
Physics Faculty

Physics Department

Trabajo de Fin de Grado

Femtosecond laser nanofabrication

of subwavelength diffractive

structures: fabrication and

experimental characterization

Author: Nereida Ponzoa González
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Resumen

En el presente trabajo se van a fabricar redes de difracción mediante un método relativamente

reciente llamado nanolitografia 3D. Este consiste en, mediante un láser de femtosegundos,

grabar sobre un cristal la estructura que queramos. Después este cristal será sometido a ataque

qúımico, dejando poros en el cristal en forma de la estructura previamente grabada. En nuestro

caso, al tratarse se una red de difracción, grabaremos ĺıneas horizontales en el cristal. Queremos

lograr obtener una red de difracción cuya eficiencia en el primer orden de difracción sea casi del

100%, para ello nos basaremos en distintos trabajos ya realizados para elegir los parámetros

de fabricación. Se han hecho un total de dos redes de difracción, ambas con parámetro de red

Λ = 0.0005mm y con una tasa de repetición de 1MHz (pulsos por segundo). En la primera de

ellas su velocidad de escaneo ha sido de 10 mm
s
, se ha realizado sobrescritura y se han utilizado 5

potencias: 22, 19, 16, 13 y 10 mW. Para la segunda de las fabricaciones se utilizó una velocidad

de escaneo de 1mm
s

y se seleccionaron 6 potencias: 22, 20, 18, 16, 14 y 12 mW. La primera de

las fabricaciones no salió como se esperaba por dos motivos, en primer lugar solo se grabaron

fragmentos de 3 de las 5 potencias y en segundo lugar se generaron muchos nanocracks durante

el grabado; por estos motivos no se pudieron extraer muchos resultados.

El primero de los resultados que hemos podido observar es un cambio anisótropo al grabar la red,

pues solo transmite luz polarizada verticalmente. También hemos visto que para las potencias

más altas el cristal se empieza atacando con más velocidad, pero que estas acaban llegando a la

saturación de modificación mucho antes que las potencias menores. Hemos ajustado los datos

de la segunda de las fabricaciones a una función de difusión, obteniendo que tipo de difusión

sigue el ataque qúımico dentro de los poros en función de la potencia. Hemos concluido que al

principio todas las potencias siguen una difusión Browniana, y que después las potencias más

intensas pasan a tener una difusión subdifusiva y las menos intensas una superdifusiva. Para

finalizar, se mencionan algunas de las mejoras que se pueden realizar en los experimentos y

algunos proyectos que se quieren realizar en un futuro.

Palabras clave: Nanolitograf́ıa 3D, Red de Difracción Sublongitud de Onda, Ataque Qúımico,

Distribución de difusividad
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Abstrat

In the present work, diffraction gratings will be fabricated using a relatively recent method

called 3D nanolithography. This consists of, by means of a femtosecond laser, engraving on a

crystal the structure we want. This crystal is then subjected to a wet chemical etch leaving pores

in the crystal in the form of the previously engraved structure. In our case, being a diffraction

grating, we will engrave horizontal lines on the crystal. We want to obtain a diffraction grating

whose efficiency in the first order of diffraction is almost 100%, for this we will be based on

various works already done to choose the manufacturing parameters. A total of two diffraction

gratings have been made, both with grating parameter Λ = 0.0005mm and with a repetition

rate of 1MHz (pulses per second). In the first one its scan speed has been 10 mm
s
, overwriting

has been performed and 5 powers have been used: 22, 19, 16, 13 and 10 mW. For the second of

the fabrications, a scan rate of 1mm
s

was used and 6 powers were selected: 22, 20, 18, 16, 14 and

12 mW. The first of the fabrications did not come out as expected for two reasons, firstly only

fragments from 3 of the 5 powers were etched and secondly many nanocracks were generated

during engraving; for these reasons not many results could be extracted.

The first of the results that we have been able to observe is an anisotropic shift when the lattice

is engraved, as it only transmits vertically polarized light. We have also seen that for the higher

powers the crystal starts attacking faster, but that these end up reaching modification saturation

much earlier than the lower powers. We have fitted the data from the second of the fabrications

to a diffusion function, obtaining which type of diffusion follows the chemical attack inside the

pores as a function of power. We have concluded that at the beginning all the powers follow a

Brownian diffusion, and afterwards the more intense powers become subdiffusive and the less

intense ones a superdiffusive diffusion. Finally, we mention some of the improvements that can

be made in the experiments and some projects that we want to carry out in the future.

Keywords: 3D Nanolitography, Diffraction Grating Wavelength Sublength, Chemical Attack,

Diffusivity Distribution
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1 INTRODUCTION

1 Introduction

Esta sección comienza explicando los oŕıgenes de las redes de difracción, descubiertas primero

en la naturaleza y diseñadas después por el hombre. También se discuten los tipos de rejillas

que existen en la actualidad y algunas de las formas en que se clasifican. Se mencionan algunos

de los métodos utilizados para crearlas, aśı como algunos de los muchos usos de las redes de

difracción en la actualidad. También se mencionan los objetivos que queremos alcanzar durante

este trabajo.

1.1 Motivation and applications

The first diffraction grating was created in 1673 by James Gregory, at that time, it was already

known about the colors that compose white light because the gratings were built a few years

after Isaac Newton’s experiment with prisms. The first diffraction gratings were things that

we can find in nature such as bird feathers, butterfly wings or some precious stones. The first

man-made diffraction grating was built in about 1785 by David Rittenhouse who inserted hairs

between 2 firmly screwed screws. From that time until now, gratings have been evolving little

by little thanks to new technologies and manufacturing processes and will continue to do so

in the coming decades. To put it simply, a diffraction grating consists of a periodic structure

that is capable of diffracting light in different orders, both in transmission and reflection. In

the section 2.2 we will discuss in more depth how these curious structures work.

Figure 1: Classification of different diffraction grating [1]

As can be seen in the Figure 1,

a great diversity of techniques

for making diffraction gratings

have been developed over

time. Nowadays, gratings

can be classified according to

their principle of operation

(whether they diffract light in

transmission or in reflection),

according to the material

of which the grating is

composed and according

to the lithography technique used. We should also not forget that there are gratings that are

created inside the material, these will be the volume gratings; and gratings that are created

on the surface, these will be the surface gratings. For this project, highlighted in purple in the

image, we will focus on making diffraction gratings using an innovative method called 3D laser

nanolithography gratings. This technique consists of writing your grating using a femtosecond

laser inside a crystal (for this project we will use Yttrium Aliminium Garnet, which we will

refer to as YAG), therefore we will obtain a diffraction grating in the volume. In particular

1



1 INTRODUCTION 1.2 Objectives of the project

we will focus on creating subwavelength gratings, as these under certain conditions will be

able to transmit almost all the received intensity to the first order of diffraction, as we will see

below.

Diffraction gratings are used in many fields of physics. They are necessary in spectroscopy, to

acquire the spectra of a sample or a star, and they can also be used to make optical filters as well

as to amplify the intensity of ultra-short pulses of lasers, among many other applications.

In summary, it is essential to find new ways of making diffraction gratings, which should be

very durable and with high resolution.

1.2 Objectives of the project

The main objectives of this project are to expand the knowledge acquired in the course

on diffraction gratings, to build the second harmonic setup and to build gratings using the

innovative technique of 3D laser nanolitography gratings. Then, the diffraction gratings will be

studied to see if they are in agreement with the simulations made by Alfredo Casanovas Melián

in his TFM [1]. Finally, we want to study what happens inside the nanopores during chemical

wet etch, so we will fit the data obtained to a diffusion function and see what kind of diffusions

occur.

2



2 THEORETICAL FRAMEWORK

2 Theoretical Framework

En esta sección se van a introducir los fundamentos teóricos necesarios para poder entender

el trabajo a leer. En primer lugar, se empieza hablando sobre el experimento que realizó

Grimaldi el cual fue uno de los primeros en poder apreciar el fenómeno de la difracción. Después

introduciremos el principio de Hyudens el cual nos permite predecir la forma geométrica que

tendrá un frente de ondas con el tiempo. En tercer lugar, hablaremos sobre las interferencias,

uno de los fenómenos claves para entender el funcionamiento de una red de difracción. En

cuarto lugar, hablaremos, por fin, del fundamento f́ısico detrás de una red de difracción, el cual

consiste en que cuando un haz de luz incide sobre una estructura periódica de rendijas se crean

frentes de onda en ellas, estas nuevas ondas producirán interferencias y crearán un patrón.

Podremos ver que se crearán órdenes de difracción tanto en reflexión como en transmisión y

que estos van a depender tanto de la estructura de la red, como de la longitud de onda que

tenga nuestra onda incidente. Después veremos que hay distintos tipos de redes de difracción en

función de como sea su parámetro de red, y estas son las redes de órdenes altos, las de órdenes

bajos, las sublongitud de onda (con órdenes de difracción) y las sublongitud de onda (con solo el

orden m= 0). Luego se hablará sobre el ángulo de Littrow, el cual es un ángulo donde se puede

hacer máxima la difracción para un orden en concreto. En último lugar, dado que las redes de

difracción se fabrican mediante ataque qúımico, el cual produce la difusión de un ácido dentro

del cristal en las zonas irradiadas, se han ajustado los datos a un proceso de difusión. Por tanto,

se hablará del movimiento browniano, aśı como de las distintas distribuciones que encontramos

en función del coeficiente α las cuales serán superdifusiva (α > 1), normal o Browniana (α = 1)

y subdifusiva (α < 1).

2.1 Introduction to diffraction

Before explaining what a subwavelength diffraction grating is, I would like to give a brief

introduction to how a diffraction grating works.

Figure 2: Grimaldi’s experiment [2]

Diffraction is the distortion or variation in the direction

of wave propagation when it encounters an obstacle

that has dimensions comparable to its wavelength. This

phenomenon not only occurs in diffraction gratings but

also in nature, where it can be found in events such

as rainbows, halos around point sources of light, such

as around the Sun or the Moon, and bird feathers. As

told in [2] Grimaldi in 1648 made an experiment where

he made sunlight pass through a perforation made in a

cardboard. In this experiment he not only noticed that the beam of light became larger but

also that lighter and darker stripes were created (actually colored because he did it with a white

light source). This phenomenon could not be explained until Fresnell related it to the wave

3



2 THEORETICAL FRAMEWORK 2.1 Introduction to diffraction

theory. This is a very simple experiment but it allows us to see the phenomenon of diffraction

in a very simple way.

Before explaining in depth what a diffraction grating is, it is essential to explain Huygens’

principle.

2.1.1 Huygens’ Principle

The Huygens principle provides us with a geometrical model to predict how a wave front of

a known wave will move. It assumes that each point of a primary wave front produces an

emitting focus of spherical secondary waves that have the same frequency as the previous ones.

These propagate in all directions and with the same velocity as the primary wave for each of

the points.

Figure 3: Huygens’ Principle
[3]

Now suppose that we want to calculate the new wave front of the

line AB shown in 3 when a time t has elapsed, and supposing

that the waves propagate at a velocity v. The first thing we have

to do is to place different focuses of emission of waves (the blue

and red dots), from these points we will suppose that a circular

wave propagates. Then, to represent this circular wave we will

draw a circle with radius v·t, because this is the distance that

the wave has traveled in a time t, taking as center the supposed

focus. If we take infinite focuses in the wave front AB we will

obtain a new wave front A’B’ shown in the Figure 3.

Now suppose that we pass a beam of monochromatic light (with

a single wavelength) through a hole that has a size less than or

equal to its wavelength. The light will propagate until it hits the slit, in this slit the light will

only be able to create an emitting focus in the hole of the slit, therefore the light will change

direction forming what is known as diffraction.

A focus is a point emitting plane waves in all directions and the geometric figure formed by

joining all the points in phase of the emitted waves is known as a wave front.

2.1.2 Interferences

When two waves collide with each other, what is known as interference is produced, this

phenomenon consists in the addition of the waves algebraically. We will say that a constructive

interference has occurred when the waves are in phase and therefore their amplitude increases.

We will say that two waves are in completely destructive interference when the waves are in

opposite phases, i.e. when the amplitude of one increases, the other decreases. We will say

that the waves are partially destructive interference if the waves are not in phase.

4



2 THEORETICAL FRAMEWORK 2.2 Diffraction gratings

2.2 Diffraction gratings

Once we know what diffraction is and how it is generated, we can talk about what a diffraction

grating is.

Figure 4: Diagram of a
diffraction grating [4]

A diffraction grating is a periodic structure formed by a

series of grooves placed side by side, it is periodic because

all of them are separated by a fixed distance d. To explain

well the functioning of a diffraction grating, we will use the

Figure 4 extracted from [4]. As we know, a wave front is a

geometric figure that joins all the points that are in phase

of the different waves, so in the image we find wave fronts

of minima (in blue) and wave fronts of maxima (in red).

Now suppose that we emit a beam of monochromatic light

towards two slits at a distance d from each other, whose size

is less than or equal to the wavelength of the incident wave.

As we know, by the Hyugens principle, two wave emitting

focuses will be created in the center of the two slits. These waves created by the two new

focuses will interfere with each other creating constructive interference (at the points where

two red lines cross), completely destructive (when the red and blue lines cross) and partially

destructive (at the rest of the intermediate points). If at a certain distance we put a detection

screen we will be able to see the interference pattern, which is based on different peaks of

maximum intensity which will be known as diffraction orders.

As we have seen in the introduction there are basically two types of diffraction gratings:

transmission and reflection gratings. As the name indicates, transmission diffraction gratings

diffract when light is transmitted and reflection diffraction gratings diffract when light is

reflected.

Figure 5: Schematic diffraction grating [1]

In Figure 5 we can see on the left a scheme of how light diffracts as well as the parameters of a

5



2 THEORETICAL FRAMEWORK 2.2 Diffraction gratings

diffraction grating, and on the right we can see the transversal plane of the grating schematized

indicating refractive indexes.

In the image on the left we can see how a plane wave, with wave vector
−→
k i (in red), is incident

on a diffraction grating, diffracting as a sum of plane waves in different orders of refraction

expressed as m. In these diffracted waves we will have those that are transmitted (with wave

vector
−→
k t in purple) and those that are reflected (with wave vector

−→
k r in green). The angle at

which our plane wave is incident is expressed as θi, and the angles at which the different orders

exit show as θr,m for those reflected, and θt,m for those transmitted. We will call the grating

period or ”pitch” the Λ parameter which later will be of vital importance. The lattice height

is assigned the letter H and the thickness is assigned the letter W. Diffraction orders can be

predicted using the equations 1 for transmission and 2 for reflection.

nr · sin(θr,m) = ni · sin(θi) +m
λ0

Λ
(1)

nt · sin(θt,m) = ni · sin(θi) +m
λ0

Λ
(2)

These equations can be used for any diffraction grating, although they cannot predict things

like the intensity of each order or the polarization.

If we now focus on the image on the right of the Figure 5 we can see that a diffraction

grating is basically composed of four refractive indices. We will have a material with a high

refractive index, nH ; a material with a low refractive index, nL, then we will have the materials

surrounding the lattice in which we will have the cover nC and the substrate nS. In our case

nL = nC = nS = nY AG and nH = 1 because the diffraction grating is composed of air pores

inside the YAG crystal.

We will define the diffraction lattice filling factor (FF) as FF = l
Λ
where l will be the pore

width and Λ the lattice constant, i.e. how far apart the pores are engraved.

We can relate the refractive indexes shown in the equations 2 and 1 and 5 using the equalities:

ni = nr = nC and nt = nS.

As mentioned before, choosing the Λ value is fundamental when constructing diffraction

gratings, because when this parameter decreases, so will the diffraction orders in both

transmission and reflection. In the equation 3 we see defined the diffraction index for a

diffraction grating, this index can only be used in subwavelength diffraction gratings, where Λ

is smaller than the wavelength.

navg =
√

n2
H · FF + n2

L · (1− FF ) (3)

According to our reference [1] we can predict the diffraction order at which a lattice will arrive

6



2 THEORETICAL FRAMEWORK 2.2 Diffraction gratings

using the equations 3, 2 and 1 and imposing the condition |sin(θm)| > 1. Consequently we can

distinguish four types of behaviors in the diffraction gratings, which can be seen represented in

Figure 6.

Figure 6: Types of diffraction gratings. The one studied in this TFG is highlighted in red
(considering navg > ni) [1]

Where λ0 is the wavelength of the incident wave in vacuum.

In Figure 6 we can see that if the Λ >> λ0

ni
then we will have a large number of diffraction

orders in both reflection and transmission obtaining a ”High Order Grating”. Reducing a little

the difference between both coefficients we will obtain what is known as ”Low Order Grating”.

When λ0

navg
< Λ < λ0

ni
we will have a subwavelength grating. In this case the grating can be

designed to have no reflection and have a single diffraction order. If Λ < λ0

navg
then only 0th

order propagates, so no light is diffracted.

Figure 7: Diffraction
grating under Littrow
configuration [1]

We will say that the transmission for an order m is maximum when

the system is working under the Littrow configuration or Littrow

mounting. This configuration will happen when we have θLitt =

θi = −θr,m, in the equation 4 we see how the Littrow angle can be

calculated.

θLitt = asin(−m
λ0

2 · Λ · ni

) (4)

Where ni is the refractive index of the incident medium, lambda0

is the incident wavelength, Λ is the lattice constant and m is the

diffraction order. We are particularly interested in the order m= -1,

so looking at the Figure 7 we obtain the relations θi = −θr,−1 =

−θt,−1.

Since diffraction gratings are fabricated by chemical etching, which produces the diffusion of an

acid inside the crystal in the irradiated areas, the data have been fitted to a diffusion process.

It is therefore of vital importance to introduce the concept of diffusivity.

7



2 THEORETICAL FRAMEWORK 2.3 Diffusivity

2.3 Diffusivity

Brownian motion, discovered by the Scotsman Robert Brown, is the random motion observed

in particles in a fluid medium as a result of collisions with the molecules of the fluid. Einstein in

one of his works formulated the diffusion equation of Brownian particles, which relates the mean

square displacement of a Brownian particle with its diffusivity constant and time. Obtaining

the equation D = lim
t→∞

<x2(t)>
2·t

The diffusion process occurs when a group of particles move from a region of high concentration

to an area of low concentration until a uniform distribution is obtained. These are subject to

Fick’s laws. Diffusion is often described by a power law that takes the form of the equation

5.

x2 = 2 ·D · tα (5)

Figure 8: Variance versus
time

We will find a normal or Brownian diffusion when α = 1,

this indicates that this process will be governed by a Gaussian

probability density function whose variance will grow linearly

with time. We can also find that the process does not have a

linear relationship with time, these types of processes are known

as anomalous diffusivity. We can find two types of anomalous

diffusivities, when α > 1 we will have a superdiffusive process

and when α < 1 a subdiffusive one. In Figure 8 we can see a

representation of the three types of diffusivities.

8



3 METHODOLOGY

3 Methodology

En esta sección se va a explicar un poco cuál es la metodoloǵıa utilizada en este trabajo. Se

va a empezar explicando el setup del primer armónico que ya está montado en el laboratorio.

Este setup, el cual se aprecia en la Figura 9 fue en el que nos basamos para construir el setup

del segundo armónico, el cual se aprecia en la Figura 12. Una vez ya explicados los distintos

setups pasamos a explicar el proceso que se lleva a cabo para obtener nuestra red de difracción.

Estos pasos consisten en alinear el láser, pegar la muestra con esmalte, centrar la muestra,

poner el aceite de inversión, enfocar, calibrar la plataforma, escribir con el láser, pulir y por

último atacar. Después se explicarán las potencias con las que vamos a grabar en nuestras redes

de difracción y porque. Básicamente en [1] se realizan unas simulaciones donde se optimiza la

longitud y anchura que deben tener nuestros poros para tener una buena eficiencia de difracción

para el primer orden. Elegiremos un rango de esa simulación y buscaremos en [5] y [6] que

potencias debemos utilizar para hacer poros de ese tamaño. Después de explicar distintos

conceptos se explicarán los parámetros de fabricación utilizados para las dos fabricaciones

realizadas. Por último hablaremos sobre el experimento que se quiere realizar una vez fabricadas

las redes, el cual nos permitirá saber si hemos realizado las redes de difracción acorde a las

simulaciones.

3.1 Setup of the first harmonic

The laser we have in the laboratory can emit for two different wavelengths, depending on the

harmonic. For the first harmonic it emits radiation with a wavelength in the infrared range,

and for the second harmonic it emits in the green range. Before starting with the construction

of the setup of the second harmonic, which is one of our main objectives, we must understand

the setup performed in the infrared range.

In Figure 9 we can see a simplified schematic of the infrared laser setup.

Figure 9: Setup of the first harmonic
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3 METHODOLOGY 3.1 Setup of the first harmonic

To understand how the setup for the first harmonic works, we will follow the trajectory of

the light and we will explain the changes it undergoes. We start at the laser, which is the

point from where the light comes out. At this point the light comes out with vertical linear

polarization and with a wavelength of 1030 nm. Then the light beam meets a polarizer film,

which reflects only 20% of the light that initially arrives and the rest is transmitted. Then

we find three dielectric mirrors which are responsible for reflecting the light to the half-wave

plate, it is important to have a good number of mirrors to guide the light so the number of

degrees of freedom increases allowing us to align the laser more easily. The half-wave plate is

placed inside a digitized rotor, which allows us to control how much the plate is rotated with

respect to the vertical. We know that as it passes through the half-wave plate the polarization

will still be linear but it will acquire the same inclination as we have set the plate. Then we

will find a linear polarizer placed vertically, so that it will only let pass a part of the beam

that reaches it, since the polarization will arrive diagonally due to the average lambda sheet.

So, if we call P to the initial power that reaches the laser, and the beam arrives with a lineal

polarization rotated at an angle of α with respect to the vertical, the linear polarizer will only

let pass a power P · cos(α). Thus we can control the power with which we write on the crystal

by simply rotating the angle of the middle lambda plate. Then we can find a shutter which

can be controlled digitally, it allows us to let the light beam pass or not. Then we find a

beam expander, which as its name suggests is responsible for expanding the beam, followed

by two dielectric mirrors to guide the beam. Then we will find a lambda-quarter plate that

will be in charge of passing the polarization from linear to circular. Then we see a dichronic

mirror which reflects light in one direction and transmits it in the other. All these elements are

optimized for the infrared range, for example the mirrors will be dielectric being half invisible

to visible light but reflecting almost 100% of the incident light in the infrared. Then we find

a microscope objective, this will allow us to focus the laser inside the sample. To focus it, the

camera attached to the optical microscope will be used. It should be noted that the platform

where the sample is placed is completely digitized and can be moved by the computer in the

three axes (x, y and z).

In Figure 10 we can see part of the setup of the first harmonic assembled in the laboratory.
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Figure 10: Setup of the first harmonic (infrared)

3.2 Construction of the second harmonic setup

Once the elements contained in the infrared setup and their operation are known, it is time

to build the second harmonic setup. The theoretical basics will be more or less the same as

for the first setup, with the difference that the elements will now be optimized for the 515 nm

range, which is the wavelength of the second harmonic. In the Section 3.2.1 we will go into

more detail on the materials that have been purchased.

3.2.1 Materials

In Figure 11 we can see all the materials that will be used to assemble this setup.

Figure 11: Materials used to assemble the green laser setup.

1. Supports Mounts are used to place optical objects in place. These have a magnetized

base to make it more difficult to move them accidentally once they are in place, but they

can be moved with some ease.
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3 METHODOLOGY 3.2 Construction of the second harmonic setup

2. Mounts The mounts are used to hold the optical elements, specifically we will use them

to place the dielectric mirrors. These mounts are placed on top of the brackets by means

of a thread.

3. Polarizer Support Once the linear polarizer is placed inside the mount, we will proceed

to screw it with the support.

4. Screws The screws are used to place the different optical elements in the mounts.

5. Mobile mount One of the dielectric mirrors will be placed on this mount. The

particularity of this mirror is that it can be moved to one side allowing to change the

optical axis on which it is working.

6. Polarizer Mount The lineal polarizer is placed inside this mount.

7. Dielectric mirrors These dielectric mirrors reflect from 400 to 750 nm so they will

perfectly reflect the 515 nm second harmonic.

8. Fasteners These are used so that once the position of the optical object has been decided,

it can be fixed to the work table and can no longer move.

9. Clamps They are placed in the silver part of the brackets and are used to be able to

remove some optical element from the black bracket so that the height is saved.

10. Half-Wave Plate (λ
2
) As mentioned in section 3.1 it is responsible for rotating the lineal

polarization of the laser beam.

11. Quarter-Wave Plate (λ
4
) It is responsible for switching from linear to circular

polarization.

12. Back Side Polished This is a special dielectric mirror that only allows light to be

transmitted in one direction and reflects in the other.

13. Linear Polarizer It is responsible for allowing only vertically polarized light to pass

through.

3.2.2 Scheme

In the following figure we have made a scheme of how we plan to build the second harmonic

set up.

As can be seen, the setup of the first harmonic has been interspersed with that of the second

harmonic, since we have to continue using the same shutter and beam expander. We can see

that it is decided whether to engrave with one or the other a movable mirror located between

the middle lambda plate of the first setup and the shutter. The physical basis is exactly the

same as explained in the section 3.1 with the exception that now the lambda media plate has

to be rotated manually, since no support has been set up to digitize its rotation. Also, as the

path is longer, more mirrors have had to be placed to reach the shutter properly.
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3 METHODOLOGY 3.3 Fabrication of a diffraction grating

Figure 12: Esquema setup segundo armónico

3.3 Fabrication of a diffraction grating

In this section we will summarize the steps that have been followed to obtain the diffraction

grating and the reasons for each of these steps.

3.3.1 Laser alignment

The first thing to do to start manufacturing is to align the laser. To do this, phosphorescent

plates with a hole in the center are used.

3.3.2 Glue the sample with enamel

Figure 13: Crystal
glued to the slide

In order to be able to manufacture the sample well, it is crucial that

it does not move during the writing process. The supports of the

platform where the lithography is carried out are the size of a slide,

therefore, a much larger size than the size of the samples to work with.

As the sample is much smaller than a slide, it is essential to glue the

sample with enamel in order to start the fabrication of the diffraction

grating. It is only necessary to place two small drops of enamel, one

at each end of the crystal to fix the sample. Before proceeding with

the rest of the steps, it is very important to wait a few hours until the

enamel is completely dry, otherwise we run the risk of the crystal moving while the engraving

is being done.
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3 METHODOLOGY 3.3 Fabrication of a diffraction grating

3.3.3 Place the sample on the platform and center it

Once the sample is dry (it is not necessary that it is completely dry, although it is advisable)

we will proceed to place the sample on the platform where the fabrication is going to be done.

First we will place it leaving the screws used to fix the sample a little loose, so that the sample

cannot move by mistake but the position can be modified manually. Once the crystal is placed

we will look through the optical microscope to make sure that the sides of the crystal are

straight. If they are not, the sample will be moved manually until they are completely aligned.

Once the desired position is obtained, the sample is fixed definitively to the platform. This step

is very important, because if the crystal is not straight we will start to record the diffraction

grating outside the crystal.

3.3.4 Immerse the sample in reversing oil

Our microscope has a very high numerical aperture (NA) of 1.4NA, to achieve this it is crucial

to place the immersion oil between the sample and the objective. Without oil, the medium

between the objective and the sample is air allowing a maximum numerical aperture of 0.9NA,

so for higher NAs it is necessary to place a higher index medium between the sample and

the objective, either water or oil can be used. We are looking for the highest possible optical

resolution, so we are forced to use the highest NA objective available on the market. At the

same time this objective has correction for spherical and chromatic aberration.

3.3.5 Focus

Focusing is one of the simplest steps, but also one of the most time consuming. To focus we

must look inside the crystal, then we will move the microscope objective in the z-axis until we

see through the camera on top of the microscope, a focused point.

3.3.6 Calibration of the sample platform

To calibrate the platform we will use the camera. We know that, if the focus is well done,

when pointing at the sample we will see a sharp point, so it should be sharp at all points of

the crystal.

First we will place ourselves on one of the edges of the crystal and define our point x=0, y=0

and z=0. This point will be our origin of coordinates and we will call it O (Figure 14a). Once

we have defined our point O in the computer, we will focus the laser as well as we can on our

origin. Let’s suppose that we first want to level the platform on the x-axis. The first thing

we will do is to move a very small distance on that axis, we will call this distance ∆x. In

the Figure 14b we can see in a schematic way the steps that will be done. Our objective is

to find the angle of inclination, which in this case is represented by the Greek letter α. If the

platform is tilted when moving laterally over the sample we will see how the laser goes out of

focus. Once in the position ∆x we are going to move little by little the microscope objective

until we see that the laser is focused again. As the microscope objective is digitized we will

be able to know how much the vertical axis has moved, therefore we will be able to obtain
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the value of ∆z. Once we have the two values, we are going to calculate the value of α using

the expression α = arctan(∆z
∆x

), which we can obtain by observing the Figure 14b. Once the

angle is obtained, we only have to multiply it by a coefficient (different if the angle is positive

or negative) which will convert our angle into lines that we have to move from some wheels

located on the platform. For the x-axis we must move the wheel with the letter H and for the

y-axis the wheel with the letter M. Once the lines are moved, we will focus the focus on the

ends of the sample and we will repeat the same process but now taking a ∆x higher than the

previous one. We repeat this until the platform is already leveled. Once the x-axis is level we

repeat the same but now taking a ∆y.

(a) Coordinate origin (b) Profile view of the platform

3.3.7 Engraved

Once the previous steps are done, we can start engraving our diffraction grating to the YAG

crystal. To do this, we will make use of a code that will control the laser automatically doing

what we want it to do. We will go into a little more detail on how to write the codes for the

laser to work, and in the appendix you can find the two codes that we have used to make the

two fabrications.

When we do lithography with the femtosecond laser, we produce a deformation in the crystal

lattice of the material. To make it clearer, let’s look at the Figure 15. In the figure on the

left (15a) we can see a 2D schematic of what would be the crystal lattice of our sample (very

simplified). When the laser is shone on, the atoms are displaced, leaving something like what

we see in the Figure 15b. As can be seen, the red atoms are the ones that have been forced

to move because of the laser. This deformation of the crystal lattice will generate stress on

the material. If at some point any of the blue links between the black and red atoms breaks

(because it has reached the limit of stress it can withstand) we will have what is known as

nanocrack. We must imagine the crystal lattice as an elastic structure, so that once the bond

is broken, the accumulated stress will be released and the crystal structure will return to its

original shape.
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3 METHODOLOGY 3.3 Fabrication of a diffraction grating

(a) Pre-laser crystal lattice (b) Post-laser crystal lattice

Figure 15: Crystalline lattice before and after laser treatment

Figure 16

There are certain aspects to be emphasized before moving on to the next step.

First of all, the diffraction grating is going to be engraved in the volume and

not on the surface. And then, for our diffraction grating, nanotracks will be

engraved on the crystal as shown in the Figure 16, i.e. the lines will be engraved

horizontally and leaving a certain distance to the edge. The distance between

lines and some parameters of the diffraction grating are specific for each of the

fabrications, so they will be specified later.

3.3.8 Polishing

Once the diffraction grating has been engraved on the crystal, the sample must be polished.

When you engrave a crystal, you do not start engraving it from the end, but you do it a few

microns further inward. For the diffraction grating to be visible, it is essential to attack the

scratches that have been engraved and we need the solution that will do the attack to enter

into the pores. If we did not do this, there would be no way for the attack solution to enter the

pores, since the grating is engraved in volume and not on the surface, there would be no way

to access it.

Figure 17:
Polishing machine

To perform the polishing, we use an electric polishing machine that we

have in the laboratory, which can be seen photographed in the image 17.

This device performs its function by rubbing diamond papers (or paths)

of different roughness on the surface of the sample to be polished. In the

laboratory we have paths with different thicknesses and colors, we have

the 30mm (green), 15mm (red), 6mm (pink), 3mm (light pink) and 1mm

(white).

The following sequence has been followed when polishing:

8 min → 30 µm (5 lines)

8 min → 15 µm (4.5 lines)

10 min → 6 µm (2.5 lines)
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11 min → 3 µm (Almost 2 lines)

7 min → 3 µm (not even 1 lines)

5 min → 1 µm (not even 1 lines)

As we can see, we start with the ones that have a higher roughness. This is done because

these are the ones that wear the material faster. At first, you start with a material with many

inequalities, when polishing with the 30 µm path, the material wears out and you get a uniform

roughness in it, although not the desired one, because the material still has some roughness

because the path is not very fine. A progressive descent is made because perhaps the 1µm path

would take hours to polish all the roughness that the 30 µm path leaves us, since this one wears

the material very slowly.

3.3.9 Chemical attack on the diffraction grating

It is known that when a crystal structure has suffered a distortion of its crystal lattice, it is

much easier to dissolve this part of the crystal. The crystal in its original state is attacked a

few nanometers in hours, however when it is subjected to the stress produced by the laser, we

see that this changes, attacking a few micrometers per hour. During the attack it is necessary

that the particles generated inside the pores by the reaction, such as aluminum, are expelled

from the pore in order for the attack to continue moving inward. Therefore, what we achieve

during the attack is to empty the pores that we have previously engraved, leaving air ducts

inside our crystal and obtaining our diffraction grating.

In these two fabrications we have carried out two types of attacks. The one that we will call

standard attack, since it is the one that has always been performed in the laboratory, and then

another type of attack. The only thing that changes between the two attacks is the type of

dissolution and the method used to clean the pores.

The process to enhance an attack is very simple. First we put the sample in the oven at a

temperature of 100ºC, so that the material will expand and the pores will become smaller.

When the crystal is already hot, we put it immediately in the solution, so that the crystal cools

inside the mixture, expanding its pores and producing that more amount of attack solution

enters inside the pores. And with that, we would already have the crystal attacking.

For the standard attack the solution in which we will put the mixture will be of:

35mlH3PO4 + 65mlH2O

One of the possible reactions that will occur within the pores is given in [7] and has the following

form:

Y3Al5O12 + 8H3PO4 → 3Y PO4 + 5AlPO4 + 12H2O

We will put this solution on a heating plate with a magnetic stirrer. By heating the mixture
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we are going to make it less viscous so that it can go deeper into the pores and the magnetic

stirrer is used to constantly move the solution so that all the remains produced by the attack

inside the pores come out.

For the second type of attack, the following mixture was used:

30mlH2SO4 + 30mlH3PO4 + 60mlH2O

And this time the mixture will not be heated as we will use an ultrasonic bath to remove the

attack remains from the pores.

3.4 Manufacturing

3.4.1 Work results

(a) λ0= 1070nm, Λ= 700 nm and θLitt= 24.9º (b) λ0= 800 nm, Λ = 500 nm and θLitt = 26.1º

(c) λ0= 500 nm, Λ = 300 nm and θLitt = 26.9º (d) Colour scale

Figure 18: Colourmaps of optimized pore sizes, in which its diffraction efficiency (at first
order in transmission) is maximum

In Figure 18 we can see the results obtained in some simulations performed in [1]. We are

looking for our grating to have a very high diffraction efficiency, i.e., that almost all the initial

intensity of our laser (which is a monochromatic beam) is diffracted in the first diffraction order.

That is, to make that a diffraction grating has the maximum efficiency, it is not enough only to

diffract the light in the angle θlitt but also, depending on the length and width of the written

pore, the gratings will have different efficiencies in transmitting light.
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We specifically want to try to make a very high efficiency diffraction grating with a lattice

period of Λ= 500, so we are only interested in the Figure 18b. This simulation, as shown in the

caption, is optimized for a laser with λ0 =800 nm and an angle of θlitt = 26.1º. We are going

to take a range of height and width and, from there, we will select different points that are in

or close to a zone of maximum efficiency. We will cover a range of pore widths from 150 nm to

350 nm and for the heights we will go from 500 nm to 1200 nm.

(a) Pore Cross-Sectional Size vs Power [5]
(b) Pore Cross-Sectional Size vs Pulse Energy
[6]

Figure 19: Pore size as a function of power/energy of the pulse

For the Figure 19a we can see different pore sizes depending on the power selected. We can see

that for this graph, the range that corresponds to the previously selected invervals is from 13

mW to 23.5 mW in width and from 13.5 mW to 25 mW in height. We can see that the ranges

in width and height do not cover the same powers but they are close, which is very beneficial

to make our diffraction grating.

For the second of the graphs 19b we see that the intervals change. We have a write speed of 1
mm
s

and a repetition rate of 1MHz. This graph is plotted as a function of pulse energies, unlike

the previous image. As we in the laboratory can only control the power, we will calculate the

powers. The formula that relates the pulse energy in nJ with the power in mW is given in 6

where f is the repetition rate.

P (mW ) =
Ep(nJ)

106
· (f(KHz) · 1000) (6)

Substituting, we obtain that Ep (nJ) = P (mW). Then, for this figure, the optimum ranges

selected go from 6 to 11 mW for the width and from 7 to 16 for the height. We can see that

the difference between both ranges is quite remarkable, since for the pore height we have 10
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powers in that interval and for the width we only have 6.

Finally, it has been concluded that the gratings will be manufactured using powers ranging

from 10 to 22 mW.

3.4.2 First manufacture

For the first of the fabrications we have used a fragment of a YAG crystal that had already been

used by my colleagues who are doing another TFG with the same tutor. For this reason, in

some images we can see structures that do not correspond to that of a diffraction grating.

To operate the laser we use a code, which can be seen in its entirety in Annex 1, in this section

I will limit to explain what the code does.

The objective to make a diffraction grating is to engrave horizontal lines all over the crystal,

although we cannot start engraving from the end of the crystal because it would form cracks, so

we always start engraving a little more to the center. This is the reason why we have to polish

the sides of the sample, because when you start a little more to the center the pores are covered

by the crystal, and to attack them, it is crucial that the pores are exposed. In this fabrication

we are going to engrave lattices with five different powers, these will be 22 mW, 19 mW, 16

mW, 13 mW and 10 mW. The lines that we will engrave in the grating will have a length of

4.47 mm, and we will engrave 3200 lines for the same power, separating 0.0005 mm between

them (this will be the grating constant Λ), therefore, we will have diffraction gratings of 1.6

mm. The engraving speed has been 10 mm
s

and overscan has been performed. The overscan

consists of first engraving from right to left and then passing through the same line in the

opposite direction.

The depth at which the grating was engraved was 0.025mm from the surface.

As will be seen in the following sections, there have been problems when engraving the grating,

because, as the pores have been attacked, only certain regions of what would be the diffraction

grating can be appreciated. This has happened because while the diffraction grating was

engraved, the temperature of the laboratory has been varying, causing the focus to vary and

therefore the grating is not well engraved.

Actually, the lines in the diffraction grating are not engraved as a line, rather it is composed

of many dots that form a line. These dots are generated by femtosecond pulses which will

have a certain amount of energy depending on the power at which we are engraving. For the

fabrications, a repetition rate of 1 MHz was configured, i.e. 1 million pulses are emitted per

second.

Now, we are going to calculate the energy of each pulse as a function of its power. To do this,

we will start from the equation 6

Isolating Ep we obtain the equation that will allow us to calculate the energy of each pulse as
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a function of frequency:

Ep(nJ) =
P (mW ) · 103

f(KHz)
(7)

As the f in this case is 1000 kHz we obtain that Ep (nJ) = P (mW).

In order to be able to make a later study of the chemical wet etch rates as a function of pulse

energies and to be able to compare them satisfactorily, it is important to calculate the pulse

dose in the material.

The pulse dose in a material is the number of pulses per meter that a sample has. To easily

calculate the dose, we will start by calculating the pore spacing. To do this we will use the

equation 8

Pulseseparation(
mm

pulse
) =

SPEED(mm/s)

f(kHz) · 1000
(8)

For our case, the speed was 10 mm
s

and the repetition rate was 1000 kHz, obtaining that it is

0.00001 mm
pulse

, and therefore we will have a separation between pulses of 10 nm. If, for example,

we consider that the spot size is 600 nm this gives us that we have an overlap of 6 pulses.

Once the pulse spacing is known, it is easy to calculate the number of pulses in 1 meter.

Making a simple rule of three, we obtain that the pore dose is 108 pulses
m

. Since overscan has

been performed in this case, we will say that the dose is overwritten.

3.4.3 Second manufacture

For this second production we decided to change some things with respect to the first. This

time, instead of 5 powers, we will engrave using 6 powers, these were 22 mW, 20 mW, 18 mW,

16 mW, 14 mW and 12 mW. As the crystal this time was 9.8 mm long and 4.9 mm wide, we

changed the length of the engraved lines to 4.7 mm. The distance between lines and the length

of the diffraction grating were the same as in the previous fabrication, 0.0005 mm and 1.6 mm,

for each power. This time no overscan was performed, so one line was recorded in one direction

and the next one in the opposite direction. It is important to note that while the lattice was

engraved, two lines were made in a row without closing the shutter, leaving between the two

lines another line joining their right ends. This may result in an increase of cracks at the ends,

but as they have to be polished afterwards, this was underestimated. The scanning speed for

this fabrication has been 1 mm
s

unlike the previous fabrication which was 10. In this case, we

left a space of 0.04 mm between each power, so that it is much easier to distinguish them.

For this case, the repetition rate was also 1000 KHz. We can say according to the equation 7

that, as in the first fabrication, the Ep (nJ) = P (mW). That is, the power will be equivalent

to the energy of each pulse.

The separation between pulses will be different from the one for the first fabrication, since in
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this case the speed will be 1 mm
s
. Therefore, substituting in the expression 8, we obtain that

the separation between pulses is 0.000001 mm, i.e. 1 nm. Making a rule of three, we obtain

that the number of pulses in one meter, that is, the dose for this fabrication, is 109 pulses
m

.

The dose can also be set as a function of the pulse energies, this is done by multiplying the

dose value obtained by the pulse energy of each power. This gives us that the pulse energies

are 22 · 109 nJ
m
, 20 · 109 nJ

m
, 18 · 109 nJ

m
, 16 · 109 nJ

m
, 14 · 109 nJ

m
and 12 · 109 nJ

m
.

3.4.4 Diffraction angle measurement experiment

Figure 20: Diffraction efficiency according
to wavelength and angle used [1]

We know that the optimizations made in Figure

18b are designed for a laser with a λ0 = 800 nm

but our laser has a wavelength of λ0 = 1070 nm

(for the first harmonic). Therefore, for our laser

we could achieve a theoretical diffraction of 91%

(approximately) if we exceed the Littow angle by

4º more.
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4 Analysis and discussion of results

En esta sección se van a discutir los resultados obtenidos en la fabricación de las redes de

difracción. En primer lugar, discutiremos como han ido aumentando las longitudes de los

nanoporos a medida que atacábamos la muestra en nuestra primera fabricación. Como veremos

la primera fabricación no salió muy bien, pues no se grabaron todas las potencias y con el

paso de los ataques se ve la red de difracción muy dañada a causa de los craks, esto no nos

permitirá extraer resultados fiables. Después de la discusión de la primera fabricación pasaremos

a hablar sobre como han ido evolucionando las longitudes de los nanoporos para la segunda.

Concluiremos que las enerǵıas de pulso más intensas empiezan atacándose más rápido, pero

decae su ritmo de ataque con más velocidad. A diferencia de las potencias menores, las cuales

empiezan atacándose más lento, pero en los ataques finales son las que tienen mayores ritmos de

ataque. También estudiaremos lo que pasa dentro de los nanoporos durante el ataque ajustando

nuestros resultados a una función de difusión 5 y analizando los coeficientes que obtenemos para

cada una de las potencias.

As mentioned in the methodology, two diffraction gratings have been performed on YAG crystals

with the first harmonic of the laser we have in our laboratory.

4.1 First manufacture

4.1.1 Observation under the optical microscope before starting to attack

Figure 21: Position of the sample to
observe the pores

Before starting we must wash the crystal with

acetone, that is done to be able to see more clearly

the sample. In the Figure 22 we can observe

the images taken in the microscope, for it has

been placed the sample as it is appreciated in

the Figure 21. As is known, the pores of our

grating are lines separated by 0.0005 mm, so at

10x magnification only a long line will be visible.

In some images we can see the structures made

by a colleague [5] which are seen as 4 points in a

row. Using the different filters in our laboratory

optical microscope, we can observe how the optical properties of the crystal have changed as

our diffraction grating was engraved.

In Figure 22a we can see our sample without any filter, this type of image is called Koehler

and is made by putting the microscope in transmission, the numerical aperture equaling that

of the objective and the shutter open to the maximum.
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(a) Imagen Koehler (b) Scattering

(c) Scattering + Horizontal polarization (d) Scattering + Vertical Polarization

(e) Cross Polarized P1 (f) Cross Polarized P2

Figure 22: Images of the first manufactured volume diffraction grating

In the Figures 22b, 22c and 22d we can appreciate the scattering of our diffraction grating.

In the Figure 22c we can see that if we polarize the light horizontally the guide appears black

indicating that it does not guide light horizontally. On the other hand, we can see in the Figure

22d that it does guide vertically polarized light, since the grating is illuminated orange. This

means that the diffraction grating on the crystal has produced an anisotropic index change,

i.e., it transmits light in one direction but not in the other. In Figure 22b we see how the

scattering is seen in the diffraction grating without any polarization, as in these appear the two

directions of polarization together, we see that it guides light but not as much as in the vertical

polarization.
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In the Figures 22e and 22f we can see the sample in cross polarization, in this one the microscope

is still in transmission although 2 filters have been put in between, one of horizontal polarization

and one of vertical polarization. This type of image allows us to see the areas of the crystal

with stress, being shown more illuminated than the rest. In Figure 22e we can see that in

the beginning of our diffraction grating the crystal is under more stress than in the rest of the

grating. In Figure 22f we can see that the lattice is under more stress than the rest of the

crystal, i.e., when the laser is engraved on the crystal, the stress on the crystal increases and

thus the risk of nanocracks.

4.1.2 First Etch

For this first etch, we wanted to test the new attack mentioned in the section 3.3.9

The first attack lasted 174 minutes, approximately three hours. We can see in the Figures 23a,

23b and 23c that the pores have been attacked very little, so the new attack method used must

not be very efficient, so we are going to perform the attacks as usual. We can see in Figure

23a that many nanocracks have been produced, especially for the 22 mW power (the most

intense).

(a) Width P1, 39 px · 0,06737
µm/px = 2.63 µm

(b) Initial width P2, 56 px·
0,06737 µm/px = 3.77 µm

(c) Final width P2, 79 px ·
0,06737 µm/px = 5.32 µm

Figure 23: Microscope measurements of powers 1 and 2. Images taken with the 100x
objective.

4.1.3 Second Etch

For the second etch, the standard attack was used, as it has been found to be more

effective.

In Figure 24 we can observe four images of the first two powers taken with the microscope at

10x magnification. In the first three, we see the pore length of the first power, i.e. the one

with a pulse energy of 22 nJ and in the last one we see the second power of 19 nJ. If we look

closely at the figures 24a and 24b we can easily distinguish 2 attacked zones, one darker than

the other. The darker area is a region where cracks have been produced, preventing the correct

functioning of the diffraction grating, since light will not be transmitted through this region as

a diffraction grating would. This can be seen in the images shown in later attacks.
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(a) 22 nJ start (b) 22 nJ middle

(c) 22 nJ end (d) 22 y 19 nJ

Figure 24: Microscope measurements of the pulse energies of 22 and 19 nJ. Images taken with
the 10x objective..

The lengths obtained for the 2 powers shown in the images were 716.72 for the first (22 nJ)

and 281.08 for the second (19 nJ).

4.1.4 Third Etch

Figure 25:
Third Etch

For the third etch the standard etch was used again. The measurements of the

first 2 powers were taken with the help of the microscope, and with the Image J

[8] program we measured the length of the nanopores of the third power.

As mentioned before, the whole grid was not engraved, this is clearly seen in the

Figure 25 where only three fragments can be seen. In the bottom fragment we

find the 22 mW power together with a very small segment of the 19 mW power.

The middle fragment corresponds to the 19 mW power and the last one is part

of the 16 mW power. In the first of the power we see that there is a white region,

these are cracks that do not let the light transmit correctly.

Figure 26: Cracks enerǵıa
22nJ

To see the cracks more clearly we can look at Figure 26 which

shows an image of the first power under the microscope at 10x

magnification.

It can be seen in the figure on the right two areas, as discussed in

previous sections, the first area corresponds to the darker region

and the second to the lighter region. The first region is formed by
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internal cracks produced by the stress of the material, in this region the light is transmitted in

the way it wants because the cracks have damaged the entire structure that we have recorded.

In the second region we find pores without cracks, that is why in this area we can see the

transmission of our diffraction grating.

If we pay special attention to the two images we can associate the fragment shown in Figure

26 as the part where the cracks of the first power start to reduce their size. As can be seen the

cracks look white because they do not transmit the light in the way they should.

The measures obtained by measuring the different lengths in this attack, which lasted 69 h,

were 1351.37 µm for the 22 nJ power, 1015.58 µm for the 19 nJ power and 960.41 µm for the

16 nJ power. We see how the first of the powers is being attacked the fastest.

4.1.5 Fourth Etch

Figure 27: Fourth
Etch

This was also a standard attack and lasted approximately 100h.

In Figure 27 we can see how our diffraction grating looks like once the

sample of the fourth attack has been removed. Although in this image the

cracks are not as noticeable as in Figure 25 the cracks are still there, but

due to the illumination it may seem that there are not any more.

In this attack, a pore length of 1534.78 µm has been obtained for the 22

nJ pulse energy, 1419.73 µm for 19 nJ and 1480.52 µm for 16 nJ. We now

see that the third power has surpassed the second power.

4.1.6 Fifth Etch

The fifth etch was the last to be carried out, this was a standard attack and lasted 97h. Counting

the hours of attack we get a total of 290h.

Figure 28:
Fifth Etch

In Figure 28 we can appreciate how the crystal has looked like once all the

attacks have been carried out. To begin with, we can see that at the 22 mW

power, the two ends of the crystal have been joined, leaving the entire diffraction

grating attacked. Although it has been attacked completely, we can also see

that, in a large part of the network, the cracks have been attacked, preventing

the proper functioning of the lattice in that area. We can see that the crack line

of the first power has been leveled, i.e., the length of the cracks is approximately

the same throughout the power, unlike what we could appreciate in Figure 25.

The 19 nJ and 16 nJ pulse energies, although they have not attacked the

nanotracks completely, we can see that they have no cracks.

The pore distances finally obtained were 2036.22 µm for the 22 mW power,

1699.02 µm for the 19 mW power and 1773.52 µm W for the 16 mW power.
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4.2 Second manufacture

4.2.1 First Etch

In this first attack a standard attack has been made. The mixture used had already been used

in previous attacks, so the proportions are probably different from those mentioned in 3.3.9.

We have seen that pores of the same power have been attacked disuniformly, so values of these

lengths have been taken and plotted (Figure 29).

Figure 29: Pore attack length Figure 30: X and Y axes

As it may be a bit confusing that length vs. length has been represented, in Figure 30 it is shown

which are the x and y axes represented in Figure 29. We can see, in Figure 29, that the powers

that have been attacked more disuniformly are 22 mW and 20 mW, i.e., the most intense powers

have been attacked with more irregularity. The 18 mW and 16 mW powers have irregularities

but not as many as the first two. On the other hand, in the last two powers (14 mW and 12

mW) the pores have been attacked almost uniformly. Perhaps these irregularities are related to

the greater presence of cracks in the first two powers, these cracks have been generated because

the stress to which the crystal is subjected is greater as the power is higher.

In order to know the average lengths of the nanopores, the average was made excluding those

points where the distance was 0. These averages are represented in the first 3 powers by dashed

lines in Figure 29. The averages of the different attacks have been for the 22 nJ pulse energy

155.98 µm, for the 20 nJ 73.94 µm, for the 18 nJ 29.17 µm, for the 16 nJ 24.62 µm, for the 14

nJ 22.56 µm and for the 12 nJ 23.93 µm. We can see that in this first attack the higher the

power the longer the nanopore has been, except for the last power which has surpassed the 14

mW one.
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4.2.2 Second Etch

Figure 31: Pore attack length

For the second attack, the solution used

in the first attack was reused; by reusing

it so many times, the amount of water is

reduced, deviating us from the optimal

point of attack. The pores continued to

attack in a non-uniform way, as can be

seen in the Figure 31, especially those

of the two highest powers. The attack

lasted a total of 97 h.

The average lengths achieved by the

nanopores for this second attack were

1281.32 µm for the 22 nJ, 914.68 µm for the 20 nJ, 396.70 µm for the 18 nJ, 333.25 µm

for the 16 nJ, 347.19 µm for the 14 nJ, and 314.32 µm for the 12 nJ.

4.2.3 Third Etch

For the third attack we added attack solution to the mixture that was being used for attacking.

Therefore, the acid used for etching was diluted, making the mixture less viscous, even though

the mixture was not at the optimum etching point.

Figure 32: Pore attack length

This attack lasted 68 h and in Figure

32 we can see the attack lengths of

the different pores. This time the

microscope was not used to measure the

attack length, since the attack distance

was much larger than the microscope

aperture, making it difficult to take data.

To measure it more easily, the sample

was photographed (Figure 33) and then

the Image J application [8] was used to

calculate the distance of the pores.

Figure 33:
Third Etch

We can see that in both figures 32 and 33 the first power (22 nJ) has reached a

uniformity in the pore attack length, that perhaps means that this is the attack

limit of the first power and that going beyond that is going to be quite difficult.

In the second power we continue to find inequalities in the attack length, and

the other powers continue with fairly uniform lengths.

The attack lengths acquired in this attack number three (subtracting the distance

of this attack minus those of the previous one) have been 216.50 µm for the first

pulse energy (22 nJ), 475.87 µm for the second (20 nJ), 347.24 µm for the third
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(18 nJ), 297.24 µm for the fourth (16 nJ), 268.23 µm for the fifth (14 nJ) and 292.07 µm for

the sixth (12 nJ). We can see that the first power has the shortest attack length, which again

indicates that the 22 mW power is reaching its attack limit as predicted by the fact that the

lines of the first power had equalized. The attack lengths of the other powers have maintained

the same trend as in the previous attack, with the exception of the 12 mW power whose attack

length is longer than the 14 mW power.

The etch lengths shown in Figure 32 are the total lengths, i.e. adding the distances acquired in

the different attacks. It is for that reason that the first power still has a greater attack length,

since if we add the three attacks we are left with a distance of 1497.82 µm. The other powers

have a total length of 1390.55 µm the second (20 nJ), 743.94 µm the third (18 nJ), 630.49 µm

the fourth (16 nJ), 615.42 µm the fifth (14 nJ) and 606.38 µm the sixth (12 nJ). We see that

the powers continue to have greater length at higher power.

4.2.4 Fourth Etch

In the fourth etching we continued to use the same solution as in the third etching. This attack

lasted 288 h, therefore the crystal has been under attack for 455 h.

Figure 34: Pore attack lenght

In Figure 34 we can see the total final

attack length for each of the different

powers. These distances will be 1577.02

µm for the first pulse energy (22 nJ),

1484.27 µm for the second (20 nJ),

1450.84 µm for the third (18 nJ), 1654.36

µm for the fourth (16 nJ), 1655.58 µm for

the fifth (14 nJ) and 2037.99 µm for the

sixth (12 nJ). We can see that power 6

is the one that has reached the longest

attack length, with the two ends of the

lattice coming together in the last nanometers of the power. The other powers have reached

more or less the same nanopore length.

Figure 35:
Fourth Etch

Considering only the nanopore lengths acquired by this attack we obtain 79.19

µm for the first (22 nJ), 93.72 µm for the second (20 nJ), 706.90 µm for the third

(18 nJ), 1023.88 µm for the fourth (16 nJ), 1040.16 µm for the fifth (14 nJ) and

1431.61 µm for the sixth (12 nJ). We can see that now the lowest powers have

been attacked the most.

In Figure 35 we can see how our diffraction grating looks like once the attacks

are finished. We can see that the first two powers (the ones under the tweezers)

do not diffract the light very well, this is due to the fact that when these powers

were engraved the damage in the form of cracks on the crystal was very high, so
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the cracks have been attacked and the diffraction properties of the lattice have been damaged.

For the other powers we see that the attack has been very effective, because thanks to this last

attack the distance of the nanopores of the first power has been reached and even exceeded.

We can tell that the crystal has been subjected to attack for many hours just by the way its

surfaces are, as these are extremely rough due to some crack formed on the surface.

4.2.5 Sample profile images

(a) After second etch (b) After all the etches

Figure 36: Crystal profile after second etch and at the end of all the etches

In Figure 36 we can see the crystal profile after two attacks (36a) and when all the attacks

mentioned above have been performed (36b). We can see in Figure 36a that it is possible to

distinguish perfectly the pores engraved by the laser, because it is seen as a succession of lines

placed one next to the other.

Figure 37: Change of focus during
manufacturing

Unlike the Figure 36a, the Figure 36b shows a single

line in place of the pores. This single line has probably

been generated because during the extensive hours of

attack on the sample the edges of the pores have been

attacked, becoming larger and joining together. To see

the pores again, we should perform another polishing

to remove the most damaged outer zone.

In Figure 37 it can be seen how the focus has changed as

the diffraction grating has been engraved. As explained

above, this is due to the fact that we are not yet able

to maintain a stable temperature in the laboratory,

causing the focus of the microscope objective to vary as our diffraction grating is recorded.

4.3 Results

We will start the discussion of results by showing the evolution of the irregularities in the

nanopore lengths for each of the powers (Figure 38).
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(a) 22 nJ (b) 20 nJ

(c) 18 nJ (d) 16 nJ

(e) 14 nJ (f) 12 nJ

Figure 38: Evolution of the nanopore lengths for the different powers

It is known that the more pulse energy applied to the crystal when poring, the more stress the

crystal will have (assuming the same scan speed and repetition rate is used for all) and thus the

more nanocracks will be generated. More intense powers start attacking at a higher chemical

wet etch rate than lower powers, although they reach modification saturation faster as well.

We believe that there comes a point at which the maximum stress that the crystal lattice can

withstand is reached and that from then on only internal nanocracks are produced that relax

the stress; we will call this point modification saturation. As the higher powers have a higher

level of stress, since the modifications in the lattice produced by the laser are greater, they will

reach modification saturation earlier. We could say that the first power (22 mW) reaches this
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threshold in the third attack, since all the pores are put at the same level and its attack speed

decreases a lot. This also happens with the 20 mW power, where we see that the fourth attack

has not contributed much to increase the length of the nanopores. That means that the 20 nJ

pulse energy reached modification saturation at the fourth etch. For the other powers we see

that despite slowing down their chemical wet etch rate, they continue to increase the length of

the nanopores without any problem, reaching the point of joining the two parts of the grating

for the last of the powers.

If we take the nanpore lengths for each of the attacks and plot them against time we can study

how the chemical wet etch rates have evolved for each of the different powers. This is plotted

in Figure 39.

(a) Linear scale (b) Logarithmic scale

Figure 39: Nanopore length vs. etching time

After about 100h of accumulated attack there seems to be a transition in the chemical wet etch

rate, decreasing considerably for the two highest pulse energies. Although this only occurs for

the first two powers (22 and 20 mW) as in the other cases the chemical wet etch rate seems to

increase considerably. This can be seen more clearly in Figure 39b, where the same graph is

shown but in logarithmic scale.

We know that once the sample is put under attack there is a diffusion of water and acid into the

nanopore, at the nanometer interface between acid and solid, other molecules are generated,

and some diffuse out, and some diffuse in. At the nanometer scale this can be considered a

chemical diffusion process. If we consider these details we can fit our points to a diffusion

function of the type

l2 = 2 ·D · tα (9)

Where l indicates the length of the nanopores, D the diffusivity, t the time and α a coefficient

indicating the type of diffusivity. In Figure 39, as mentioned before, two zones where the

chemical wet etch rate varies can be clearly distinguished, so we will first make a fit to the first

two points and then to the last two. Ideally, we would like to measure for many more times

and get a much more complete curve of the process. This will allow us to know what is going
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on inside the nanopores.

Figure 40: Adjusting to the diffusion function

Once the functions have been adjusted we obtain

the coefficients that we were looking for, it has

been represented in logarithmic scale since in this

way the coefficient α can be known only by looking

at the slopes of the straight lines.

In Figure 41 we can see the different α coefficients

obtained in the adjustments made.

To begin with, in the first of the fits (first

two points) we see for the Figure 41a that the

coefficient α is more or less α = 1.3 for all powers,

this leaves us with a Brownian diffusion tending towards superdiffusive. If we compare the

coefficients α with the graph shown in 42 we see that the slopes between the first two points

are approximately the same, i.e., the velocity in that interval decays about the same for each

of the powers.

(a) First two points (b) Two last points

Figure 41: Coefficient α vs. pulse energies

Figure 42: Chemical wet etch rate vs. time

For the second half we see that the

coefficients are 2.42 for the 12 nJ

pulse energy, 1.97 for the 14 nJ, 1.92

for the 16 nJ, 1.33 for the 18 nJ,

0.13 for the 20 nJ and 0.10 for the

22 nJ. It can be seen, in first place,

that the 2 higher powers are facing a

subdiffusive diffusion process. This

means that the distance traveled by

the solution inside the nanopores

has been greatly reduced. We

believe that by the third etch the
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pulse energies of 22 nJ and 20 nJ

would have reached modification saturation. This results in what we see in Figure 35, where

we see very clearly that in the last attacks only the nanocraks rather than the nanopore lengths

have been attacked.

We must think of the crystal lattice as an elastic structure, once the stress is relaxed it returns to

its original shape, slowing the rate of attack to what the crystal would have if we had not written

the lines. This is what happens when the crystal reaches the modification saturation.

If we now look at the slopes between the last 2 points in Figure 42 and compare them with

the coefficients plotted in Figure 41b we can see that they are clearly related. We see that the

powers with the steepest slope belong to a subdiffusive diffusion, then we have the 18 nJ pulse

energy whose slope is a little less steep than in the previous 2 powers and has a diffusion close

to Brownian, lastly we have a superdiffusive diffusion for the 12, 14 and 16 nJ pulse energies,

whose slopes are the least steep. In a solution we know that the initial diffusion velocity is much

higher than the final one, because as they approach the equilibrium, the concentration gradients

are decreasing (because the solution is closer to the equilibrium). Hypothetically speaking the

pore velocity should be decreasing over time, but if we look at the lower energies we have a small

increase in the velocities between attacks 3 and 4, this can lead us directly to a superdiffusive

diffusion, because instead of decreasing, as it should have been, it has increased.

(a) First Etch (b) Second Etch

(c) Third etch (d) Fourth Etch

Figure 43: Nanopore length vs. pulse energy
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The graphs in Figure 43 show how the nanopore lengths evolved as the attacks progressed.

First, if we look at the first two Figures (43a and 43b) we can see that their shape remains

more or less constant, this is directly related to the fact that they all have the same coefficient

alpha. If we now look at figures 43c and 43d we observe that the difference from one to the

other graph for the energies of 12 nJ, 14 nJ and 16 nJ has a very similar shape to the one given

in Figure ??, that means the coefficient α is related to the increase in the lengths for each of

the attacks.

As results of the first fabrication, a plot of the nanopore lengths versus attack time is shown

in Figure 44.

(a) Lineal scale (b) Logarithmic scale

Figure 44: Nanoporelength vs. etch time (First fabrication)

As expected we see that the chemical wet etch rate is decreasing over time. As could be seen,

the first production went a bit wrong, as the entire lattice was not recorded and many craks

were generated due to the overscan. For this reason it is not possible to extract quantitative

data on the first of the two fabrications.
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5 Conclusions and improvement projects

En esta sección se pretende resumir las conclusiones obtenidas, aśı como explicar algunos

proyectos que se quieren realizar en el futuro. Lo primero de lo que se habla es del cambio

anisótropo producido al grabar la red, transmitiendo la luz polarizada verticalmente pero no

la horizontal. Después se habla de que las potencias más intensas alcanzan más rápido la

saturación de modificación, atacándose a partir de ese momento los nanocracks. A continuación

se habla de las difusividades obtenidas para cada una de las potencias y se menciona que en un

proyecto de futuro se quieren medir más puntos para obtener resultados más concluyentes. En

cuarto lugar, se habla de la importancia que tiene controlar la disolución durante los distintos

ataques, ya que a medida que se va reutilizando la disolución nos vamos alejando del punto

óptimo de ataque. Después se habla de la necesidad de medir los poros y del experimento que

se debe realizar en un futuro para medir el ángulo de difracción, permitiéndonos saber si hemos

realizado las redes acorde a los estudios realizados en [1]. En último lugar, se habla de una

de las maneras en las que se puede lograr que los nanotracks se ataquen por completo, esta

consiste en hacer perforaciones que unan el conducto con la superficie a lo largo de la ĺınea

grabada, permitiendo atacar los poros desde dentro.

As conclusions it is worth highlighting several things seen throughout the results. First of all,

when the diffraction grating is engraved, an anisotropic index is produced, i.e., the diffraction

grating will only transmit vertically polarized light and not horizontally polarized light. This

is of great interest if we look at the diffraction grating as a wave-guide.

Secondly, we have seen that the powers that are attacked faster at first are those with a higher

pulse energy, then these more powerful energies reach modification saturation faster, slowing

down their chemical wet etch rate. When this modification saturation is reached, we see that

the diffraction grating begins to lose its property of diffracting light, because the ones that are

attacked are the internal nanocracks formed during the writing process.

We have seen that depending on the diffusivity obtained we can know what is happening inside

the nanopores. In this case, we see that they all start following a Brownian diffusivity and then

separate. The 12, 14 and 16 nJ energies become superdiffusive diffusion, the 18 nJ remains

constant with Brownian diffusion and the 20 and 22 nJ energies become subdiffusive diffusion.

This α coefficient allows us to know how the rate of attack inside the pores varies. In the future

we would like to design an experiment to measure more points on the curve of nanopore length

versus attack time, so that we could make a fit to the diffusivity function of more than 2 points.

Actually with 2 points the results obtained are not very reliable.

As an improvement for the future, I believe that the solutions used for the different attacks

should be more controlled. We must think that the solution is only optimized at the beginning,

then due to the chemical reaction and the evaporation of the water, the initial optimization

is lost. I think that having an optimum solution is essential to be able to compare the
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different attacks with each other because if we do not have the same conditions all the time

the comparison is not so accurate. For example, perhaps at some point the chemical wet etch

rates have decreased because of the dissolution of the attack, and not because they had to

decrease.

To see if the powers chosen to make the lattice are adequate, in order to obtain the optimum

diffraction gratings we were looking for, it is necessary to measure the width and height of the

different pores. As it has been observed in the results section, the edges of our sample were

very attacked, not being able to see any pore well. In order to measure the size, it would be

of vital importance to polish the outermost area of the edges, so that the nanotracks would be

exposed.

In the future it is planned to perform an experiment that measures the diffraction of light, so

that the simulations performed in [1] could be corroborated. This was planned to be done in

this TFG but due to lack of time it could not be done.

If we want to attack the pores completely, we can make small perforations along the nanotraks

that join the surface with the conduit, so that, the dissolution can enter through these openings

and can be attacked from the inside.
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[6] Airan Ródenas Franzette Paz-Buclatin. Circularly symmetric nanopores in 3d femtosecond

laser nanolithography with burst control and the role of energy dose. Nanophotonics, 2022.
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7 ANNEX

7 Annex

7.1 Annex 1: First manufacture code

#define ShutterClose $DO0.Z = 0

#define ShutterOpen $DO0.Z = 1

DVAR $FSHIFT $OFSET $DIST $SPEED $SPEEDpos $GratingPeriod $Nlines $GratingWidth

$DEPTH $LDEPTH $ANGLE $PWR $PWR_0 $PWR_Delta $ANGLE_0 $Pmax $Pmin $Pstep

$LossFactor $PWR_Before

’ comment

;

// Power Test

enable X Y Z A

ShutterClose

$FSHIFT = 1.3 ’Normally is 1.39 for satsuma IFN setup, needs recalibration

$OFSET = 0 ’needs calibration

$DIST = 4.47 ’total written length of structures (in mm)

$SPEED = 10 ’writing speed (in mm/s)

$SPEEDpos = 0.001 ’positioning speed

$GratingPeriod = 0.0005 ’pore separation (in mm)

$GratingWidth = 1.6

$Nlines = CEIL($GratingWidth/$GratingPeriod) ’number of lines in the grating

$LossFactor = 4.4 ’Loss factor of laser power from before the expander to the sample

/////////////’lASER POWER RANGES that reaches the sample////////////

$Pmax = 22 ’Maximum desired power mW

$Pmin = 10 ’Minimum desired power in mW

$Pstep = -3 ’Power step in mW

////////////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////////////

$DEPTH = 0.025 ’depth of structure from the surface (in mm)
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$LDEPTH = ($DEPTH-$OFSET)/$FSHIFT ’Linear movement of the objective such that

the focus is in $DEPTH

//////// PARAMETERS TO CALCULATE THE ANGLE FROM THE DESIRED POWER//////////

//////// TO CALIBRATE THE ANGLE DO FIRST A HARD HOME (HOME BUTTON NEXT TO "A"

AXIS. ANGLE SHOULD GO TO 0.00º.

//////// THEN MANUALLY INTRODUCE around 47º TO GO CLOSE TO MINIMUM. THEN

FINE TUNE MINIMUM).

$PWR_0 = 0.5 ’Minimum Power in mW

$PWR_Delta = 135-$PWR_0 ’Max Power - Min Power in mW

$ANGLE_0 = 41 ’Angle shift in degrees (angle where minimum is located)

////////////////////////////////////////////////////////////////////////////////

G92 X0 Y0 Z0 ’set surface Z=0 starting point as coordinate origin

DWELL 1

VELOCITY ON ’don’t decelerate between moves

Linear Z -$LDEPTH F 1 ’goes to starting depth

DWELL 1

////////////////////////////////////////////////////////////////////////////////

ABSOLUTE

FOR $PWR = $Pmax TO $Pmin STEP $Pstep ’repeat every power step

ABSOLUTE

$PWR_Before = $PWR*$LossFactor ’calculate the power needed before the beam expander

CALL GetAngle k($PWR_Before) ’Calculates the corresponding angle for the

desired power before beam expander

Linear A $ANGLE F 1 ’the power is changed to the new given value

REPEAT $Nlines

INCREMENTAL

ShutterOpen

Linear X +$DIST F $SPEED ’writes horizontally (sample moves towards left)

Linear X -$DIST F $SPEED ’writes horizontally (sample moves towards right) overscan

ShutterClose
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Dwell 1

Linear Y +$GratingPeriod F $SPEEDpos ’move to another spot vertically upwards

ENDREPEAT

NEXT $PWR ’ends the power cycling

/////////////////////////////////////////////////////////////////////////////

ShutterClose

END PROGRAM

DFS GetAngle

$ANGLE = ASIN(SQRT(($k - $PWR_0)/$PWR_Delta)) * 180/(2 * Math.PI) + $ANGLE_0

’PWR must be in mW

ENDDFS

7.2 Annex 2: Second manufacture code

#define ShutterClose $DO0.Z = 0

#define ShutterOpen $DO0.Z = 1

DVAR $FSHIFT $OFSET $DIST $SPEED $SPEEDpos $GratingPeriod $Nlines $GratingWidth

$DEPTH $LDEPTH $ANGLE $PWR $PWR_0 $PWR_Delta $ANGLE_0 $Pmax $Pmin $Pstep

$LossFactor $PWR_Before $GratingSpace

’ comment

;

// FAB2 GRATINGS TFG NEREIDA VIERNES 28 ABRIL 2023

enable X Y Z A

ShutterClose

$FSHIFT = 1.357 ’calibration FAB2 m.hdez.tfg23 - Normally is 1.39 for satsuma

IFN setup, needs recalibration

$OFSET = -0.00139 ’calibration FAB2 m.hdez.tfg23

$DIST = 4.8 ’total written length of structures (in mm)

$SPEED = 1 ’writing speed (in mm/s)
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$SPEEDpos = 0.010 ’positioning speed

$GratingPeriod = 0.0005 ’pore separation (in mm)

$GratingWidth = 1.6

$GratingSpace = 0.040

$Nlines = CEIL($GratingWidth/$GratingPeriod) ’number of lines in the grating

$LossFactor = 4.4 ’Loss factor of laser power from before the expander to the sample

/////////////’lASER POWER RANGES that reaches the sample////////////

$Pmax = 22 ’Maximum desired power mW

$Pmin = 12 ’Minimum desired power in mW

$Pstep = -2 ’Power step in mW

////////////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////////////

$DEPTH = 0.025 ’depth of structure from the surface (in mm)

$LDEPTH = ($DEPTH-$OFSET)/$FSHIFT ’Linear movement of the objective such that

the focus is in $DEPTH

//////// PARAMETERS TO CALCULATE THE ANGLE FROM THE DESIRED POWER//////////

//////// TO CALIBRATE THE ANGLE DO FIRST A HARD HOME (HOME BUTTON NEXT TO "A"

AXIS. ANGLE SHOULD GO TO 0.00º.

//////// THEN MANUALLY INTRODUCE around 47º TO GO CLOSE TO MINIMUM. THEN FINE

TUNE MINIMUM).

$PWR_0 = 0.3 ’Minimum Power in mW

$PWR_Delta = 525-$PWR_0 ’Max Power - Min Power in mW

$ANGLE_0 = 41.15 ’Angle shift in degrees (angle where minimum is located)

////////////////////////////////////////////////////////////////////////////////

G92 X0 Y0 Z0 ’set surface Z=0 starting point as coordinate origin

DWELL 1

VELOCITY ON ’don’t decelerate between moves
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Linear Z -$LDEPTH F 1 ’goes to starting depth

DWELL 1

////////////////////////////////////////////////////////////////////////////////

ABSOLUTE

FOR $PWR = $Pmax TO $Pmin STEP $Pstep ’repeat every power step

ABSOLUTE

$PWR_Before = $PWR*$LossFactor ’calculate the power needed before the beam expander

CALL GetAngle k($PWR_Before) ’Calculates the corresponding angle for the desired

power before beam expander

Linear A $ANGLE F 1 ’the power is changed to the new given value

REPEAT $Nlines/2

INCREMENTAL

ShutterOpen

Linear X +$DIST F $SPEED ’writes horizontally (sample moves towards left)

Linear Y +$GratingPeriod F $SPEEDpos ’move to another spot vertically upwards

Linear X -$DIST F $SPEED ’writes horizontally (sample moves towards right)

Linear Y +$GratingPeriod F $SPEEDpos ’move to another spot vertically upwards

ENDREPEAT

ShutterClose

Linear Y +$GratingSpace F 0.1

DWELL 0.1

NEXT $PWR ’ends the power cycling

/////////////////////////////////////////////////////////////////////////////

ShutterClose

END PROGRAM

DFS GetAngle

$ANGLE = ASIN(SQRT(($k - $PWR_0)/$PWR_Delta)) * 180/(2 * Math.PI) + $ANGLE_0

’PWR must be in mW

ENDDFS
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