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Resumen

RESUMEN

Uno de los problemas abiertos en fisica solar es el calentamiento cromosférico. En la actualidad,
todavia no se ha encontrado un mecanismo de transporte que llegue a explicar el alto aumento
de temperatura que se observa en dicha region de la atmosfera solar. Uno de los mecanismos
cominmente propuestos es la disipacion de la energia transportada por las ondas que se pro-
pagan desde las capas bajas de la atmosfera. Por otra parte, el estudio de la propagacion de
las ondas que se generan en el Sol es también de gran relevancia, porque permite desentranar
algunas de las propiedades fisicas de su estructura y dinamica.

Este trabajo se centra en estudiar la propagacion de ondas en la frontera de la fotosfera-
cromosfera y el estudio de la transformacion de modos. La principal motivacion es la derivacion
de las propiedades de los modos de propagacion de las ondas en estas regiones (fotosfera, cromos-
fera y su frontera), ya que los mecanismos de liberacion de energia varian segtn la naturaleza de
los modos, por lo que caracterizarlos fisicamente es de gran importancia. De forma méas precisa,
en este trabajo vamos a realizar un estudio general de distintas ondas que se pueden propa-
gar en la atmosfera solar (ondas acusticas, actstico-gravitatorias, ondas magneto-actusticas y
ondas de Alfvén) para después pasar al caso concreto de la propagacion de las ondas magneto-
acisticas en la frontera. Estas ondas presentan dos modos caracteristicos: el rapido y el lento.
Estos tltimos se caracterizan por tener una naturaleza actstica o magnética dependiendo de
si se encuentran en la fotosfera, donde dominan las fuerzas hidrodinamicas del plasma o en la
cromosfera, donde dominan las magnéticas. Es de esperar que en la region frontera, la region
de equiparticion, estas fuerzas sean comparables, lo cual afectaria a la naturaleza de los modos
volviéndolos indistinguibles. Esto podria producir una transferencia de energia de un modo a
otro, es decir, tendria lugar el fenémeno de transformacién de modos.

En primer lugar, presentamos el modelo de las ecuaciones magnetohidrodinamicas (MHD)
ideales que nos permite describir la dindmica del plasma de la atmosfera solar dentro del estudio
que nos interesa. Después, entramos en una de las partes principales del trabajo, en la cual se
realiza un estudio general de la propagacion de ondas en la atmosfera solar por el método de
pequenas perturbaciones y linearizaciéon de las ecuaciones MHD ideales. Primero comenzamos
con la caracterizacion del medio, una atmosfera estratificada en la direccion vertical e isoterma,
por la cual nuestras ondas se propagaran. En esta primera parte, en la que linearizamos las
ecuaciones MHD ideales, partiremos ignorando los efectos del campo magnético y con una
configuracion 1D. Esto nos permite describir las ondas actsticas en un medio estratificado.
Después, se continuara con la descripciéon y derivacion de la relacion de dispersion de las ondas
acustico-gravitatorias, pero ahora ya en 2D. Ademas, se discutira la relevancia de frecuencias
clave en la propagacion de ondas en un medio estratificado, como son la frecuencia de corte y
la frecuencia de Brunt-Viisild. A continuacion, incluimos el campo magnético y en 3D, pero
trabajando en esta ocasion, con un medio homogéneo, ya que simplificara la complejidad alge-
braica. Aqui se derivaran las relaciones de dispersion de las ondas Alfvén y los dos modos de las
ondas magnetoacusticas, el rapido y el lento mediante una descripciéon 3D. Pero después se sim-
plificara a una en 2D, debido a que las ondas Alfvén estan polarizadas en la direccién ortogonal
al plano que forman el campo magnético y el vector de onda. Esto nos permitira trabajar en
dicho plano donde se encuentran las ondas del modo rapido y lento ignorando a las de Alfvén de
nuestro estudio, ya que solo estamos interesados en la descripciéon de los modos rapido y lento.
A partir de ahi, trabajaremos siempre con estos dos modos. Derivaremos que en los limites en
los que predominan las fuerzas hidrodinamicas o, en el caso contrario, las magnéticas, ambos
modos tienen unas propiedades bien diferenciadas asociadas a dichas condiciones del medio.
En la conclusion de esta primera parte se deriva la ecuacion de conservacion de energia para
las ondas magnetoactsticas, llegando al resultado de que bajo ciertas condiciones que se suelen
cumplir, las ondas magnetoactsticas conservan la energia. Este resultado nos proporciona una
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condicién importante que nos permite aplicar el formalismo de trazado de rayos que se describe
en la siguiente parte del trabajo.

En la siguiente parte de este estudio, se aplica el método de aproximacion de trazado de
rayos, que permite extender los resultados obtenidos para las ondas magnetoactisticas anadiendo
una estratificacion en las variables del medio, como son la presion y la densidad. Dicho medio lo
consideramos débilmente inhomogéneo, puesto que en nuestro caso consideramos que las escalas
caracteristicas de la atmosfera son mucho mayores que la longitud de onda. Es posible utilizar
los términos manipulados en las ondas magnetoactsticas, ya que el trabajar a frecuencias altas
(mayores que la frecuencia de corte y de Brunt Viisdld) nos permite despreciar los términos
proporcionales a la escala de presiones, provocando que sean los mismos que para un medio
homogéneo. El fin de aplicar dicho método es simplificar el estudio incluso extendiéndolo a
un medio inhomogéneo, aunque entorno a la regién de equiparticion, el método de trazado de
rayos falla y se hace necesario realizar una conexién en dicho punto. Este método es el que
sigue Tracy et al. (2014), este formalismo nos permite ver que en esta region los modos de
las ondas magnetoactsticas se vuelven indistinguibles debido a que la fuerzas hidrodinédmicas
y magnéticas son comparables. A partir de esto ultimo llegamos a nuestro resultado mas
importante: en la regiéon cercana a la de equiparticion se produce una transformacion de modos.
De forma mas precisa esto ocurre cuando las velocidades del sonido y Alfvén se igualan. Esto es
de suma relevancia, ya que en la transformacion de modos se transmite de forma total o parcial
energia de uno a otro lo que implica cambios en sus propiedades y en la forma de transportar la
energia. En la parte final de la discusion de resultados estudiamos como dicha transformacion
de modos depende de varios parametros que afectan a la cantidad de energia que se transmite.
Los méas importantes son el angulo que forma el vector de onda con el campo magnético y la
frecuencia de la onda.
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1 Introduction

RESUMEN

El Sol es nuestra estrella mds cercana y el estudio de sus caracteristicas y procesos son de vital
importancia, ya que ademds de ejercer una gran influencia en el clima terrestre, nos aporta un
mayor conocimiento de la fisica del plasma mediante su estudio. Su atmdsfera se subdivide en:
la fotosfera, cromosfera, region de transicion y corona. Cada una tiene unas caracteristicas
fisicas bien diferenciadas, pero en la zona alta de la cromosfera, la region de transicion y la
corona se observa un gran aumento de las temperaturas. FEste hecho observacional es uno de
los principales problemas en fisica solar, puesto que considerando el mecanismo de transporte
radiativo las temperaturas deberian de decrecer segun mos alejamos de la superficie. Luego
es necesario que se investiguen otros mecanismos de transporte en la atmdsfera que lleguen a
explicar dicho fenomeno, uno de ellos es la disipacion de las ondas acisticas. En la atmdsfera
solar se propagan multitud de ondas que van desde las acustico-gravitatorias a las magneto-
acusticas y, dependiendo de su modo, los mecanismos de liberacion de energia varian. Por lo
tanto, es de gran interés estudiar su caracterizacion fisica y propagacion en este medio. Esta es
la principal motivacion del trabajo, en el cual centramos la atencion en el andlisis de las capas
bajas de la atmdsfera (fotosfera,cromosfera) y su region frontera (la region de equiparticion)
en la cual, como se verd mds adelante, se podria producir una transferencia de energia entre
distintos modos, lo que se conoce como transformacion de modos.

1.1 Solar atmosphere

The Sun is our nearest star and has been the subject of study for more than 100 years because
of its great importance in our daily lives. For example, it has a major influence on the Earth’s
climate and space weather. Some effects of solar activity on the Earth are auroras or those
that can excite a geomagnetic storm in the Earth’s magnetosphere, which can even damage
satellite communication. Solar flares and coronal mass ejections (CMEs) are some of the events
that produce them and have their origin in the solar atmosphere. These effects remark the
importance of studying the dynamic processes occurring in the Sun and the changes in its
atmosphere. Moreover, the solar atmosphere is in a plasma state, so its study can provide
us with a better understanding of plasma physics and related plasma cosmical phenomena.
Furthermore, due to its proximity, it facilitates the observation and study of stellar phenomena.
The Sun is the only star whose surface we can observe in detail and is one of the most common
stars in the universe (it is a G-type main sequence star).

The basic structure of the Sun is divided into the solar interior, which is shielded from
our view due to the high opacity, and the solar atmosphere, from where the radiation we
observe in the Earth is coming. The solar atmosphere is divided into several layers, mainly
due to differences in their physical properties, such as density and temperature. The innermost
layer, known as the photosphere, has an effective temperature of about 6000 K, since the light
is emitted mainly in the visible range of the electromagnetic spectrum. In this layer, with a
thickness of about 500km, we observe the sunspots (see left panel of Figure 1) and granulations.
The layer above it is the chromosphere, where the temperature starts to grow again as we
move to the upper layers, it is much less dense than the photosphere and it is dominated
by magnetic forces. At the top of the chromosphere, the temperature increases dramatically
through the transition region. This region is a quite thin layer compared to the other layers of
the atmosphere, only a few kilometres thick. It separates the much cooler chromosphere from
the extremely hot corona, increasing the temperature from 25000K to 10°K. The outer layer,
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the corona, has extremely high temperatures, therefore an extremely high level of ionization
of elements. And contains structures such as plumes and loops or events like the CMEs (Stix,
2004; Priest, 2014; Bhatnagar & Livingston, 2005).

Figure 1: From left to right: an image of the photosphere in the continuum, 304 A image

of the chromosphere and the transition region emitted by He II, 171 A image of the upper
transition region and the corona emitted by Fe IX, 193 A image of the corona emitted by Fe
XII. Credits NASA/SDO (2023).

The present study focuses on the lower layers of the atmosphere, the photosphere and
chromosphere. One of the most important properties that differentiate these layers is a dimen-
sionless parameter §. It is the ratio of the gas pressure to the magnetic pressure. If 5> 1 the
magnetic field is not strong enough and plays a secondary role in the dynamics, so the plasma
motion is more gas-like (photosphere). In the opposite case, the magnetic forces dominate the
dynamics (chromosphere).

Related to these layers, one of the biggest problems in solar physics is the heating of the
chromosphere and corona. As shown in Figure 2, the temperature rises abruptly in the tran-
sition and corona regions. The problem is that if radiation were the only energy transport
mechanism in the solar atmosphere, it would lead to a negative temperature gradient. There-
fore, another heating mechanism must be proposed.
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Figure 2: A schematic representation of the temperature and density observational profiles as
a function of the height in the solar atmosphere (Priest, 2014).

Figure 2 also shows that the temperature in the lower part of the solar atmosphere varies in
the range from 5000 K to 9000 K, which means that the gas is partially ionised. In this medium,
which we refer to as plasma, different types of waves are propagating and can dissipate their
energy. Then, one proposed solution to the chromospheric heating problem is the dissipation
of acoustic waves that are generated in the convection zone and propagate upwards to the
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solar atmosphere (Biermann, 1946; Schwarzschild, 1948). In addition to acoustic waves, other
kinds of waves can propagate in the solar atmosphere, like Alfvén or magnetoacoustic waves.
Depending on the mode, the mechanisms for releasing energy into the medium vary. Therefore,
the physical characterisation of modes is quite important factor in explaining chromospheric
heating by wave dissipation.

1.2 Motivation of this work

This study focuses on understanding the behaviour of waves in the boundary region separating
the photosphere-chromosphere and in both layers. The main objective is to characterise the
propagation of magneto-acoustic waves and the changes of polarisation they experience in their
vertical propagation from the photosphere to the chromosphere. These layers have different
characteristics as mentioned previously, so a wave that goes from the photosphere to the chro-
mosphere (or viceversa) will suffer a change in its properties. This may be applied to any region
where there is such a change, like a sunspot. In the frontier of the photosphere-chromosphere,
the equipartition region, the wavelengths of the modes become so close that they can interact.
This could give rise to the phenomenon of mode conversion in which one mode transfers energy
to another (Schunker & Cally, 2006).

In section 2, we present the ideal magnetohydrodynamic (MHD) equations that describe
plasma dynamics to then use them to describe wave propagation in the plasma.

In section 3, we consider a simplified model of the atmosphere as a stratified and isothermal
medium. Once the medium is characterised, we linearise the equations assuming that the
magnetic field is not important. This allows us to present the linearisation method and the
characteristics of acoustic waves and important frequencies in a simple way. Here, we first derive
the dispersion relation for acoustic waves in a 1D. And then we derive the acoustic-gravity waves
dispersion relation in 2D. In addition, we describe the characteristics of their propagations and
the effects of the cut-off frequency and the Brunt-Vaiisaléd frequency are discussed.

In section 4, the MHD equations are applied and linearised to derive the propagation char-
acteristics of the magnetoacoustic waves. We start with a 3D problem and a homogenous
medium to simplify the algebra. Then we reduce the problem to 2D ignoring the Alfvén waves
and we obtain the dispersion matrix of the magnetoacoustic wave. Besides, we describe in
detail the effects of the dominant forces in the plasma (magnetic or hydrodynamic) on these
modes. Furthermore, we arrive at the energy conservation equation for magnetoacoustic waves
and describe the conditions for these waves to conserve energy.

In section 5, the changes in the background quantities (pressure and density) due to height
stratification are taken into account. Here, we present the ray tracing formalism for analysing
wave propagation in a weakly inhomogeneous medium, as it simplifies the analysis. The re-
sults found in section 4 are applied, even though these have been found for a homogeneous
atmosphere. Because considering high frequencies (higher than the Brunt-Vaisild and cut-off
frequency) we can manipulate the same terms as in section 4, neglecting the gravity terms.
And we treat the mode conversion phenomenon following the mathematical formalism of Tracy
et al. (2014).

Finally, in section 6, we summarize and discuss the implications of these results.
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2 MHD theory

RESUMEN

En esta sequnda seccion describimos el marco tedrico en el que se desarrollard el posterior
estudio de las ondas en la atmdsfera solar. Se presentan las ecuaciones magnetohidrodinamicas
(MHD) ideales, las cuales nos permiten estudiar el comportamiento del plasma bajo unas ciertas
condiciones. Se describen las suposiciones y aprorimaciones que se toman a la hora de llegar a
las ecuaciones MHD ideales y se discute como éstas no tienen de forma explicita la presencia
del campo eléctrico.

The solar atmosphere is mainly composed of hydrogen, which has an abundance of almost 80%.
Due to the high temperatures in the low atmosphere, hydrogen is expected to be ionized and,
therefore, the atmosphere is in a plasma state. A plasma is a fluid macroscopically neutral that
contains many interacting electrons and ionized atoms or molecules to compensate the charge,
and whose behaviour is collective. In plasmas, charge neutrality is not satisfied at spatial
scales smaller than a Debye length. This is the spatial range in which a local charge imbalance
produces an electrical field: A\p = (eokpT'/(ne?))'/?, where kp is the Boltzmann constant, ¢,
the vacuum permittivity, T the temperature, n the electronic density and e the electron charge
(Bittencourt, 2004).

As a consequence, to describe the dynamics we introduce the basic magnetohydrodynamics
equations (MHD). In MHD, the macroscopic behaviour of a continuous plasma is described
through a combination of Maxwell’s laws and the hydrodynamic equations. The plasma can be
treated as a continuum as long as the length scale of the variations exceeds greatly the internal
plasma lengths. The basis in MHD is that magnetic fields can induce a current in the fluid and
as a result, it can also change the magnetic field as well. Before discussing the hydrodynamic
equations that form it, we present here the Maxwell equations!

a . 10E
VXB_/LOJ—i_C_?E’ (1)
, 0B
E—=_—-— 2
v.E=" (3)
€o
V-B=0. (4)

The equations show the relation between the electromagnetic variables, where B is the magnetic
field, E the electric field, J the current density, p* the charge density, 1 is the vacuum magnetic
permeability and ¢ the speed of light. Equation (1), known as Ampére’s law, tells us that
temporal variations of the electric field and currents produce magnetic fields. Then, equation
(2), known as Faraday’s law of induction, shows that temporal variations of the magnetic field
produce electric fields. Equations (3) and (4) are known as Gauss’s law for the electric field
and for magnetism, respectively. The former implies that charges are electric field sources. On
the other hand, equation (4) indicates that the magnetic field has neither sources nor sinks; it
is a solenoidal field. This equation assumes that there are no magnetic monopoles.

The plasma neutrality makes that p* ~ 0, a necessary condition to apply the ideal MHD.
In addition, relativistic effects can be neglected since the velocities associated with the plasma

Tn the present work, the following mathematical notation is used: - for the scalar product, x vectorial
product, ® outer product, the @ to denote vectors, & to denote unit vectors and p to denote tensors

4
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particles are typically much smaller than the speed of light. We also assume the plasma to
behave as an ideal conductor, so it follows the ideal Ohm’s law:

E=—ixB. (5)

Substituting the previous expression into the induction equation (2) we remove the electric field
explicitly and it results in

oB ,
Moreover, under these conditions the current density is of the form:
— 1 —
J=—VxB. (7)
Ho

With these expressions we can obtain hydrodynamic equations which are only determined by
the magnetic field, hence the name MHD. This ideal approach leads to the magnetic field being
frozen with the plasma itself (Priest, 2014). From now on, we are always going to deal with the
ideal MHD approximation. The hydrodynamic equations that form the MHD are the following:

dp L
EWLV’(PU)—O, (8)
0 _ S o
5;(P0) +V - (pi @@ +p)=J x B+ p7, (9)
1 1 _ - o
%(e+§pu2)+v-[(e+§pu2)ﬁ+]5-ﬁ}:E-J+p§-ﬁ. (10)

As we are in the ideal MHD approach, the heat flux ¢ and viscosity v terms have been neglected
in the above equations. Equations (8), (9), and (10) are the mass continuity equation, the
motion equation, and the energy equation, respectively, where p is the density of the plasma,
@ the velocity of the plasma, p the stress tensor, e the internal energy and g the gravity. The
scalar pressure p is p = %Tr(ﬁ) and in the isotropic case p = pI. Furthermore, closure relations
provide us with expressions that relate variables whose evolution we do not know, such as
temperature T, with p and p as follows

p=—t—kyT, (11)
wmpy
P
In the ideal gas law, equation (11), my is the mass of hydrogen, kp is the Boltzmann
constant, T is the temperature of the plasma and i is the mean molecular weight. In a fully
ionized hydrogen plasma i = m/mpy = 0.5 (where m is the average mass) and in an almost
neutral atmosphere is i = 1. In the internal energy equation (12), «y is the adiabatic constant
(for a monoatomic gas v = 5/3).
Finally, taking into account all the approximations, we have the ideal MHD equations:

dp L
9, I s B
—(pt) + V- (pu®@u+p) =(V x B) x — + pg, (14)
ot Ho
Olertp2Yov (v ip)arpa —i[(Vxé)xé A+ pg il (15)
TGl e ZPUUPU_MO U+ pg - u,
%—Jf:Vx(ﬁx 3), (16)
V-B=0. (17)
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Under the conditions explained previously for the plasma, this system of equations simpli-
fies and brings together everything necessary for our study of plasma behaviour in the solar
atmosphere. An interesting thing about the energy equation of this system is that if we rewrite
it, eliminating the kinetic energy, we get that

%+V(eﬁ)+pv-a:o. (18)

This equation represents the evolution of the internal energy, which the magnetic field does
not contribute to. It also does not contribute directly to the temperature evolution, as can be
deduced from the closure relations. Furthermore, combining the continuity and the internal
energy equations, that is, equations (13) and (18), and applying the relation (12) gives

B(z)-

where D/Dt is the Lagrange derivative?. This equation tells us that the value of p/p? (the adi-
abatic relation) does not change for a fluid element we are pursuing, so the processes described
by these equations are adiabatic (Priest, 2014; Boyd et al., 2003; Bittencourt, 2004).

In the following sections, we will derive from equations (13)-(17) the properties of several
types of waves that can propagate in the solar atmosphere. On the one hand, in section 3 we
will neglect the effect of the magnetic field in order to focus on the linearisation method and the
propagation of acoustic-gravitational waves in a stratified atmosphere. On the other hand, in
section 4 the presence of the magnetic field will be taken into account to describe the properties
of magnetoacoustic waves.

3 HD waves

RESUMEN

En esta seccion se mostrard una primera vision de como se propagan las ondas en la atmadsfera
solar estratificada cuando no estd presente el campo magnético o este no es importante. Aqui
se muestra la derivacion de las ecuaciones de onda mediante la linearizacion de las ecuaciones
hidrodindmicas. Método el cual serd utilizado en wvarias ocasiones durante el desarrollo del
trabajo, a partir de estas ecuaciones conoceremos algunas caracteristicas de las ondas acusticas
y acustico-gravitatorias. Ademds, trataremos en detalle algunas frecuencias caracteristicas de
estas ondas, como son la frecuencia de corte y la frecuencia de Brunt Vdisdld y finalizaremos
discutiendo la conservacion de la energia de las ondas acustico-gravitatorias.

Now that we have presented our theoretical framework for studying plasma dynamics, that
is, the MHD model, let us focus on the propagation of waves in the solar atmosphere in the
absence of magnetic terms. Therefore, here we neglect all the terms of equations (8)-(10) that
depend on B. This section gives a first, simple approach to the structure of the solar lower
atmosphere (photosphere and chromosphere). Besides, it presents the main method to derive
the linearised set of equations.

To study the propagation of a linear wave that follows this system of equations presented in
section 2, it would be necessary to linearise them by using a small perturbation analysis. In this
analysis, we consider an equilibrium situation and then we add to it a small perturbation, in
which we only retain the linear terms due to the smallness of the perturbations. We assume an

. . . D 0, —
2The Lagrange derivative of a scalar is defined as: Dy = 3—? +4-(Vq)
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atmosphere in static equilibrium 1y = 0 and vertically stratified along the direction of gravity
but uniform in the other directions. Therefore, our equilibrium variables only depend on z.
To obtain the linearised set of equations, we split the variables into an equilibrium part and a
perturbed one as follows:

p=po(z) +p'(2,1),
p=po(z) +p'(z,1),
0=y + i =i(z,1),

1P| < po,

lp'| < po,

0| < cs,

where equilibrium values are denoted by the subscript “0” and perturbations are represented by
the primed variables. For the velocity, we have the special case that its condition of smallness
is considered with respect to the sound speed c,, which is given by:

Po
Cs = 4] —7. 20
,/pov (20)

The sound speed is the speed of propagation of acoustic waves, if the velocity is similar to it, we
cannot ensure that pressure and density perturbations are small compared to the equilibrium
values.

Let us see how these variables fulfil the equilibrium conditions. The equilibrium relation for
the continuity equation (8) indicates that py is constant in time. And the energy equation (10)
indicates that py follows the same condition. But the motion equation (9) becomes

dpo

— —pa. 21
e Pog (21)

The last equation is the hydrostatic equilibrium equation, where we choose as our z axis like

-

G = —g% (in the Sun g = 274m/s?). Integrating the last equation follows:

/dlnpo :/Mdz. (22)
Do

=" (23)
Pogd
which has units of distance and it is called the pressure scale height. Back to the integral (22),

its solution is given by

Now, we introduce the parameter

_ [ _dz_
Po(2) = Pegl IG5, (24)
The last equation describes how the equilibrium pressure varies in a stratified medium. If
we also consider that the atmosphere is isothermal, we can take H out of the integral, since it
is constant under this assumption. It can be easily seen if we replace p with the ideal gas law
(11),
kgT
H="22 _ P _ const, (25)
gumpg Pg

because fimpy = const, kg = const and the fluid is isothermal (7" = const). In the same way,

the sound speed will be constant too (20). Back to equation (24), it now has the form

po(z) = Pooe” 7, (26)

which means that the pressure decreases exponentially with height where H marks the rate of
such decay.



Universidad

3.1 Wave propagation in a 1D, isothermal and stratified medium @ u de LaLaguna

For the remaining of this work, we use the equilibrium model represented by Figure 3,
which shows the variations of pressure and density with height corresponding to an isothermal

atmosphere of temperature T' = (piimy)/(pkp) = 5207.81K and a very low ionization degree
(so 1~ 1).
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Figure 3: Pressure (left) and density (right) profiles as functions of height of our model atmo-
sphere.

3.1 Wayve propagation in a 1D, isothermal and stratified medium

Once we have the atmosphere described as a stratified, isothermal medium and with the equilib-

rium conditions determined, we can study the propagation of waves by linearising the equations.

When we linearise equations we use the small perturbation analysis explained previously, in

which we retain terms until first order. We are going to follow these steps throughout the study,

but the algebra will be developed a little more in detail here than in the following sections.
We start linearising the continuity equation (8)

Apo+p')
ot

Retaining up to linear terms only, that is, terms which are not a product of perturbations, we
get

+ V- (potl) + V - (') = 0.

op’ dpo du,,

— = ——U; — —po.

ot dz 9. "
Following the same steps for the momentum equation (9)

a / 8 / / /
5¢ (oo + Pl + = [(po + p)uZ +po+ 9] = —(po+¢)g

= Guz:_@_ﬁ_p’_ g — ’g
po&t dz 0z Pog = r3-:

If we replace with equation (21) the motion equation is

auz__ﬁ_p’_ ,
po@t 0z g-

In the energy equation, we are going to introduce the closure relation (12):

0 (po+p 1 no). O [(po+p 1 N2 / B /

8
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Then, if we retain the linear terms we get

0 i 1 dpy ou, dpy ou,
o (7_1) +7_1 (d_uz+ 5, Do +Euz+5po——Poguz

ot
op’

de 8uz
:> —_— —_— _ — — ]_

Replacing the term dp,/dz with equation (21), we find

/
Op ou,
o~ VPogus T 1Po—— = —(v = 1)pogu
= o Ou. £+
_— = — U'Z
ot YPo—=— 92 Pog

Finally, the system of linear equations that describes the propagation of hydrodynamic
waves in the stratified solar atmosphere is

9" _ dpy  Ou

ot dz P 0z po; (27)
ou, op
- £ _ 9
07y 5 0y, (28)
op' ou,,
55 = ot pogus. (29)

In order to find the wave equation for the velocity, we take the time derivative of the motion
equation (28)
0%u, o op' 8p

Mo = ato: Yot (30)
and the spatial derivative of the energy equation (29),
aop dpo Ou, 0%u, dpo ou,
9t 9z <dz 5, TP g | o et ey e
8 ap ou, 0? 0%u, d,oo ou,
S it . 1
Then, replacing equation (31) into equation (30)
0%u, ou, 0%u, dpo op
— 1 = — haal
pogm = —(7 + ),009(9 TG T g~ I
0%u, ou., 0%u, dpo dpo ou,
= 1 = _
= Mgz = (1 + )gpo(9 P0G — g s =0
N Pu, B du, N 0%u,
pO 81;2 - ’Ypog 82 '7]70 82,’2 .
Finally, the wave equation for the velocity is
02”2 auz Qazuz
_— . 2
ot? 9%, e 02?2 (32)

For this equation, we can propose the same type of solutions of the homogeneous case (in which
g = 0). We can say this in the isothermal case because it is an equation in partial derivatives
with constant coefficients. Then, proposing that the solution to this equation is given by

u, = 1461'(16,27(.‘)1‘/)7 (33)

3To exchange the derivatives we use the Schwarz theorem.
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where k is the wavenumber, w is the frequency of the oscillation and A is its amplitude. It can
be shown that the dispersion relation that describes the properties of the waves has the form

w? = ygik + k> (34)

We are interested in propagating waves, therefore our waves have a given frequency w and
k is obtained as a function of it. If we had fixed k, we would be considered a study for standing
waves in which we excite a specific spatial scale. A standing wave oscillates in time, but its
profile does not move; the amplitude of the oscillations in space is constant with respect to
time at fixed points called nodes. These waves do not propagate energy.

So, if we solve equation (34) as k being a function of w, we get the expression

_ —ygi £/ —2g% + Acdw?
B 2¢2 '

k (35)
Once we have described the behaviour of k, if we go back to the wave solution (33), we have
the description of the propagation of an oscillation

u, = 14€kimzei(szfwt)7 (36)

where we have separated k from equation (35) into its imaginary and real component, k =
k; + tkim. The term k, = (\/—72¢ + 4c2w?)/(2¢?) is associated with the real part of k and
contributes to the oscillatory part of the solution (33). But ki, = vg/2¢> = 1/2H that is
associated with the imaginary part, contributes to the amplitude so that as the height increases,
the amplitude of the wave grows (due to the sign of —vgi/2¢? in equation (35)). This behaviour
is shown in Figure 4, which illustrates well how as the height increases, the amplitude of the
wave increases too.

204

15 1

10

Uz (mys)

—10 4

—15 4

T T T T
0 200 400 600 800 1000
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Figure 4: Analytical solution of a propagating wave increasing in amplitude with height,
equation (36) with g = 274m/s? v = 5/3, w = 55mHz and ¢, = 8463.414(m/s). The
sound speed was calculated from the values of our atmosphere (Figure 3).

If k£ becomes pure imaginary, the solution (33) would change its behaviour and we would
no longer have the propagation of a wave, it would be evanescent. An evanescent wave does
not propagate, it decays exponentially with height:

u, = Aefim?e=t, (37)
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Let us see when k becomes pure imaginary from equation (35). This occurs when we have
a certain value of the frequency that fulfils the relation

V=262 + 4c2w? = 0
9
2¢,’
where w, is called cut-off frequency. If w < w., k becomes pure imaginary and our solution
is an evanescent wave (37) and if w > w, the solution is related to a propagating wave (36).

Figure 5 represents the behaviour of &k given by equation (35). It shows that below the cut-off
frequency, there is no solution for the propagation of a wave.

= We = (38)
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Figure 5: Wavenumber as a function of frequency for acoustic waves. The blue curve is the
solution of equation (35), the dashed line is the solution for a homogeneous atmosphere and
the vertical line represents the cut-off frequency (w. = 26.978 mHz, ¢ = 8463.414m/s, g =
274m/s*, v =5/3).

We conclude this subsection with the statement that in a stratified medium, acoustic waves
present a cut-off frequency. As Figure 5 shows, as much the frequency approaches the cut-off
frequency the value of k£ tends to zero since at lower values k is pure imaginary. Therefore,
they cannot propagate, unlike the homogeneous case, which does not present this behaviour.
We also note that as the frequency increases it approaches asymptotically to the homogeneous
case.

3.2 Gravity waves

In the previous section, we have shown the wave solutions in a stratified and isothermal 1D
atmosphere. And we observed how below the cut-off frequency acoustic waves cannot propagate.
In this section, we will see that there are waves that do propagate at low frequencies, even below
this cut-off frequency: they are called gravity waves. The purpose of this section is to illustrate
the interpretation of the Brunt-Vaiisila frequency and it follows the derivation of gravity waves
from the book by Priest (2014).

First, we consider a blob of plasma in the absence of a magnetic field that is displaced
vertically a distance 6z from the equilibrium (Figure 6). The only external force is gravity.
Now, we make two assumptions:

11



@ u Universidad
3.2 Gravity waves de Lalaguna

1. The blob remains in pressure equilibrium with its surroundings,

2. The density changes inside it are adiabatic.

z+0z

Figure 6: A blob of plasma that moves vertically against gravity from z to z + dz, where its
surroundings present a density py at height z and pg + dpg at z + 0z (Priest, 2014)

The first assumption is valid if the motion is so slow that sound waves can traverse the system
faster than the time scale of interest. And to fulfil the second one, the motion has to be so fast
that the entropy is preserved.

At the height z the fluid element is at equilibrium with the surroundings. Therefore, it
satisfies the hydrostatic equilibrium equation (21). At height z + §z the external medium
has po + dpo, po + dpo, where the quantities with § represent the changes in height, pressure
and density with respect to the equilibrium quantities as the plasma element moves vertically.
Replacing these expressions into equation (21) gives.

0po = —pgoz, (39)
dpo
dpo 7 0z (40)

Inside the blob the pressure and density are pg + dp and py + dp (at height z + §z) but, by
the first assumption, the pressure inside the blob and the pressure of the external medium are
equal. So,

dp = 6po = —pgdz.

2
s

And by the second assumption: p/p? = const, dp/dp = v(po/po) = 2. Therefore, dp = c*dp.

Substituting dp gives the internal density change as:

5p = —P090% (41)

2
Cs

The density inside the blob differs from the density of the surroundings, so at its new height,
it experiences a buoyancy force:

9(6po — dp) = —N?pydz, (42)
where N? is obtained by (39) and (41) equations,
Ldpy g
N=—g|—F+35). 43
I (Po a: C?) )
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When N is real, it is known as the Brunt-Vaiséila frequency. It represents the frequency at
which a vertically displaced blob from its equilibrium position will oscillate.
Generally, N varies with height, but when the temperature Tj is uniform it becomes

N2 _ (7 B 1)92

2
Cs

, (44)

which is also constant.

As indicated previously, our atmosphere is isothermal, so this will be the form of N for our
study.

If the only force acting on the fluid element is buoyancy, that is a force related to gravity,
the equation of motion has the following form:

d*(0z)

pow = —N2p052. (45)

The last equation (45), is a homogeneous second order equation and when N? is constant (44)
the solution is given by

52(t) = 620N (46)

If N2 > 0 the solutions are oscillations with N as frequency. If N? < 0 the solutions are
exponential and not oscillatory. This leads us to expect that when N2 > 0 gravity waves
appeared. These waves cannot propagate faster than the Brunt-Véisila frequency. Then it is
necessary for these waves that N2 > 0 and their frequency is w < N. This is discussed in more
detail in the next subsection 3.3 from the dispersion relation of acoustic-gravity waves.

3.3 Acoustic-gravity waves

In the previous subsections, we studied wave propagation in a stratified and isothermal 1D
atmosphere. We now extend this study to 2D. Here, we are going to study a combination of
acoustic waves in a stratified medium (which cannot propagate below the cut-off frequency) and
gravity waves (which propagate at low frequencies and are characterised by the Brunt-Véiiséla
frequency).

To this aim, we follow the same methodology of linearising the hydrodynamic equations,
although now in the two-dimensional case. As we state at the beginning of section 3, the
atmosphere is only stratified in the vertical direction Z, so in the horizontal direction z it is
uniform. This makes the variables in the equilibrium the same as the ones presented in section
3 and the system of linearised equations quite easy to deduce due to their similarity with
subsection 3.1. These equations are:

op' L dpo
r T Vi (47)
ou .
'OOE = -Vp' - gz, (48)
op’ .
o = oV = pogu, (49)

In order to obtain the wave equation, we follow the same steps that in subsection 3.1 (this
derivation is shown in Appendix A), which results in the following expression:

0% . ﬁ
S = EV(V- i) = 2(y = Dg(V - @) — gV (50)
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The solution to equation (50) has the following form:

= A’ez‘(lé'f—w.t) (51)

By introducing the solution (51) in equation (50), we obtain the dispersion relation (see

Appendix A)
wiw? —iygk,) = —g*k* (v — 1) + (v — 1)g%k2 + k22
This equation referred to in the appendix as (A.11) can be further simplified in order to find an
equation that gives more physical meaning. For this purpose, we introduce K (E’ =k+ ﬁé =
k4 2z K? =k + @) and we get
w(w? —w?) = (w* — N?sin® 0] ) k2, (52)

where 6} is the angle between k' and the vertical axis (sin? 0, =1— Z%) that is shown in Figure 7.
By definition the real value of k and &’ are the same. The inclusion of k' simplifies the algebra
and the physical interpretation since it causes the appearance of the cut-off frequency and
Brunt-Viisila frequency.

8/

g

Figure 7: An illustration of the angle 0] that forms k' with the vertical axis z

Let us look at some of the characteristics of acoustic-gravity waves through the dispersion
relation (52). When ¢ = 0 the expression reduces to w® = w? + k"*c2 and the wave propagates
when w > w, (we recover the case of purely vertical propagation in subsection 3.1), therefore,
gravity waves do not propagate in the vertical direction. The waves that propagate in the hori-
zontal direction will have at higher frequencies, mainly acoustic nature and at lower frequencies,
gravity nature.
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Figure 8: The change of k" (left) and &, (right) with frequency. They have the same parame-
ters of Figure 5 and N = 26.433 mHz. The frequency is expressed in cut-off frequency units.
Between the two black dashed lines (w. cut-off frequency and, N Brunt-Vaiséla frequency)
there is no real solution for &' and &/ (evanescent waves). For the right figure, we fix different
values for k! where the grey dashed lines represent £ for a homogeneous atmosphere.
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We can observe in the left panel of Figure 8 that when the frequency is near to N, the value
of k' tends to infinite; on the contrary, when the frequency is near to w,., k' tends to zero. This
means that at frequencies close to Brunt-Vaiiséila the wavelength tends to zero and close to the
cut-off frequency to infinite. In addition, the k" solution in Figure 8 shows that when 6, = 0
we recover the solution presented in Figure 5, as we previously deduced. In contrast, the right
panel of Figure 8 shows the change of k. with the frequency. In this case, in order to be able to
represent this change, it is necessary to fix k7. This is possible and logical since our atmosphere
is stratified in the vertical direction (z) and homogeneous in the horizontal direction (x). This
means, that there is no dependence on z, so k!, remains constant. Therefore, starting from (52),
we can obtain k. as a function of w:

(W —w?) | NUE

2 2
cs w

2
k=

s (53)

From the last equation, we can draw similar conclusions to the ones we derived for k’. At high
frequencies, the term associated with the Brunt-Vaiséla frequency can be neglected, and the
wave becomes basically acoustic. And at low frequencies, a gravity wave. But unlike &', setting
k! causes the wave to stop propagating in the vertical direction at higher frequencies, in the
case of frequencies lower than Brunt-Viiséalé, and at lower frequencies in the case of frequencies
higher than the cut-off frequency. The last point can be observed in the right panel of Figure 8.

The inclusion of more dimensions in the study produces new normal modes. We have now
two different normal modes, which are commonly known as the p mode (on the right of the
cut-off frequency) and the g mode (on the left of the Brunt-Véisild frequency) (Priest, 2014).
The following paragraphs include a brief description of the modes.

On the one hand, p modes are essentially acoustic waves (or pressure waves) where the dom-
inant restoring force is pressure. Acoustic waves propagate due to an interplay between density
and velocity variations effected through the pressure term. A local compression or rarefaction
of the fluid sets up a pressure gradient in opposition to the motion, which tries to restore the
original equilibrium. In detail, acoustic waves are isotropic, compressive and longitudinal. This
type of waves can be generated, e.g., in the Sun’s convection zone by turbulent motions (Clarke
& Carswell, 2007; Bhatnagar & Livingston, 2005; Goossens, 2003).

On the other hand, the dominant restoring force of g modes is buoyancy, and the modes
have the character of standing internal gravity waves due to reflections when it propagates
upwards, in a similar way, as can be seen in the solution of k£, in Figure 8 with the frequency.
This mode is trapped in the solar interior and is exponentially damped in the outermost layers.
In fact, they have their largest amplitude close to the solar centre. They are much more slowly
propagating waves than the p modes. The internal gravity waves are found to be markedly
anisotropic. Gravity is necessarily always in one particular direction, so there is no reason for
isotropy (Lighthill, 2001; Christensen-Dalsgaard, 2002).

In the next section, we continue with the same methodology, but we are going to consider
a homogeneous atmosphere and we are going to include the magnetic field. However, before
concluding this section, let us see if acoustic gravity waves preserve energy.

3.3.1 Energy conservation

One of the most important things in physics is energy conservation. To check that acoustic-
gravity waves conserve energy during their propagation, first we have to obtain the expression
for the energy associated with the waves, which will be quadratic and in a conservative form.
An equation in conservative form is

Oe

E+v-ﬁ:0, (54)
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which is like the continuity equation (13). To find the energy conservative equation, we have
to do a little algebra. Taking the scalar product with « in the momentum equation (48) we
obtain

0 (1 .
g (§POU2) = —i-Vp' —u.p'g

1
= % <§p0u2> =V -@a)+p'V-u—uyyg. (55)

Then, we introduce the displacement vector E of a plasma element away from the equilibrium
state (Goedbloed & Poedts, 2004), which follows equation

=4 (@-V)E =1 (56)

~ . (57)

We now introduce E into equation (49) but only for the gravity terms. In order to group them
into the temporal derivative.

(v o ) .
— (= "¢t ) =-V- i 58
ot (POV ng ( )

The displacement is introduced without the perturbed label because it is related to @ and the
velocity is not denoted with the perturbed label since uy = 0, so we do not denote ¢ as such
either. Then, we replace V - @ in the continuity equation (48) by the relation above:

op' _ 9 p_l_@gg_@g (59)
ot ot\c2 277 dz>7)

Finally, eliminating the temporal derivative, substituting these terms in equation (55) and using
the definition of the Brunt-Véisila frequency, equation (43), we obtain an energy equation in
conservative form:

O (Lo v 2y g2 V- (i) = 0 60
o (Bt + o ) £V ') 0 (60)
The first term is the kinetic energy associated with the plasma velocity, whilst the second
term is the pressure energy, sometimes called “elastic energy” (Bray & Loughhead, 1974). These
two terms will appear even in the absence of gravity (Landau & Lifshitz, 2013). However, the
third term with the Brunt-Vaisila frequency appears due to the contribution of gravity. It is
the buoyancy energy and is termed by Eckart (2013) as the “thermobaric” energy. The term
p't represents the wave energy flux vector. In order to simplify the expression we can define
e:ﬁot as 9
' 1 2 p
Ciot = HPOU" + 263,00

5 + poN?E2. (61)

Finally, we interpret the energy conservation equation using a fixed control volume and we
check under which conditions energy is conserved. A fixed control volume V,,,; is a certain
volume whose boundaries do not change on time, i.e., instead of following a plasma element in
time we choose a volume that does not change in time. Now, if we integrate equation (60) in
this volume:
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/ Pe“’t +V- (p’ﬁ)] dV = 0. (62)
Vcont at

Our volume, V,,,;, remains fixed as time advances so is a fixed mathematical domain for the
integral and we can pull the partial temporal derivative out of the integral as a total derivative®:

d

7 e dV = — /v V- (p'a)dV. (63)

Vcont
Using Gauss divergence theorem and calling n the outward unit vector of the surface, we

get

d
— e dV = —j{ p'i-ndS, (64)
dt ‘/cont 8Vcont

where OV, is the surface of the volume V,,,; and the right hand side is a close integral.
The right term becomes zero when the scalar product @ - n = 0, i.e., when the vectors are
orthogonal to each other. If the scalar product is zero we force that the integral becomes zero
independently of the control volume. The last point is important because if the energy were to
grow over time, the quantities inside the volume would eventually diverge and the model would
lose predictability. This is more a necessity of the model but it is still true in the vast majority
of cases. Therefore, if the right term of equation (64) is zero

7 e dV =10 (65)

Vcont

= E,,, = const, (66)

where we define Ej , as the total energy contained in the volume:

Elgot = \/V 6;015 dv (67)

In conclusion, if the boundary conditions allow the scalar product to be @ -n = 0, the
acoustic-gravity waves preserve the energy.

4 MHD waves

RESUMEN

En esta seccion hacemos uso de las ecuaciones MHD en 3D, con ellas se procederd a ver las
caracteristicas principales de las ondas de Alfvén y las magnetoacisticas. Para las ondas mag-
netoacisticas se presentard un sistema de referencia adecuado que nos permite simplificar el
dlgebra, ya que pasamos de 3D a 2D. A partir de aqui derivaremos la relacion de dispersion
para las ondas magnetoacusticas, describiremos sus caracteristicas y direcciones de polarizacion
de los dos modos que la componen. Estudiaremos a partir de estos resultados las propiedades de
cada modo segin el medio donde se encuentren, es decir, en la fotosfera (cuando dominan los
términos hidrodindmicos) o en la cromosfera (cuando dominan las fuerzas magnéticas). Con
el estudio de estos limites se observard como estos modos poseen algunas de las caracteristicas
de las ondas estudiadas con anterioridad. Por tltimo, también describiremos las condiciones
para que las ondas magnetoacisticas conserven la energia

4Leibniz’s rule expresses the derivative of an integral like i( [ b(@)

a3z Ja(o) f(z,t)dt) in one that includes the eval-
uated functions multiplied by the derivative of the limits (a(z) and b(x)) and a partial derivative inside the
integral. In the particular case of an integral that is in a fixed domain, it simplifies to the case shown in the

main text.
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We will now begin the study of the waves that we will mainly deal with, those involving the
ideal MHD equations. The previous sections have provided familiarity with the linearisation
method, as well as important characteristics of some of the waves propagating through the
solar atmosphere like the effects of the Brunt-Vaisild and cut-off frequencies. In this section,
we include the magnetic field and a 3D configuration, but to simplify the calculations we
consider the atmosphere to be homogeneous. Furthermore, we consider that the magnetic field
is homogeneous. Therefore, we have that all equilibrium coefficients are homogeneous:

p=Dpo+70,
p=po+p,
i=1,
B=B,+B.

The linearised equations are (a detailed derivation of the equations is shown in Appendix B)

%—[Z = —poV - U, (68)

pog—f = —Vp +(V x B') x %, (69)
%—]: = —ypoV - 1, (70)

aj — V x (i x By), (71)

V.-B =0. (72)

Unlike the hydrodynamic equations, here we have a system of five equations with the in-
corporation of the induction equation and Gauss’s law for magnetism. Following the same
procedure as in the previous sections (see Appendix B), the wave equation for the velocity is

—

o*a . I By
ol AV(V - 1) + [V X (V x (4 x BO))] X v (73)

If we compare this equation with the one presented in section 3.3, equation (50), we can
observe that the term associated with the acoustic waves remains the same. However, the
inclusion of the magnetic field has generated new terms that will change the nature of wave
propagation. In addition, the vectors we are working with are now 3D, as opposed to those we
were working with in section 3.3, which were 2D. Equation (73) admits the wave solution (51).
Then, the dispersion relation is

. L B, B
WP = R(E - @)+ [Fx (F x (@ x By))| x —=. (74)

This last equation can be rewritten using the vectorial identity (@ x b) x &= b(a - &) — @(b - o),
and doing some algebra (it is derived in the appendix as equation (B.13)) we get

w2 = Ak(k- @) — By(k - @) (k.—°>+L(k- 0)2+k—0(k.ﬁ)—k(k-30)( 0- 1) (75)
HoPo HopPo HoPo HopPo

_ It we take that « is the angle that forms the magnetic field B, with the wave vector k
(k- By = kBycos ), called the attack angle (Schunker & Cally, 2006), we find

L Bok L L Bok -
Wi = Ak(k - @) — —= cos aBy(k - @) + v3k? cos® a @t + v3k(k - @) — —— cos a k(B - @), (76)
HoPo FopPo
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where

By
(#000)1/2 ’

is the called Alfvén velocity. Equation (76) depends only on the direction of the vectors @, By
and k and it has two different scalar products By - @ and k- . In the following sections we
study the different dispersion relations that are obtained when both scalar products are zero,
one of them is zero or the more general case, where neither of the products cancels out. This
last case is the one in which we will go deeper into the description of its waves.

(77)

Va =

4.1 Alfvén waves

First, let us study the case in which the two scalar products in equation (76) are By i = 0,
k- = = 0, meaning that both By and k are orthogonal to u, so the velocity perturbation is
normal to the plane determined by By and k (Figure 9). Therefore, we obtain a dispersion
relation for this velocity component that is out of the plane and it is independent of the other
components. The dispersion relation is

w = kvy cos a. (78)

This is the Alfvén dispersion relation, it is characterised as incompressible because if we take
into account k£ = V and the relation k- @ = 0 leads to V -@ = 0 which is an expression related to
incompressibility. Incompressibility implies that there are no variations in density and pressure
of the fluid, as can be seen in equations (68) and (70) (with the incompressibility condition
V -4 = 0). In other words, there are no compressions or decompressions in the fluid, unlike
in acoustic waves, which is why they are also known as pressure waves because they cause a
perturbation in pressure and density. So, Alfvén waves are transverse and magnetic in nature.

Figure 9: Sketch of the plane where By and k coexist, 0., is the angle that BO makes with
respect to the z axis, « is the attack angle that By makes with respect to k and ¢ the angle
that k forms with z axis.

Moreover, it can be shown that when 50 and k are parallel, we go from 3D to 2D. This is
because By and k go from forming a plane to being contained in the same dimension. Therefore,
we will have a plane formed by the direction of these two vectors and the orthogonal to it, where
Alfvén waves are polarised, i.e., a 2D problem.

Now, we continue with the other possible cases of the dispersion relation (76). First, let us
study the case where k-i=0= By-i =0, but not the other way around. In equation (76)
we take the condition that k - @ = 0 (incompressibility condition):

L. B

Wi = cos® il — —2 cos ak(By - ).

11P0 f10p0
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Then, we take the scalar product with goz
- <B§k’2 9 B2k?

w*(By - i) = cos” o —
HPo HPo

cos® a) (B, - @)

If the term k - 7 = 0 implies that By @ =0. . B
Now let us see what happens in the case where By -4 =0 and k-« # 0:

- Bok - B2K*\ -
Wi = (cgk‘ — 2= cosaBy + —° ) (k- ).
HopPo HopPo

Taking the scalar product with k
W2 (k- @) = (Ak* — v% cos® a + v’ cos® o + v3 k) (k - @)
= w? = 2k* +vik% (79)

We obtain one of the modes that compound the magnetoacoustic waves. We are going to
discuss this mode in the next section, where we obtain the dispersion relation when none of the
scalar products are zero.

In summary, Alfvén waves are magnetic waves whose polarisation direction is perpendicular
to the plane of By and k and for this, Alfvén waves are not appearing in a 2D atmosphere where
By and k coexist. This plane contains information of magnetoacoustic waves. In the following
section, we study the dispersion relation of waves propagating in this plane which we consider
to be at x and z axis.

4.2 Magnetoacoustic waves

From the previous section, we knew the characteristics of Alfvén waves that are polarised
perpendicularly to the plane of By and k. Therefore, we now study in detail the characteristics
of magnetoacoustic waves whose information is in this plane. To do this, we continue with
the case when none of the scalar products in equation (76) are zero. First, we take the scalar

product with k in equation (76)

B2E*\ - Bok? -
(w2 — 2k — #) (k-u)=— MOP cos a( By - 1). (80)
000 000

Then taking the scalar product with By
w?(By - @) = ¢ Bok cos® a(k - ). (81)
Dividing these two equations (80), (81). Lead us to
wh — k(2 +v%) + vicckt cos® a = 0. (82)

Finally, the previous biquadratic equation (82) has two solutions which are the two modes
of magnetoacoustic waves:

—-1/2

(2 +v?) n Ve +vh — 2032 cos2a
2 2

k=w (83)

These two modes are the fast and slow, they are named after the relationship between their
phase velocities. the phase velocity is the speed at which a wave propagates is given by w/k.

20



@ u Universidad
4.2 Magnetoacoustic waves de Lalaguna

The one with the higher value is the fast mode and the other one is the slow mode. When
o = 90° the slow mode disappears and the fast mode becomes k = w(c? 4 v%) /2, we recover
expression (79). When By || k£ the solution becomes:

k=w

—1/2
2+ 03 n c?—’ui] / (34)

2 2

So, when a = 0° the solution to equation (83) is w = k¢, or either w = kvy.

The wave vector k can be decomposed in a perpendicular k; and parallel terms k| with
respect to the magnetic field (Figure 10) because we can ignore Alfvén waves by suppressing
the ¢ direction (we discussed this transition from 3D to 2D in the previous section). Therefore
we now refer to 2D vectors (our new reference system has k, = 0). This change of coordinates

is given by
R\ k.
(£)- o)
where R(0) is the rotation matrix:

R(6,) = (sinem cos O, ) (86)

cosf,, —sinéb,,

The decomposition of kis going to be useful in the next section, in which we use this new
reference system to express the dispersion relation in matrix form. In order to find the direction
of the polarisation vectors and to know in detail the characteristics of the fast and slow modes.

k1

Figure 10: The decomposition of k into its perpendicular and parallel components. In this
frame of reference in which By and k co-exist in the same plane, the Alfvén waves do not pro-
duce a velocity perturbation, since they are associated with the u, component. Therefore, we
can simplify the calculations.

4.2.1 Dispersion matrix, polarisation vectors and limits

We already have the dispersion relation of the magnetoacoustic waves for the fast and slow
modes, but in order to know in which direction are they polarised, we can express the disper-
sion relation in matrix form and then diagonalise it. The eigenvalues are associated with the
dispersion relation of each of the modes and their eigenvectors will indicate the direction of the
velocity perturbation since they are linear combinations of the velocities. The eigenvectors are
known in wave theory as polarisation vectors. So, let us first express the dispersion matrix from
equation (75) (the derivation of the dispersion matrix and its diagonalisation can be found in
Appendix C)

( 2k + vik? cos® 0, — w?  AEkyk, — vik*sinb,, cos 0m> (um) _0

kyk, —vik%cosO,,sinb, 2k + vik?sin?0,, — w? u, (87)
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where the dispersion matrix is

D 2k + vik? cos? 0, — w?  AEhkyk, — vik?*sin 6, cosb,, (88)
 \Phok, — vik?cos O, sinl,, k2 +vik%sin? 6, —w? )
Then we diagonalise® D:
k2 +v3k%cos? 0, —w? — N Pkyk, — v3k%sinb,, cos b,
s'Va A s A
2 2 1.2 ; 27.2 2 1.2 o2 2 =0
cikipk, —vak®cos,,sinb,, ciki 4+ v53k?sin“0,, —w* — A
NS —2w? + (? + v¥)k? L V(2 +v2)2 — 4c20? cos? oz’ (89)
2 2
where cosa = % (Figure 10). As explained in subsection 3.1, we are interested in wave

propagation, so w is fixed. Then, it can be said that the modes that will propagate will be
those whose eigenvalue is zero. These eigenvalues are the ones associated with the slow and fast
modes. Now, we can obtain the velocity polarisation of the fast and slow modes by calculating
their eigenvectors. We start with the fast mode whose eigenvalue we denote as As:

k2 +vik? cos® 0, — w?  hyk, — vik%sind,, cos6,,\ (CI\ A\ C/
kok, —v3ik%cos O, sin 6, 2k + vik?sin?0,, — w? cl)—\cf

= CI(\f — k2 + w? — vik? cos® 0,,) = O (kyk. — vik? cos® 0, sin? 6,,,)
(cZkyk. — v3k* cos Oy sinb,,)

= Cf = :
TN = k2 4 w? — k% cos? O, C

In order to determine the coefficients of the eigenvector we need another equation. Therefore,
we take the normalisation condition

Akyk, — v4k? cosb,, sinb,,)?
s A
(Af — k2 + w? — vik? cos? 0,,)

S

SICIP+|CIP =1

Then the coefficients that determine the direction of the velocity polarisation of the fast mode
are

kyk, — vik? cos b, sin b,

V(hyk, — v3k? cos Oy, 8in0,,,)2 + (\p — 2k2 4+ w? — v4 k2 cos? 0y, )2
of — A — A2k2 4+ w? — v3k? cos? 0, (01)
(k. — v3k% 080,810 0,,)2 + (Nf — 2k2 + w? — v3k2 cos? 0,,)2
by = Clé, + Cle.. (92)

For the slow mode, the eigenvalue is denoted as A,;. In this case, we also obtain the same
coefficients as for the fast mode (90) and (91), but changing A; to A:

—

Let us now consider the limits when ¢, > vy or ¢y, < v4, which can tell us which direction each
mode prefers to follow as well as characterise each of the modes and distinguish them from each
other. Furthermore, it is important to study these limits because plasma 3 = (2puopo)/ B2, is

°To diagonalise a matrix we perform the operation det [D — AI] = 0, where I is the identity matrix and \
are the eigenvalues to be found.
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comparable to the ratio ¢?/v%. In the photosphere, 3 is typically larger than one (c; > v4).
However, in the chromosphere, it is less than one (¢; < vy4). Starting with equation (83) the
frequency of the fast mode when ¢, > v, is w = ke, and when ¢, < vy is w = kvy, ie.,
the phase speed of the fast mode tends to the value which is higher from the sound or the
Alfvén speeds. In contrast, the phase speed of the slow mode tends to the lower one, such that
when ¢, > vy is w & kvacosa and when ¢y < vy is w & ke cos o (these two approaches are
derived in Appendix C where equation (C.14) is for the ¢; < v4 approximation and (C.13) for
Cg >wv A)-

Next, we study the polarisation vector limits, from the approximations shown above, we
have that the eigenvalue for the fast mode when ¢s > vy is Ay & —w? + k*c2. Then the
coefficients of the polarisation vector (see Appendix C for a detailed computation):

CI ~sin g, (94)
C! ~ cos¢. (95)

As it can be seen in Figure 10, ¢ is the angle that k forms with respect to the z-axis. In this
limit, the fast waves polarisation follows the direction of the acoustic waves, i.e. parallel to the
wave vector k. Now, in the ¢; < v, the eigenvalue is Ay & —w? + k?v} and the coefficients:

In this case, we have that the direction of the polarisation vector is perpendicular to the
magnetic field, since g@ = sin6,,& + cosB,,z (Figure 10). In summary, we find that when
cs > vy the fast mode has an acoustic wave nature and when ¢, < v4, a magnetic wave
nature.

Now it is the turn of the slow mode. In the ¢, > v, limit, the eigenvalue is A\, & —w? —

k*v? cos? a and the coefficients are
C? =~ cos ¢, (98)
C: ~ —sin¢. (99)

Here we get the opposite of what we got in the fast mode case. In this limit, the polarisation
vector of the slow mode is perpendicular to the direction of k. Alternatively, this result was
to be expected, given that the fast and slow modes are eigenvalues and their eigenvectors will
be orthogonal to each other. When ¢, < vy4 the eigenvalue is A\, ~ —w? — k?*c? cos? a and the
coefficients are

C =~ sin 0, (100)
C: = €08 bO,,. (101)

In this case, the slow mode is polarised parallel to the magnetic field and perpendicular to those
of the fast mode. In Table 1 we summarise the results obtained for both limits and modes.

Fast mode Slow mode
cs > wva | acoustic (w/k = ¢s), | magnetic (w/k ~ v4 cos ),
i |k (¢) i Lk (¢)
cs € vy | magnetic (w/k =~ vy), | acoustic (w/k = ¢ cosa),
7L By (6,) @ | By (6,)

Table 1: This table shows the speed and polarisation direction of fast and slow modes in the
two asymptotic regimes.
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In summary, we already have the characteristics and polarisation direction for the fast and
slow modes when the magnetic field dominates (¢; < v4) or when the pressure forces dominate
(cs > v4), i.e. when it is in the chromosphere or photosphere region respectively. However, the
speed values can be comparable in a stratified atmosphere. The sound speed remains constant
even if we consider again a stratified atmosphere because we also consider it to be isothermal.
But the Alfvén speed increases with height, so at some point they are going to be equal, as
it can be seen in Figure 11. In the region where the speeds are comparable we recover the
coefficients deduced in (90) and (91). In other words, in this region, the modes present both
magnetic and acoustic behaviour and they could interact.

— Cs
60000 A
Va

50000 ~

40000 4

30000 A

Velocity (m/s)

20000 ~

10000 4

T T T T T
0 500 1000 1500 2000 2500 3000
Height (Km)

Figure 11: Sound speed (cs) and Alfvén speed (v4) profiles of the atmosphere shown in Fig-
ure 3 and with By = 500 G.

In order to study this region, we present the ray tracing method in the next section, because
it allows us to add a stratification in the background quantities. Moreover, by working at high
frequencies, we can reuse the terms manipulated in this section, even though they have been
described in a homogeneous atmosphere. However, there is still one important detail about
magnetoacoustic waves, and that is whether they conserve energy or not.

4.2.2 Energy conservation

As in the case of HD waves (section 3.3.1), we will study the conservation of energy for MHD
waves. Part of the work has already been done, so now, including the gravity terms we are going
to start with the MHD equations (equations (13)-(17)) presented in the MHD theory section.
We now include the gravity terms because, as mentioned above, in the next section we include
the stratification of the background quantities. In order to find the energy conservative equation
we only need to focus on the magnetic terms, since we have already dealt with the other non-
magnetic terms and they are clearly separated from each other. If in the magnetohydrostatic
equilibrium, the magnetic field is constant (our case By = const), we recover the hydrostatic
equilibrium (21). Therefore, only the hydrodynamic background quantities have a dependence
on height while the magnetic field is homogeneous.

To find the energy equation in a conservative form we need to take the scalar product with
@ in the momentum equation (14) like we did in section 3.3.1, take the scalar product B /1o
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with the induction equation (16) and doing some algebra (see Appendix D) we find

O (Lo + 2w poviz + 2E0) Lo i 2 [V - @ B) - V- (Bl )] =0
BT 2p0 22, Po =T 9 1 0 0 .
(102)

Compared to equation (29) obtained in the HD section, we now have the inclusion of the
magnetic energy and following the definition (61) we get

1 p/2 1B/2
= —pou’ N2¢2 4 103

In addition, we now have in equation (102) new terms that contribute to the wave energy flux.
Equation (102) can be rewritten to take into account the electric field perturbation. This is
described in equation (D.3). Furthermore, if we start from equation (D.8) of the appendix,
which is previous to the development of the vector product equation (D.9) that leads to the
conservation of energy equation (102), we get

o (1 p’? 9.9 1 B , 1 S o,
— | = N +—-—)4+V- 71 —V - (E'"x B)=0. 104
o (2/)0“ + 22, + poN7E; 2 1o (p'u) + o (E"x B') (104)

This term LOE’ x B’ has the same form as the Poynting vector, S’ and represents the energy
flux of the magnetic terms of the waves.

To check under which conditions magneto-acoustic waves conserve energy, we integrate (104)
in a control volume like we did in the case without the magnetic field

d g
% 620tdv = —%‘ p’ﬁﬁds—i—f S ndsS. (105)
Vcont 8Vcomf 8chomf

Now, we have two reasons for the total energy in V,,,; to change. We have already discussed
the first one associated with p’ in section 3.3.1. The second one associated with the Poynting
vector S” shows us how much of the energy associated with the electromagnetic terms is leaving
the volume. In order to preserve the energy u-n = 0 and S"-7 = 0. The direction of propagation
of the electromagnetic field (and the electromagnetic wave) S’ has to be normal to 7.

In conclusion, if the boundary conditions allow the scalar products to be @ -n = 0 and
S f = 0, magnetoacoustic waves preserve the energy. This is quite an important result, as it is
a necessary condition for the mode conversion formalism that we introduce in the next section
(section 5.1), hence the addition of gravity terms.

5 Wave propagation in a weakly inhomogeneous medium

RESUMEN

El formalismo de MHD ha permitido describir de forma general las caracteristicas de las ondas
magnetoacisticas. Aun asi, para obtener una mayor comprension de su propagacion en la at-
masfera solar cuando cg ~ vy, se introducird en esta seccion el formalismo de trazado de rayos
presentado en Tracy et al. (2014) para describir estas ondas en un medio débilmente inhomogé-
neo a frecuencias altas. El formalismo de trazado de rayos aporta una solucion aproximada,
usando un principio variacional para las ecuaciones del eikonal. Ademds, se mencionardn las
circunstancias en las que dicha aproximacion puede fallar. Destacando la de la transformacion
de modos, ya que como se verd en esta seccion, al emplear el formalismo de Tracy et al. (2014)
a la matriz de dispersion de las ondas magnetoacisticas se observa como estas pueden sufrir
una transformacion de modos en la region donde ¢ ~ v 4.
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The MHD formulation has allowed us to know some of the characteristics of the waves that
can propagate in the solar atmosphere, as well as the direction of propagation of the magnetoa-
coustic waves in the two limits discussed in the previous section. Although with this formalism
it has been possible to draw many conclusions about these waves, in order to generalise the
results we find in homogeneous conditions, we introduce the ray tracing formalism to solve wave
equations with inhomogeneous coefficients.

To reduce the algebraic complexity we restrict ourselves to high frequencies, so we can
ignore the gravity terms in the perturbation equations even if we keep the gravitational strat-
ification in background quantities. This means that we can use the results obtained for the
magnetoacoustic waves, even though these results have been found for a homogeneous medium.
Moreover, we can apply the result we obtained in section 4.2.2, because when we derive the
energy conservation equation for magnetoacoustic waves we took into account the gravitational
stratification confirming its application to the Tracy et al. (2014) formalism. However, these
gravitational terms can be included in the study, thus complicating the algebra (Schunker &
Cally, 2006). Before introducing the ray tracing method, let us characterise our atmosphere
as a weakly inhomogeneous medium. Here, the pressure and density are stratified but their
variation scales are much slower than those of the waves. In order to clarify this, we introduce
the formal parameter € which is the ratio of the carrier length scale to the modulation length
scale. Therefore, having a small value of this parameter allows us to take the medium as weakly
inhomogeneous. In other words, we consider that the characteristic scales of the atmosphere
(for instance H), are much larger than wavelength. Now with the medium characterised, let us
start our last stage of study, where we introduce the ray tracing formalism presented by Tracy
et al. (2014).

5.1 Ray tracing formalism

Ray tracing formalism is a variational method that brings together concepts from geometrical
optics such as Fermat’s principle, classical Hamiltonian mechanics and physical optics. The
wave nature of light is well known, but the concepts of geometrical optics, i.e. ray theory, such
as Fermat’s principle work quite well in many cases even if they do not take into account the
wave nature. Hamilton, in order to provide an answer to how light could be a wave and describe
trajectories as a particle (like in ray tracing) constructed a wave field using a new type of ray
theory.

First, let us state Fermat’s stationary principle, which defines rays as any path for which
the travel time is stationary with respect to small variations. This means that, if we express
the path of light between two points by a functional called the optical path, the actual path of
the light will follow an extreme path with respect to this functional. This statement is more
complete than the least time principle of Fermat‘s, as it covers all possible cases and will be
the beginning of the basis of the variational method to be used (Tracy et al., 2014).

The ray theory gives us a useful geometrical view of the problem, but in more complex
cases such as the plasma forming the solar atmosphere, propagation properties change point
to point and, therefore, the rays are no longer straight lines. The Hamilton stationary phase
principle extends the concepts of geometrical optics to understand the solutions of a wave
equation (because, for instance, in Fermat’s theory there is no dispersion relation between the
wave frequency and the wavevector since there is no wavevector) in terms of rays. This theory
applies to all types of waves and it assumes that the wave field is in the form of a rapid variation
characterized by

W = Ae?eive, (106)

where the phase 6 varies rapidly, A is a real amplitude that varies slowly, ¢ is the polarisation
phase and é the unit polarisation vector. Equation (106) is the solution of the wave equation in
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eikonal form. Eikonal solutions have that 6 and A are real functions, which allows us to define
the following relations:

00
ot
Therefore, we reduced the problem to eikonal problems. We restrict solutions to eikonal approx-
imations for the wave equation that describes the propagation of waves in which the phase varies
rapidly while the amplitude varies slowly. In Hamilton’s theory, the phase function plays an
important role, since it could be written as the integral of some function along one-dimensional
paths (these will become the rays). Therefore, the phase of the eikonal plays the same role as
the Hamiltonian. We have already described the shape of the approximations to the solutions
of the wave equation and the main characteristics. The last step is to determine the path that
the ray follows, which is described by Hamilton’s equations.
We have already presented the general idea of the ray tracing method using Hamilton’s
equations. Now we will describe the dispersion function concept in order to apply this method-
ology step by step. Inserting the eikonal ansatz (106) in a wave equation written as follows

k=V0, w= (107)

D(—iV,i0t) (7 t) =0, (108)

we arrive at the condition

D(k,w) =0, (109)
where D(k,w) is the dispersion function and the curves that fulfil the last condition are the
dispersion curves.

Then, we follow Tracy et al. (2014) and we use Hermitian matrix to ensure that the disper-
sion functions and rays are real. The motivation is that we want the ray to describe the wave
propagation. For example, in section 3.1, we found that below the cut-off frequency, the waves
became evanescent, this happened when we obtained purely imaginary results. And we want
that our rays follow a “real” path. This is the dispersion matrix whose eigenvalues are real and
we assume that they are nondegenerate, so the associated eigenvectors are orthogonal. Now,
we can introduce the Hamilton variational principle described previously (we insert the eikonal
ansatz (106)). The dispersion function that arises is one of the eigenvalues of the dispersion
matrix, restricted to zero in phase space (has to fulfil condition (109) to be a Hamiltonian ray)
and the polarisation is its associated eigenvector. This is analogous to how it was developed
in the previous section of magnetoacoustic waves (section 4.2.1). Besides we adopt that they
form an orthonormal basis . .

eL(F k) - éal(F, k) = pa,
where [ and a denote different eigenvalues.

The last step is to use Hamilton’s equations to describe the path that the ray follows.
This reduces the system of partial differential equations that we had to a system of ordinary
differential equations. In the Hamilton equations, D, is the dispersion relation for a specific
eigenvalue, plays the role of the Hamiltonian and therefore, the phase space is filled with
trajectories that are solutions of the equations, but only the ones that fulfil D, (7, k= Vo) =0
are the Hamiltonian rays. Nevertheless, we can also use the determinant of the matrix symbol
as the Hamiltonian ray D = det(D), since it can provide us with certain advantages, like
avoiding the diagonalisation of the matrix or the information that the determinant contains of
the eigenvalues, which becomes important if, for example, two eigenvalues are close to zero.
The use of the determinant as a dispersion matrix leads to the same rays, but with a change
in the parameterisation in the Hamilton equations, since the determinant is the product of
the eigenvalues and the rays are restricted to D = 0. Which a dispersion function defined
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D = det(D), the ray paths follow:

—

dr dk dt 0D dw 0D
do Vi(D), do —V#D), do 0w do ot (110)

where ¢ is the variable that parametrises the path of the ray and only depends on D. In
our specific case, we have seen that the atmosphere is stratified in the vertical component Z.
Therefore, D will be independent of the horizontal component x, so k, will remain constant
along the ray, and if D is independent of ¢, w it will also remain constant.

There are circumstances when the ray tracing method fails: caustics, tunneling and mode
conversion. Caustics are associated with local singularities that can arise when the rays are
projected from the ray phase space to the = space. This leads to a loss of good behaviour of
the eikonal phase, which results in nonphysical predictions. However, in this case, it is always
possible to find a local representation in which the eikonal approximation is valid. In contrast,
in tunneling and mode conversion there is no representation where the eikonal approximation is
valid. Tunneling concerns only one eigenvalue of the dispersion matrix and mode conversion two.
For example, tunneling can occur because a ray that encounters a barrier it cannot overcome
energetically splits into two rays, one reflected and the other transmitted. Still, such a ray
maintains the same properties. On the other hand, in mode conversion, there are two modes
with different characteristics that exchange energy. A possible example of this phenomenon
taking place on Earth is found in the Gulf of Guinea, where there are coastally trapped waves
propagating westward that may interact with and transform into equatorially trapped waves
propagating eastward (Tracy et al., 2014).

Here, we focus on the mode conversion and the matched asymptotic methods presented in
Tracy et al. (2014) to overcome the failure in the ray theory to describe it. Although the eikonal
approximation is not working in this region we continue to insist on applying ray tracing, since
we can use the fact that the dispersion matrix does not depend on the eikonality, so it can be
Taylor expanded about any point. The conversion matching provides us with a simple, but
general formulation of the problem, so let us begin with this formulation.

Our dispersion matrix has two eigenvalues associated with the dispersion curves D, (z, k) =
0 and Dg(x, k) = 0, which present avoided crossings where the two eigenvalues in this neigh-
bourhood are near zero. The failure of the ray tracing method is the assumption that the
modes are distinguishable at this point. Far from the conversion point the eikonal assumption
is valid and it can be associated with a ray. Therefore, the approach consists in using the
ray asymptotes far from the conversion point to interpolate the incoming and outgoing rays of
this point. The goal is to eliminate the avoided crossing behaviour and reconnect the paths
after going through the conversion point. With a self-adjoint operator, we have the associated
variational principle for the local wave equation in one dimension

A(T) = / 020 () - Dy (1, —i0) - T (),
and we can insert the following ansatz into the variational principle
\I_}(JJ) = \I’A(x)éA + ‘IIB(SC)éB,

where W (z) and U () are not eikonal form and they are n-dimensional vectors. Following the
general mode conversion theory of Tracy et al. (2014) is possible to put the dispersion matrix
into a normal form, which is the simplest representation of the problem using the geometry of
the incoming and outgoing rays. Therefore, the dispersion matrix is

D(z, k) = (lg:‘ I?B> . (111)
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These two new polarisations that go smoothly to the conversion point provide us with an
approximation of how the eigenvalues would behave at the conversion point. Here, the two
dispersion surfaces (D4 = 0, D = 0) would cross and the associated polarisations would
change smoothly throughout the conversion region as shown in Figure 12.

A
€

A (in)
€,

Figure 12: On the left, a representation of the dispersion curves D, = 0 and Dg = 0 that
illustrates the behaviour of the rays near the conversion point, the called avoided crossing.
On the right, a representation of the same region but with the dispersion curves D4 = 0,
Dp = 0 associated with the new polarisation vectors which, far from the conversion region,
are again those associated with the eikonal (Tracy et al., 2014).

Note that the mode conversion depends on the dispersion matrix and not just the determi-
nant, since this leads to the fact that an incoming ray connects to its converted ray, but not
its transmitted ray. In the dispersion matrix (111) 7, the coupling term, is small compare to
D, and Dy where the eikonal approximation is valid D = DDp —|7j|? ~ D 4Dp, therefore the
matrix is diagonal and D = 0 where D4 and Dp represents the eigenvalues decoupled. How-
ever, near the conversion point, the value of n becomes comparable and quantifies the mode
transmission. Then the general theory requires performing a linear canonical transformation
and a rescaling. That done, the coupling parameter is

_ U
[{Da, Dp} [

Ui (112)

where {D4, Dg} is the Poisson bracket® of the uncoupled dispersion functions. Finally, we
introduce the transmission and conversion coefficients that determine the shape of the outgoing
rays

2rt
—el = T (113)
T=e , K= , ,
nl(=ifn?)
where 7 is the transmission coefficient and s the conversion coefficient (Tracy et al., 2014). In
the conversion coefficient I is the Gamma function, which fulfills the expression |T'(iy)|* = e

where y is real (Abramowitz et al. (1988), equation 6.1.29). The convention for « is that when
the converted rays are moving to the right of the incoming ray the conversion is k, but if it
is moving to the left is —x*. Therefore, the amount of energy transmitted is 7' = 72 and the
amount of energy converted C' = |x|? fulfilling that 7'+ C' = 1, so the energy is conserved.

The Poisson bracket is defined as: {D4, Dp} = 224205 _ 0D 0Da
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5.2 Application of mode conversion formalism

Let us put the ray tracing formalism into practice. We have our self-adjoint matrix (88) derived
in MHD from the magnetoacoustic wave section. With a stratified atmosphere in the vertical
direction (z), uniform in the horizontal direction (x) and with the possibility to fix a certain
frequency, therefore, the dispersion function is independent of ¢, and k, remains constant along
a ray. When we diagonalised the dispersion matrix (88), we obtained the fast and slow modes
and we studied the asymptotic behaviour of these modes in the limits ¢ > vy, ¢ K v4. In
other words, we studied their behaviour in the photosphere (cs > v4) and the chromosphere
(cs < va). Now, we focus on the natural modes, i.e. the asymptotic normal modes that
refer to the nature of the restoring force of the wave (acoustic and magnetic waves) instead
of fast and slow modes. We find that when we are not in the regions where these limits
dominate (¢s &~ v4), both modes are coupled. As seen in the theoretical part of the ray tracing
method, the eikonal approximation can be applied to these limits since the eigenvalues are not
degenerated. Although, it remains to be seen whether it is possible to do so in the intermediate
region.

Following the method shown for the mode conversion we need a smooth path that links these
regions. Therefore, our ad hoc matrix will rotate the system to the acoustic waves direction
when ¢, > v, and to the direction of the magnetic field when ¢, < v4. This will cause our
reference system to follow smoothly the acoustic mode direction. Usually, we obtain a dispersion
matrix in a certain base and then we find the eigenvectors. But here we start “creating” the
eigenvectors and then we look for the eigenvalues. In this way, we begin defining the ad hoc
matrix for acoustic mode. Since the eigenvectors are orthonormal, the magnetic eigenvectors can
be obtained by calculating the perpendicular vector to the acoustic eigenvalue. As previously
mentioned we are going to follow the polarisation direction of acoustic waves by our ad hoc
rotation matrix. This is done taking into account the behaviour at the limits (¢; > va, ¢s < v4)

which is detailed in Table 1. Therefore, our ad hoc matrix for the acoustic mode is
1
Rac: CgR +'U2R em : 114
V(2sin ¢ + v2 sin6,,)2 + (2 cos ¢ + v% cos@m)2( (¢) + vaR(0m)) (114)

where

R(¢) = (Siw cos g ) (115)

cos¢ —sing

and R(f,,) is the rotation matrix (86) introduced when we defined kj and k;. Matrix R(¢)
rotates the frame of reference to the direction of k, matrix R(6,,) to the direction of the
magnetic field. And matrix R,. is the combination of both such that, depending on which
speed dominates it rotates to one system, the other or a combination of both. This rotation
matrix allows the change to acoustic basis but it is still necessary to transform the dispersion
matrix D that we obtained in MHD formalism (88). Since it rotates the system in the vector
basis of the vectors  and Z and not in the basis of the new polarisation vectors é,,, é,., where
the a subindex denotes acoustic mode.

D' =R 'DR. (116)
Matrix D’ is the dispersion matrix in the acoustic basis and it has the following elements:

Dy, = —c [K* (v} + vick + 2¢,)] — ik’ ky + 2kw? [(v) + o)k + 2032k ]

+vici(vy — ¢ )(k k4) cos 20 — 2v%c2(vy — )k k k. sin 20, (117)

Dy, = —v7 [K* (204 + v3ck + €))] — iR ky + 2kw® [(v) + ¢k + 2052k ]
—vic(vy — ) (ki — kz4) cos 20 — 21) 2(v] — Ak kyk. sin 20, (118)
Dy =Dy = Aca(vh + )R (k + ky)kL, (119)
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where D}, = 0 and D}, = 0 represent the acoustic and magnetic asymptotic eigenvalues,
respectively. Let us see whether these curves intersect at some point, i.e. if there exists an
ordered pair (z, k,), such that D}, = D}, = 0 and the eikonality breaks.

DYy = Dy,
c i 2 2 2 2( 2 2\ (1.4 4 1
2— — 2 =4dcosalc; — vy) + 2vics(vy — ) (k, — k) cos QHR.
U4 Cs

So, D), and D), intersect when ¢, = v,4, with this pair (z,%.) being our conversion points.
This occurs in the equipartition zone (where the speeds are comparable) which separates the
photosphere and chromosphere as we have discussed in section 4.2.1 with the help of Figure 11
and the study of the limits.

The non-diagonal elements of our matrix represent the coupling terms and how much coupled
are the modes. Due to the choice of our ad hoc matrix, we have that far from the conversion
points the coupling terms tend to zero. Consequently, det(D’) = D}, Dby — Do Dby &= D}y Dbs.
The two modes are decoupled in these limits. As we have a stratified atmosphere in the vertical
component, z-axis, the horizontal components will remain constant, so the approximate value
of k, when the mode conversion takes place (cs = v4) is

—c2(4k*c}) — ARk + 2kw?(2¢k + 2¢iky) = 0
4cik(—k* e — K cosa + w?k + w’kcosa) =0

—k*c2(1 4 cosa) + w?(1 + cosa) = 0

, W
_ _ 12
k—g:kz— "l k2. (120)
The value of k., can be obtained by taking into account that the speed of sound is constant by
being in an isothermal atmosphere. On the other hand, by fixing the value of k,, the reflection
condition (k, = 0) occurring in the chromosphere can be obtained. To do this, we return to
the dispersion equation (83) and the condition v4 > ¢,, because it occurs at the chromosphere.
We get

w? = k%0,

2
he =)o — k2= — < k. (121)

So, upward propagating rays are reflected when this condition is fulfilled; a ray propagates when
its eigenvalue is real in the ray tracing formalism; and when w/v4 < k,, k, becomes evanescent
and its solution is no longer real. Therefore, a way propagating upwards (k, > 0), at this height
(when k, =0, i.e w/va = k,) it is going to be reflected and it propagates downwards (k, < 0)
to keep moving in the “real” line.

As explained in the presentation of the ray tracing formalism, in the case of mode conversion
it is not possible to apply the eikonal approximation. But we can use our matrix, as it does
not depend on the eikonality of the wave field as well as the Weyl symbols, which will allow
us to construct local wave equations. This uses the geometry of the incoming and outgoing
rays that pass through the conversion point. In other words, it is possible to apply the method
followed by Tracy et al. (2014) and explained in section 5.1 since our magnetoacoustic waves
conserve energy like in this method (section 4.2.2). In this work, we will not go into this, i.e.
calculating the transmission, conversion coefficients and making the asymptotic matching with
the outgoing and incoming rays. But we will make a qualitative discussion of these results. For
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this purpose, in the next section, we show the crossing of the magnetic and acoustic asymptotic
curves with the full dispersion curves D = 0. This is the relation (83) in the magnetoacoustic
waves section. But now we are going to solve it as a function of k, since it is the value that
changes due to stratification. Note that in this expression o and k depend on k.. Therefore
the dispersion relation is

-1

2 232 _ 42 2 2
24 g2 . i\/(cs—i-vA) . V32 cos? o 0, (122)

I .
Cosa:_”:kxsmem—l—kzcosHm. (123)

k VK2 + k2

In the next section, we discuss the results for different fixed values of the frequency and
inclination of the magnetic field (6,,).

5.3 Discussion of results

Now, we know how to describe what happens to the magnetoacoustic waves inside the equipar-
tition region (the frontier of the photosphere-chromosphere, where ¢ &~ v4) and how the mode
conversion from fast-acoustic to fast-magnetic or slow-magnetic to slow-acoustic occurs. This
may also happen in regions where there is a sudden change of dominant force, such as an
acoustic wave propagating through the photosphere and approaching a sunspot. In summary,
we already know that the solar atmosphere can provide the necessary conditions for this phe-
nomenon to take place, but let us take a qualitative look at some of its characteristics from
a discussion of the following results shown in Figure 13, where k, has been represented as a
function of the height 2 for different magnetic angles (6,,) and frequencies.

The first thing to note in Figure 13 is that the dispersion curves are asymmetrical, i.e. a
wave propagating upwards does not have the same behaviour as one propagating downwards.
Therefore, it will not transmit or convert the same energy, even though the energy must be
conserved in any case. On the one hand, the figures represent quite well the changes in the
dispersion curves due to the values of the main parameters affecting the mode conversion.
For instance, at lower frequencies, the branches tend to get closer to the conversion points
causing them to become more like the Dy; = 0 (acoustic) and Djy = 0 (magnetic) curves in
this region and not only when they asymptotically tend towards the eikonal approach. This
favours transmission (fast-acoustic to slow-acoustic or slow-magnetic to fast-magnetic) against
conversion, because the ray will tend to follow the Dy; and Dy curves. However, as it can be
seen from the figures, the change in the inclination of the magnetic field (6,,) has a larger effect
than the frequency. Nevertheless, the change in magnetic field inclination is not important by
itself. In fact, it is the angle of attack («) to which it is related by o = ¢ — 6,,, that is important
(Figure 9). This is because we consider waves that propagate vertically k || 2.

However, let us go back to what Figure 13 shows about the angle 6,,: at high values, there
is more amount of energy associated with the conversion. Therefore, the larger the angle,
the larger gap between the curves associated with our approach in the conversion region that
indicate the transmission. It is as if the direction of the magnetic field acts as a filter for the
amount of energy input to the transmission or conversion of modes. To clarify this concept, we
present in Figure 14 different snapshots of simulations showing how the mode conversion occurs
when crossing the region where ¢, = v, for different angles. These simulations represent the
longitudinal velocity, i.e. the component along the direction of propagation k when ¢, > vy
(which we take k || 2) and when ¢, < v4 is the component along the magnetic field. Therefore,
this velocity component represents the acoustic waves, those in which we have made the change
of base by our ad hoc matrix. These simulations use a Gaussian pulse as a periodic driver in the
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Figure 13: Dispersion diagrams for three different 6,, = 20°,30°,60°. The left column corre-
sponds to w = 35 mHz, k, = 0.7 Mm™!, By = 500G and the right column to w = 29 mHz,
k, = 0.7 Mm~!, By = 500G. The background quantities are those of our atmosphere, i.e.,
those of Figure 3. The dashed curves are the acoustic D}; = 0, magnetic D), = 0 and the
black points at which they cross, the conversion points c; = v4. Finally, the grey lines indi-
cate where the reflection of the fast mode waves occurs.
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bottom boundary and the atmosphere model employed is the same as the one we have already
used and presented in this work (Figure 3, Figure 11).
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Figure 14: The snapshots represent the longitudinal component of the velocity, where the
black lines at the background represent the magnetic field lines and the green horizontal line
the height at which the velocities ¢s = v4. The first panel corresponds to 6, = 0°, the second
one to 6, = 10°, the third one to 6,, = 20° and the last one to 6,, = 30° (w = 600mHz).

These figures represent quite well what was discussed previously, since as it can be seen in
the two panels of the first row (angles 6,, = 0° and 6,,, = 10°) small angles favour transmission.
Below the horizontal line, which indicates ¢, = v4, the waves propagate vertically and once
they pass this line they tend to follow the magnetic field lines. (fast-acoustic to slow-acoustic
transmission occurs). But as the angle increases, mode transmission decreases in favour of
conversion as can be seen in the two panels of the last row (angles 6, = 20° and 6,, = 30°).
These panels show how the polarisation velocity no longer tends to follow the magnetic field lines
clearly, decreasing the values of the longitudinal component of the velocity and consequently
decreasing the mode transmission. However, we remember that the mode conversion is given
by a and that this discussion about that high 6,, favours mode conversion, is associated with
« values, but due to our choice of vertical propagation these angles coincide.

This study will remain as a qualitative analysis of the mode conversion phenomenon. Even
so, with what we have obtained, it would be possible after performing the asymptotic matching
with the incoming and outgoing eikonal waves, to obtain the transmission and conversion
coefficients. For this purpose, the coupling parameter (112) at the conversion point has to be
evaluated. This is done in Schunker & Cally (2006) and Cally & Goémez-Miguez (2023). Here,
we will not go too much into this part, since the corresponding mathematical development has
not been carried out, but we will name a parameter that appears in 7 and therefore, in the
transmission coefficient (113). This parameter is called hs and represents the distance traversed
by the oblique ray crossing the horizontal slab of thickness h, where h is the scale height of the
conversion layer and when the magnetic field is uniform, is the pressure scale height.

The transmission coefficient shown by Schunker & Cally (2006) (in their article they also
take into account the Brunt-Viisild frequency and the cut-off frequency) is

T = exp(—7Khysin? @), ,—., (124)

where hy is the parameter mentioned previously and K is k in the conversion point, i.e K = w/c;.
If we fix a we can draw the following conclusions attending the term Kh,: when Khy > 1 the
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transmission will tend to zero and when Kh,; < 1 there will be a high transmission from fast-
acoustic to slow-acoustic. This is the same as what we discussed before about the frequencies
(because K = w/cs). Let us discuss this from the point of view of the ray by the wavelength
description. The wavelength describes the distance from crest to crest of the wave, at this
distance, the properties of the wave cannot change. Therefore, at low frequencies, we have
long wavelengths, which makes it difficult to change his behaviour (the mode conversion). In
contrast, at high frequencies, the wavelength is small, which facilitates mode conversion. To see
this from the point of view of the ray, let us go back to Figure 13. The rays at low frequencies
will have to make steeper bends in order to change their properties, due to the long wavelength
(i.e. it will have to make a sharp turn to stay on the fast or slow mode curve). Therefore, it is
easier for them to follow a straight line following the Dq; or Dsy curves while maintaining their
properties (transmission). And at higher frequencies, these curves are smoother (because the
wavelength is smaller), allowing the rays to easily stay on the curve and change their properties.

Regarding the dependence of T on «, we come to the same conclusions as previously that
at smaller angle, higher the transmission. Therefore, for & = 0 there is a total transmission.
This variation of the transmission coefficient with attack angle is shown in Figure 15.
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Figure 15: The transmission coefficient (T") as a function of the attack angle («) for several
frequencies. The curves for frequencies used in Figure 13 are w = 29 mHz (blue line) and
w = 35 mHz (orange line), while the one used in Figure 14 is w = 600 mHZ (green line).

This figure shows quite clearly the results discussed above: at small angles and low frequen-
cies the transmission coefficient increases and consequently, the amount of energy destinated
to transmission (fast-acoustic to slow-acoustic or slow-magnetic to fast-magnetic). Figure 15
can be linked to the simulation snapshots for a better understanding of both. First, these
animations are at 600mHz which corresponds to the green curve of Figure 15, showing that
due to the high frequencies, transmission is practically zero at angles greater than 20°. This
corresponds to what was observed in Figure 14, since the value of the longitudinal component
of the velocity when the angle is 30° is about 0.5 m/s at most. On the contrary, when the
angle is 0°, the transmission is maximum and there is no mode conversion and the value of the
velocity is about 4 m/s.
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6 Conclusions

RESUMEN

Atendiendo a los factores que hemos considerado (gravedad y campo magnético hemos estudiado
algunas de las ondas que se podrian propagar en el Sol: las acustico-gravitatorias, acusticas,
magnetoacisticas y las ondas de Alfvén. Se pudo comprobar que a altas frecuencias se pueden
describir las ecuactones linearizadas sin tener en cuenta los términos gravitatorios, ya que los
modos g se propagan a bajas frecuencias. Al igual que pudimos continuar el estudio sin tener en
cuenta las ondas acistico-gravitatorias, ignoramos las ondas Alfvén, puesto que pasamos de un
estudio 3D a uno 2D. También obtuvimos que las ondas magnetoacisticas presentan dos modos
con comportamientos contrarios en los limites c¢s > va (fotosfera) y cs < va (cromosfera).
Esto fue descrito en una atmdsfera homogénea, pero llegamos al razonamiento de que si estu-
viésemos en una tnmhomogénea habria una region en la que estas velocidades son comparables
(region de equiparticion) y dichos modos podrian interactuar. La consideracion de trabajar a
altas frecuencias nos permitio trasladar los términos obtenidos en un medio homogéneo a uno
débilmente inhomogéneo permitiendo describir las ondas magnetoacisticas usando el formal-
ismo de trazado de rayos. Esto iltimo nos permitio llegar al resultado mds importante de este
trabajo: cuando se igualan la velocidad de Alfvén y la del sonido (cs = va) se produce una
transformacion de modos en la cual se transfiere energia de un modo a otro.

In this work, we found several results and conclusions on the way to understanding what
happens to magnetoacoustic waves propagating from the photosphere to the chromosphere.
One of these was that the acoustic-gravity waves have two important frequencies (the Brunt-
Viiséld frequency and the cut-off frequency) caused by the gravitational stratification of the
atmosphere. These frequencies characterise the acoustic-gravity waves and their effects can be
excluded if the gravity terms are not included in the perturbation equations, so high frequencies
were used. In addition, we obtained that the Alfvén waves are polarised in the perpendicular
direction of the plane defined by the magnetic field and the wavevector. This allowed the
problem to be further simplified by moving from a 3D to a 2D configuration, making Alfvén
waves unrelated to our study.

Then, studying magnetoacoustic waves in a homogeneous medium, we find the behaviour
of the fast and slow modes in the photosphere and chromosphere:

e In the photosphere (cs > v4), the fast mode presents an acoustic nature, i.e the phase
velocity is the sound speed ¢y and it is polarised in the direction of k. The slow mode
presents a magnetic nature and its polarisation is perpendicular to k.

e In the chromosphere (c; < v4), the fast mode is magnetic and its polarisation is perpen-
dicular to By. And the slow mode is acoustic and it is polarised in the direction of Bj.

We have also discussed that in the equipartition region, where the sound speed and Alfvén speed
are of the same order, the two modes can interact, which could lead to mode conversion between
these modes. To check this, we extended the study to a weakly inhomogeneous atmosphere and
applied the ray tracing formalism presented in section 5.1 to the previous results. We created
an ad hoc matching so that we could rotate our dispersion matrix to the acoustic base. This
enabled us to observe the connectivity between the fast and slow modes by the crossing of the
acoustic Di; = 0 and magnetic Doy = 0 curves, confirming the premise that when the Alfvén
and sound speeds are equal, mode conversion occurs. In our case, this phenomenon takes
place at the photosphere-chromosphere boundary. From this outcome, it could be observed
qualitatively that mode conversion depends on several parameters such as:
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e The attack angle a: at high a values the gap between the fast and slow branches be-
comes wider and favours mode conversion against transmission. At small « there is more
transmission, as shown in Figure 15 and equation (124). This angle acts as a filter for the
amount of energy input to the transmission mode and consequently mode conversion.

e The frequency that is related to the wavelength (are inversely proportional) appears in the
transmission coefficient (124) by Khy = (w/cs)hs. This produces that at high frequencies
(small \), K'hs > 1 conversion is near-total.

The ray theory has been quite useful in interpreting the results and understanding what
happens in the conversion region. In conclusion, it tells us what happens between the two
limits (cs > va, cs < vg4) for fast-acoustic to fast-magnetic or slow-magnetic to slow-acoustic
through an acoustic-magnetic conversion and how depending on the conditions, the amount
of energy associated with the transmission or conversion is distributed in such a way that it
is conserved. This characterisation might be important in studies of chromospheric heating
because the mechanisms for energy release depend on each mode.
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Appendix A: Acoustic-gravity waves, dispersion relation

To calculate the wave equation for the velocity (50), it is necessary to calculate the temporal
derivative of the motion equation (48) and then the gradient of the energy equation (49):

o _ 9o, O,

pow = o D —QEZ,
0 dpo
th = Z2vpogV - 4 — ypoV(V - 1) —ir,zguzi + pogVu, (A.2)

(A.1)

0 dz
0?1 dpy dpo
= P0gm = —Z2vpogV - 4+ ypoV(V - d) — Zgu,— e pogVu, + ZgpoV - U+ Zgu,— 7 (A.3)
Finally, we arrive at the wave equation (50):
0*d .
o2 = =3 V(V @) — 2(y —1)gV - i — gVu,. (A4)

The solution is given by (51). And to obtain the dispersion relation (52) we start with the
following relations:

0*u

ﬁ:—WQQ’,V-ﬁ:iE-ﬁ,V—)iE, (A.5)
= W0 = k(k- @)+ i(y — 1)ga(k - @) + ighku,. (A.6)
To simplify more the equation and arrive to equation (52) we take the scalar product with k
(W? — 2K —i(y — Dgk.)(k - @) = igk*u.. (A7)
And the scalar product with 2
(ks +i(y = 1)g)(k - @) = (w* — igh.)u.. (A.8)
Now, dividing these equations we obtain
(w? = 2k —i(y = 1)gk.)(w* —igh.) = igh®(cIk. +i(y — 1)g). (A.9)
Rearranging the last equation we get
wt —ivw?gk. — (v — )@*k? — k2w = —g*k* (v — 1) (A.10)
= W (W? —ivgk.) = —g*kK* (v — 1) + (v — 1)g*k? + k%W (A.11)

And completing the square:

; 2 2.2
w? (w2 - <kz + %) + k2 — M) = —¢?k*(y — 1) + (v — 1)g*k? + k2w (A.12)

Introducing the terms: & = k + se2 = k+ 192 k2= k2 + 22 We fin
f‘y

(A.13)
K22, (A.14)

)

2 2 2 2

779 (v =Dy ks
:>w2<w2—c§ 1 )—<w2— > (1_ﬁ

To finally obtain the dispersion relation for acoustic-gravity waves (52):

w?(w® — w?) = (w* — N?sin® 0 k2. (A.15)

Where w, is the cut-off frequency, N? the Brunt Viisili frequency and 0, is the angle between
k' and the vertical (sin? 0, =1— k/z)
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Appendix B: Linearisation for MHD waves, dispersion rela-

tion

To found the system of linearised equations presented in section 4 (equations (68)-(72)) we have
the following constants and perturbations for a homogeneous medium

p="po+p,
p=potp,
=1,
B=DB,+B.

The continuity (68) and energy equation (69) are almost the same as the section 3, but without
the gravity term. To linearise the energy equation we retain up to the first order terms.

ou _ B'+ B,
Poor = —V(p' +po) + (V x (B"+ By)) x Gl (B.1)
Ho
ou , = go
— = B') x —. B.2
= pog, Vp' + (V x )XMO (B.2)
Then, we do the same for the induction equation
dB' -
e V x (4 x (By + B)) (B.3)
OB <
= o = V X (i x By). (B.4)

Now, to calculate the wave equation we take the temporal derivative of equation (69):
0% ) ) . B
— = ——Vp' +—(V x B') x —. B.5
P 5 g VP T 5 ) " (B.5)

We calculate the gradient of equation (70)

0, .,
QVP = —poV - (V - @). (B.6)

And we take the rotational of equation (71)

%(Vxé’):Vx [Vx (ﬁxB})} . (B.7)

Finally, replacing the terms in equations (B.6) and (B.7) in (B.5) we obtain the wave equation
(73)
0*u

o = V(Y i) + [v x (V x (i x l?o))] X —-. (B-8)
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which can be simplified using vectorial identities like (@ x b) x &= b(a@ - &) — @(b - o):

- o - B
[k:x(k:x(uxBo))]x 0 =
HopPo
(B.10)
— — - g nd = g g |
@x(uxam< -—l>—k[wx(gx() 0| =
HopPo Hopo |
(B.11)
— - - 3 pd g bud g bad pad b g - b g |
—&@imQ: 0>+ﬂhB@<k 0)+k(hﬁ) O _(k-Byi-—2| =
HopPo HopPo Hopo Hopo |
(B.12)
S o . B TR - B? - = (By-u
—By(k - ) (k —°> +—— (k- By)? + k—(k - @) — k(k - By (B - @)
HoPo HopPo HoPo HopPo
(B.13)
- = Bk - - B2k? - B2 - Bk - =
= Wi = Ek(k - @) — —= cos a(k - @) By + —>— cos® il + k—>(k - if) — —— cos k(B - @).
HoPo HopPo HopPo HoPo
(B.14)

This is the general dispersion relation presented in section 4 when we take that the scalar
product k- By = Byk cos @ where « is the attack angle.

Appendix C: Dispersion matrix and polarisation vectors

In order to obtain the dispersion relation in matrix form (88) presented in section 4.2.1 we
start from equation (75) and by calculating their scalar products, the dispersion relation can
be expressed in a matrix form:

—
u — —

——(k - By)* = w3 (k2 sin? 0, + 2k, k. sin 0,, cos 0,, + k2 cos® 0,,,), (C.1)
Hopo
ki (k- @) = kv’ (kpus + kous), (C.2)
—BB(E-E) (E-%) = — 0% (sin 0,,34+c08 0,,2) (k2 sin 0, +ky ko, cos O, 4k, ko, sin 0,4+ k2u, cos 0,,),
- (C.3)
—E(E EO) <i(;/)f) = —Evfl(k;zux sin? 0, + kyu., sin 0, cos 0, + kg sin O, cos Oy, + k., cos® O,,).

(C4)
Grouping into the vector components z, 3, Z and looking at the combinations of the velocities,
gives the following dispersion matrix

k% + vik? cos® 0, — w? 0 kyk, — vik? cos O, sin6,,\ [ux
0 v%kﬁ — w? 0 u, | =0. (C.5)
2kyk, — vik? cos 0, sin 6, 0 2k? — w? + vik?sin® 0, U

This dispersion matrix is block diagonal and one of its eigenvalues is the Alfvén waves relation,
where k| is the parallel component of k as shown in Figure 10. Alfvén’s mode is decoupled
from the fast and slow mode:

2

Ay =w” — vikﬁ =79 (C.6)
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In section 4.2.1 we present directly the dispersion matrix (88) in the frame of reference where
we suppress velocities in g direction, ignoring Alfvén waves. Then we diagonalise (88)

272 | 272 0.2 2 2 2712
ikl +vik®cos® 0, —w* — X cikyk, — vk sin6,, cos b,

Chgk, — V3K co8 Opy sin by, k2 — w? + 03k2sin? 0, — A| 0, (C.7)

(k2 — w* + vk cos? 0, — N)(Ph? — w? + vik?sin® 0, — \) — (kyk, — vik*cosfsin6,,)* = 0
(C.8)
= —2w?k? + vk (K2 sin 0, + k2 cos® O,, + 22k, kv k? cos O,, sin 0,,) — KN + w? — Wi K+
+2w A — k2N 4+ A2 = 0.
(C.9)

Introducing the relation of k to its parallel component k| = k, sin 6, 4 k. cos 6,,, (Figure 10)
A+ A(2w? = 2k — 03k + Wt — WP (VR + 2EP) + Ak k] =0 (C.10)

—2w? + (2 K? L V(2 +02)2 — 4c20? cos?
5 :

=\ =

(C.11)

In order to arrive at the expression with cosa, the following relation was taken into account
cosa = % Let us now turn to how the coefficients of the polarisation vectors at the two limits
were derived in a little more detail than in the main text. Firstly, we derive the limit for the
eigenvalues. The fast mode has for the ¢; > v,4 limit that Ay = —w?+ k*c? and for the ¢, < va
A ~ —w? + k*v¥. For the slow mode in ¢, > v, the eigenvalue:

1/2 1/2
w A +vd (2 +0)? — 4cv? cos? a 2\ — 42} cos?
2o et - = |- : (C.12)
1/2 12
Az A% cos? a\ 2 v? cos?
- [T?(“AT) <[5-5(2750)] ueme ©n

For the approximation was used: (1 — 2)Y/2 ~ 1 — %x when r < 1. So, the eigenvalue
As & —w? — k*v? cos® a. Then, in the ¢, < v4 limit

1/2
2 2 _ 4c2 2 2
% — [%“ - Vi CQSUA cos 04] = ¢4 COS Q. (C.14)

Where Ay &~ —w? — k%c? cos? o is the approximation in this limit. Secondly, we are going to
take the limits of the coefficients. Beginning with the fast mode, for ¢, > v4:

kyk, — vik? cos 0, sin b,

ol = ~~
V(R — v3k2 co80,,8i00,,)% + (Ap — 22 + w? — v3k2 cos20,,)2
Akyk, B
VEAR2E? 4+ (—w? + k22 — k2 + w?)?
Ak k., B
\/cgk;g(k? — 2k 4 1)
k., _
e —sing. (C15)
k z
k14
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Where ¢ is the angle that k forms with z axis (Figure 10). The second coefficient is

Ap — Ak2 4+ w? — v k? cos? b,

Ccl = ~
V(Chyk, — v3k? cos by, 8in0,,,)2 + (\p — 2k2 4+ w? — vi k2 cos? 0y, )2
—w+ ke -2kl 4w 1 k. B
2
2k, k Z_g_l 1_2_% ké 1_’;_%
1 sin? ¢

= C0S . (C.16)

cos ¢  cos 0]

The polarisation direction for fast waves when ¢, > v, is parallel to the wave vector, since
they are acoustic waves. This is explained in more detail in the main text. Moving on to the
second limit ¢, <€ v4.

2k, k., — vik? cos 6, sin b,

V(Chyk, — v3k? cos by, 8in0,,,)2 + (\p — 2k2 4+ w? — v4 k2 cos? 0,y, )2
—v4k? cos 0, sin 6,

VUKt cos? 0, sin? 0, + (—w? + k207 + w? — vik2 cos? 0, )>

—v4k? cos b, sin b,

T4 _ A4 cog?
VUit — vhktcos? 6,,

cf =

xT

Q

= —cos/, (C.17)

of — A — k2 + w? — vk cos? by, -
o (hok, — v3k2 cos 0,810 0,,)% + (Af — 2k2 + w? — v3k2 cos? 0,,)2
—w? + k*0% 4+ w? —vik*cos®0,, 1 —cos® O,

VUit —odktcos? 6, sin Oy,

= sinb,,. (C.18)

Now, they are polarised perpendicularly to the magnetic field, because they are magnetic
waves. It is the turn of the slow mode when ¢, > vy

2 2 1.2 :
cikyk, — vik® cos b, sinb,,

C; = ~
V(Rkk, — v2k2 cos O, 810 0,,)2 + (N5 — €2k2 + w? — v k2 cos? 0, )2
2k, k, B
VAR + (—w? — k20% cos? o — 2k2 + w?)
Skak. k.
% R - = o b, (C.19)

v cos? o
2kyky/1+2-4 2

o5 _ As — 2k + w? — vik? cos? 0, N
z : ~
V(Chyk, — v3k? cos Oy, 8in0,,,)2 + (s — 2k2 + w? — v4k? cos? 0y, )2

—w? — k*v% cos? a + w? — 2k?

\/c4k2k:2 + (—w? — k20?4 cos? a — 2k2 + w?)

S Tx "z

12,2 2
k Uy COS™ & . kl’ ~ — sin Qﬁ (020)

172 21,2 2 2
2,.2 2 cik 2c2k v cos? a
k Uy COS a\/k‘lvf:cgs“a + vik;cona ky1+2-4 c?

The slow mode is polarised in the perpendicular direction, since they are magnetic waves
when ¢, > v4. Besides, as the fast and slow modes are eigenvalues their eigenvectors will be
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orthogonal to each other. When ¢, < vy
o — 2kyk, — vik? cos 0, sin 6,
’ V(kyk, — v3k? cos Oy, 8in0,,,)2 + (A — 2k2 + w? — v4k2 cos2 0, )2
—v4k? cos b, sin 0,
\/vjk‘* 082 0, sin?™ +(—w? — k2c2 cos? a + w? — v4k? cos? 0, )?

—siné,,

Q

——— = —sinby,, (C.21)
1 _'_ 2050028 «
V VA
o s — K2+ w? — vik? cos? 0, _
© (kok, — v3E2 cos O, 510 0,,)% + (A — 2k2 + w2 — v3 k2 cos2 0,,,)?
1262 cog2 0,
— G 008 o8 = —cos0,,. (C.22)

kQCz\/v‘lAcome + 200520mcos avA \/1 +2c cos? v
s C

]

Finally, we have that the slow waves in the limit ¢, < v are parallel to the magnetic field,
because they are acoustic waves and they are orthogonal to the fast one that are polarised
perpendicularly, since they are magnetic waves in this limit.

Appendix D: Energy conservation

In order to find the energy equation in a conservative form (102), we take the scalar product
with @ in the momentum equation (69)

0 (1 = B
( Pou 2):—V~(p’ﬁ)+p’v-ﬁ—uzp’g+ﬁ- (VxB')x—O]. (D.1)
ot Ho
Now, taking the scalar product B'/puo with the induction equation (71)
10 B’
B'2> |V x@x By D.2
L2 (357) -2 [V x@x A 02

To simplify the derivation, we can use the electric field perturbation as an auxiliary form:
E=—ixB=E =—iix By, (D.3)

where we use the ideal Ohm’s law (5). Then replacing (D.3) in equation (D.2)

10 (1 B’ _

Now, with the term - [(V X E’) X f—ﬂ of equation (D.1) and using the properties of the mixed

product:
ap az as by by b3
G-(bx3)=|b by bs|=—|ay ay as|=—b-(aTxa), (D.5)
€1 C2 C3 €1 C2 C3
(V x B') x @] — —(VxB)- (ﬁ X ﬁ) = iE’ (V x B). (D.6)
Ho Ho Ho
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Using the vector identity (V x A)- B =V - (A x B) + (V x B) - A in equation (D.6)

iE{VX@F&£W(§XEWﬂVXﬁ)§} (D.7)

Ho Ho

Replacing the equation (D.4) we get

1 - 1 L .0 /1
—FE-(VxB)Y=—|V- (B xE)—= —’2)} D.8
LE-(Vx B) MO[ (B x B) at(z (D8)
1 = q 1 _ _ o (1
S N=_— |-V .- (B x (i x By)) — = 2 D
:>M0 (V x B Mo{ \V/ X (@ x By)) p (2 )] (D.9)
And using the relation & x (@ x b) = @(b- &) — b(a - o),
1 - - 1 Lo . ~ 10 /1
—F- BY=—— |V (id(By-B)) —V(By(ii- BY))| — —— | =B"?|. D.1
B (Vx B) = [V @ B - V@ 5] - o (557). 00

Finally, replacing (D.10) in (D.1):

8 1 2 / — / — / 1 -/ S/ S /- 1 a 1 ”2
B - V. s V. B —V(Bo(ii- B) | ——=(=B"?).
g (onu) V-4 Vil [V @By B) — V(B B)] -2 (2 )

We have already dealt with the magnetic terms and it remains to manipulate the other
terms, which we have developed previously in section 3.3.1. Therefore, if we derivate the other
terms like in subsection 3.3.1 from (D.11) we obtain the conservation equation (102).
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