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Resumen (Español)

Este trabajo de fin de grado ha consistido en el aprendizaje sobre el empleo de her-
ramientas de simulación computacional en el marco de la mecánica cuántica para
poder estudiar las propiedades de los materiales f́ısicos, que son sistemas consti-
tuidos microscópicamente por muchos átomos, donde cada átomo estaŕıa formado
por un núcleo y una nube de, a priori, muchos electrones. Este es un problema
que podŕıa parecer formidable por su constitución, no obstante, se puede abordar a
través de simulaciones computacionales, que consisten en la resolución de un deter-
minado problema a través de un ordenador que obtiene soluciones numéricas de las
ecuaciones que describen el problema según un modelo determinado. Aunque esta
forma de investigación pueden ser de gran utilidad para analizar situaciones que
no se pueden estudiar experimentalmente, por ejemplo, debido a la imposibilidad
de replicar ciertas condiciones extremas en un laboratorio, las simulaciones que se
aplicaron en este proyecto obtienen resultados que pueden ser replicados desde el
punto de vista experimental. De hecho, en esta investigación se utilizan los resul-
tados experimentales que pueden ser consultados en la literatura para comprobar
la veracidad de las simulaciones realizadas. El principal propósito de este trabajo
ha consistido en obtener las propiedades termodinámicas y vibracionales de un
cierto compuesto sólido y cristalino, a través de una simulación mecano-cuántica
partiendo desde primeros principios. Esto implica que el estudio del material se
realiza partiendo desde cero de los postulados de la f́ısica cuántica y construyendo
un modelo satisfactorio del sistema que pueda ser resoluble desde el punto de vista
computacional, lo cual puede implicar realizar algunas aproximaciones, aunque sin
tener en cuenta ningún aporte experimental. En la práctica, esto se traduce en la
resolución de la ecuación de Schrödinger sin más consideraciones que los números
atómicos de los átomos implicados en el material, aparte de la forma en la que se
encuentran distribuidos en el cristal.

La primera parte del trabajo comprende la descripción de la teoŕıa que hay detrás
del procedimiento que fue aplicado durante la investigación. Se fundamenta prin-
cipalmente en la Teoŕıa del Funcional de la Densidad, que está sostenida por los
teoremas de Hoenberg y Khon, que nos permiten obtener un modelo en el que
las propiedades del sistema solo dependen de la densidad electrónica en el estado
fundamental del cristal. También se presentarán el resto de consideraciones que
hay que tener en cuenta para poder obtener un modelo resoluble que permita en-
contrar las propiedades ya mencionadas, por ejemplo, la expansión de la función
de onda en una base con un número finito de ondas planas, elegido a partir de
criterios como la selección de una enerǵıa de corte que tenga en cuenta únicamente
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las contribuciones más importantes y que, al mismo tiempo, nos permita obtener
una buena convergencia para el desarrollo. Una vez obtenidas las propiedades del
estado fundamental y la estructura cristalina relajada, se pueden estudiar las vi-
braciones en el interior del cristal a partir de la consideración de desplazamientos
individuales sobre cada átomo, la obtención de una matriz dinámica que responda
a las fuerzas generadas por dichos desplazamientos y su diagonalización que resul-
tará en la obtención de los distintos fonones o vibraciones colectivas internas del
cristal, que a su vez servirán de base para obtener las propiedades termodinámicas
con las técnicas de la mecánica estad́ıstica.

En este trabajo, el compuesto que fue analizado fue el seleniuro de zinc (ZnSe),
un cristal semiconductor que, en condiciones normales, presenta una estructura
zinc blenda (grupo espacial 216 F-4zm) y que, t́ıpicamente, se utiliza o bien en
la construcción de diodos emisores de luz, o bien en la construcción de ventanas
y lentes ópticas en las que su alta transparencia frente al infrarrojo pueda ser
provechosa. Esta propiedad lo hace muy util en espectroscopia de infrarrojos.

Tras analizar el compuesto, el trabajo se centra en presentar las herramientas com-
putacionales necesarias para la consecución de las simulaciones mecano-cuánticas.
El software aplicado fue el Vienna Ab-initio Simulation Package (VASP), que per-
mite analizar el material con la aplicación de la Teoŕıa del Funcional de la Densidad
y el método de los pseudopotenciales, aśı como el paquete phonopy, que es el que
permite aplicar el método del fonón congelado, procedimiento por el cual se ob-
tiene la matriz dinámica y se diagonaliza para hallar los fonones en el punto Γ de
la zona de Brillouin.

Finalmente, se dedica la última parte del trabajo a presentar los resultados obtenidos
por la simulación mecano-cuántica. Una vez aplicados los métodos mencionados
con anterioridad, se puede calcular el volumen de la estructura relajada. Con
dicha estructura, al aplicar el método del fonón congelado a superceldas 2x2x2, se
obtienen las frecuencias de los fonones en el punto Γ, aśı como sus representaciones
irreducibles. En este caso, se puede mejorar el modelo aplicando correcciones no
anaĺıticas, descritas en detalle en la sección de análisis de resultados del trabajo,
con la finalidad de producir un desdoblamiento en las ramas ópticas de los fonones,
que facilita el análisis de cómo vaŕıan las vibraciones del material al aplicar cam-
bios de presión. Este desdoblamiento se obtuvo para distintos valores de presión,
alcanzando valores de hasta P = 12GPa. Para finalizar, se obtiene la enerǵıa
interna, la entroṕıa, la enerǵıa libre de Helmholtz y la capacidad caloŕıfica para
distintos valores de presión y temperatura, a partir de la densidad de estados pre-
viamente estimada en el cálculo de los fonones. Se concluye que los resultados son
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satisfactorios porque las propiedades termodinámicas están en concordancia con
leyes muy importantes de la f́ısica, como la tercera ley de la termodinámica o la
ley de Dulong y Petit.
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Abstract

This final degree project has consisted on the attempt to apply computational sim-
ulation methods on a physical system with crystalline nature and constituted by
many atoms, that is, by many nuclei and electrons. The purpose of these methods
consists on resolving the system in order to obtain its thermodynamical and vibra-
tional behaviours by using a first principles quantum-mechanical aproach, which
basically consists on resolving the Schrödinger equation without any experimental
input, just the atomic numbers of the atoms involved along with their positions
inside the crystal. While simulational computations are particularly useful on re-
searchs that require non feasible conditions due to the unviability to recreate them
on a laboratory, this particular research has already been performed with exper-
imental methods so we will show some comparisons between the results achieved
with the simulations and the ones predicted and obtained by other scientists in
the literature.

On the first part of this report we will introduce the theory behind these simulation
methods, which basically consists on Density Functional Theory (DFT), along
with the different asumptions that need to be considered in order to obtain the
seeked properties. Secondly, we will explain the methodology used to apply the
simulations to our system and to make all the calculations required. Finally, we
will carefully examine all the results and highlight the most important conclusions
that can be extracted from them.

The physical system used in this work was the zinc selenide semiconductor crystal
(ZnSe). This compound, which typically presents a zincblende structure (space
group 216 F-4zm), is usually used on light emitting diodes due to its dynami-
cal controlled electric conductance or even in infrared spectroscopy as it presents
infrared transparency.

The software used on the quantum-mechanical calculations was the Vienna Ab-
initio Simulation Package (VASP) as well as the Phonophy package to simulate
the atomic displacements with an harmonic aproximation and find the phonons
frequencies at Brillouin’s Γ point. After having obtained this data, it was easy
to get a prediction of the partial and total density of states, the entropy, the
Helmholtz free energy, the heat capacity and the internal energy as well as their
variations with the temperature. Futhermore, different pressures analysis were
made including those with high pressure values up to 12 GPa.
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1- Theory Introduction

1.1 Quantum description for the system

It is a well known fact that baryonic matter is made up of atoms and it can
present itself under different physical states. From the point of view of the
condensed matter, some of the most interesting materials are the crystalline
solids. Due to the intensity of the interatomic forces, they consist on a system
of atoms organized around definite equilibrium positions which are defined
forming up a grid with a certain periodicity. Therefore, the properties of the
system will not only depend on the nature of the atoms that constitute it,
but also in the configuration in which they are distributed inside the grid.

We will focus our attenttion on studying this crystalline structure from a
first principles approach. In practice, this requires us to start off from the
most generic postulates of the formalism of quantum mechanics. However, we
will need to make some assumptions and aproximations in order to obtain
a consistent model that could be solved computationally on a reasonable
time span. This does not present any conflict as first principles methods are
free from any experimental input, but are not exempt of some theoretical
approximations.

According to all that has been exposed, our quantum-mechanical study re-
quires us to solve the stationary Schrödinger equation:

ĤΨ(RI ; ri) = EΨ(RI ; ri)

We can identify Ψ = Ψ(RI ; ri) as the wave function of the system that must
have a dependence with the position of the different nuclei coordinates (noted
by the I index) and the electrons coordinates (noted by the i index). The
total energy is represented by E and Ĥ is the Hamiltonian of a system of
nuclei and electrons interacting by electrostatic forces. Using the appropiated
unit system, this operator takes the form:
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Ĥ = −
∑
I

ℏ2

2MI

∇2
I −

ℏ2

2me

∑
i

∇2
i +

1

2

∑
I,J(I ̸=J)

ZIZJe
2

|RI −RJ |
+

+
1

2

∑
i,j,(i ̸=j)

e2

|ri − rj|
−

∑
i,I

ZIe
2

|RI − ri|

We can recognize some of the properties of the nuclei, such as the mass
MI and the atomic number ZI , as well as the mass of the electrons me.
After obtaining this expresion we should be able to solve the Schrödinger
equation. However, this many-body problem is formidable and not feasable
without making some approximations.

The first consideration that should be made is the adiabatic approximation,
also called the Bohr-Oppenheimer approximation. This is justified in the fact
that the electrostatic forces on the nuclei and electrons are of the same order
of magnitude and at the same time the atomic cores have much higger masses
than the electrons. This means that the electrons move with much more
higger speed than the cores, so we could consider that the system consists
on the set of electrons moving inside an effective external potential Vext(r)
created by the static atomic cores. This simplifies the problem substantially
as this external potential will be time-independent.

After applying this first adiabatic approximation, the Hamiltonian of the
system is reduced to the one asociated with a problem of many electrons
with mutual interactions moving in an external potential Vext(r):

Ĥ = − ℏ2

2me

∑
i

∇2
i +

1

2

∑
i,j(i ̸=j)

e2

|ri − rj|
+
∑
i

Vext(ri)

1.2 Density Functional Theory

After obtaining the previous form for the Hamiltonian, it is justified that
we should apply a second consideration to solve this problem. This implies
that we will employ the Density Functional Theory (DFT), which was first
formulated by Hoenberg and Kohn [1] and it is used to describe a system of
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interacting particles moving in an external potential. This theory is based
on the two Hoenberg-Kohn theorems that can be summarized as follows [2]:

1. For any system of particles interacting inside and external potential
Vext(r), this potential is determined uniquely by the ground state par-
ticle density n0(r) (up to an additive constant). Since Ĥ is determined
by Vext(r), it follows that the properties of the system, including the
total energy, are determined only by n0(r).

2. For any Vext(r), the energy is an unique functional, E[n], of the particle
density n(r). By minimizing this functional with respect to variations
in n(r), one finds the energy and the density of the ground state. The
ground state energy of the system is the minimum of this functional
and the density that minimizes it is the ground state density n0(r).

Therefore, DFT does not require the many-body Schödinger equation or the
corresponding wave function, instead, it allows us to obtain any property of
the system as a functional of the electron density n(r). We can write this
functional for the energy of the ground state of the system (using atomic
units: e = ℏ = 1/(4πε0) = 1) as it follows:

E[n] =

ˆ
Vext(r)n(r) dr+ F [n]

Moreover, this functional satisfies the condition
´
n(r) dr = N , where N is

the total number of electrons inside the crystal. F [n] is an unknown universal
functional which does not depend on the external potential, but it has some
dependence with the kinetic energy of the system and the electron-electron
interactions, also inluding the Hartree energy term:

1

2

ˆ
n(r)n(r

′
)

|r− r′ |
dr dr

′

While these theorems do not provide any way to construct this functional,
Khon and Sham [3] used this formalism to derive a procedure that provides a
set of equations that could be resolved with a self-consistent method. Khon
and Sham noted that in a system of N non-interacting electrons inside an ex-
ternal potential, F [n] is just the kinetic energy functional. Consequently, the
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energy functional for a system of N interacting electrons inside an external
potential could be written as:

E[n] =

ˆ
Vext(r)n(r) dr+

1

2

ˆ
n(r)n(r

′
)

|r− r′|
dr dr

′
+ TS[n] + Eexc[n]

where TS[n] is the kinetic energy functional and Eexc[n] is an exchange-
correlation energy functional.

We should stop momentarily to analize the meaning of this exchange-correlation
energy. Basically, what Khon and Sham were trying to do here was to ob-
tain the solution of the real interacting electronic problem by resolving an
auxiliary non-interacting electronic problem and then adjusting the energy
to the real problem by adding the Hartree energy term and this Eexc[n] term.
If we knew with precision the form of this exchange-correlation functional,
then we could obtain an exact solution of the real problem with the auxiliary
solution. However, this exchange-correlation energy term is unknown and it
can only be estimated with approximations.

Therefore, if we include all potential terms inside an effective potential:

Veff (r) = Vext(r) +
1

2

ˆ
n(r

′
)

|r− r′ |
dr

′
+ µexc(n(r))

with:

µexc(n(r)) =
δEexc[n(r)]

δn(r)

Using this effective potential, we could find the ground state of the system
by resolving the following set of one-particle equations that have the same
form as the Schrödinger equations asociated to the non interacting auxiliary
case:

{
− 1

2
∇2 + Veff (r)

}
ψi(r) = εiψi(r) ; i = 1, . . . , N

With this set of equations, which are called the Khon-Sham equations, we
can find the electronic density for the ground state of the sistem with n(r) =
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∑N
i=1 |ψi(r)|2. As we previously discussed, the exact exchange-correlation

energy functional is unknown and must be estimated with reasonable as-
sumptions. We could begin by considering that the electron density n(r)
varies slowly, so we could adopt a local density approximation (LDA) with
the form:

Eexc(r) =

ˆ
n(r)εexc(n(r)) dr

This approximation allows us to consider the exchange-correlation density
εexc(r) as the same as that of an homogeneous electron gas, which does not
have an analytical expression, nevertheless there is a widely used expression
for it, which was obtained by Alder and Ceperley [4] through quantum Monte
Carlo simulations. While this approximation works remarkably well and it
was the simplest approximation proposed by Hoenberg and Kohn on their
original article about DFT [1], if we desire to obtain a more accurate results
on our research, then we should use a more refined approximation called
the generalized gradient approximation (GGA), which includes not only the
dependence with the electronic density, but also the dependence with its
gradient.

1.3 Solutions for the Khon-Sham equations

Now, we must solve the Khon-Sham equations which describe an electron
moving inside the effective potential considered before. This will require to
expand the wave functions in an advantageous basis set. There are three main
approaches to perform this expansion, each of them with certain advantages
and disadvantages that need to be taken into account:

• Plane wave basis set: It is a really simple basis to implement with first
principles methods. It implies the use of the Fourier transform between
the real and reciprocal spaces, and there already exist numerous effi-
cient algorithms to perform this task. However, the main downside is
that it requires a large number of plane waves to recreate the wave
functions and potentials with enough accuracy.

• Lineal combination of atomic orbitals (LCAOs): As these orbitals are
only important in regions of the space near the atoms, the number of
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orbitals required to obtain the wave functions and potentials are very
low, nonetheless it usually presents bad convergence.

• Atomic sphere methods: This consists on dividing the space into regions
near each nuclei where all the magnitudes present atomic-like properties
with a smooth variation of said properties in the regions between the
atoms. This method provides the best benefits from both the plane
wave and the LCAOs but the computational cost is high on average
and it is difficult to implement on the algorithms.

Due to its simplicity, we will stick with the plane wave basis set method
to solve the Khon-Sham equations, but we will implement another approx-
imation to reduce the number of plane waves required. As we know, solids
are composed of nuclei bounded together through valence electrons which
are the ones that determine most of the properties of the system. There-
fore, as the valence electrons undergo a smooth potential in contrast to the
internal electrons that remain localized arround the atoms because of the
strong atomic potential, we will replace the Coulomb potential created by
the atomic cores with a first principles pseudopotential which removes the
radial nodes for the wave function as well as conserves the real behaviour of
both the wave function and the Coulomb potential in the region outside the
core, where valence electrons are located. The pseudopotentials that were
required on this research were projector-augmented wave pseudopotentials
(PAWs), which tend to improve the accuracy of the simulation and reduce
the computational time devoted to them. They have analythical expressions
that can be found in the literature for each atom and position [5].

As the crystal have its atoms repeated periodically in space, the electrons will
feel a periodic potential and this property will then translate itself into the
wave function. We could then apply Block’s theorem to each electronic wave
function. As we know, Block’s theorem implies that in solids that present
periodicity, each wave function could be constructed by a product between a
plane wave and a periodic function with the periodicity of the crystal. This
wave function could be expressed as it follows:

Ψn,k(r) =
∑
G

Cn,k+Ge
i(k+G)r

where the sum runs for all the reciprocal lattice vectors G, n is the electronic
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band number and k refers to a vector in the first Brillouin zone that identifies
the state. To simplify the problem of computing all this wave fuctions we
can take into account that the electronic wave functions that are close to
each other are almost identical, consequently we can restrain ourselves to
methods that use only a finite small number of k points, called “special
k-points” within the Brillouin zone. One of this methods is the Monkhorst-
Pack scheme which is the one that was implemented on the simulations.
The reason behind it was that for semiconductors such as the zinc seleneide
(ZnSe), which was the material that was actually researched on this project,
this method would only require just a few special k points to simulate it
correclty as we will discuss latter in future sections.

Nonetheless, the plane wave series for a certain k point would still be infinite
but we can truncate it to a finite number due to the fact that the coeffi-
cients Cn,k+G are more important for plane waves with small kinetic energy,
ℏ2
2me

|k + G|2 than at higher energies, so it is possible to just include this
more important terms and ignore the others by cutting the series with the
condition:

ℏ2

2me

|k+G|2 < Ecutoff

This defines a cutoff energy Ecutoff that must be adjusted by analyzing and
reducing the error that it introduces on the simulations. A higher cutoff
energy will produce a higger convergence on the sum of the plane waves. We
will explain this in further detail in future sections as this was part of the
initial research.

After the special k points and the cutoff energy Ecutoff have been carefully se-
lected, we could finally solve the Khon-Sham equations with a self-consistent
method. Firstly, we must choose the pseudopotential V pseudo

eff determined by
the type of atoms and their positions in the crystalline grid, but we must
also make an initial guess for the electronic density nin(r) that we want to
introduce in the equations through the calculation of the effective potential.
We then solve the Khon-Sham equations with computational methods and
we obtain the eigenstates that will allow us to obtain a new electronic den-
sity nout(r), which we will use as the new nin(r) that will be utilized to solve
the equations again. After several times repeating this process, we should
reach self-consistency between the nin(r) and nout(r) and we could use this
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solution as our electronic density from which we could calculate the system
properties.

Nevertheless, after obtaining the self-consistency value of n(r), we should
check if the results corresponds to the optimized relaxed geometry of the
crystalline structure, which would require that the forces on the atoms must
be zero. We can obtain this forces through the Hellmann-Feynmann theorem
[6] and if they do not correspond to the relaxed structure, a minimization
algorithm that changes the atomic positions would be required just before
repeating the process again.

1.4 Phonons

After having obtained the relaxed structure with DFT, we can now shift to
study the vibrational properties of the crystal. Many physical characteristics
of the system respond to the microscopic vibrations inside it, specially related
to thermal, electrical and mechanical behaviours.

To study these properties in detail, let us consider an infinite periodic crystal
with N (typically in the order of Abogadro’s number) unit cells and n atoms
per cell. The j atom in the cell, characterized by a certain lattice vector
L (represented by the lattice index L), will vibrate around the equilibrium
position r0(jL), so we could define its displacement vector as:

ujL = rjL − r0jL

This allows us to define a set of 3nN atomic coordinates. We could then
expand the total energy of the crystal in a Taylor series using the atomic
displacements arround the equilibrium geometry. As this geometry is the
most stable, dynamically talking, it will produce a mimimun for the total
energy and consequently, the first order term on the Taylor expansion will
be zero.

E = E0 +
1

2

∑
jj′LL′

uT
jLDjLj′L′uj′L′ + . . .

E0 is the static energy at the equilibrium (we will consider this as the zero
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pressure value), uT
jL is the transpose of ujL and DjLj′L′ is the 3x3 matrix

that contains the second derivatives of the energy with respect to the atomic
displacements ujL and uj′L′ of the atoms, which could be represented by:

(DjLj′L′ )αβ =
∂2E

∂(ujL)α∂(uj′L′ )β

where α and β run over the cartesian coordinates (x, y and z).

From now on, we will adopt an harmonic approximation, which considers
that the atoms inside the crystal vibrate inside an harmonic well around
fixed positions. In practice, this means that this energy expansion must be
truncated on second order. Therefore, it can be shown that the equation of
motion for each atom will be given by:

mj
d2ujL

dt2
= FjL = −

∑
j′L′

DjLj′L′uj′L′

where mj is the mass of the j atom, and FjL is the force acting over the
atom on the jL position. There will be 3nN equations of motion, one for
each cartesian coordinate for each atom. If we impose boundary conditions
for this system, it could be shown that the solutions will have the form of
plane waves, where there would exist a k index, which would represent a k
vector of the first Brillouin zone:

ujL = εkνje
i(kL−ωkνt)

For a periodic system with N primitive cells, there would be N permissible k
vectors that could be used as solutions of the equation of motion. However,
we must also introduce a ν index that allows us to counter the number of
solutions for a given k vector, and it will run from 1 to 3n. εkνj is the
displacement vector and it shows the space direction for the propagation of
the wave of collective atom displacements.

This atomic vibrational waves showed by this last equation is what we
call phonons, which are usually represented by their wave frequencies ωkν .
Phonons are also considered to be quasiparticles that carry the vibrational
energy and the vibrational momentum through the crystal.
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We will now substitute this last solution into the equation of motion for the
atomic displacements in L = 0 (reference unit cell). This will result in:

mjω
2
kνεkνj =

∑
j′

(∑
L′

Dj0j′L′eikL
′
)
εkνj′

Next, we must apply a transformation in order to remove the atomic masses
from the equation. We define ηkνj as:

εkνj =
1

√
mj

ηkνj

This allows us to replace the matrix on the right hand side of the equation
of motion with:

Djj′ (k) =
1√
mjm

′
j

∑
L′

Dj0j′L′eikL
′

resulting in the equation:

ω2
kνηkνj =

∑
j′

Djj′ (k)ηkνj′

All of the 3x3 matrices for the n atoms in the unit cell can be collected
to form a square 3nx3n matrix D(k). This matrix is called the dynamical
matrix and its Fourier transform to real space would result in a matrix really
similar to the second derivatives matrix Dj0j′L′ but weighted on the atomic
masses. This real matrix is called the force-constant matrix :

C(L)jαj′β =
1√
mjm

′
j

∂2E

∂(uj0)α∂(uj′L′ )β

We will then merge all the atomic coordinates in the displacement vector
ηkν . This will result in the eigenvalues equation:
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ω2
kνηkν = D(k)ηkν

This eigenvalues equation allows us to diagonalize the dynamical matrix
which will result in the calculation of the phonon frequencies ωkν and the
eigenvectors ηkν , which are called the polarization vectors or normal modes.
Therefore, we have modeled the vibrational properties of the system by a set
of normal modes that represent all the vibrations in the inside of the crys-
talline structure. Actually, we have also improved our model by introducing
the microscopic effects of the temperature in the system, as we should not for-
get that the adiabatic approximation neglected the atomic cores movement,
limiting the initial study to the T = 0K case.

There are several computational methods to obtain the solution for the diago-
nalization of the dynamical matrix. This project employed the frozen-phonon
method, also called the direct method, to study the frequencies of the phonons
under different pressure conditions. We will develop this method in further
detail in a later section.

1.5 Thermodynamic Properties

As we have already discused, the crystal vibrations could be represented as
a set of normal modes from harmonic oscilators, which could be interpreted
as quasiparticles called phonons. It is a well known fact that phonons are
particles with an integer spin quantum number, therefore, phonons are boson
particles and we could modelize the crystal as a Bose-Einstein gas and apply
the knowledges from statistical mechanics to obtain the thermodynamical
properties.

Bose-Einstein gases satisfy the property that there is no limitation on the
number of particles that could be asociated with a determined quantum
state. If we define the number of occupation nkν as the number of bosons
that, in this case, have the same energy ℏωkν , then we could express the total
vibrational energy for a certain j quantum-mechanical state configuration of
the system as:

Evib,j =
∑
kν

(nkν +
1

2
)ℏωkν
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The index j will define all the different possible quantum-mechanical con-
figurations for the system. This allows us to obtain the canonical ensemble
partition function as the sum:

Z =
∑
j

e−βEvib,j

where:

β =
1

KBT

If we consider E0 as the total ground state of the system, then it is easy to
show that:

Z = e−βE0

∏
kν

zkν

This means that the canonical ensenble partition function can be separated
into a product of individual normal modes contributions zkν , defined as the
convergent sum:

z =
∞∑
n=0

e−βℏ(n+1/2) =
e−

βℏω
2

1− e−βℏω

from which:

− lnZ = βE0 +
∑
kν

[
βℏωkν

2
+ ln (1− e−βℏωkν )

]
This allows us to calculate the Helmholtz free energy as:

F = −KBT lnZ = E0 +
∑
kν

[
ℏωkν

2
+KBT ln (1− e

− ℏωkν
KBT )

]
On the considered limit for the volume V → ∞, the sum is replaced with an
integral of the phonon density of states g(ω):
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F = E0 +

ˆ ∞

0

[
ℏω
2

+KBT ln (1− e
− ℏω

KBT )

]
g(ω) dω

We should not forget that the phonon density of states is normalized on 3nN :

ˆ ∞

0

g(ω) dω = 3nN

We have finally obtained our theoretical model. After calculating the phonons,
the computational tools that were used on this project allowed the obtain-
ment of the phonon density of states from the dispersion curves.

Therefore, all thermodynamic properties could be obtained from the Helmholtz
free energy F through derivatives. The entropy of the system satisfy:

S = −
(
∂F

∂T

)
V

The total internal energy could then be trivially calculated through:

U = TS + F

Another magnitude that we should take into account would be the heat
capacities at constant volume. This quantity can be estimated through:

Cv = T

(
∂S

∂T

)
V

=

(
∂U

∂T

)
V
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2- Objectives

This work has the purpose of learning the use of quantum computational
simulation techniques, similar to those described in the previous section, to
predict the vibrational and thermodynamical properties of a selected mate-
rial.

The chosen system for this research was the zinc seleneide ZnSe semiconduc-
tor, which adopts a crystalline zincblende structure that belongs to the space
group 216 F-4zm at normal conditions. It is widely used in the construction
of certain light emitting diodes due to the possibility to control dynamically
its electric conductance, but it is also used for the construction of optical
lens, as it presents transparency for the infrared range, which also makes it
a relevant material on infrared spectroscopy.

Using VESTA, a tridimensional visualization program that could be applied
for obtaining structural models and crystalline morphologies, we get a visual
model of the ZnSe structure:

Figure 1: ZnSe zincblende structure.

where the gray spheres represent the zinc atoms and the green ones represent
the selenium atoms.
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3- Methodology

3.1 Procedure description

The first step of the research was to find the parameters for the relaxed
structure of the ZnSe at temperature T = 0K and pressure P = 0GPa. This
was achieved by the use of the Vienna Ab-initio Simulation Package (VASP),
a software that allows first principles studies for materials by applying DFT
and the pseudopotentials theory. This simulation package allows us to use a
plane wave basis set for the quantum-mechanical description of the material
researched. There is more information about VASP on its website [7].

In a summarized way, VASP performs the quantum-mechanical simulations
after the configuration of four files:

1. POSCAR file: this is the file that contains the structure of the mate-
rial that is being researched. This could be generated from a .cif file
obtained from the ICSD data base via VESTA.

2. POTCAR file: this is the file that contains the pseudopotentials which
describe the atoms in the POSCAR.

3. KPOINTS file: this file gives the integration grid for the integrals that
VASP must perform on the first Brillouin zone, which are approximated
by a set of special k points, as it was explained in previous sections.

4. INCAR file: this is the file which contains all the instructions and
information about the parameters of the simulation that VASP is about
to carry out. This allows us to set the convergence energy criteria, the
type of GGA that we want to apply to our simulation, the energy cutoff,
etc.

Therefore, the starting point for the simulation would be a set of data about
the structure that, for simplicity, will be experimental values for the material
that could be found in the ICSD data base [8]. The cell that was used was the
cubic primitive cell for the ZnSe, and its volume could easily be calculated
through V = a3/4, being a the lattice parameter of the grid. This primitive
cell has two atoms, where the Zn atom will be in position (0, 0, 0) and the
Se atom will be in position (1/4, 1/4, 1/4).
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The procedure to obtain the relaxed structure was very simple. This con-
sisted of compressing the cell at different pressures, through the selection
of different volumes. VASP would then apply its algorithms to resolve the
system and would give back the values of volume, ground state energy and
pressure associated with each compression. The relaxed structure volume
could then be estimated as the case asociated with the approximated zero
value for the pressure which, by the way, it would display the minimum en-
ergy for the system. This process was preceded by an initial study on the
convergence with different values for the cutoff energy and k points. This
is explained in further detail in the next subsection, which verses about the
computational details that were taken into account for the simulations.

After the relaxed volume was obtained, the next step was to find the phonons
through the frozen-phonon method. This procedure allows us to obtain the
frecuencies of the phonons from the relaxed structure by applying small dis-
placements on the atoms, then calculating the forces asociated with every
frozen configuration through the Hellmann-Feynmann theorem and finally
diagonalizing the resulting dynamic matrix asociated to the resultant forces.
This method is applied with the phonopy package [9].

However, the primitive cell (1x1x1 supercell) does not allow us to find the
phonons in all the points of the reciprocal space, it just gives the values for the
Γ point. This will result in the need to apply larger supercells to have a bigger
picture. In this case, a 2x2x2 supercell was applied to the system with the
same initial conditions. As the displacement of the 16 atoms that constitute
this supercell have the positive and negative orientations for the three space
directions, symmetry properties were incorporated to the algorithm as a way
of reducing the number of simulations and the computational time required.

With the dynamical matrix, the PHONON software [10] would then diago-
nalize it and give back the frequencies of the phonons, the dispersion curves
and also the partial and total phonon density of states g(ω). This process was
repeated for different values of the pressure, including high pressure values
up to 12GPa as it would allow us to then fit the results with a polynomium,
that would give us the variation of the phonon frequencies with the pressure.

As it was previously discussed, the phonon density of states would then allow
us to obtain the thermodynamic properties such as the internal energy U ,
the entropy S, the Helmholtz free energy F and the heat capacity Cv with
their variations with the temperature T . This procedure was repeated for
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different values of pressure P and the results obtained were compared in
plotted graphs.

3.2 Computational details

We will take a moment to specify and review all the characteristics employed
by the simulations. As it was mentioned earlier, the INCAR and KPOINT
files control many of their parameters. At the begining of the research, it was
crutial to analyze the convergence with respect to the cutoff energy and the
number of k points. This was done by obtaining the energies of the ground
state for two different volumes and then analizing how the energy difference
for those two configurations evolve with the cutoff energy or with the number
of k points selected. This was actually plotted on graphs:

Figure 2: Energy difference with the cutoff energy.

Figure 3: Energy difference with the number of k points.
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As it is shown on the graphs, we can assure that the convergence is reached
up to 300 eV for the cutoff energy and 20 for the number of special k points.

Therefore, the energy cutoff selected for the rest of the study was set to
400 eV and the number of k points was set to 20, which is associated to the
6x6x6 grid configuration. For both of this parameters, we obtain a highly
accurate convergence of 1meV.

After obtaining the relaxed structure, it satisfied that the forces on the atoms
were less than 10−6 eV/Å. Also, the exchange-correlation energy was de-
scribed in the GGA aproximation with the Armientto-Mattson (AM05) func-
tional. This gave more accurate results for the simulations than the Perdew-
Burke-Ernzernhof (PE) functional and the Perdew-Burke-Ernzernhof pre-
scription for solids (PS) functional, al least with respect to the experimental
value that was provided.
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4- Results Discussion

4.1 Crystalline relaxed structure

The first set of results were the crystalline relaxed structure parameters.
After the first simulations were carried out, I was able to obtain a value for
the equilibrium volume, which could be compared with the one given in the
literature. Both quantities are given in this next table, along with the lattice
parameter asociated to it. It must be noted that the literature provides the
X-ray diffraction experimental value a = 5.668 Å for the unit cell [11]. The
primitive cell is four times smaller than the unit cell (ZnSe is a face centered
cubic structure) so its volume would be Vp = a3/4 = Vu/4. This allows us to

obtain the volume of the simulated unit cell as Vu = 4Vp = 180.800 Å
3
.

Experimental data Simulation data

Volume (Å
3
) 180.091 180.800

a (Å) 5.668 5.655

Table 1: Simulated values against expermiental values for the volume of the
unit cell and the lattice parameter.

As we can see, both values are very close to each other. This reveal to us
that the simulation that was performed with DFT was really accurate, so
our model hypothesis fit well to the reality.

4.2 Phonons at zero pressure

After simulating the small displacements on the atoms and diagonalizing the
dynamical matrix with a 2x2x2 supercell, we obtain the values for the phonon
frequencies on Brillouin’s Γ point, along with the density of states and the
dispersion curves.

Table 2 presents the different phonons that appear at Γ point and at zero
pressure. As we can see, the system presents three acustic phonons (TA)
which are theorically zero on this zone center as well as three transversal
optical phonons (TO) with the same frequency. The simulation also gives the
irreducible representations of the phonons which are in concordance with the
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Figure 4: Dispersion relations for ZnSe at P = 0GPa.

theoretical results. This could be checked up on the Bilbao Crystallographic
Server [12]. The dispersion curve asociated with these results is displayed
in Figure 4, where the frequencies values are given in THz, but could be
transformed to cm−1 through the relation 1THz = 33.356 cm−1.

While this has allowed us to obtain a first view on the phonon frequencies,
the optical phonons appear triply degenerate where, in reality there exist
two different values for the optical frequencies on the neighborhood of Γ, the
transversal optical (TO) phonon being doubly degenerate, as well as the lon-
gitudinal optic (LO) phonon that is not degenerate and have higger energy
than the TO phonons. The reason behind this inability to visualize the LO-
TO splitting is the existence of the large range Coulomb potential, which
goes with 1/r, so its Fourier transform goes with (4π)/k2, which diverges
for k → 0 (Brillouin’s Γ point). This could be solved up by introducing

Type Degeneracy Frecuency (cm−1) Irreducible representations
TA 3 0 T2 (Raman/Infrared)
TO 3 206.574 T2 (Raman/Infrared)

Table 2: Phonons for ZnSe at Γ point for P = 0GPa.
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the non-analythical corrections (NAC), which would allow us to obtain this
splitting on a very close region to Γ. To apply these corrections, it was nece-
sary to obtain the Born effective charges, as well as the dielectric constant.
The effective charges are the net positive charges that electrons feel due to
the screening effect that the internal electrons produce in the electrostatic
interaction with the atomic core. It is defined as Z∗ = Z−S, where Z is the
atomic number and S the screening constant [13]. These effective charges
and the dielectric constant were estimated by analyzing how the system does
respond to an electric field and their values for the zero pressure case are
displayed on Table 3. The results obtained for the LO-TO frequencies are
sumarized in Table 4, and the dispersion relations with the LO-TO splitting
are displayed in Figure 5.

Born charge 1 Born charge 2 Dielectric constant
2.152 -2.152 8.788

Table 3: Born effective charges and dielectric constant for P = 0GPa.

Figure 5: Dispersion relations for ZnSe at P = 0GPa with LO-TO splitting.
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Type Degeneracy Frecuency (cm−1) Irreducible representations
TA 2 0 A1 (Raman/Infrared)
LA 1 0 E (Raman/Infrared)
TO 2 206.574 A1 (Raman/Infrared)
LO 1 242.298 E (Raman/Infrared)

Table 4: Phonons for ZnSe with LO-TO splitting at Γ for P = 0GPa.

There are other results that have been estimated with the simulation. The
partial density of states is shown in Figure 6, where the atom 1 represents
the zinc and the atom 2 is the selenium. Figure 7 gives us the density of
states of the complete compound.

Figure 6: Phonon partial density of states for the ZnSe at P = 0GPa.
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Figure 7: Phonon total density of states for the ZnSe at P = 0GPa.
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4.3 Phonons at higger pressures

Next, we will analyze how the phonon frequencies evolve with different pres-
sure conditions. This is an interesting research that ocasionally could predict
heavy changes for the materials, for instance, a change of phase, although
this does not occur within the range of pressures considered in this research.
Furthermore, many of the pressure values that we are considering are really
difficult to obtain on a laboratory, so the only practical way to analyze the
system under this type of extreme conditions is through the simulations.

The calculations that were performed involved obtaning the phonons in Γ
on every 1.5GPa jump of pressure, up to the P = 12GPa value. The LO-
TO splitting was specifically considered on this case. Therefore, I obtained
the ωLO and the ωTO frequencies for every value of pressure and plotted
them against it, before fitting the data with a second grade polynomial ω =
aP 2 + bP + c.

The graphs are displayed on Figures 8 and 9. As it could be checked nu-
merically, the bent factor for the polynomial was very low for both cases
(a = −0.093 cm−1/GPa2), and it approximately takes the form of a straight
line. Consequently, the b coefficient gives us how the frequencies of the vi-
bration changes with the pressure. This is an interesting result as there exist
a certain parameter proportional to this derivative that specifies how the
vibrational properties of the system changes with the volume. This quantity
is called the Grüneisen parameter (γth) [14]. The values obtained from the
simulation are:

bLO =
dωLO

dP
≈ 5.092 cm−1/GPa bTO =

dωTO

dP
≈ 5.617 cm−1/GPa

This two values are in concordance with the values on the literature. For the
LO phonon, it can be found a slightly shifted value of 5.6 cm−1/GPa [15],
while for the TO phonon, there exist a value of 5.5 cm−1/GPa [15] that is
almost identical to the simulated value.
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Figure 8: LO phonons frequency change with the pressure in Γ.

Figure 9: TO phonons frequency change with the pressure in Γ.
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4.4 Thermodynamic properties

Finally, from the results achieved for the phonons, the obtainment of the
thermodynamic properties of the system is trivial. Graphs for the Helmholtz
free energy (Figure 10), the entropy (Figure 11), the internal energy (Fig-
ure 12) and the heat capacity (Figure 13) were plotted for different values
of pressure. These properties appear represented against the spectrum of
temperatures up to 1000K.

There are several universal physical results perfectly outlined on this figures.
We inmediately recognize the typical form for the entropy of a system which
decreases with lower temperatures and satisfy the third law of thermodynam-
ics (S → 0 if T → 0). This is justified in the fact that, as the entropy is
a measure of the amount of microscopic configurations that are compatible
with the system macroscopic configurations, if there only exist one ground
state for the system at T = 0K, then the entropy must be null for that case.
Actually, this is also represented in the internal energy graph. In the T → 0
region, the energy tends to the non degenerate ground state value E0, which
is a natural consequence in quantum mechanics.

Another law that is definetly outlined is the Dulong-Petit law. If we examine
the heat capacity, we can identify the T → 0 case, were it satisfies that Cv →
0, but if we focus on the higer temperature limit, we obtain a convergence
to the value 49.65 J/K/mol ≈ 6R, with R being the ideal gas constant. This
is a clear manifestation of the Dulong-Petit law, as the heat capacity of all
physical systems converge to a certain factor of the R constant, that is related
to the number of degrees of freedom for the constituents of the system. In
the case of ZnSe, there are two different atoms, each with three degrees of
freedom, so it is not suprise that the factor that multiplies R match the six
total degrees of freedom on the primitive cell of the crystal.
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Figure 10: Helmholtz free energy for the ZnSe.

Figure 11: Entropy for the ZnSe.
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Figure 12: Internal energy for the ZnSe.

Figure 13: Heat capacity for the ZnSe.
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5- Conclusions

We have seen that for a determined crystalline material as the ZnSe, we
have been able to obtain its themodynamical properties through a quantum-
mechanical perspective, in particular from a first principles perspective. What
is more, we have even been able to visualize how a particular system as this
semiconductor satisfy the well known universal third law of thermodynam-
ics, as well as the Dulong-Petit law that characterizes the behaviour of the
system at the high temperatures limit for any given value of pressure. Fur-
thermore, we also obtained many of the microscopical vibrational properties
of the crystal by studying the changes on the frequencies of the phonons with
the pressure of the system.
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