		12/08/2014	130
15/04/2014	554	17/06/2014	69		13/08/2014	472
16/04/2014	246	18/06/2014	256		14/08/2014	103
21/04/2014	164	19/06/2014	192		18/08/2014	89
22/04/2014	363	20/06/2014	91		19/08/2014	77
23/04/2014	208	23/06/2014	158		20/08/2014	464
24/04/2014	349	24/06/2014	94		21/08/2014	249
25/04/2014	306	25/06/2014	342		22/08/2014	662
28/04/2014	160	26/06/2014	94		25/08/2014	167
29/04/2014	220	27/06/2014	115		26/08/2014	68
30/04/2014	887	30/06/2014	156		27/08/2014	150
02/05/2014	164	01/07/2014	367		28/08/2014	213
05/05/2014	655	02/07/2014	457		29/08/2014	558
06/05/2014	105	03/07/2014	708		01/09/2014	229
07/05/2014	257	04/07/2014	147		02/09/2014	565
08/05/2014	425	07/07/2014	119		03/09/2014	160
09/05/2014	551	08/07/2014	266		04/09/2014	204
12/05/2014	202	09/07/2014	347		05/09/2014	106
13/05/2014	118	10/07/2014	260		08/09/2014	209
14/05/2014	275	11/07/2014	109		09/09/2014	207
15/05/2014	190	14/07/2014	78		10/09/2014	175
16/05/2014	210	15/07/2014	382		11/09/2014	190
19/05/2014	290	16/07/2014	305		12/09/2014	66
20/05/2014	101	17/07/2014	120		15/09/2014	131
21/05/2014	237	18/07/2014	89		16/09/2014	223
22/05/2014	160	21/07/2014	252		17/09/2014	239
23/05/2014	141	22/07/2014	152		18/09/2014	184
26/05/2014	380	23/07/2014	151		19/09/2014	80
27/05/2014	132	24/07/2014	97		22/09/2014	250
28/05/2014	197	25/07/2014	98		23/09/2014	65
29/05/2014	164	28/07/2014	122		24/09/2014	144
02/06/2014	512	29/07/2014	96		25/09/2014	144
03/06/2014	301	30/07/2014	464		26/09/2014	160
04/06/2014	335	31/07/2014	631		29/09/2014	69
05/06/2014	308	01/08/2014	927		30/09/2014	426
06/06/2014	55	04/08/2014	139		01/10/2014	227
09/06/2014	171	05/08/2014	74		02/10/2014	186
10/06/2014	152	06/08/2014	237		03/10/2014	163

Fecha	Nº de cajas
06/10/2014	49
07/10/2014	58
08/10/2014	383
09/10/2014	424
10/10/2014	84
13/10/2014	128
14/10/2014	92
15/10/2014	143
16/10/2014	270
17/10/2014	230
20/10/2014	114
21/10/2014	49
22/10/2014	147
23/10/2014	294
24/10/2014	235
27/10/2014	94
28/10/2014	37
29/10/2014	100
30/10/2014	501
31/10/2014	142
03/11/2014	547
04/11/2014	78
05/11/2014	157
06/11/2014	104
07/11/2014	226
10/11/2014	352
11/11/2014	195
12/11/2014	200
13/11/2014	195
14/11/2014	102
17/11/2014	82
18/11/2014	60
19/11/2014	120
20/11/2014	177
21/11/2014	167
24/11/2014	244
25/11/2014	116
26/11/2014	312
27/11/2014	153
28/11/2014	103
01/12/2014	348

Fecha	Nº de cajas
02/12/2014	45
03/12/2014	289
04/12/2014	298
05/12/2014	212
09/12/2014	90
10/12/2014	321
11/12/2014	206
12/12/2014	97
15/12/2014	231
16/12/2014	74
17/12/2014	174
18/12/2014	188
19/12/2014	126
22/12/2014	420
23/12/2014	519
24/12/2014	131
26/12/2014	348
29/12/2014	360
30/12/2014	454
31/12/2014	234

A.1.2. Producto 2

Fecha	Nº de cajas	Fecha	Nº de cajas	Fee	cha	Nº de cajas
02/01/2014	22	03/03/2014	113	U.	/2014	13
03/01/2014	68	05/03/2014	376	11 /	/2014	473
07/01/2014	89	06/03/2014	51	11 '	/2014	81
08/01/2014	11	07/03/2014	38	11 '	/2014	23
09/01/2014	219	10/03/2014	42	11 '	/2014	60
10/01/2014	223	11/03/2014	85		/2014	426
13/01/2014	67	12/03/2014	254		/2014	111
14/01/2014	73	13/03/2014	94	11 '	/2014	10
15/01/2014	42	14/03/2014	8	11 '	/2014	136
16/01/2014	49	17/03/2014	348	11 '	/2014	10
17/01/2014	401	18/03/2014	200	11 '	/2014	73
20/01/2014	34	19/03/2014	369	11 '	/2014	480
21/01/2014	32	20/03/2014	18	11 '	/2014	11
22/01/2014	27	21/03/2014	7	11 '	/2014	12
23/01/2014	78	24/03/2014	31	11 '	/2014	174
24/01/2014	306	25/03/2014	51	11 /	/2014	1
27/01/2014	32	26/03/2014	27	11 /	/2014	145
28/01/2014	112	27/03/2014	359	27/05	/2014	868
29/01/2014	158	28/03/2014	125	28/05	/2014	77
30/01/2014	237	31/03/2014	261	29/05	/2014	74
31/01/2014	63	01/04/2014	28	02/06	/2014	66
04/02/2014	120	02/04/2014	10	03/06	/2014	327
05/02/2014	34	03/04/2014	75		/2014	35
06/02/2014	152	04/04/2014	22	05/06	/2014	70
07/02/2014	139	07/04/2014	648	06/06	/2014	1
10/02/2014	342	08/04/2014	44	09/06	/2014	220
11/02/2014	307	09/04/2014	57	10/06	/2014	68
12/02/2014	19	10/04/2014	119		/2014	15
13/02/2014	14	11/04/2014	252	12/06	/2014	22
14/02/2014	9	14/04/2014	140	13/06	/2014	13
17/02/2014	38	15/04/2014	72	16/06	/2014	223
18/02/2014	263	16/04/2014	74	17/06	/2014	134
19/02/2014	25	21/04/2014	61	18/06	/2014	11
20/02/2014	76	22/04/2014	334		/2014	309
21/02/2014	489	23/04/2014	21	20/06	/2014	12
24/02/2014	248	24/04/2014	155	11 /	/2014	104
25/02/2014	22	25/04/2014	13	24/06	/2014	33
26/02/2014	8	28/04/2014	170	11 /	/2014	220
27/02/2014	265	29/04/2014	187	11 '	/2014	65
28/02/2014	1	30/04/2014	135	27/06	/2014	15

Fecha	Nº de cajas	Fecha	Nº de cajas		Fecha	Nº de cajas
30/06/2014	63	27/08/2014	44	ĺ	23/10/2014	20
01/07/2014	71	28/08/2014	149		24/10/2014	13
02/07/2014	177	29/08/2014	40		27/10/2014	18
03/07/2014	24	01/09/2014	93		28/10/2014	64
04/07/2014	96	02/09/2014	16		29/10/2014	253
07/07/2014	433	03/09/2014	340		30/10/2014	202
08/07/2014	253	04/09/2014	16		31/10/2014	1
09/07/2014	27	05/09/2014	12		03/11/2014	51
10/07/2014	13	08/09/2014	62		04/11/2014	22
11/07/2014	7	09/09/2014	255		05/11/2014	231
14/07/2014	303	10/09/2014	554		06/11/2014	19
15/07/2014	661	11/09/2014	25		07/11/2014	64
16/07/2014	58	12/09/2014	112		10/11/2014	52
17/07/2014	22	15/09/2014	104		11/11/2014	89
18/07/2014	68	16/09/2014	189		12/11/2014	367
21/07/2014	50	17/09/2014	24		13/11/2014	95
22/07/2014	74	18/09/2014	102		14/11/2014	15
23/07/2014	19	19/09/2014	115		17/11/2014	591
24/07/2014	348	22/09/2014	155		18/11/2014	51
25/07/2014	3	23/09/2014	24		19/11/2014	29
28/07/2014	20	24/09/2014	125		20/11/2014	35
29/07/2014	631	25/09/2014	206		21/11/2014	135
30/07/2014	93	26/09/2014	487		24/11/2014	11
31/07/2014	80	29/09/2014	86		25/11/2014	27
01/08/2014	9	30/09/2014	5		26/11/2014	248
04/08/2014	38	01/10/2014	262		27/11/2014	95
05/08/2014	75	02/10/2014	13		28/11/2014	14
06/08/2014	23	03/10/2014	2		01/12/2014	30
07/08/2014	11	06/10/2014	274		02/12/2014	47
08/08/2014	66	07/10/2014	32		03/12/2014	321
11/08/2014	103	08/10/2014	200		04/12/2014	62
12/08/2014	303	09/10/2014	16		05/12/2014	9
13/08/2014	99	10/10/2014	14		09/12/2014	91
14/08/2014	10	13/10/2014	160		10/12/2014	129
18/08/2014	237	14/10/2014	4		11/12/2014	16
19/08/2014	45	15/10/2014	22		12/12/2014	551
20/08/2014	19	16/10/2014	39		15/12/2014	221
21/08/2014	143	17/10/2014	8		16/12/2014	62
22/08/2014	1	20/10/2014	577		17/12/2014	28
25/08/2014	142	21/10/2014	16		18/12/2014	105
26/08/2014	160	22/10/2014	253		19/12/2014	20

Fecha	Nº de cajas
22/12/2014	391
23/12/2014	433
24/12/2014	12
26/12/2014	14
29/12/2014	103
30/12/2014	90
31/12/2014	11

A.2. Datos de reposición

A.2.1. Producto 1

Fecha	Nº de cajas
22/01/2014	1089
27/01/2014	1271
07/02/2014	792
12/02/2014	1116
13/02/2014	1861
14/02/2014	758
27/02/2014	360
28/02/2014	3928
05/03/2014	3514
12/03/2014	2504
13/03/2014	4228
19/03/2014	860
26/03/2014	1643
09/04/2014	1302
10/04/2014	2514
19/05/2014	1055
26/03/2014	1643
09/04/2014	1302
10/04/2014	2514
19/05/2014	1055
20/05/2014	2718
09/06/2014	1847
10/06/2014	2818

Fecha	Nº de cajas
11/06/2014	2196
02/07/2014	1237
03/07/2014	1790
31/07/2014	571
10/09/2014	705
11/09/2014	1208
18/09/2014	2928
13/10/2014	1161
15/10/2014	2377
05/11/2014	428
20/11/2014	1997
24/11/2014	3239
27/11/2014	1317
09/12/2014	2613

A.2.2. Producto 2

D 1	NTO 1 :
Fecha	Nº de cajas
14/01/2014	754
15/01/2014	2283
16/01/2014	2287
17/02/2014	47
18/02/2014	1597
19/02/2014	2391
31/03/2014	232
01/04/2014	1196
02/04/2014	2200
28/04/2014	197
29/04/2014	2634
30/04/2014	1958
02/05/2014	1035
26/05/2014	1384
27/05/2014	700
28/05/2014	309
21/07/2014	725
22/07/2014	286
23/07/2014	2111
30/09/2014	1786
01/10/2014	448
02/10/2014	1403
10/11/2014	145
11/11/2014	2165
12/11/2014	1516
13/11/2014	7
16/12/2014	695
18/12/2014	3532
, ,	

A.3. Nivel de stock

A.3.1. Producto 1

Fecha	Nº de cajas	Fecha	Nº de cajas	Fecha	Nº de cajas
02/01/2014	6656	09/02/2014	4108	19/03/2014	18015
03/01/2014	6329	10/02/2014	3910	20/03/2014	17775
04/01/2014	6329	11/02/2014	3756	21/03/2014	17592
05/01/2014	6329	12/02/2014	4547	22/03/2014	17592
06/01/2014	6329	13/02/2014	6195	23/03/2014	17592
07/01/2014	6251	14/02/2014	6728	24/03/2014	17443
08/01/2014	6015	15/02/2014	6728	25/03/2014	17281
09/01/2014	5645	16/02/2014	6728	26/03/2014	18802
10/01/2014	5499	17/02/2014	6622	27/03/2014	18675
11/01/2014	5499	18/02/2014	6495	28/03/2014	18500
12/01/2014	5499	19/02/2014	6276	29/03/2014	18500
13/01/2014	5282	20/02/2014	6226	30/03/2014	18500
14/01/2014	5078	21/02/2014	5921	31/03/2014	18176
15/01/2014	4862	22/02/2014	5921	01/04/2014	17774
16/01/2014	4440	23/02/2014	5921	02/04/2014	17595
17/01/2014	4267	24/02/2014	5694	03/04/2014	17283
18/01/2014	4267	25/02/2014	5656	04/04/2014	17154
19/01/2014	4267	26/02/2014	5326	05/04/2014	17154
20/01/2014	4070	27/02/2014	5249	06/04/2014	17154
21/01/2014	4000	28/02/2014	9076	07/04/2014	16706
22/01/2014	4869	01/03/2014	9076	08/04/2014	16596
23/01/2014	4698	02/03/2014	9076	09/04/2014	17769
24/01/2014	4562	03/03/2014	8981	10/04/2014	19931
25/01/2014	4562	04/03/2014	8981	11/04/2014	19763
26/01/2014	4562	05/03/2014	12099	12/04/2014	19763
27/01/2014	5696	06/03/2014	11961	13/04/2014	19763
28/01/2014	5644	07/03/2014	11853	14/04/2014	19615
29/01/2014	5186	08/03/2014	11853	15/04/2014	19061
30/01/2014	4820	09/03/2014	11853	16/04/2014	18815
31/01/2014	4723	10/03/2014	11774	17/04/2014	18815
01/02/2014	4723	11/03/2014	11670	18/04/2014	18815
02/02/2014	4723	12/03/2014	13941	19/04/2014	18815
03/02/2014	4723	13/03/2014	18079	20/04/2014	18815
04/02/2014	4078	14/03/2014	18034	21/04/2014	18651
05/02/2014	3841	15/03/2014	18034	22/04/2014	18288
06/02/2014	3442	16/03/2014	18034	23/04/2014	18080
07/02/2014	4108	17/03/2014	17844	24/04/2014	17731
08/02/2014	4108	18/03/2014	17294	25/04/2014	17425

Fecha	Nº de cajas	Fecha	Nº de cajas	Fecha	Nº de cajas
26/04/2014	17425	06/06/2014	13466	17/07/2014	16863
27/04/2014	17425	07/06/2014	13466	18/07/2014	16774
28/04/2014	17265	08/06/2014	13466	19/07/2014	16774
29/04/2014	17045	09/06/2014	15142	20/07/2014	16774
30/04/2014	16158	10/06/2014	17808	21/07/2014	16522
01/05/2014	16158	11/06/2014	19780	22/07/2014	16370
02/05/2014	15994	12/06/2014	19370	23/07/2014	16219
03/05/2014	15994	13/06/2014	19286	24/07/2014	16122
04/05/2014	15994	14/06/2014	19286	25/07/2014	16024
05/05/2014	15339	15/06/2014	19286	26/07/2014	16024
06/05/2014	15234	16/06/2014	19068	27/07/2014	16024
07/05/2014	14977	17/06/2014	18999	28/07/2014	15902
08/05/2014	14552	18/06/2014	18743	29/07/2014	15806
09/05/2014	14001	19/06/2014	18551	30/07/2014	15342
10/05/2014	14001	20/06/2014	18460	31/07/2014	15282
11/05/2014	14001	21/06/2014	18460	01/08/2014	14355
12/05/2014	13799	22/06/2014	18460	02/08/2014	14355
13/05/2014	13681	23/06/2014	18302	03/08/2014	14355
14/05/2014	13406	24/06/2014	18208	04/08/2014	14216
15/05/2014	13216	25/06/2014	17866	05/08/2014	14142
16/05/2014	13006	26/06/2014	17772	06/08/2014	13905
17/05/2014	13006	27/06/2014	17657	07/08/2014	13756
18/05/2014	13006	28/06/2014	17657	08/08/2014	13687
19/05/2014	13771	29/06/2014	17657	09/08/2014	13687
20/05/2014	16388	30/06/2014	17501	10/08/2014	13687
21/05/2014	16151	01/07/2014	17134	11/08/2014	13649
22/05/2014	15991	02/07/2014	17914	12/08/2014	13519
23/05/2014	15850	03/07/2014	18996	13/08/2014	13047
24/05/2014	15850	04/07/2014	18849	14/08/2014	12944
25/05/2014	15850	05/07/2014	18849	15/08/2014	12944
26/05/2014	15470	06/07/2014	18849	16/08/2014	12944
27/05/2014	15338	07/07/2014	18730	17/08/2014	12944
28/05/2014	15141	08/07/2014	18464	18/08/2014	12855
29/05/2014	14977	09/07/2014	18117	19/08/2014	12778
30/05/2014	14977	10/07/2014	17857	20/08/2014	12314
31/05/2014	14977	11/07/2014	17748	21/08/2014	12065
01/06/2014	14977	12/07/2014	17748	22/08/2014	11403
02/06/2014	14465	13/07/2014	17748	23/08/2014	11403
03/06/2014	14164	14/07/2014	17670	24/08/2014	11403
04/06/2014	13829	15/07/2014	17288	25/08/2014	11236
05/06/2014	13521	16/07/2014	16983	26/08/2014	11168

Fecha	Nº de cajas	Fecha	Nº de cajas] [Fecha	Nº de cajas
27/08/2014	11018	07/10/2014	10181		17/11/2014	8442
28/08/2014	10805	08/10/2014	9798		18/11/2014	8382
29/08/2014	10247	09/10/2014	9374		19/11/2014	8262
30/08/2014	10247	10/10/2014	9290		20/11/2014	10082
31/08/2014	10247	11/10/2014	9290		21/11/2014	9915
01/09/2014	10018	12/10/2014	9290		22/11/2014	9915
02/09/2014	9453	13/10/2014	10323		23/11/2014	9915
03/09/2014	9293	14/10/2014	10231		24/11/2014	12910
04/09/2014	9089	15/10/2014	12465		25/11/2014	12794
05/09/2014	8983	16/10/2014	12195		26/11/2014	12482
06/09/2014	8983	17/10/2014	11965		27/11/2014	13646
07/09/2014	8983	18/10/2014	11965		28/11/2014	13543
08/09/2014	8774	19/10/2014	11965		29/11/2014	13543
09/09/2014	8567	20/10/2014	11851		30/11/2014	13543
10/09/2014	9097	21/10/2014	11802		01/12/2014	13195
11/09/2014	10115	22/10/2014	11655		02/12/2014	13150
12/09/2014	10049	23/10/2014	11361		03/12/2014	12861
13/09/2014	10049	24/10/2014	11126		04/12/2014	12563
14/09/2014	10049	25/10/2014	11126		05/12/2014	12351
15/09/2014	9918	26/10/2014	11126		06/12/2014	12351
16/09/2014	9695	27/10/2014	11032		07/12/2014	12351
17/09/2014	9456	28/10/2014	10995		08/12/2014	12351
18/09/2014	12200	29/10/2014	10895		09/12/2014	14874
19/09/2014	12120	30/10/2014	10394		10/12/2014	14553
20/09/2014	12120	31/10/2014	10252		11/12/2014	14347
21/09/2014	12120	01/11/2014	10252		12/12/2014	14250
22/09/2014	11870	02/11/2014	10252		13/12/2014	14250
23/09/2014	11805	03/11/2014	9705		14/12/2014	14250
24/09/2014	11661	04/11/2014	9627		15/12/2014	14019
25/09/2014	11517	05/11/2014	9898		16/12/2014	13945
26/09/2014	11357	06/11/2014	9794		17/12/2014	13771
27/09/2014	11357	07/11/2014	9568		18/12/2014	13583
28/09/2014	11357	08/11/2014	9568		19/12/2014	13457
29/09/2014	11288	09/11/2014	9568		20/12/2014	13457
30/09/2014	10862	10/11/2014	9216		21/12/2014	13457
01/10/2014	10637	11/11/2014	9021		22/12/2014	13037
02/10/2014	10451	12/11/2014	8821		23/12/2014	12518
03/10/2014	10288	13/11/2014	8626		24/12/2014	12387
04/10/2014	10288	14/11/2014	8524		25/12/2014	12387
05/10/2014	10288	15/11/2014	8524		26/12/2014	12039
06/10/2014	10239	16/11/2014	8524		27/12/2014	12039

Fecha	Nº de cajas
28/12/2014	12039
29/12/2014	11679
30/12/2014	11225
31/12/2014	10991

A.3.2. Producto 2

Fecha	Nº de cajas	Fecha	Nº de cajas	Fecha	Nº de cajas
02/01/2014	970	04/02/2014	3853	09/03/2014	4859
03/01/2014	902	05/02/2014	3819	10/03/2014	4817
04/01/2014	902	06/02/2014	3667	11/03/2014	4732
05/01/2014	902	07/02/2014	3528	12/03/2014	4478
06/01/2014	902	08/02/2014	3528	13/03/2014	4384
07/01/2014	813	09/02/2014	3528	14/03/2014	4376
08/01/2014	802	10/02/2014	3186	15/03/2014	4376
09/01/2014	583	11/02/2014	2879	16/03/2014	4376
10/01/2014	360	12/02/2014	2860	17/03/2014	4028
11/01/2014	360	13/02/2014	2846	18/03/2014	3828
12/01/2014	360	14/02/2014	2837	19/03/2014	3459
13/01/2014	293	15/02/2014	2837	20/03/2014	3441
14/01/2014	974	16/02/2014	2837	21/03/2014	3434
15/01/2014	3215	17/02/2014	2846	22/03/2014	3434
16/01/2014	5453	18/02/2014	4180	23/03/2014	3434
17/01/2014	5052	19/02/2014	6546	24/03/2014	3403
18/01/2014	5052	20/02/2014	6470	25/03/2014	3352
19/01/2014	5052	21/02/2014	5981	26/03/2014	3325
20/01/2014	5018	22/02/2014	5981	27/03/2014	2966
21/01/2014	4986	23/02/2014	5981	28/03/2014	2841
22/01/2014	4959	24/02/2014	5733	29/03/2014	2841
23/01/2014	4881	25/02/2014	5711	30/03/2014	2841
24/01/2014	4575	26/02/2014	5703	31/03/2014	2812
25/01/2014	4575	27/02/2014	5438	01/04/2014	3980
26/01/2014	4575	28/02/2014	5437	02/04/2014	6170
27/01/2014	4543	01/03/2014	5437	03/04/2014	6095
28/01/2014	4431	02/03/2014	5437	04/04/2014	6073
29/01/2014	4273	03/03/2014	5324	05/04/2014	6073
30/01/2014	4036	04/03/2014	5324	06/04/2014	6073
31/01/2014	3973	05/03/2014	4948	07/04/2014	5425
01/02/2014	3973	06/03/2014	4897	08/04/2014	5381
02/02/2014	3973	07/03/2014	4859	09/04/2014	5324
03/02/2014	3973	08/03/2014	4859	10/04/2014	5205

Fecha	Nº de cajas	Fecha	Nº de cajas	Fecha	Nº de cajas
11/04/2014	4953	28/05/2014	8624	14/07/2014	5120
12/04/2014	4953	29/05/2014	8550	15/07/2014	4459
13/04/2014	4953	30/05/2014	8550	16/07/2014	4401
14/04/2014	4813	31/05/2014	8550	17/07/2014	4379
15/04/2014	4741	01/06/2014	8550	18/07/2014	4311
16/04/2014	4667	02/06/2014	8484	19/07/2014	4311
17/04/2014	4667	03/06/2014	8157	20/07/2014	4311
18/04/2014	4667	04/06/2014	8122	21/07/2014	4986
19/04/2014	4667	05/06/2014	8052	22/07/2014	5198
20/04/2014	4667	06/06/2014	8051	23/07/2014	7290
21/04/2014	4606	07/06/2014	8051	24/07/2014	6942
22/04/2014	4272	08/06/2014	8051	25/07/2014	6939
23/04/2014	4251	09/06/2014	7831	26/07/2014	6939
24/04/2014	4096	10/06/2014	7763	27/07/2014	6939
25/04/2014	4083	11/06/2014	7748	28/07/2014	6919
26/04/2014	4083	12/06/2014	7726	29/07/2014	6288
27/04/2014	4083	13/06/2014	7713	30/07/2014	6195
28/04/2014	4110	14/06/2014	7713	31/07/2014	6115
29/04/2014	6557	15/06/2014	7713	01/08/2014	6106
30/04/2014	8380	16/06/2014	7490	02/08/2014	6106
01/05/2014	8380	17/06/2014	7356	03/08/2014	6106
02/05/2014	9402	18/06/2014	7345	04/08/2014	6068
03/05/2014	9402	19/06/2014	7036	05/08/2014	5993
04/05/2014	9402	20/06/2014	7024	06/08/2014	5970
05/05/2014	8929	21/06/2014	7024	07/08/2014	5959
06/05/2014	8848	22/06/2014	7024	08/08/2014	5893
07/05/2014	8825	23/06/2014	6920	09/08/2014	5893
08/05/2014	8765	24/06/2014	6887	10/08/2014	5893
09/05/2014	8339	25/06/2014	6667	11/08/2014	5790
10/05/2014	8339	26/06/2014	6602	12/08/2014	5487
11/05/2014	8339	27/06/2014	6587	13/08/2014	5388
12/05/2014	8228	28/06/2014	6587	14/08/2014	5378
13/05/2014	8218	29/06/2014	6587	15/08/2014	5378
14/05/2014	8082	30/06/2014	6524	16/08/2014	5378
15/05/2014	8072	01/07/2014	6453	17/08/2014	5378
16/05/2014	7999	02/07/2014	6276	18/08/2014	5141
17/05/2014	7999	03/07/2014	6252	19/08/2014	5096
18/05/2014	7999	04/07/2014	6156	20/08/2014	5077
19/05/2014	7519	05/07/2014	6156	21/08/2014	4934
20/05/2014	7508	06/07/2014	6156	22/08/2014	4933
21/05/2014	7496	07/07/2014	5723	23/08/2014	4933
22/05/2014	7322	08/07/2014	5470	24/08/2014	4933
23/05/2014	7321	09/07/2014	5443	25/08/2014	4791
24/05/2014	7321	10/07/2014	5430	26/08/2014	4631
25/05/2014	7321	11/07/2014	5423	27/08/2014	4587
26/05/2014	8560	12/07/2014	5423	28/08/2014	4438
27/05/2014	8392	13/07/2014	5423	29/08/2014	4398

Fecha	Nº de cajas	Fecha	Nº de cajas
30/08/2014	4398	16/10/2014	3890
31/08/2014	4398	17/10/2014	3882
01/09/2014	4305	18/10/2014	3882
02/09/2014	4289	19/10/2014	3882
03/09/2014	3949	20/10/2014	3305
04/09/2014	3933	21/10/2014	3289
05/09/2014	3921	22/10/2014	3036
06/09/2014	3921	23/10/2014	3016
07/09/2014	3921	24/10/2014	3003
08/09/2014	3859	25/10/2014	3003
09/09/2014	3604	26/10/2014	3003
10/09/2014	3050	27/10/2014	2985
11/09/2014	3025	28/10/2014	2921
12/09/2014	2913	29/10/2014	2668
13/09/2014	2913	30/10/2014	2466
14/09/2014	2913	31/10/2014	2465
15/09/2014	2809	01/11/2014	2465
16/09/2014	2620	02/11/2014	2465
17/09/2014	2596	03/11/2014	2414
18/09/2014	2494	04/11/2014	2392
19/09/2014	2379	05/11/2014	2161
20/09/2014	2379	06/11/2014	2142
21/09/2014	2379	07/11/2014	2078
22/09/2014	2224	08/11/2014	2078
23/09/2014	2200	09/11/2014	2078
24/09/2014	2075	10/11/2014	2171
25/09/2014	1869	11/11/2014	4247
26/09/2014	1382	12/11/2014	5396
27/09/2014	1382	13/11/2014	5308
28/09/2014	1382	14/11/2014	5293
29/09/2014	1296	15/11/2014	5293
30/09/2014	3077	16/11/2014	5293
01/10/2014	3263	17/11/2014	4702
02/10/2014	4653	18/11/2014	4651
03/10/2014	4651	19/11/2014	4622
04/10/2014	4651	20/11/2014	4587
05/10/2014	4651	21/11/2014	4452
06/10/2014	4377	22/11/2014	4452
07/10/2014	4345	23/11/2014	4452
08/10/2014	4145	24/11/2014	4441
09/10/2014	4129	25/11/2014	4414
10/10/2014	4115	26/11/2014	4166
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$4115 \\ 4115$	27/11/2014 28/11/2014	$4071 \\ 4057$
$\begin{vmatrix} 12/10/2014 \\ 13/10/2014 \end{vmatrix}$	$\frac{4115}{3955}$	28/11/2014 29/11/2014	4057
14/10/2014	3951	30/11/2014	4057
$\begin{vmatrix} 14/10/2014 \\ 15/10/2014 \end{vmatrix}$	3929	01/12/2014	4027
10/10/2014	<i>ეშ∆შ</i>	01/12/2014	4021

Fecha	Nº de cajas
02/12/2014	3980
03/12/2014	3659
04/12/2014	3597
05/12/2014	3588
06/12/2014	3588
07/12/2014	3588
08/12/2014	3588
09/12/2014	3497
10/12/2014	3368
11/12/2014	3352
12/12/2014	2801
13/12/2014	2801
14/12/2014	2801
15/12/2014	2580
16/12/2014	3213
17/12/2014	3185
18/12/2014	6612
19/12/2014	6592
20/12/2014	6592
21/12/2014	6592
22/12/2014	6201
23/12/2014	5768
24/12/2014	5756
25/12/2014	5756
26/12/2014	5742
27/12/2014	5742
28/12/2014	5742
29/12/2014	5639
30/12/2014	5549
31/12/2014	5538

Apéndice B

Distribuciones

B.1. Distribución Gamma

La distribución gamma (Laplace, 1836) es una distribución biparamétrica, que se designa abreviadamente como $\Gamma(\lambda, \beta)$, donde λ y β son valores positivos. Su función de densidad vale:

$$f(x) = x^{\lambda - 1} e^{\frac{-x}{\beta}} \frac{1}{\Gamma(\lambda) \beta^x}, \quad 0 < x < \infty$$

Donde la función $\Gamma(\lambda)$ es la denominada función Gamma de Euler que representa la siguiente integral:

$$\Gamma(\lambda) = \int_{0}^{\infty} t^{\lambda - 1} e^{-t} dt$$

Esta función verifica: $\Gamma(\lambda + 1) = \lambda \Gamma(\lambda)$, con lo que, si λ es un número entero positivo, $\Gamma(\lambda + 1) = \lambda!$

B.1.1. Propiedades de la distribución

- Media = $\lambda \beta$
- Varianza = $\lambda \beta^2$
- La distribución exponencial es una distribución gamma con $\lambda=1$
- ullet Dadas dos variables aleatorias con distribución Gamma y parámetro λ común

$$X \sim \Gamma(\lambda, \beta_1) \ y \ Y \sim \Gamma(\lambda, \beta_2) \Rightarrow X + Y \sim \Gamma(\lambda, \beta_1 + \beta_2)$$

Por tanto, la gamma es reproductiva con respecto al parámetro β .

B.2. Ajuste de bondad con χ^2 de Pearson

Consideremos una variable aleatoria x para la cual deseamos estudiar si dicha variable sigue alguna distribución de probabilidad conocida. Para ello, elegimos una muestra de observaciones de la variable x. Una prueba de ajuste de bondad consiste en determinar si los datos de dicha muestra corresponden a cierta distribución poblacional.

El primer paso a realizar consiste en descomponer el recorrido de la distribución teórica en un número finito de subconjuntos: $A_1, A_2, ..., A_k$. Después, clasificar las observaciones muestrales, según el subconjunto al que pertenezcan. Y, por último, comparar las frecuencias observadas de cada A_i con las probabilidades que les corresponderían con la distribución teórica a contrastar.

Supongamos que tenemos un número k de clases en las cuales se han ido registrado un total de n observaciones (n será pues el tamaño muestral). Denotaremos las frecuencias observadas en cada clase por $O_1, O_2, ..., O_k$ (O_i es el número de valores en la clase A_i). Se cumplirá

$$O_1 + O_2 + \dots + O_k = n$$

Lo que queremos es comparar las frecuencias observadas con las frecuencias esperadas (teóricas), a las que denotaremos por $E_1, E_2, ..., E_k$. Se cumplirá

$$E_1 + E_2 + \dots + E_k = n$$

	FRECUENCIA OBSERVADA	FRECUENCIA ESPERADA
Clase 1	O_1	E_1
Clase 2	O_2	E_2
Clase		
Clase k	O_k	E_k
Total	n	N

Se tratará ahora de decidir si las frecuencias observadas están o no en concordancia con las frecuencias esperadas (es decir, si el número de resultados observados en cada clase corresponde aproximadamente al número esperado). Para comprobarlo, haremos uso de un contraste de hipótesis usando la distribución Chi-cuadrado. el estadístico de esa distribución es

$$\chi^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}$$

Se observa que este valor será la suma de k números no negativos. El numerador de cada término es la diferencia al cuadrado entre la frecuencia observada y la frecuencia esperada. Por tanto, cuanto más cerca estén entre sí ambos valores más pequeño será el numerador, y viceversa. El denominador permite relativizar el tamaño del numerador.

Las ideas anteriores sugieren que, cuanto menor sean el valor del estadístico χ^2 , más coherentes serán las observaciones obtenidas con los valores esperados. Por el contrario, valores grandes de este estadístico indicarán falta de concordancia entre las observaciones y lo esperado. En este tipo de contraste se suele rechazar la hipótesis nula (los valores observados son coherentes con los esperados) cuando el estadístico es mayor que un determinado valor crítico, el cual denotaremos por $\chi^2_{\alpha,k}$ siendo α el nivel de significación y k el número de grados de libertad. En la tabla siguiente se recogen dicho valores críticos para diferentes niveles de significación y diferentes grados de libertad.

Nótese que el valor del estadístico χ^2 se podrá aproximar por una distribución Chicuadrado cuando el tamaño muestral n sea grande (n>30), y todas las frecuencias esperadas sean iguales o mayores a 5 (en ocasiones deberemos agrupar varias categorías a fin de que se cumpla este requisito).

Además las observaciones deben ser obtenidas mediante muestreo aleatorio a partir de una población particionada en categorías.

DISTRIBUCION	DE	_x 2
DIGINIDOCION	ν	^

Grados de libertad	Probabilidad										
	0,95	0,90	0,80	0,70	0,50	0,30	0,20	0,10	0,05	0,01	0,001
1	0,004	0,02	0,06	0,15	0,46	1,07	1,64	2,71	3,84	6,64	10,83
2	0,10	0,21	0,45	0,71	1,39	2,41	3,22	4,60	5,99	9,21	13,82
3	0,35	0,58	1,01	1,42	2,37	3,66	4,64	6,25	7,82	11,34	16,27
4	0,71	1,06	1,65	2,20	3,36	4,88	5,99	7,78	9,49	13,28	18,47
5	1,14	1,61	2,34	3,00	4,35	6,06	7,29	9,24	11,07	15,09	20,52
6	1,63	2,20	3,07	3,83	5,35	7,23	8,56	10,64	12,59	16,81	22,46
7	2,17	2,83	3,82	4,67	6,35	8,38	9,80	12,02	14,07	18,48	24,32
8	2,73	3,49	4,59	5.53	7,34	9,52	11,03	13,36	15,51	20,09	26,12
9	3,32	4,17	5,38	6,39	8,34	10,66	12,24	14,68	16,92	21,67	27,88
10	3,94	4,86	6,18	7,27	9,34	11,78	13,44	15,99	18,31	23,21	29,59
			No	signif	icati	vo			S	ignific	ativo

Apéndice C

Datos de venta semanal

Se considera que la semana está formada por cinco días laborales.

C.1. Producto 1

Semana	Nº de cajas
1	1138
2	1205
3	831
\parallel 4	1149
5	1504
6	1115
7	879
8	1205
9	816
10	662
11	1261
12	910
13	1470
14	907
15	1535
16	1922
17	1606

Semana	Nº de cajas
18	1336
19	998
20	1014
21	1511
22	1041
23	826
24	803
25	1835
26	1101
27	974
28	750
29	2240
30	668
31	832
32	1619
33	1218
34	1244

Semana	Nº de cajas
35	769
36	976
37	582
38	1051
39	1077
40	849
41	819
42	1327
43	917
44	774
45	768
46	1032
47	934
48	929
49	1427
50	1527

C.2. Producto 2

Semana	Nº de cajas
1	409
2	454
3	572
4	845
5	508
6	691
7	891
8	544
9	620
10	789
11	625
12	823
13	783
14	612
15	562
16	660
17	650

Semana	Nº de cajas
18	693
19	750
20	1165
21	499
22	338
23	689
24	437
25	431
26	733
27	1112
28	494
29	833
30	213
31	752
32	350
33	486
34	446

Semana	Nº de cajas
35	1050
36	585
37	928
38	556
39	422
40	650
41	320
42	571
43	388
44	1157
45	261
46	414
47	530
48	979
49	977
50	230

Bibliografía

- [1] HILLIER, FREDERICK S. y LIEBERMAN, GERALD J. Investigación de operaciones, McGraw-Hil, 2001.
- [2] Juan, Ángel A. y García Martín, Rafael. Gestión de Stocks: Modelos deterministas, UOC, 2002
- [3] Naddor, Eliezer. Inventory system, John Wiley and sons, 1966
- [4] QUESADA, VICENTE; ISIDORO, ÁNGEL y LÓPEZ, LUIS A. Curso y ejercicios de Estadistica, Alhambra, 2002.
- [5] SARABIA VIEJO, ÁNGEL. La Investigación Operativa, UPCO, 1996.
- [6] WINSTON, WAYNE L. Investigación de operaciones: aplicaciones y algoritmos, Grupo editorial iberoamérica, 1994.