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Resumen
En este trabajo se presentan los resultados del análisis de las curvas de luz de dos estrellas binarias
ASASSN-VJ050229.84-052203.4 y CRTSJ041918.8-071807. Las observaciones de ASASSN-VJ050229.84-
052203.4 se hicieron con el telescopio IAC80 y las de CRTSJ041918.8-071807 con el telescopio Carlos
Sánchez, ambos del Observatorio del Teide.

En la introducción se da una visión general de las estrellas binarias, en especial las binarias eclipsantes
desarrollando las expresiones que permiten obtener valores de los parámetros físicos de las dos compo-
nentes del sistema.

En el capítulo 2 se hace una descripción de la instrumentación que incluye los telescopios así como las
CCD utilizadas. Se describen los pasos para la reducción de los datos con los programas utilizados. Tam-
bién en este capítulo se describen los programas de desarrollo propio que se han elaborado para el análisis
de las curvas de luz. El capítulo termina con una clasificación espectral preliminar de las componentes de
los sistemas. Esta clasificación indica que ASASSN-VJ050229.84-052203.4 es una binaria con curva de
luz tipo Algol y componentes A9V y K2V. Los colores publicados de CRTSJ041918.8-071807 indican
que las dos estrellas son de tipo M3V y M4.5V. A pesar de su periodo orbital de menos de 6 horas parece
un sistema separado con dos estrellas poco masivas, de menos de 1 masa solar.

En el capítulo 3 se presentan los resultados preliminares del análisis de las curvas utilizando la versión
más actual el código Phobe.

Los capítulos finales 4 y 5 se dedican a la discusión de los parámetros orbitales obtenidos y a las conclu-
siones que se han sacado en este trabajo. Se finaliza con una propuesta de observaciones , fotométricas y
espectroscópicas que serían necesarias obtener en un futuro para poder determinar con absoluta fiabilidad
los valores de los parámetros físicos y comparar con modelos de evolución.
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Chapter 1

Introduction

En este capítulo introductorio se explicará brevemente lo que son los sistemas binarios eclip-
santes, tipos y el interés científico para su estudio. Se darán unas nociones acerca de cuales
son los principales parámetros que los describen.

1.1 Binary star systems
Most stars that can be seen by eye appear to be just a point in the sky. However this is not always the
case. Sometimes stars form in binary, triple or even quadruple star systems. The first binary star systems
observed with telescopes date back to the middle of the seventeenth century, observed by astronomers
such as Giovanni Battista Riccioli. For these early observations most of the discovered “double stars”
where visual binaries, which are stars that appear nearby in the sky but in which the semi major axis of
the orbit is large due to the long orbital period. During the late eighteenth and early nineteenth century
astronomers such as John Michell and William Herschel proposed and tested respectively the existence
of double stars. The nature of these systems can be varied as there are many classifications depending on
certain characteristics like the orbital inclination or the type of stars present.

1.2 Eclipsing binaries
Some stars were seen for many years to decrease in brightness with a given periodicity but the cause
was unknown. It was not until 1889 that the first eclipsing binary was discovered in the Algol system by
John Goodricke. These eclipsing binaries are formed by two or more stars orbiting the center of mass, or
barycenter, of the system crossing in front of one another from our line of sight. More specifically, the
inclination of the orbit is close to 90◦ in the case of detached binaries so it aligns with our line of vision
and we can see them edge on. These stars are usually not seen individually because they are too close
to each other to be resolved by telescopes but we can extract great amounts of information from these
systems, in fact binaries, and more specifically eclipsing and spectroscopic binaries are the only way to
accurately estimate stellar parameters. One example of these parameter may be that of the mass. From
Newton’s second law it follows that there is a relationship between mass and acceleration. So in order to
correctly measure the mass of one star you need another object massive enough to create changes in its
acceleration, in most cases this will be another companion star. Nowadays we know that it is not uncom-
mon for stars to be in double or triple systems and in fact the number of eclipsing binaries in catalogues
such as ASAS-SN catalogue are in the tens of thousands, Christy et al. (2023).
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Figure 1.1: Example of the light curve of an eclipsing binary star system, taken from Hani et al. (2014).

1.3 Main parameters of eclipsing binary star systems
To fully characterise a binary star’s orbit we need to provide the following 7 orbital elements: a, the semi
major axis, e, the eccentricity of the orbit, i, the orbital inclination,Ω, the longitude of the ascending node,
ω, the argument of periastron, T0, the time of a primary minimum and P, the orbital period, Taff (1985),
Moulton (1984). However some of these elements such as the semi major axis cannot be calculated with
precision without radial velocity curves. Most of these parameters can be seen in Figure 1.2.

The easiest parameters to measure are the ones which refer to its ephemeris. That is the times at which an
eclipse occurs and the time it takes for everything to happen again. These are, first the epoch or reference
moment in time at which the primary (deepest eclipse) occurs in Julian date and then the period in days.
These are usually given by the catalogue and are the ones used to find more eclipses and refine the timing
of the events.

Firstly let us define the ascending node, this is the point were the orbit crosses the ecliptic curve in the
ascending direction, for a non inclined orbit there would be no ascending nodes. From this it follows that
the longitude of the ascending nodeΩ is the angle from a given reference direction to the ascending node
itself. Taking this into account we can define the argument of periastron (argument of periapsis in the
Figure) ω as the angle from the ascending node to the point of periastron (closest point to the other star)
in the direction of orbital motion. In third place we define the true anomaly ν as the angle between lines
drawn from the barycenter, to the secondary star, and to the periastron point, where the secondary star
comes closest to the primary star.

As for the other orbital and physical parameters we will have to take a more in depth look into the light
and radial velocity curves.
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Figure 1.2: Some of the most important orbital parameters. “Diagram of orbital elements, including the
argument of periapsis (ω).” by Lucas Snyder is licensed under CC BY-SA 3.0.

1.3.1 Light curves
If we were to plot the magnitude or relative flux (the flux of our target star divided by the flux of a com-
parison star which must not be variable) against time we would see a curve which is flat during most of
the orbit1 ,1 and 3 in the previous Figure 1.1, but which has two dips in brightness per orbital period,
2 and 4. The depth, shape and timing of these minima will depend on the types of stars and its char-
acteristics such as temperature, size, luminosity or eccentricity of the orbit. The plot that is obtained is
called a lightcurve and its analysis is of great importance because it gives many insights into the different
orbital and stellar parameters. From modelling the function that describes the lightcurve we can estimate
these values with more precision, in fact this is the reason that makes it and ideal method for studying stars.

All measurements taken in this work are photometric measurements, which in essence is just counting the
number of photons which we get from a source. With these measurements we can build lightcurves and
then using modelling software we can estimate what the observed stars are like and classify them. Some
of the parameters which can be obtained from a lightcurve are the eccentricity of the orbit e, argument
of periastron ω, inclination of the orbit i, effective temperatures Te f f and luminosity L. We can also give
some estimates for the values of the masses but as will be explained in the next section without radial
velocity measurements these are just estimates and not real and accurate measurements.

We can expect some constraints on these values, for instance the orbital inclination and eccentricity. First
let us take a look at eccentricity, if we have data from many different nights of observation it can be hard
to observe the minima and it can appear that we have missed some data. For this reason we can transform
from time to orbital phase. This new parameter goes from 0 to 1 and at 0 we would have the primary
eclipse and again at 1.

1This will depend on the proximity of the stars, if they are contact or semidetached binaries this part of the lightcurve called
quadrature will not be flat and may be somewhat round.
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To do this we would take the Julian date2 of observation to which we would then subtract the epoch of the
primary obtained from the catalogue and then divide it by the period, lastly the decimal part would be the
orbital phase φ.

{
x= 1

P0
(HJD−HJD0)

φ= x− [x]
(1.1)

Where P0 is the orbital period from the literature, HJD the time in Heliocentric Julian Date at which
measurements are made, HJD0 the central time of primary eclipse in HJD format, [x] is the integer part
function and φ the orbital phase. Going back to the timing of the events, as was previously mentioned
the primary eclipse occurs at orbital phase 0. It is obvious that the second one should occur somewhere
between 0 and 1. The moment at which the secondary eclipse occurs will directly depend on the eccen-
tricity of the orbit. If we had e ≈ 0 then the orbit would be circular and the distance between stars would
be time independent. In this case the eclipse would occur at φ= 0.5.

From this a question may arise and that is if each star can have different eccentricities. To prove that this
cannot be the case let us firstly take a look at the position of the center of mass, which is in the barycenter
of the system. This position is given by.

−−→rcm = M1
−→r1 +M2

−→r2

M1 +M2
(1.2)

From this equation it follows that. 
−→r1 = (M1+M2)−−→rcm− M2

−→r2
M1

−→r2 = (M1+M2)−−→rcm− M1
−→r1

M2

(1.3)

Now let us assume that in Equation 1.2 the frame of reference is at the center of mass, this implies that−−→rcm = 0 so we would have that.

M1
−→r1 =−M2

−→r2 ⇒M1
∣∣−→r1

∣∣=M2
∣∣−→r2

∣∣ (1.4)

If we define the vector3 −→r such that.

−→r =−→r1 −−→r2 ;
∣∣−→r ∣∣= ∣∣−→r1

∣∣+ ∣∣−→r2
∣∣ (1.5)

2Time should be in heliocentric or barycentric Julian date but we will go into detail as to why later in the next chapters.
3It is not explicitly written but these are all time dependent variables
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We can take Equations 1.3 and 1.5 and apply −−→rcm = 0 to get.


−→r =−→r1 −−→r2 =−M1+M2

M1

−→r2

−−→r =−→r2 −−→r1 =−M1+M2
M2

−→r1

(1.6)

Which substituting by the respective semi major axis and in magnitude would be.


a2 = M1

M1+M2
a

a1 = M2
M1+M2

a
(1.7)

The famous differential equation which describes the orbital motion in a binary system is given by.

−̈→r =−G(M1 +M2)
r3

−→r (1.8)

A more thorough derivation of this equation and its solution can be seen in the paper by Murray and Cor-
reia (2010). The derivation was made for planetary systems but the approximation M1 >> M2 was not
made so the solution is still valid for this case. The solution for the differential equation is.

r(ν)= a(1−e2)
1+ecos(ν)

(1.9)

Where a is the semi major axis of the elliptical orbit, e the eccentricity and ν the true anomaly angle which
was previously defined. To prove that the eccentricities must be the same we should look at Equation 1.5.
If we take that the stars

r(α)= a(1−e2)
1+ecos(α)

= r1(α)+r2(α)= a1(1−e2)
1+e1 cos(α)

+ a2(1−e2
2)

1+ecos(α)
(1.10)

But if we take a similar approach to Equations 1.5 then a= a1+a2 so then the previous equation becomes.

a(1−e2)
1+ecos(α)

= a1(1−e2
1)

1+e1 cos(α)
+ a2(1−e2

2)
1+e2 cos(α)

(1.11)
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We can see that that because the relation a = a1 +a2 is true the the only possibility is that e = e1 = e2
must be also true. It is known from intuition that the orbital inclination should be in the range of 90◦ for
detached main sequence binaries or otherwise we would not see the eclipse. In general an eclipse will be
seen when the following relation is true for a minimum orbital inclination imin, Martínez-Pais (2003).

cosimin = R1 +R2

a
(1.12)

For semi-detached and contact binaries it is easily seen that R1 +R2 ≈ a, however this holds true for
detached eclipsing binaries as well.

1.3.2 Radial velocity curves
As previously mentioned there are some parameters such as mass and radius which cannot be accurately
measured without radial velocity curves. The question now is what is and how do we obtain a radial
velocity curve. In the following paragraphs a brief theoretical deduction of the equations which should
be used to determine these parameters will be given, unfortunately no measurements were taken due to a
lack of spectroscopical observation.

Let us consider two stars A and B with star A being the more luminous but not necessarily the larger one.
If these stars orbit the barycenter of the system and we see them edge on we can expect that one star may
be moving toward us and one away from us. As with any other wave emitter it is expected that we will
see some Doppler effect on the wavelengths. The light from the star that is coming toward us in its orbital
motion will be blueshifted and the light of the star that is moving away from us redshifted. Now if we
were to take images of the spectra with a spectroscope we would see that one of the spectra will be moving
to the right and another to the left (blue and red shift). If from these images of the spectra we were to
mark the positions of the lines for a given time we could calculate the velocity at which they are moving.
From the speed at which the lines move we can estimate the velocity at which the stars appear to move
with respect to us in the radial direction.

vr(t)= ∆λc
λ

(1.13)

Where vr(t) the speed of the star in the radial direction, c is the speed of light in a vacuum, ∆λ the blue
or red shift with respect λ which is the non shifted wavelength as it would be measured in a laboratory. If
we plot the values of vr(t) against time we will obtain something like Figure 1.3.

Looking back at Equation 1.4 we can see that.

M1

M2
= a2

a1
→ M1

M2
= a2 sini

a1 sini
= K2

K1
;

{
K1 = a1 sini
K2 = a2 sini

(1.14)

Where K1 and K2 are both defined as the semi amplitudes of the radial velocity curves for each compo-
nent. A general semi amplitude is defined as.
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Figure 1.3: Example radial velocity curve of the HD-152248 binary system as computed from the He I λ
4471 line, taken from Sana, Rauw, and Gosset (2001).

K=K1 +K2 (1.15)

If we recall Kepler’s third law is.

P2 = a34π2

G(M1 +M2)
(1.16)

Where P is the period and a the semi major axis of the orbit we can fully characterise the masses of each
star, if the mass ratio, q, is also known. Now the objective is to combine both Equations 1.16 and 1.14 in
some form. To achieve this first we will take the Equation 1.7 and combine it with Kepler’s third law.

a3
1

a3 = M3
2

(M1 +M2)3 = 4π2a3
1

P2G(M1 +M2)
⇒ M3

2

(M1 +M2)2 = 4π2a3
1

P2G
(1.17)

If now we multiply by sin3 i and remember the definition of the semi amplitude of the radial velocity
curve, K given by Equation 1.14 we have that.


M3

2 sin3 i= (M1+M2)24π2a3
1 sin3 i

P2G = ((M1+M2)a1 sini)24π2a1 sini
P2G

M3
1 sin3 i= (M1+M2)24π2a3

2 sin3 i
P2G = ((M1+M2)a2 sini)24π2a2 sini

P2G

(1.18)
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Using again the Equations 1.7 we finally get.


M1 = 4π2K2K2

P2Gsin3 i

M2 = 4π2K1K2

P2Gsin3 i

(1.19)

From this equation we can calculate the masses if we know the orbital inclination, period and most im-
portantly the semi amplitudes of the radial velocity curves.

1.4 Different types of eclipsing binaries
There are various ways of classifying binary star systems, one of them is by the shape of the lightcurve
produced by the eclipses which will be the one discussed in this section. Example lightcurves can be seen
in Figure 1.4.

1.4.1 Algol type
Algol type eclipsing binaries are characterised by the separation between the two components, they are
detached from one another. These stars lightcurve’s are mostly flat outside of the eclipses as the one in
Figure 1.1 and may present two different eclipses. In most cases there is no matter exchange but in some
cases it does occur in the form of direct accretion and in extreme cases and accretion disk as is the case for
W Serpentis stars. It is not uncommon for each star to be of different spectral type and thus of different
brightness. In these cases one can expect that each eclipse has a different depth. The deeper or primary
eclipse occurs when the colder star passes in front of the hotter one and reversely for the secondary eclipse.
In general this may not mean that the star that is behind is smaller or larger, only that is is less superficially
bright that the other one.

1.4.2 Beta Lyrae
This is a type of binary (and in the scope of this work also eclipsing) that is characterised by a distortion
of the star’s shape. These stars are ellipsoidal in shape due to the gravitational action of the companion.
In general they need not exchange mass may only feel each other’s presence through gravity and radiation.
However depending the evolutionary state of each component mass exchange can happen. Mass accretion
from one star to another will occur when the first one’s radius grows larger than its Roche lobe. The Roche
Lobe is a volume around a star which is defined as the regions created when the critical equiponential
surface crosses itself in a geometric saddle point, see Peter Egleton’s definition, Eggleton (2006), basically
the region around a star where matter is gravitationally bound. This equipotential surface is defined by
the amount of mass in the system so if one of the stars begins to increase in radius, for example if it is
in a later evolutionary state than the companion, and the volume it occupies gets larger than the Roche
Lobe that surrounds it, it can begin to accrete mass to its companion. The mass will go to the the “inner
Lagrangian point” and from there fall into the companions gravitational influence. The effects this has on
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the lightcurve are noticeable. Because of the tear-drop shape of these stars although they are separated
the lightcurve does not present the usual flat out of eclipse part and is somewhat rounded.

1.4.3 W Ursae Majoris
These are binary systems where both components have exceeded their Roche Lobe and are physically in
contact with one another. They have a short orbital period and share mass and energy through the joint
part. Because of this reason they usually have the same temperature and the depth of the minima is similar.
As for the lightcurve it is sinusoidal in shape.

Figure 1.4: Different spectral type lightcurves, Huemmerich and Bernhard (2012)
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Chapter 2

Observations and data reduction

En este capítulo se exponen los motivos por los que se eligieron las dos estrellas estudiadas
en este trabajo, los telescopios e instrumentación usados, reducción de datos y fotometría.

2.1 Observations
From the previous chapter the scientific case for studying binary stars is now clear and after understanding
the underlying physics one should decide what observations to make. Deciding what can be observed can
be daunting and will depend on the facilities one has access to. For example if the target is too faint it
will require to be observed with a larger telescope. For this work two targets were selected. These targets
were observed each with a different telescope and had to fulfill a number of prerequisites.

2.1.1 ASASSN-VJ050229.84-052203.4
The first target that was selected was ASASSN-VJ050229.84-052203.4, ASAS05 from now on. The tar-
get was selected for various reasons. First of all it could be observed in late 2022 and early 2023. This is
important because that way if there were any issues with the target such as an unresolved companion or
any other issues this could be spotted early and accounted for. Besides it is also helpful to have the data
some time before having to reduce it analyse and to not be in a rush. To know if it would be observable one
would have to look at its altitude curve. This altitude curve, Figure 2.1, gives information about the object
visibility throughout the night and allows for planning taking into account telescope limits and minimum
moon separation.

Secondly the target has not been in publications, it is in catalogues and in the corresponding data release
papers but no individual paper has been dedicated to this target. This is a bonus because these are the first
proper dedicated studies of this object.

Thirdly it has a period which allows for good temporal sampling. For this science case the period should
not be too long as we would not be able to fully cover the quadrature, too short because the transit duration
would also be short and therefore we would not be able to reliably measure it and finally close to one as in
that case we would mostly see the same thing every night. Ideally the target should be in the 0.7 to 0.8d
range which this one is.
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Figure 2.1: Altitude curve for ASAS05 as of 08/11/2022, plotted using STARALT, developed for the Isaac
Newton Group of Telescopes by Peter Sorensen, Marco Azzaro, Javier Méndez.

Fourthly the magnitude should be enough to be seen by the telescope. If the magnitude is too low it would
require a longer integration time which would compromise the certainty of the temporal sampling during
eclipses if they are too short. ASAS05 was selected from the ASAS catalogue number 2, Jayasinghe et
al. (2018), and was observed with the IAC80 telescope at Observatorio del Teide, OT for short. It was
observed on 08/11/22, 03/12/22, 15/12/22 and 08/02/23 in the Johnson V , R and I filters with exposure
times 300, 200 and 150 s all nights except on the 03/12/22 where it was 150, 100, 100 s with the telescope
focused. In general it is preferable to have longer exposure times in the bluer filter given the scattering
that occurs in the atmosphere. An example of the field around the star can be seen in Figure 2.2

2.1.2 CRTSJ041918.8-071807
In this case the target, CRTSJ04 from now on, was taken from the CRTS catalogue, Drake et al. (2011).
This target is much more interesting than the previous one from a scientific standpoint, that is because this
is a very short period (0.22d) M dwarf binary.
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Figure 2.2: Centered field of view around ASAS05; taken from the ALADIN lite service, Boch and Fer-
nique (2013),Bonnarel et al. (2000). The target can be seen marked by the purple cross and the comparison
star by the red circle.

This target completes an orbital period in roughly 5 hours and both stars seem to be at least semidetached
from preliminary results Papageorgiou et al. (2018). It also fulfills all the prerequisites specified in the
previous section so it is an ideal target to study which was observed with the Carlos Sanchez telescope at
OT. The target was observed on the nights 02/11/22, 11/11/22 and 13/01/23 with exposure times of 15,
40, 40, 40 in the first night, 60, 60, 60, 15 in the second, 120, 100, 60, 15 s in the last night1 in the Sloan
g′, r′, i′ and z′s filters. Once again the field can be seen in Figure 2.3

Finally, in the next table the main identifiers and general parameters for both targets can be found.

ASAS05 CRTS04
TIC 213068982 67858869
Right Ascension (J2000) 05h02m29.84s 04h19m18.8s

Declination (J2000) −05◦22′03.4′′ −07◦18′07′′

V mag 13.87 17.80
Epoch [HJD] 2457359.86888 2459886.51565
Period [d] 0.7672625 0.2221148
Telescope IAC80 TCS

Table 2.1: Main parameters of the two targets, the first line being the TESS Input Catalogue id number.

1The reason for the 15 second exposure times will be given in the TCS-MuSCAT2 section
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Figure 2.3: Centered field of view around CRTS04191; taken from the ALADIN lite service, Boch and
Fernique (2013),Bonnarel et al. (2000). The target can be seen marked by the purple cross and the com-
parison star by the red circle.

2.2 Telescopes and instruments
Two telescopes were used in the observations as previously mentioned. This is because each telescope is
best suited to a certain type of science, it will now be explained.

2.2.1 IAC80 - CAMELOT2
The IAC80 telescope was the first telescope developed entirely at IAC. Development began in the 1980s
and it was installed at OT in 1991 where it began to operate in 1993. It is a classic Cassegrain telescope
with a primary mirror of 82cm and effective focal length of 9.2m. It is mounted on a German Equato-
rial Mount designed to accommodate multiple instrumentation. The instrument used was CAMELOT2
(CAmara MEjorada LIgera del Observatorio del Teide) which has a 4096x4096 pixel CCD, which stands
for Charge Coupled Device, 21.98′x22.06′, and 15x15 micron pixel size and a plate scale of 0.322 ′′/px.
Unfortunately the filter wheel is smaller than the field of the CCD so there is some vignetting so the real
field of view, FOV, is around 11.8′x11.8′.

The camera verifies linearity up to 56000ADU, where ADU stands for Analog to Digital Unit, and has
a quantum efficiency of 90% at 700nm. It is cooled down to −104.5◦C with a vacuum chamber (Prieto
(2004) this is for the old camera CAMELOT but the new one is very similar in this regard) so the dark
current effect is negligible and no dark calibration images are required. All flats were dome flats and there
are 11 of them per filter with 21 bias frames as well. This telescope is well suited to the ASAS target given
its magnitude and the fact that the transit duration is long enough to have good temporal sampling. If the
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transit duration were shorter it would be a problem because there is some time lost every exposure due to
filter change and readout time which both are in the 10 seconds range.

2.2.2 TCS - MuSCAT2
The Carlos Sanchez telescope is a Dall–Kirkham Cassegrain telescope with a 1.52m aperture which first
started service in 1972. It is specialised in infrared astronomy which suits the target in question. That is
because M dwarfs are very faint stars with a low effective temperature and which primarily emit in the
infrared range. The main instrument installed at TCS is MuSCAT2. This is an instrument developed by
the Astrobiology Center (ABC) and the University of Tokyo (UT), in collaboration with the Instituto de
Astrofísica de Canarias (IAC). It allows for simultaneous photometry in four filters by making use of 3
dichroics that split the light which each go to the respective CCD, Narita et al. (2018). The CCDs have
a FOV of 7.4′x7.4′ with 0.435 ′′/px. The cameras are cooled to −70◦C and in this case there are dark
calibration frames.

2.3 Data correction
Due to logistical reasons reasons the telescope cannot be cleaned everyday as it would require the mirror
to be removed each day and that is not possible. Because of this reason there may be some dust buildup
in the mirrors or other surfaces. This is only one of the possible many sources of error when taking
images. This is a problem because if these errors are not accounted for one could think that for example
the magnitude of a star is much lower than what it really is. There are of course other intrinsic effects to
the CCD such as The way to correct the science images is by taking other calibration images. There are
a number of these images and each of them serves a different purpose.

2.3.1 Bias
There are three main sources of noise the first one being readout noise. The bias is an artificial offset
added to the data to avoid negative values in the signal due to the readout noise, for example in an ideal
case the sky would be dark so the signal in that region should be zero but because there is some readout
noise the sky value may be negative. Back when computer storage capacity was an issue wasting bits in
coding negative values was considered a waste so this artificial offset was introduced. The proper way to
correct the image of bias is to take 21 images with 0s exposure time, i.e. shutter closed, mirror covers
closed and, if one wants to be extra sure that there is no signal, with a narrow band filter as well.

2.3.2 Flat-Fields
Due to many different reasons, for example dust buildup or different response to light of each pixel, if we
had two perfectly equal stars whose light travels through the same part of the sky we would not see them
perfectly equal when imaging them. This is because the CCD sees differences in illumination in each part
of the field of view. This difference is pixel and filter dependant. The correct way to take these calibration
frames is to point at a evenly illuminated surface with around 30000ADU and to take the usual 11 frames
per filter. These evenly illuminated surfaces could be a screen inside the dome which is lit by lights or
ideally a part of the sky with not many stars just before and after twilight.
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2.3.3 Darks
There is one other effect called dark current. When taking long exposure images the internal circuits of
the camera get hot by Joule’s first law. When this happens there is some thermal photon emission so the
CCD receives these photons and sees an artificially illuminated frame. There are to ways to eliminate this
dark current effect, firstly by cooling the camera well below zero and secondly by taking dark calibration
images. Because thermal emission occurs primarily in the infrared it is specially important to take into
account in telescopes which observe in this wavelength range as is the case of TCS. In the case of IAC80
this effect is mostly negligible because of the temperature to which the CCD is cooled. To take dark frames
one would cover the mirrors and then take images with no filter with the same exposure times as in the
science images. Finally there is also a subset of dark frames taken to specifically correct the flat frames
called dark flats, these are done with the same exposure time as in the case of the flats.

2.3.4 Image correction
The first step that was taken was to crop the fits files due to the vignetting previously mentioned. Then if
we assume the image signal is given by.

S(x, y)= B(x, y)+ (O(x, y)F(x, y)+D(x, y))texp (2.1)

Where S is the signal as provided by the CCD, B is the bias signal, F the flat-field signal and D the dark
signal and O the original non altered signal. Let us assume a texp = 1 unit for simplicity. Then the
original signal would be related to S by.

O(x, y)= S(x, y)−B(x, y)−D(x, y)
F(x, y)

(2.2)

So finally one would have to create a masterbias frame by averaging all bias frames. Then subtract this
image to all other including the rest of calibration frames. For the flat-fields one would subtract the
masterdark frame if there are any and then average all flats into a masterflatfield which is the normalised
to one. Finally the corrected signal would be given by Equation 2.2 where it is important to note that
every value in the right hand side except S is a master frame. A brief schematic image representative of
the process can be found in Figure 2.4

2.4 Photometry
Once all images have been calibrated one can begin doing science on them. All steps described in the
following two sections will refer to the work performed on the IAC80 observations as in the TCS case
everything is automated via the pipeline which uses PyTransit developed by Hannu Parviainen and de-
scribed in Parviainen 2015. For the purpose of automation a pipeline has been constructed. This pipeline
will, with little user input, take care of all the tasks necessary to provide the flux of a star2. The first step
is to locate where the target is and which comparison stars to use in order to measure the relative flux or
magnitude.

2The calibration process and other functionalities such as astrometrisation are also automatically done via the pipeline.
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Figure 2.4: Calibration process. “Subframe calibration processing flow.” by Peter Hergesheimer is li-
censed under CC BY-SA 3.0.

2.4.1 Astrometry
One of the easiest ways to know where the stars are is to manually look at the field of view in ds9 and
compare it to the one that could be seen in a tool such as Aladin lite. Then align all images to a refer-
ence frame and continue performing photometry. However this is not ideal if there are multiple nights
of observation as the field of view may not be the same each night and different stars will be included
each night. This is the case in the observations made with IAC80. One way to workaround this, which
is in fact preferable in most cases, is to astrometrise. Astrometry is a technique in which the positions
of celestial bodies in pixel and sky coordinates obtained are related via a transformation function. Also
astrometrisation allows for target selection. In this pipeline a functionality has been included in which a
ds9 window opens up with all recognised stars marked by order of brightness. The user can then select
which stars to do photometry on, then the pixel coordinates are transformed to Right Ascension, RA, and
Declination, Dec, and after that these coordinates are used for all other frames.

Astrometry was performed on all images using Astrometry.net API for python, Lang et al. (2010). As-
trometry.net takes as input a list of star positions in pixel coordinates which represent the centroid of the
stars found using Daofind from IRAF/PyRAF or DaoStarFinder from photutils. Then it compares the
patterns that the star form with those found in popular catalogues such as 2MASS, Skrutskie et al. (2006),
and GAIA Brown et al. (2021). After a solution has been found Astrometry.net returns an Astropy WCS
(world coordinate system) header. This is a header which contains the coordinate transformation function
from pixel position to right ascension and declination. One can update each fits file with this new WCS
header and then use it for future coordinate transformations without the need to generate new files. As-
trometrisation is a very useful tool when doing photometry. If the target and comparison star’s coordinates
are known then one can simply access the WCS transformation found in each updated fits file and using
that function get the pixel position of the stars in each image.
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2.4.2 Aperture photometry with PyRAF and PhotUtils
The first step when doing photometry is to select the target and comparison stars. For this case it is in-
teresting to select a “standard”. A standard in this case does not refer to the usual meaning such as in the
Landolt standards, Landolt (1992), but comparison star which has been studied or catalogued and with
magnitudes which are well established for different filters. The reason behind this is that in this way one
can eliminate the atmospheric extinction effect3 without having to calculate the extinction coefficient k.
The comparison star selected is the Tycho-2-4758-615-1 of V mag = 11.590 found in the Tycho-2 main
catalogue, Hog et al. (2000).

There are two main python modules with which to perform aperture photometry. PyRAF is a command
language based on python for the original IRAF (Image Reduction and Analysis Facility) originally main-
tained by the NOAO (National Optical Astronomy Observatory) to perform various image reduction and
astrophysical tasks. On the other hand Photutils is “an affiliated package of Astropy that primarily pro-
vides tools for detecting and performing photometry of astronomical sources”. Pyraf’s main advantage is
the ease of use and in fact was mainly used in the image correction process, there are however a number
of drawbacks. Firstly it generates many files which unless deleted may bring up file errors in the code.
The second and most important reason is that the aperture photometry done with photutils yields slightly
better results specially when dealing with smaller apertures, Bajaj and Khandrika (2017)).

To perform aperture photometry with this package there are a number of easy steps to follow. First the
aperture radius should be defined. The aperture defines the area over which the number of ADUs will be
counted, from this it will be possible to estimate the instrumental flux of the star. In general the aperture
should be large enough to accommodate the whole star but not so large that the light of other gets blended
with the target’s light. The standard is to have an aperture of 1.5 to 2 times the size of the full width at
half maximum of the point spread function. The PSF will be determined by the seeing. The seeing is
defined in arcseconds and is a measurement of the turbulence of the sky and determines, in most cases4,
the absolute best resolution a telescope can achieve.

The area selected however, does contain some background level which is given by the sky illumination.
To subtract this background level a part of the sky must be measured. To achieve this we add a bigger
circular corona around the PSF, this circular corona has an inner radius, annulus, that should be at least
the same size as the aperture and a outer radius, dannulus. The annulus should be around 4 times the
FWHM of the star’s profiles and the dannulus should be between 2 and 5 pixels larger. The size difference
between the two should not be too big because the area of interest is the local sky around the star.

Aperture photometry can be performed with the following PhotUtils function aperture_photometry(data,
aperture, error). Where data is the fits file on which to perform photometry, aperture the circular aper-
ture sum to which the background level will then be subtracted, and the error refers to the background
and Poisson error which should be previously estimated. To calculate this error one could look at the
calc_total_error(data, sky_sigma, gain) functions, where sky_sigma is the standard deviation of the sky
in counts with a maximum of 3σ, this will include both the sky induced error as well as the Poisson error
due to the bright sources.

3Ideally this would not be the case, but due to bad weather and lack of photometric nights no calibration with standard stars
could be done, however the magnitudes of the comparison star used for ASAS05 are established well enough to do this.

4For telescopes with adaptive optics systems or an aperture of less than 20 cm in good observatories the best resolution will
be given by the aperture of the telescope.
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After this has been done the total error will be given by.

error=
√∑

σ2
tot (2.3)

Where σ2
tot is the total error calculated by the calc_total_error function. After these steps the instrumental

flux and instrumental error have been calculated. Now it would be interesting to go from instrumental flux
to instrumental magnitude and from there to real apparent magnitude. With the apparent magnitude one
can estimate the spectral type of the stars. To transform from instrumental flux to instrumental magnitude
magins the IRAF phot equation from the daophot package has been used.

magins = zmag−2.5log10(flux)+2.5log10(texp) (2.4)

Where zmag is the zero point magnitude, an arbitrary zero magnitude which was set to 25. The error is
given by.

error=
√

flux/gain+areaaper σ
2
sky(1+areaaper/areaannulus) (2.5)

Obtaining the following results for the comparison star, see Table 2.2.

Filter Catalogue Magnitude Mean Instrumental Magnitude
V 11.590 18.3530±0.0010
R 11.117 18.6990±0.0010
I 11.040 18.9330±0.0006

Table 2.2: Second column contains the magnitudes for the Tycho-2-4758-615-1 comparison star, the V
magnitude was taken from the Tycho-2 main catalogue Hog et al. (2000), an the rest from the NOMAD
catalogue, Zacharias et al. (2005). All of them accessed via the Vizier service, Ochsenbein, Bauer, and
Marcout (2000). The third column, mean instrumental magnitude, is the magnitude of the comparison
star as experimentally measured with a linear offset from the assumed true magnitude given in the second
column.
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From Table 2.2 by subtracting the second and third columns we can estimate how much of an offset there
is between the instrumental magnitude and the real magnitude. Finally the following results have been
obtained for the magnitude of the ASAS05 star, they can be found in Table 2.3.

Filter Out of Transit Primary Secondary
V 14.0150±0.0030 14.6005±0.018 14.0598±0.0031
R 13.8548±0.0031 14.4171±0.018 13.9241±0.0032
I 13.4910±0.0028 14.0310±0.018 13.6510±0.0027

V −R Primary V − I Primary V −R Secondary V − I Secondary

0.19 0.57 0.13 0.4

Table 2.3: Mean magnitudes for ASAS05 calibrated using the “standard” comparison star. Also included
in this table are the colour differences for different filters.

The results obtained from the colour differences, Johnson (1966) and Pecaut and Mamajek (2013), from
the NOMAD catalogue are compatible with the colour information of the binary presented in this work.
These suggest that the primary star is an A7. As for the secondary star no conclusive result can be given
because in this case the primary star still contributes some amount of flux making the secondary compo-
nent apparently bright. This is also compatible with the Te f f that can be found in the Gaia database. The
obtained lightcurves can be seen in Figure 2.5.
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Figure 2.5: ASAS05 normalised relative flux lightcurve, filters are V ,R I from top to bottom.
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Regarding CRTS04 the process is much different. The pipeline utilised makes use of the previously men-
tioned python module PyTransit Parviainen 2015 which is extensively documented. The calibration of
bias, flat-fields, darks and dark flat-fields are performed automatically after each night of observation. In
this case darks are quite important given that the CCDs have a non negligible dark current.

The transit analysis is performed via Jupyter Notebooks where the code is run, one is created for each
target and night. In this notebook the target and comparison stars are selected. If there are any outliers
in the data or or large systematics at some times these can be eliminated (for example if there was dome
vignetting). After that some prior values were given for the period, P and time of superior conjunction,
T0 taken from the literature, Papageorgiou et al. (2018), the program was set to find the best combination
of apertures and comparison stars for 30,000 iterations.

Finally some posterior distributions are sampled using 5000 MonteCarlo iterations and from this the un-
certainty in fluxes is obtained. Because MuSCAT2’s pipeline is primarily designed for exoplanets, it only
produces normalised relative flux, which is good for visualization purposes but you loose information re-
garding magnitudes and other phenomena such as possible stellar spots. Given this impossibility to obtain
proper magnitudes from the data we referred to the NOMAD catalogue to check for the magnitudes in
different filter and from there obtain the colour difference. This will serve for a preliminary stellar clas-
sification of the stars, similarly to what was done in Table 2.3. The results obtained in Table 2.4 suggest
that the primary star is in the K7 to M2 range, Pecaut and Mamajek (2013).

B V R J H K
18.35 17.800 16.690 14.432 13.773 13.507

B-V V-R V-J V-H V-K

0.19 0.57 0.13 0.4

Table 2.4: Mean magnitudes for CRTS04 from the NOMAD catalogue, Zacharias et al. (2005). Also
included in this table are the colour differences.

The lightcurve can be seen in Figure 2.6. Both stars are M dwarfs so it was expected that in the shorter
wavelengths where they emit less light the scatter in the lightcurve would more significant.
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Figure 2.6: CRTS04 normalised relative flux lightcurve, filters are g′, r′, i′ and z′s from left to right and
top to bottom.
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Chapter 3

Lightcurve modelling

En este capítulo se describirán los métodos utilizados para hacer un ajuste de una curva de
luz. Se describirán los resultados obtenidos y se darán nociones de los pasos más avanzados
como uso de algoritmos Monte Carlo para la estimación de incertidumbres.

3.1 PHOEBE2
PHOEBE2, PHysics Of Eclicpsing BinariEs, is a python package with sophisticated modelling capabil-
ities for all eclipsing binary observables mainly radial velocity and light curves as well as spectral line
profiles though there are other planned functionalities yet to be released.

The usual working flow in PHOEBE consists in a series of steps listed in Figure 3.1.

Figure 3.1: PHOEBE workflow. Image taken from Angela Kochoska’s talk on the inverse problem during
the June-July 2022, Villanova PA PHOEBE 2 workshop.

In general the first step is to estimate parameters that somewhat fit the lightcurve. Given Gaia’s mission
success we will assume a number of parameters for the model. For instance one would set as constraints,
that is fixed values, the ones which one has some idea of what they might be, for example temperature
ratio. The program takes this values and from these constraints tries to fit some new parameters which
are derived from the first ones.
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This will most likely not be the most accurate and serve only as estimators which will then be input in the
next step.

Step two consists in using different optimizing algorithms to find the best fir curve to the data. In this
part one will “flip” constraints to variables as needed in order to obtain an accurate model. In general this
is a very manual and time consuming process and in most cases it is also very computational costly as
PHOEBE, although very robust, consumes a lot of resources from the computer or server it uses to run.
This is one of the main reason why the lightcurve models presented in this work are not the final ones and
have room for improvement.

Finally in the last step one would create posterior distributions to calculate the most likely errors in the
fit parameters using Markov Chain Monte Carlo (MCMC) algorithms or some other. This, once again, is
very computationally costly and has not been done in this work.

3.2 Lightcurve modelling of ASAS05 and CRTS04 stars
PHOEBE2, Prša et al. (2016), is a new and improved version of the original PHOEBE code which was
mainly based on the renowned Wilson and Devinney (1971), WD from now on. The WD code assumes
that binaries are in synchronous orbits and that the follow the Roche model geometry explained in the
first chapter. The model creates a surface representative of the star’s Roche lobe called mesh (originally
made up of trapezoids) where the flux is discretised into each mesh point. This discretisation allows for
a somewhat easy computation of the physical phenomena, for instance limb darkening (the darkening of
the star around the edges of the stellar disk) and shapes due to tidal forces among others, and intrinsic
parameter of the stars like the radii. The model calculates the star’s brightness in order to create a model
lightcurve which it then compares to the real lightcurve. The model tries to minimize the differences
between the two by iteratively changing the fitting parameters (radius, temperature and others) and using
an optimizing algorithm such as the one developed by Nelder and Mead (1965) to get to the most likely
solution. However one of the many problems with this is that a wrong combination of parameters can
provide a good geometric solution to the lightcurve.

For this reason Prša and collaborators developed PHOEBE2. In this program the trapezoidal mesh is
replaced by a triangular one which avoids disconnection between different mesh points. This is extremely
useful in most cases but specially useful when modelling accretions disks, contact binaries or even other
more outlandish phenomena according to Prša.

3.2.1 ASAS05
The first step is to initialise a model by starting a phoebe bundle and adding a dataset. To add a dataset
one must specify the time of observation, for instance Barycentric Julian Date, provide the fluxes and
uncertainties all as python arrays. Other secondary options include specifying the filter used or pass-
band luminosity. After that has been done the preliminary physical parameters can be set. In order of
implementation they were atmosphere mode which was set to a black body approximation and then limb
darkening which was set to follow a logarithmic function. Once that has been done an estimator forward
model can be initialised. There are many of them but two produced exceptionally good results. They both
use Artificial Intelligence models to fit a model to the data. The first one is called EBAI (Eclipsing Binary
Artificial Intelligence) KNN which uses trained python’s scikit sklearn.neighbors.kNeighborsRegressor
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model to fit the data and the second one called EBAI MLP which uses a trained neural network. In the case
of ASAS05 an EBAI MLP model was used. The best fit model can be seen in Figure 3.2. For this model
the temperature of the primary was set to be 7299K which is the Te f f that can be found in the Gaia’s data
release 3, Brown et al. (2021). The temperature of the primary was set to this value because given that
the star is an A type and that Gaia primarily observes in the optical range the light of the primary will
dominate over the light of the secondary star, a G type. Besides the temperature of A stars is around the
7000K range.

3.2.2 CRTS04
A very similar workflow was followed for CRTS04, however in this case an EBAI KNN model was used,
the reason behind this is that the EBAI MLP model fails to converge when the amplitude of the eclipse is
too big for the method, more precisely when the amplitude of the eclipse is more than 0.20 in phase. The
primary temperature prior was set to 3387K, again from the Gaia database for this target. The parameters
set as variables in the model were the eccentricity, time of superior conjunction and temperature of the
secondary. The lightcurve model for this star is in Figure 3.3.

3.2.3 Nelder-Mead optimization
Finally as a tentative first step in optimization some fitting was carried out. The optimization model
used was Nelder-Mead, in essence the model takes the previous fitted parameters and tries to further
optimize them, though the results were not optimal due to time and hardware limitations. For this simple
optimization 150 iterations per filter were performed with a total computational time of 15-20 minutes
per filter. From this one can see that effectively PHOEBE2 is very computationally expensive and in fact,
as can be seen in Figure 3.4 the optimization did not have time to fully converge and provide an accurate
solution, the primary eclipse depth is not correct and the trends in the residuals plot are quite strong.
From the PHOEBE2 documentation it is stated that running PHOEBE2 in a server with 72 cores it can
take up to 2 hours for an optimal solution to converge. The computer used for this work has 8 cores so the
time needed for a convergence would be unfeasibly long. The result obtained for the R filter lightcurve of
ASAS05 is in Figure 3.4.
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Figure 3.2: Lightcurve model of ASAS05.
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Figure 3.3: Lightcurve model of CRTS04.

Figure 3.4: ASAS05 R band Nelder-Mead optimization and residuals.
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Chapter 4

Results

En este capítulo se presentarán los resultados finales del trabajo y métodos usados para obten-
erlos. Principalmente los parámetros orbitales y estelares determinados con el ajuste de las
curvas de luz. Además se darán estimaciones y cotas para los valores que podrían venir dados
por las curvas de velocidad radial.

No posterior distributions calculations were calculated for this reason so no the error later shown is not
the true error but an estimation given by the standard deviation of the results.

4.1 Orbital and stellar parameters
The PHOEBE2 fitting returns values for most of the stellar parameters. However some of them are rough
estimates given that without radial velocity curves no mass can be truly determined. The orbital param-
eters that are not present such as the semi major axis a and the longitude of the ascending node Ω could
not be calculated given the lack of spectroscopic observations. The distance is directly taken from Gaia’s
database and is computed as the inverse of the parallax. As for the estimated stellar parameters, let us go
over them one by one. The absolute magnitude, Mag, is calculated from.

Mag=mag−2.5log10(d)+5 (4.1)

Where d is the distance to the target. The first effective temperature is set to be that of Gaia. The second
one is calculated by the fit from the effective temperature ratio. Assuming the star emits as a blackbody
the Stefan-Boltzmann equation can be used which is given by.

L= 4πR2σT4 (4.2)

Where σ = 1.380649 ·10−23 m2kgs−2K−1 is Boltzmann’s constant. For this work it is assumed that all
stars are main sequence. This is because them being late type stars. This is also assumed for the A type
component of ASAS05, however because this star is relatively massive it will evolve quicker and thus it
may not necessarily be the case. Taking this assumption into account the mass of the primary star for
both systems is assumed to fulfill the mass luminosity equation where L ∝ M

3
5 . If we take the values of
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the primary star radius as known one can estimate the values of the secondary star radii with the radius
ratio given by PHOEBE. Once all radii are known luminosity can be calculated with Equation 4.2 and
afterwards using the mass-radius relation one can compute the values for the masses of all components.

The mass radius relation for main sequence stars with M> 0.14M⊙ is taken from Gorda and Svechnikov
(1998) and is.

R= 1.25M0.65 (4.3)

The mass radius relation for main sequence stars with M< 0.14M⊙ is.

R= 1.12M0.99 (4.4)

The problem arises in the case of CRTS04 as the process of obtaining mass-radius relations in the case
of M dwarfs is not fully established yet. The reason being that the relation used in the rest of the main
sequence provides inconclusive results as linear fitting does not seem to be entirely accurate for very low
mass stars. According to Cassisi and Salaris (2019)“recent empirical determinations of mass, effective
temperature, and radius for a large sample of M dwarfs (M15, R19) have disclosed an apparent discon-
tinuity in the Te f f -R diagram that corresponds to a mass ∼ 0.2M⊙ . R19 have hypothesised that the
reason for this discontinuity is the transition to fully convective stars, although they did not perform any
comparison with theory.” This was seen in the case of this work. The lightcurve fit, although accurate,
provided a solution where the ratio of radii was seen as inconsistent, i.e. the radii where very different
in the various filters and the ratio to the primary radius was too large of a difference to what could be
expected from the lightcurve. For this reason we referred to Cassisi and Salaris (2019) Te f f -R relation.
Those are the values present in Table 4.1.

In summary, for ASAS05 the radius of the primary is assumed to be known and taking into account the
radius-ratio, the radius of the secondary is calculated. Using Equation 4.3 the mass is calculated for both.
Finally the luminosity is computed using Equation 4.2. The values set for the primary radius are taken
from Habets and Heintze (1981) and Pecaut and Mamajek (2013) where empirical relations are given.

In the case of CRTS04 a Te f f -R relation was used instead for both components due to lack of accuracy,
the rest of the calculations are performed similarly to what was done for ASAS04. All final parameter fits
and estimations are in Table 4.1.
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ASAS05 CRTS04
V R I g′ r′ i′ z′s

Orbital parameters

T0 [HJD] 2459892.5100±0.0070 2459892.5100±0.0070 2459892.5100±0.0070 2459886.51600±0.00032 2459886.51600±0.00032 2459886.51600±0.00032 2459886.51600±0.00032
P [d] 0.7665±0.0010 0.7665±0.0010 0.7665±0.0010 0.2170±0.0040 0.2170±0.0040 0.2170±0.0040 0.2170±0.0040
e 0.0410±0.0040 0.0418±0.0040 0.0333±0.0040 0.0080±0.0030 0.0080±0.0030 0.0070±0.0030 0.0020±0.0030
i [deg] 75±1 75±1 77±1 85.00±0.50 84.50±0.50 84.10±0.50 85.20±0.50
ω [deg] 178±2 180±2 174±2 140±15 130±15 100±15 110±15
ν [deg] 169±2 173±2 174±2 350±5 350±5 350±5 340±5
D [pc] 1298±30 1298±30 1298±30 364±8 364±8 364±8 364±8

Physical parameters

Mag1 3.493±0.010 3.358±0.010 3.528±0.006 10.73±0.040 10.73±0.040 10.73±0.040 10.73±0.040
Mag2 4.034±0.010 3.851±0.010 3.915±0.010 13.513±0.040 13.513±0.040 13.513±0.040 13.513±0.040
Tratio 0.500±0.040 0.530±0.040 0.600±0.040 0.9300±0.0090 0.9240±0.0090 0.9371±0.0090 0.9115±0.0090
Te f f 1 [K] 7299±20 7299±20 7299±20 3387±12 3387±12 3387±12 3387±12
Te f f 2 [K] 5140±380 5140±380 5324±380 3180±37 3130±37 3170±37 3090±37
L∗

1 [L⊙ ] 7.73±0.010 7.73±0.010 7.73±0.010 0.0130±0.0020 0.0130±0.0020 0.0130±0.0020 0.0130±0.0020
L∗

2 [L⊙ ] 0.54±0.10 0.54±0.10 0.54±0.10 0.0050±0.0010 0.0050±0.0010 0.0050±0.0010 0.0050±0.0010
q∗ 0.380±0.050 0.360±0.050 0.51±0.10 0.80±0.20 0.80±0.20 0.80±0.20 0.80±0.20
M∗

1 [M⊙ ] 1.660±0.010 1.660±0.010 1.660±0.010 0.290±0.030 0.290±0.030 0.290±0.030 0.290±0.030
M∗

2 [M⊙ ] 0.63±0.10 0.610±0.010 0.86±0.12 0.220±0.030 0.220±0.030 0.220±0.030 0.220±0.030
Rratio 1.87±0.17 1.92±0.17 1.53±0.17 1.30±0.30 1.30±0.30 1.30±0.30 1.30±0.30
R∗

1 [R⊙ ] 1.738±0.010 1.738±0.010 1.738±0.010 0.330±0.030 0.330±0.030 0.330±0.030 0.330±0.030
R∗

2 [R⊙ ] 0.920±0.090 0.920±0.090 1.10±0.10 0.250±0.030 0.250±0.030 0.250±0.030 0.250±0.030

Table 4.1: All fitted and estimated (marked with an asterisk) parameters for both binary star systems.

The distance is obtained from Gaia parallax, Brown et al. (2021) and from this the absolute magnitudes.
New ephemeris were also determined, rows 1 and 2 of Table 4.1. A new epoch is given and from the
difference in predicted eclipse center timing and observed timing a new period is computed. For a com-
parison between the two see the old period at Table 2.1.

4.2 Classification and H-R diagram
From looking at the luminosities, temperatures and radii we can classify the stars according to Pecaut and
Mamajek (2013). The types obtained for the primary and secondary of ASAS05 are respectively A9V
and K2V. For CRTS04 these are M3V and M4.5V. One can plot these results in an HR diagram for a more
intuitive visualization, see Figure 4.1. The rest of points are real stars obtained from the . All stars are
main sequence stars, ASAS05 being an Algol type binary and CRTS04 a low mass ,apparently detached,
short period M dwarf binary. The second one being much more interesting from a scientific standpoint.
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Figure 4.1: Visualization of a HR diagram, all star temperatures and magnitudes were obtained from the
Gaia catalogue, Brown et al (2021). Absolute magnitudes were computed using the distance. Vega, the
Sun and Alpha Centauri C were obtained from the literature. From left to right the colored stars are: Vega
⋆, ASAS051 +, the Sun ⋆, ASAS052 x, CRTS041 +, CRTS042 x and Alpha Centauri C ⋆,
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Chapter 5

Final conclusions

Finalmente en este capítulo se dan unas conclusiones, resumen de los resultados obtenidos
y el trabajo que se quiere hacer en un futuro, esto incluye pedir tiempo de observación en
telescopios con instrumentos de espectrografía para obtener curvas de velocidad radial.

5.1 Summary of the results obtained
Onsite and remote observations of a binary star have been planned and carried out during 4 nights with the
IAC80 telescope of the Observatorio del Teide. The star ASASSN-VJ050229.84-052203.4 of adequate
magnitude, period and coordinates was selected to observe during late 2022 and early 2023. Some light
curves (V , R and I Johnson passbands) were obtained, these were well sampled in orbital phase.

In order to reduce and perform aperture photometry on ASASSN-VJ050229.84-052203.4 data two dif-
ferent reduction packages, PyRAF and PhotUtils, were used. In addition, different programs have been
developed in Python to do data correction, astrometry, orbital phase calculation, light curve modelling
and stellar and orbital parameters determination.

A very faint binary star, CRTSJ041918.8-071807, of approximately magnitude 17, that could not be ob-
served with the IAC80 has also been remotely planned and observed with MuSCAT2. The reduction of
this data has required the management of the MuSCAT2 pipeline using PyTransit, Parviainen (2015).

With the observed minimum times, new ephemeris have been determined for the two binaries. Although
due to weather conditions it has not been possible to calibrate the observations of the two binaries. With
data published in the literature, an estimate of the temperatures and spectral types of the two components
of the system has been made which are in accordance to the results obtained by lightcurve modelling, both
for ASASSN-VJ050229.84-052203.4 and in CRTSJ041918.8-071807.

These estimate results indicate that ASASSN-VJ050229.84-052203.4, as well as the shape of the light
curves, is an Algol-like system with components A9V and K2V while CRTSJ041918.8-071807 is an in-
teresting detached system with very low-mass components, M3V and M4.5V, M<M⊙ .

With initial values found in the literature, a preliminary adjustment has been made with Phoebe2. This
has required installing the latest version of the program and learning how to use it in Python. The values
found for the orbital parameters of the systems agree with what is expected from the observations.
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In this work, Python as well as general and specific knowledge from the subjects of Computational Physics,
Astrophysics and Cosmology, Astrophysical Techniques and Optics and Electronics in Astrophysics have
been applied.

5.2 Future work
First of all, we would need to calibrate the two systems in a photometric night in order to obtain reliable
colours. It would also be interesting to determine the spectral types of the two components with precision.
It is important to take spectra to obtain radial velocity curves that allow us to reliably determine the value
of the masses of the components.

Since CRTS04 is a relatively weak system it would be vital to obtain well-sampled light curves with a
larger diameter telescope. CRTS04 is a very scientifically interesting system since to date it is one of the
binaries with less massive components that has the one of the shortest known orbital periods. Obtain-
ing curves in the IR would also be very useful, since in this spectral range the emission of these stars is
predominant over the visible range. Although this binary is too weak to be able to observe time-resolved
spectra with medium-sized telescopes, it would be very interesting to include it in an observation program
with larger telescopes such as the Nordic Optical Telescope or the 3.5m Calar Alto observatory telescope.

New photometric data of the two binaries would allow us to refine the calculation of the ephemeris. With
these data, new lightcurve models using Phoebe2 could be fit. Taking this into account and, also with a
more in depth analysis and modelling of the current data using improved techniques, combined with the
new data would allow for refinement of the parameters presented in this work.
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