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Abstract
Concentrations of heavy metals and trace elements in marine environments have increasingly become a problem for several
ocean ecosystems, due to increments in pollution. Habitats daily exposed to extreme conditions, such as the intertidal rocky
platforms and pools, are more vulnerable to pollution effects. In the coast of Punta del Hidalgo (Tenerife, Spain), we have located
a water-treatment plant that could be pouring periodically pollutants to the near shore. We studied coverage and survival rates of
the cirriped Chthamalus stellatus inhabiting the intertidal near the sewage pipe of the water plant of Punta del Hidalgo and in a
control area in a proximate location. Concurrently, water samples from intertidal pools were obtained from both affected and
control areas in order to corroborate the presence of pollutants, analyzing the concentrations of metals and trace elements. The
results obtained clarified that the area near the underwater outfall presented higher percentage of coverage and mortality of
C. stellatus than the control zone. The analysis of metal content in water samples also showed higher concentrations of metals for
the affected area compared to the control one. We therefore propose the use of survival rates of populations of C. stellatus in the
intertidal as bioindicators of metal pollution.
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Introduction

Sewage pipes are regularly used for the evacuation of waste-
water, purified or not, from water-treatment plants. The envi-
ronment surrounding these emission systems requires a

rigorousmonitoring after being installed, which in many cases
is not carried out. As a consequence, in case of a circuit col-
lapse derived from heavy rain episodes, system failure, or
overwork, there could be negative effects in the surrounding
environment going unnoticed and, therefore, unreported. One
of the polluting effects of mishandling sewage pipes is the
increase of heavy metal concentrations in marine ecosystems
(Costanzo et al. 2001; Dolenec et al. 2011; Herrera et al. 2020;
Ramírez-Alvarez et al. 2007; Ruilian et al. 2008; Seubert et al.
2017).

Concentrations of metals in marine environments and their
inhabiting organisms are recently becoming a global problem,
given the increase input to these ecosystems of pollutants from
human activities, which are having a considerable impact on
marine communities and organisms in these environments.
Industry, commerce, agriculture, tourism, and urbanization
in coastal areas are considered direct and indirect continuous
sources of pollutants (Fort et al. 2016; Halpern et al. 2008;
Lozano-Bilbao et al. 2019, 2020a; Raimundo et al. 2013).
Heavy metals are one of the main anthropogenic pollutants
in coastal areas around the world. Metals constitute the main
anthropogenic pollutants not only to marine organisms but
also to the health of ecosystems, and even for humans.
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Hence, efficient techniques that assess this kind of pollution
are needed. These techniques are typically expensive, so the
presence and health of natural-distributed organisms is be-
coming increasingly used as bioindicators of pollution.
Monitoring sessile bioindicator organisms would therefore al-
low for an immediate measurement of pollution levels in large
areas and allow to take conservation measures. Since vital
functions are potentially affected by the environment and its
changes, both natural and anthropogenic, these bioindicators
can be used to detect the presence of any of these effects. Even
more, some authors consider the use of bioindicators more
advantageous than the traditional physicochemical methods
to assess ecosystem health (Atici et al. 2010; Dolenec et al.
2011, 2007; Verlecar et al. 2006). Within the group of crusta-
ceans, barnacles are considered the best bioindicators of metal
pollution (Amoozadeh et al. 2014) as they are capable of ac-
cumulating these elements, as has been seen in the species of
giant barnacle in the Azores (Dionísio et al. 2013). These
crustaceans have also been used as bioindicators of other
stressors such as low salinity in estuaries, which seems to
benefit the survival of barnacles (Poirrier and Partridge
1979), or to detect other types of contamination such as
microplastics or organic matter (Xu et al. 2020; Vaezzadeh
et al. 2021).

Knowing that in coastal studies sessile organisms are ideal
for monitoring, we considered the survival rates in the barna-
cle Chthamalus stellatus as a possible bioindicator of high
concentrations of heavy metals. This barnacle forms a typical
band limiting the upper intertidal zone of the Canary Islands
archipelago, which is why it may be highly influenced by
anthropic impacts on the coasts (González et al. 2012;
Navarro et al. 2005; Lozano-Bilbao et al. 2020b).

Our aim is to assess if intertidal pools near the sewage pipe
are polluted by heavy metals and trace elements.
Concurrently, we want to explore the survival rate in the pop-
ulation of Chthamalus stellatus in the intertidal surrounding
the sewage pipe and if it could be considered a bioindicator of
coastal pollution.

Materials and methods

Samples were taken in the intertidal of Punta del Hidalgo in
low tide (28° 34′ 5.17″N 16° 19′ 35.45″W) during September
2018 (Fig. 1). For the experimental design, the sampling area
under the same condition was divided into two zones. The
area of influence of the submarine emissary and a control area
where there is little anthropic activity. A photograph of three
50 × 50 cm quadrants was obtained for each area to determine
the coverage and percentage of alive and dead specimens of
Chthamalus stellatus using ImageJ 1.45V software. The dead
specimens were determined by observing the external

structure of the barnacle: if it had an internal structure, it was
classified as “alive,” but if not, as “dead” (Clavier et al. 2009).

To determine heavymetal and trace element concentrations
in intertidal pools, 10 water samples were taken from each
zone. The salinity and temperature of each pool was measured
in situ using handheld conductivity meter WTW COND315i,
to extrapolate the results of the metal concentration to its cor-
responding unit (Herrera et al. 2020).

Water sample

For the study, 20 samples of seawater were taken: 10 in the
area of the submarine sewage pipe and 10 in the control zone;
these data have been published in (Herrera et al. 2020), of
which we have taken only the data from the control zone
and the sewage pipe zone (see the preparations of the water
samples in Herrera et al. 2020).

Statistical analysis

For the statistical analysis, univariate ANOVAs executed by per-
mutations (Anderson 2001) with Euclidean distances (Anderson
and Ter Braak 2003) were performed for both datasets,
C. stellatus quadrants and metal content in water samples.

In order to investigate the survival rates of C. stellatus
among the considered locations, one-way design was used
with the fixed factor “Zone” with 2 levels of variation
(“Sewage pipe” and “Control zone”). The variables included
in the analysis of C. stellatus were the Alives (count of alive
C. stellatus individuals), Alives per m2, Dead (count of dead
C. stellatus), Dead per m2, % Dead, and % of substrate cov-
erage of the species.

For the analysis of metal content in the water samples, the
variables included were the concentration in mg/kg of the fol-
lowingmetals: Al, Cd, Pb, B, Cr, Cu, Fe, Li, Ni, V, Zn. Relative
dissimilarities among locations were determined using multidi-
mensional scaling (MDS) in which the metals that best ex-
plained data variability were represented as vectors.

In all the analyses, there are 4999 permutations were used
in all analyzes units and the significant factors (p value < 0.01)
(Anderson 2004). Additionally, all the results were represent-
ed by using boxplot graphs. The statistical packages PRIMER
7 & PERMANOVA+v.1.0.1 were used for the statistical
analyses.

Results

The area near the sewage pipe presented the highest counts of
C. stellatus (Fig. 2). Also, this area had greater number of alive
specimens and 10% higher mortalities than the Control Zone
(Fig. 2, Table S1).
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For the metal content analysis in intertidal pools, the samples
nearest the sewage pipe presented the highest concentrations for
all trace elements and metals except for Cr and Fe which have a
higher concentration in the Control Zone (Fig. 3, Table S2).

According to the factor “Zones,” the results of univariate
permutational ANOVAs showed a significant effect between
zones with the highest abundance in the sewage pipe zone for
the factors Alives m2 (F = 10.609, p value = 0.0082), Dead m2

Fig. 2 Boxplots comparing Alive m2, Dead m2, % Dead, and % Coverage of C. stellatus in each of the studied zones. Significant differences have been
marked with an asterisk (*)

Fig. 1 Map of the study area. Sewage pipe (28° 34′ 20.59″ N; 16° 19′ 56.59″ W), Control zone (28° 34′ 38.68″ N; 16° 19′ 05.54″ W)
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(F = 37.155, p value = 0.0004), and % Dead (F = 49.039, p
value = 0.0002) (Fig. 2). Only % Coverage presented no sig-
nificant differentiation (F = 0.34661, p value = 0.5411).

The results of univariate permutational ANOVAs on metal
content also showed a significant difference between zones
(F = 7.3745, p value = 0.0002). Concentrations of heavy
metals and trace elements were higher in the water samples
collected near the sewage pipe for all metals except Cr, which
was higher in the control intertidal pools (Fig. 3, Table S2).
These results are visible in the non-metric MDS analysis with
the metal contents that best explain the data variability as a
vector representation (Fig. 4).

Discussion and conclusion

The present study proposes that heavy metal pollutants from a
sewage pipe can cause unnatural mortalities in populations of
C. stellatus. The wastewater discharges from the sewage pipe
would raise heavy metal and trace element concentrations in
seawater near this emissary, as Fig. 3 shows for intertidal
pools in the area surrounding the sewage pipe. These inorgan-
ic compounds are very toxic for marine organisms (Widdows

et al. 2017). Consequently, sessile and filter-feeding species
inhabiting the area surrounding the sewage pipe, like
C. stellatus, would be the most negatively affected by emis-
sions of this submarine outfall, as high mortality rates show
(Table S1, Fig. 2).

There are several studies revealing the influence that sew-
age pipes have on marine ecosystems and how they alter the
chemical composition of the sea and their organisms, as well
as how these organisms can be used as bioindicators of pollu-
tion (Lozano-Bilbao et al. 2018; Verlecar et al. 2006; Žvab
Rožič et al. 2015).Chthamalus stellatus is a barnacle that lives
attached to rocky coastal substrates, in the mid to low
eulittoral zone on the Canary archipelago and in other areas
of the Atlantic and Mediterranean Sea. This species with-
stands aerial exposure during low tides thanks to two mobile
opercular plates that close to avoid drying effects inside the
carapace of the animal. As a filtering organism, it uses cirrus
to retain particles present in the water to consume as food,
which makes it susceptible to contamination as it would be
unable to avoid the ingestion of pollutants along with its fil-
tered food (Cabral-Oliveira and Pardal 2016; Hawkins et al.
2000; O’Riordan et al. 2004). For that reason, it could be
considered the best bioindicator of metal contamination

Fig. 3 Boxplots comparing metal content (Al, B, Cd, Cr, Cu, Fe, Li, Ni, Pb, V, and Zn) in each of the studied zones. Significant differences have been
marked with an asterisk (*)
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within crustaceans, as seen in other barnacles (Amoozadeh
et al. 2014).

There are numerous studies on organisms that can be used
as bioindicators of different forms of marine pollution. Not
only have barnacles been seen as good bioindicators of metal,
microplastic, and organic matter pollution (Amoozadeh et al.
2014; Xu et al. 2020; Vaezzadeh et al. 2021), but there are also
many other animals; for example, mussels and fish such as
Boops boops are bioindicators of microplastic pollution
(Bonanno and Orlando-Bonaca 2018; Garcia-Garin et al.
2019; Li et al. 2019); sea urchins, squid, and fish are
bioindicators of the presence of organochlorine (Juma et al.
2018; Parra-Luna et al. 2020; Ueno et al. 2003); fish and sea
urchins can also be bioindicators for heavy metal and trace
element pollution (Chiarelli et al. 2019; Plessl et al. 2017);
even blue sharks have been studied as bioindicators of marine
pollution, measuring their stress levels (Alves et al. 2016).
Additionally, Lozano-Bilbao et al. (2018) proposed the con-
centrations of δ15N in the anemone Anemonia sulcata as
bioindicator of pollution in the same area.

In all of the previously cited works regarding heavy metal
bioindicators, removal and sacrifice of the animals is needed
in order to determine pollution levels. In contrast, in the pres-
ent work, we attempt to establish a non-invasive methodology
that would allow scientist to monitor coastal pollution without
extracting any organism.

In conclusion, we propose the barnacle Chthamallus
stellatus to be considered a bioindicator of heavy metal
and trace element pollution in intertidal zones, since our
results show that the higher concentrations of heavy
metals and trace elements present in seawater are related
to the higher mortality rate of C. stellatus. Specifically,
monitoring of C. stellatus mortality rates could serve as a
natural indicator of the presence of anthropic pollutant
outfalls in the surrounding area.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s11356-020-11550-0.
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