
Energy-e�cient power cap con�gurations through
Pareto Front Analysis and Machine Learning
Categorization
Alberto Cabrera

University of La Laguna
Francisco Almeida

University of La Laguna
Dagoberto Castellanos-Nieves

University of La Laguna
Ariel Oleksiak

Poznan Supercomputing and Networking Center
Vicente Blanco ( vblanco@ull.es)

University of La Laguna

Research Article

Keywords: Energy Aware Computing, Power Capping, Machine Learning, Clustering algorithms

Posted Date: February 13th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-2066435/v2

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-2066435/v2
mailto:vblanco@ull.es
https://doi.org/10.21203/rs.3.rs-2066435/v2
https://creativecommons.org/licenses/by/4.0/

Springer Nature 2021 LATEX template

Energy efficient power cap configurations

through Pareto Front Analysis and Machine

Learning Categorization

Alberto Cabrera1†, Francisco Almeida1†, Dagoberto

Castellanos–Nieves1†, Ariel Oleksiak1† and Vicente Blanco1*

1*Computer Science and Systems Department, Universidad de La
Laguna (ULL), San Francisco de Paula s/n, La Laguna, 38270,

Spain.
2Poznan Supercomputing and Netwoking Center, Institute of

Bioorganic Chemistry PAS, ul. Jana Paw la II 10, Poznan, 61-139,
Poland.

*Corresponding author(s). E-mail(s): vblanco@ull.es;
Contributing authors: Alberto.Cabrera@ull.es; fameida@ull.es;

dcasterll@ull.es; ariel@man.poznan.pl;
†These authors contributed equally to this work.

Abstract

The growing demand for more computational resources has increased
the overall energy consumption in computer systems. To support the
increasing requirements, power and energy consumption have to be
considered as a constraint to execute software. Modern architectures pro-
vide tools to manage directly the power constraints of a system. The
Intel Power Cap is a relatively recent tool developed to offer fine con-
trol of power usage to users at a central processing unit (CPU) level.
We propose a methodology to analyze the performance and the energy
efficiency trade–offs using this power cap technology for a given algo-
rithm. We extract a Pareto front for the multi–objective performance
and energy problem to represent multiple feasible configurations for both
objectives. We perform an extensive experimentation to categorize the

1

Springer Nature 2021 LATEX template

2 Energy efficient power cap configurations

different algorithms to reduce the total amount of optimal power cap
configurations. We propose the use of Machine Learning (ML) clustering
techniques to categorize any algorithm in the target architecture. The use
of Machine Learning allows to automate the procedure and simplify the
effort required to solve the optimization problem. We present a practical
case where we categorize the kernels using the ML techniques, with the
option to include a new algorithm into an already existing categorization.

Keywords: Energy Aware Computing, Power Capping, Machine Learning,
Clustering algorithms

1 Introduction

Energy and power limitations are constraints that affect multiple fields in com-

puter science. The growth in internet services, artificial intelligence, mobile

devices, Internet of Things devices and the computational demands in the

High Performance Community provide multiple complex environments where

huge amounts of energy are consumed, which are currently estimated at 200

terawatt hours each year [1]. Infrastructures, cooling systems, intercommu-

nication networks, virtualization clusters, long term storage, computational

hardware, software applications and schedulers are examples of all the gears

that need to fit and work together towards improving the energy efficiency of

information and communication technologies [2].

For the computational hardware, more efficient architectures have been

introduced over the last years. Heterogeneous systems have become a great

candidate to maximize energy efficiency, and there are efforts towards shifting

to low power processors using highly efficient co–processors in System–on–

chips, or the usage of GPUs to solve highly parallel applications as is the case

of Nvidia general purpose graphic processing units (GPGPU), and the now

discontinued Knights Landing Intel architecture.

Springer Nature 2021 LATEX template

Energy efficient power cap configurations 3

Power limiters are introduced by manufacturers as a power management

tool to limit the power draw of computational elements. These tools provide

mechanisms to easily define power constraints and better control energy usage

in a computational system. As the energetic environment can be configured

at runtime, programmers can add a new layer of optimization in applications

development. Two examples of power limiters have been provided by Intel

and Nvidia. Intel incorporated the Power Cap technology to assign multiple

advanced power constraints to their CPUs using different parameters. Nvidia

on the other hand, incorporated in their drivers an option to assign a hard

power limit in their high–end cards.

Using these tools to define a power constraint requires to analyze both

the performance and energetic behavior of the computational hardware to

avoid detrimental configurations. This new opportunity for energetic tuning

in applications incorporates a new layer of complexity, specially in parallel

environments where algorithms may have different sections of code executing

simultaneously.

Increasing the knowledge of the energetic behavior in these architectures

is key to maximize the usage of resources. Performance analysis is a discipline

focused on enhancing the effectiveness of a given procedure by observing its

behavior on a target. The knowledge extracted provides insight to the com-

plexity of computational environments. As multiple objectives can be studied,

this discipline can be applied to different objectives, such as time to solution

or energy consumption. By combining the analysis with power capping tools,

the improved understanding of the system allows to find better configurations

to affect the resource usage in a given architecture.

However, as systems increase in size and complexity, statistical techniques

get an increased significance. Manual analysis of the problem becomes a costly

Springer Nature 2021 LATEX template

4 Energy efficient power cap configurations

task that requires deep insight of the architecture and the software we intend

to tune up, the complexity and amount of work carried out by the experts

increases, and the volume of data to manage entail additional difficulties. The-

oretical models are hard to obtain since there is a high trade–off between model

complexity and accuracy. Also, newer technologies and algorithms require

adaptation of existing models.

Machine Learning (ML) techniques, offer an automated and statistical

approach to extract information from big volumes of data, and offer deep

insight in order to define the behavior of complex systems [3]. Moreover, apply-

ing unsupervised ML techniques to the attained data allows to extract hidden

features or simplify the volume of data [4].

In [5], we performed a prelimary analysis of the capability to find a Pareto

front configuration for power consumption and performance. Heatmaps are

used as an initial approximation to seek feasible configurations using the Intel

power Cap. In this work, we present a generalized methodology to analyze the

performance and energy consumption in a given system when executing appli-

cations under a power limit. This analysis allows to extract a set of power cap

configurations to adapt the energy efficiency of a given system. The obtained

constraints allow, at runtime, to define policies aimed to fulfill a power or

performance constraint. To illustrate and justify our proposal, we perform an

extensive experimentation and discuss the different feasible power configura-

tions that optimize our target architecture. Additionally, to reduce the efforts

of this methodology, we introduce the usage of ML clustering techniques to

automate the procedure.

Following are the main contributions of our paper:

• We present a general framework to analyze the effect of power cap tech-

nologies in a given architecture, parameterized by a configuration with a

Springer Nature 2021 LATEX template

Energy efficient power cap configurations 5

certain number of k parameters, and detailed evaluations are given for the

minimal case of k = 2, performance and energy efficiency. We illustrate how

a Pareto front of solutions can be attained for these objectives, and how

increasing the size of the problem does not affect the power cap parameters

within the Pareto front. The Pareto front also provides the ability to predict

the trade–offs between execution time and energy when applying a power

cap technology. Additionally, we formalize our methodology to illustrate the

independence between our proposal and the specific technology chosen to

validate this research.

• We perform a large number of experiments using different power cap

settings, which translates into a rich data set of time and energy mea-

surements in both serial and parallel environments, using a variety of

kernel applications from the NAS Parallel Benchmarks (NPB), derived from

computational fluid dynamics (CFD) applications.

• We apply this methodology to provide an in–depth experimental validation

of the energetic behavior of the NPB. We analyze the effect of power capping

technologies over multiple NPB kernels in a given architecture. Due to the

previous analysis, we are able to reduce the amount of experimentation. We

extract deep insight from the feasible power capping configurations for each

algorithm, which we use to categorize them. We simplify the optimization

problem using this categories and have an optimal power configuration per

category, instead of optimizing each algorithm separately.

• We propose the use of ML clustering techniques to provide an automated

procedure to categorize different algorithms with the insight of the presented

methodology. We present the application of an extensive amount of cluster-

ing techniques using multiple configurations, and compare it to our Pareto

front based analysis.

Springer Nature 2021 LATEX template

6 Energy efficient power cap configurations

• Finally, we illustrate the procedure with a specific ML clustering technique

to perform the categorization of the NPB. Using ML, we are able to classify

the different algorithms automatically. ML is also used to categorize the cost

of a new algorithm based on the training of a selected number of clusters,

thus simplifying the optimization problem.

We analyzed the effect of power capping technologies for a specific architec-

ture, and obtained the Pareto front of different NPB kernels, to then categorize

them. Using this categorization, we are able to reduce the total number of

power configurations in our target system, and are able to reconfigure the

hardware power limits taking into account different power and performance

constraints. With the ML approach based in clustering techniques, we prove

that the automation of this work is feasible and discuss how it could be applied

in a real scenario.

The rest of the paper is structured as follows. Section 2 covers the back-

ground and related work. Section 3 describes our methodology to analyze the

energy usage and the performance of our target application under a power cap.

In Section 4, we present the NPB use–case, and how we apply our methodology

to perform the in–depth analysis of a target architecture. Section 5 presents

a detailed justification of the use of ML clustering techniques and its applica-

tion to our use–case. Finally, Section 6 summarizes our conclusions and future

work.

2 Related Work

Energy efficiency is one of the multiple challenges in multiple environments

in computer science. In the Internet of Things the growth of devices has an

unprecedented rate and energy consumption is critical to support its expan-

sion [6]. On the other hand, in parallel computing and High Performance

Springer Nature 2021 LATEX template

Energy efficient power cap configurations 7

Computing environments, the constant demand of computational resources

and the increasing costs to run highly parallel systems has shifted the efforts

from optimizing only performance to a multi–objective approach where energy

efficiency is also critical [7, 8]. In the field of optimization, energy constraints

have been included in meta-heuristics as part of multi–objective complex prob-

lems, such as the Flexible job shop scheduling problem [9], or energy–efficient

strategies for tracking a target in a field of obstacles [10].

Dynamic voltage and frequency scaling (DVFS) is a common approach to

improve the energy efficiency of software applications. In HPC, methodologies

and tools are developed using models with the help of DVFS, reducing the

overall energy consumption while also improving performance for scientific

applications [11–13]. E–AMOM [14] is an example of a framework developed

upon these methodologies, using models, DVFS, and dynamic concurrency

throttling (DCT) to reach these goals.

However, the increasing importance of energy efficiency and power con-

straints have led to the development of more specialized tools. The interest

in these tools is increasing as their usage relates directly to power limitations

instead of affecting other parameters, such as frequency. These tools have been

proven valid as a possible replacement for the DVFS techniques present in

the literature [15, 16]. Using DVFS along power capping technologies through

the RAPL interface, Conductor [17] was developed as a middleware for post

Sandy Bridge Intel architectures. It is capable of improving the performance of

applications that are under a power budget allocating and shifting the power

of the application.

In computer science, ML has been gaining traction due to the effec-

tiveness of deep neural networks, and the scientific community is applying

these techniques using multiple approaches to improve performance [18], to

Springer Nature 2021 LATEX template

8 Energy efficient power cap configurations

solve complex problems [18, 19], to automatically tune experimentation [19],

to design experiments [20] or to evaluate the goodness of energy profiles

compared to measurements obtained from external power meters [21]. As it

has proven to work in countless cases, we are applying ML techniques to

manage decision–making automatically, focused in the energy efficiency and

performance trade–offs of a given application.

In our work, we present a methodology to analyze the usage of power cap

technologies in a given system. In the HPC community, analytical and statisti-

cal models are often developed to find optimal configurations for performance

and energy efficiency. The use of a Pareto front multi–objective approach

has been used to represent the workload redistribution in manycore architec-

tures [22]. Our work follows the experimental approach to analyze our target

architecture, but focuses in the effect of power capping technologies instead

of workload redistribution. Regression based methods have also been used to

explore Pareto efficient configurations to consider the trade–off between time

and energy efficiency [23], where DVFS and parallelization is analyzed to for-

mulate a model for a given application. Likely, we share the objective of finding

the optimal trade–off zone and perform an in–depth analysis of our target

applications. However, our approach is applied to multiple algorithms, and

our main contribution yields in the categorization of multiple Pareto fronts to

reduce the amount of optimal power configurations in a given system.

There are also multiple methodologies and algorithms that analyze and

solve power–performance trade–offs in the literature [9, 24–27], as modern pro-

cessors offer multiple power and performance optimization options by changing

core and uncore frequencies individually, affecting the overall voltage and

power. NORNIR [24] focus on a single application and, with the help of linear

Springer Nature 2021 LATEX template

Energy efficient power cap configurations 9

regression and monitorization, configures an application at runtime to sat-

isfy user needs. Coutinho et al. [25] also introduced a methodology to find

Pareto–optimal configurations in Heterogeneous Multi–processing systems.

They combine an analytical model for a given application and an analytical

power model for a given hardware in a unique model that predicts the energy

consumption of a given application. OPAD [26] is a methodology to solve power

budgeting problem using Pareto optimality. In this case, a parallel dynamic

programming network is proposed to calculate the optimal frequency configu-

ration of the cores in a manycore system. PGCapping [27] is also proposed to

optimize the performance of a system under a power cap, in this case, through

the use of power gating to shut down idling cores instead of using only DVFS.

Our proposals are applied at a higher level, using a technology specifi-

cally designed for power–capping, and the decision making is performed using

existing ML techniques, instead of defining new methods, algorithms or ana-

lytical models, simplifying the expertise required by the user to implement our

solution.

(a) Power cap application (b) Power policy comparison

Fig. 1: Illustration of different power management tools

Springer Nature 2021 LATEX template

10 Energy efficient power cap configurations

3 Power Cap Performance Analysis

We propose a methodology to use power management tools and extract opti-

mal configurations for a set of power constraints. To justify our approach, a

comparison of different power capping technologies is presented in the following

Subsection 3.1. In Subsection 3.2, we introduce a step–by–step methodology

to apply power management technologies to a given architecture executing a

given application, using the Intel power cap.

We offer deep insight of the data interpretation and the different power

configurations extracted from the study. Based upon the knowledge obtained

through this experimentation methodology, we are able to classify and cate-

gorize algorithms that, despite being of different nature, could share energetic

behaviors between them, thus minimizing the number of optimal power

management configurations.

3.1 Power management technologies

Power management technologies are an alternative proposal for controlling

power usage in current hardware architectures. While not available for every

architecture, exploiting the implemented manufacturer solutions provide an

easy solution to compute with a defined power constraint. In the case of ARM

processors, power management relies in their on–chip management and the

use of dynamic voltage and frequency scaling (DVFS) across the chip, unless

individual designs expose control to the user. State-of-the-art processors let

the user change the frequency of individual cores as well as a selection of C-

states from OS. AMD included in their older architectures a Thermal Design

Power (TDP) management tool, TDP Power Cap. However in their latest

architecture, known as Zen, they provide tools to control the C–States and

to set the amount of active cores in their CPU. On the other hand, Nvidia

Springer Nature 2021 LATEX template

Energy efficient power cap configurations 11

and Intel provide their own approach to give users control over their power

management.

Nvidia allows to set a power limit through their drivers to different GPUs.

However, their hardware requires a minimum power, which results in less con-

trol to the power consumption management. High–end and modern cards offer

a better range to exert control over this energetic limitation. Nvidia power

limit implementation sets a strict constraint as a hard limit that the hard-

ware cannot surpass. Fig. 1 illustrates the effects of hard power management

enforcement using a naive example. Fig. 1a depicts the power profile of a

generic execution without any power management tool (at the top) and how

setting a strict power cap affects the overall execution. The bottom of the Fig.

shows a hypothetical power limit applied and, as a result, the power intensive

sections, and the overall application, take more time to complete.

The effect of these power limits in the overall energy consumption will

always depend on the nature of the application. While some applications will

lose performance and spend more energy in the process, other applications will

improve their overall work per watt, improving the energy efficiency of the

execution.

Finally, Intel offers a more advanced power management of their chips

through the Running Average Power Limit (RAPL). RAPL provides mecha-

nisms to set average power limits on different zones of their processors. These

zones, known as Power Planes (PP), allow to set different power constraints

to the cores, the uncore, the package itself and/or the DRAM. Sky Lake archi-

tectures introduced a new PP, the Power of System (PSYS), to monitor and

set constraints at the platform level. RAPL also provides the option to set

short and long term windows to enforce the power limits. Short term averages

can be used to adapt power constraints to workload bursts, while the longer

Springer Nature 2021 LATEX template

12 Energy efficient power cap configurations

term limit would ensure to meet our power constraints. Both time windows

and power limits are limited to the manufacturer specifications and have to be

adapted to the specific processor model we are using.

Fig. 1b illustrates a different power profile using the naive application

example. It illustrates the Intel approximation, where the power limit is not

enforced, but guaranteed over a period of time, known as time window. As

shown in the chart, the power profile of the application could exceed the power

limit momentarily, as long as the average power at the end of the time win-

dow is below or equal to the specified constraint. While it is not shown in the

chart, a short term and a long term window can be applied to better control

the power profile of a given application.

3.2 Multi–objective optimization using power limits

We can apply power limiters to address different limitations sets for our infras-

tructure, addressing multiple objectives simultaneously. Performance, power

draw, energy efficiency, quality of service or temperature are examples of

different metrics we could consider for our decision making. These multiple

objectives may or may not enter in conflict with each other. Temperature and

power draw will have high correlation, while performance and quality of ser-

vice will be similarly tied. However, energy efficiency and performance may

have opposite effects for a given power cap configuration.

In other words, for any power configuration, a number k of different objec-

tives can be considered for optimization. Each power configuration has a direct

effect on these k objectives and directly affects how power management changes

the hardware behavior. In formal terms, we can formulate a multi–objective

optimization problem where we consider:

• k, the number of objective functions to address.

Springer Nature 2021 LATEX template

Energy efficient power cap configurations 13

Time Window (s)

Power Limit (W) 0.2 . . . 0.8 1.0

3.0 (6.81, 20.39) . . . (7.25, 21.72) (7.16, 21.44)

3.5 (4.99, 17.44) . . . (5.18, 18.11) (5.17, 18.07)

4.0 (4.10, 16.43) . . . (4.18, 16.75) (4.11, 16.48)
...

...
. . .

...
...

8.0 (2.31, 18.54) . . . (2.33, 18.70) (2.32, 18.67)

Table 1: NPB BT.W Kernel (execution time (s), energy consumption (J))
using Intel power cap.

• fi, optimization function for the i–th objective.

• p, power cap configuration, comprised of different parameters specific to the

appropriate power management tool.

Where we have to find

min(f1(p), f2(p), . . . , fk(p)), max(f1(p), f2(p), . . . , fk(p))

or a mix of both cases.

An example for k = 2 conflicting objectives is illustrated in Table 1, where

execution time and energy are to be minimized for the Block Tri–diagonal

solver (BT) kernel from the NAS parallel benchmarks (NPB). In Intel architec-

tures, as explained before, every power configuration p is obtained by applying

an average power limit, a time window and a zone. A variety of power lim-

its and time windows have been chosen, while the zone is fixed to the power

of system (PSYS). An static PSYS, while not optimal for every algorithm, is

enough for our homogeneous codes.

The results of every execution of this kernel using the size class W, a 3-

dimensional matrix of size (18, 18, 18), generate a set of metrics (f1, f2) =

(execution time, energy consumption) for each configuration p, which are

obtained through different power limits and time windows.

Springer Nature 2021 LATEX template

14 Energy efficient power cap configurations

Fig. 2: Pareto front for k = 2 objectives. Energy and execution Time. PL =
Power Limit in Watts

We also assigned a different color to each power limit to facilitate data

analysis. We illustrate the contents of Table 1 in Fig. 2 using these colors.

Reflected by both axis of the plot, we have chosen to optimize execution time

(x axis) and energy consumption (y axis). In the figure, we also observe the

multi–objective nature of these objective functions and multiple conflicting

solutions. As it is unfeasible to minimize both objectives at the same time, a

set of Pareto optimal solutions is necessary. A Pareto front is obtained with

all the non–dominated tuples, represented using a segment in the Fig. The

dominated solutions, are discarded as there is, at least, one tuple in the Pareto

set that improves both objectives functions. In Fig. 2, we also observe how

the time window parameter for the Intel architecture has much less impact

compared to the power limit itself. To simplify data, we could average the

metrics for each power limit, which also could be considered to reduce the

total experimentation needed. Still, despite the apparent uniformity of this

Pareto front, we are not able to perform a binary search approach to sample

as we cannot guarantee this behavior for every algorithm executed in modern

hardware. In Section 4, we also present a parallel version using 20 cores, where

some kernels are not as uniform as the illustrated example.

Springer Nature 2021 LATEX template

Energy efficient power cap configurations 15

To find the different configurations for the target architectures, we defined

a simple benchmarking process to determine the behavior of any applica-

tion. Systems are reconfigurable using the power management tools and its

outcome varies for different hardware and software. We learn the effects of

applying power limits to our heterogeneous system by executing small and

simple instances of software.

However, experimentation is relatively simple, allowing to extend the

software pool or the available hardware without complex efforts. The final

objective is to obtain a Pareto front for multiple conflicting objectives to opti-

mize algorithms. After the experimentation, a variety of power configurations

p will be available for each algorithm in the Pareto front, so that we can

optimize our objective functions.

We can formally define our experimentation methodology with the follow-

ing parameters:

• H, set of architectures in our experimental environment.

• S, set of software applications to evaluate under power constraints.

• PH,S , set of non–dominated power cap configurations, a subset of the Pareto

front of optimal solutions.

• h ∈ H, a computational node of our environment.

• s ∈ S, a specific application or computational kernel.

• Ph,exp, experimental set of power cap configurations to test system h.

• p ∈ Ph,exp, power cap configuration. Extending the previous formaliza-

tion, Intel architectures require to define a 3–tuple of average power, a

time window and a power plane to apply the configuration, i.e. p =

(avgpower, timewindow, zone). While multiple limits can be established

simultaneously, we will limit ourselves to a single power limit at a given

Springer Nature 2021 LATEX template

16 Energy efficient power cap configurations

time. For Nvidia GPUs a single maximum power value is needed, i.e.

p = (maxpower).

• Mh,s, hardware metrics gathered during the experimentation. Every element

m ∈ Mh,s is a k–tuple in the form m = (p, f1(p), f2(p), · · · , fk(p)), for a

given p ∈ Ph,exp. In our case for k = 2, we would have a 3–tuple with the

experimental metrics: p, execution time and energy consumption, though we

could consider other objectives.

• Ph,s ⊆ PH,S , Pareto front set of power configurations that can be applied

to a given s and h to optimize our multiple objectives. Extracting this set

from the acquired knowledge will depend on how we intend to optimize our

objectives. By definition, Ph,s ⊆ Ph,exp.

• pth,s ∈ Ph,s, power configuration that achieves the best performance in a

given s and h.

• peh,s ∈ Ph,s, power configuration that achieves the most efficient energy

consumption in a given s and h, i.e. minimizes energy consumption of an

specific task.

Algorithm 1 summarizes the experimental steps followed to analyze how

power capping affects a given software and hardware. It is a generalized bench-

mark that can be applied to different applications in various platforms. The

process can be summarized as performing multiple executions for various power

cap configurations in target architecture. Once the experimentation is over,

every pair h, s of hardware and software has an associated Ph,s to address

different objective functions depending on the user needs.

For the bi–objective case presented in Fig. 2, we can use the information

contained in the Pareto front Ph,s and manage the power to improve the energy

efficiency of an execution. We will explain three different approaches to manage

Springer Nature 2021 LATEX template

Energy efficient power cap configurations 17

Algorithm 1 Benchmark process

input: H → Hardware Pool, S → Software Pool
output: PH,S → set of power settings

PH,S ← ∅

for all h ∈ H do
Ph,exp ← experimental interval(h)

▷ Ph,exp: Power experimental parameters
for all s ∈ S do

Mh,s ← ∅ ▷ Hardware Metrics
Ph,s ← ∅ ▷ Optimal configurations for (h, s)
for p ∈ Ph,exp do

m← measure execution(h, s, p)
Mh,s ←Mh,s

⋃
{m}

end for
Ph,s ← get pareto front(Mh,s)
PH,S ← PH,S

⋃
Ph,s

end for
end for
return PH,S

the power consumption of a system using the BT.W kernel as the illustrating

case:

• A first approach would consider having k different configurations defined by

the user, thus |Ph,s| = k, one configuration per optimization objective. In

the presented experimentation for the BT, these values are setting the power

limit at 8 or 4.5 Watts to minimize execution time or maximizing energy

efficiency respectively.

• A second approach is to consider each possible value between 4.5 and

8 Watts, including all the different solutions to achieve better energy

efficiencies with less impact in the execution time trade-off if necessary.

• A third approach is to consider a power constrained situation where we

would configure power limits from 4.5 Watts to a maximum available power.

As an example, in an environment where we only have 6 Watts available for

our CPU, we would consider configurations ranging from 4.5 to 6 Watts.

Springer Nature 2021 LATEX template

18 Energy efficient power cap configurations

Power Limit
(W)

3.0 3.5 4.0 4.5 · · · 8.0

Time 3.02 2.18 1.77 1.53 · · · 1.00

Energy 1.31 1.10 1.03 1.00 · · · 1.16

Table 2: NPB BT.W Kernel normalized execution time and energy consump-
tion averages

(a) Execution Time (b) Energy Efficiency

Fig. 3: NPB comparison for different size using BT custom classes.

In every case, the end result is a set of power configurations we can use to

make decisions to satisfy different energetic and execution time constraints.

In a power constrained highly parallel or distributed environments, resource

allocation problems can be formulated using any of the previous cases to use

the available hardware partially, following the multi–objective criteria.

The Pareto front represents the optimal solutions for the Multi-objective

problem for all the objective functions simultaneously. In order to perform

sensitivity analysis and also trying get some predictive ability from the method-

ology, we introduce now an alternative representation model based on heat

diagrams (see Fig. 3). This allows the analysis of the individual objectives

Springer Nature 2021 LATEX template

Energy efficient power cap configurations 19

without losing the Multi-objective perspective. Following with our case of stu-

dio, the BT.W problem, Table 2 presents an alternative representation of the

data shown in Table 1. Average values for the different power limits have been

calculated given the low dependence observed from the time window. At the

same time, data have been normalized to show the effects of the power con-

figuration for each objective function. By doing so, we can compare data for

different sizes or problems in an unified heatmap, as shown in Fig. 3a and 3b.

While the NPB presents multiple predefined classes, the problem size incre-

ment between these provided instances is very high, as it is thought for highly

parallel systems. As an example, the A, B and C classes have around a 4 times

size increase going from one class to the next, while classes D, E and F have

a 16 times size increase between each problem. We defined custom classes,

labeled in the X axis, from BT.1 to BT.9 to study a softer increment in the ker-

nel sizes. The smallest size performs calculations over a 3-dimensional matrix

of sizes (12, 12, 12), while the biggest problem size processes (32, 32, 32).

For comparison, we already stated that BT.W is of size (24, 24, 24). In other

words, the problems perform calculations over 1728, 32768 and 5832 elements

respectively.

In Fig. 3a and 3b, we represent the execution time for different custom

classes for the BT kernel using this alternative representation. The Y axis

represents the maximum power allowed to the CPU, and each power has an

average for several experiments using different time windows. As each column

of the heatmap is normalized, 1.00 represents the best value measured for each

problem size. In both figures, dark blue represents the best values, while red

illustrates the opposite.

For the execution time objective, there is no difference between the selected

problem sizes, and the better performance is achieved by removing the power

Springer Nature 2021 LATEX template

20 Energy efficient power cap configurations

limit. For the energy objective function, we observe again negligible differences

between the multiple problem sizes. The optimal power limit in Figures 3a and

3b are 8 W and 4.5 W respectively, the extreme values in the Pareto front set.

In this bi–objective case, optimal values can be extracted from the heat

maps by observing the behavior of each single objective individually. By study-

ing both heatmaps, we can compare the normalized data to understand the

energy cost of the fastest configuration or the extra execution time needed in

order to improve the energy efficiency. This data representation helps to per-

form a sensitivity analysis for different software and hardware configurations

to accurately discard impracticable power values and slightly reduce the total

number of executions required to study an architecture.

In this initial use–case, we could discard values over 8.0 W and under 3.0 W

as the BT analysis has shown these limits are reasonable in our environment.

However, this is only applicable in this specific architecture for single–core

executions, and daemons or services installed in our system could affect our

power consumption. Still, this delimits the experimentation for future software

applications and significantly reduces the effort required to incorporate the

knowledge of these applications.

4 Pareto Front based Analysis

In order to illustrate the proposed methodology, this section presents an in–

depth analysis of an Intel i5-6200U CPU, a Skylake processor with power

cap capabilities. It has 2 cores at 2.30 GHz, with a thermal design power of

15 Watts. The node has an Ubuntu 18.04 LTS, with kernel version 4.18 and

GCC 7.4. We also present a second analysis using a Intel Xeon Gold 6230N to

illustrate a multicore environment. The Intel Xeon Gold 6230N has 20 cores at

2.30GHz, with Debian 10, kernel version 5.4.0-0.bpo.2-amd64 and GCC 8.3.0.

Springer Nature 2021 LATEX template

Energy efficient power cap configurations 21

Energy measurements were gathered using the EML [28], a driver based

energy measurement library. In our experimentation, we used the appropriate

drivers to extract total energy metrics from the RAPL interface. RAPL has

been criticized of being not too accurate in measuring the energy consump-

tion by applications [29]. However, to the effects of validating our methodology

there is no loss of generality when using RAPL since, basically, the methodol-

ogy obtains a Pareto front or apply ML clustering techniques from a dataset

to model the behavior of a group of algorithms. The Pareto front and the

obtainded clusters will model the dataset be it accurate or not, so the use of

the RAPL tool for measurements does not affect the validity of the analysis.

The methodology will not change even if the dataset changes.

This use–case illustrates our experimental methodology by testing version

3.3.1 of the NAS Parallel Benchmarks (NPB) [30]. NPB is a collection of kernels

derived from Computational Fluid Dynamics (CFD) applications. Using the

RAPL interface, we set multiple time windows for each specified power average

to the CPU. We have approached the problem having simplicity in mind so,

we limited the power consumption of the whole CPU, using the PSYS zone.

As stated in the previous section, to compare different algorithms or prob-

lem sizes appropriately, normalization of the data is required. Each kernel from

the NPB is referred as AA.B, with AA as the standard abbreviation of the

kernel name and B as the size, or class, of the problem. In the previous section

we presented an example with the BT.W, and the custom BT.1 through BT.9

executions. Experimental data is illustrated using Table 1 and Fig. 2, 3a, and

3b.

We presented multiple power configurations using p =

(powerlimit, timewindow, PSY S) and observed how the time window had

Springer Nature 2021 LATEX template

22 Energy efficient power cap configurations

(a) Execution Time (b) Energy Efficiency

Fig. 4: Intel power cap application to serial NPB Benchmarks. Normalized
values, the closest the cell value is to 1, the better.

less impact for this kernel. This behavior appears in each kernel individually

and its repeated as the problem size in these serial version executions.

We will condense the data by obtaining an averaged value of three execu-

tions for each different power limit, to facilitate the study of the behaviors for

each kernel. Our first approximation shows that proper management of the

Time Window improves the overall efficiency and execution time of a target

application. However, an in–depth analysis is required to draw proper con-

clusions on how to adjust the parameter to our needs. In this work we will

only consider the power limit, since it affects the energy consumption of the

application more directly.

Table 2 shows an example of the normalized and averaged data over all the

windows for the kernel BT.W. Following the same data treatment to normalize

values, Fig. 4 depicts the energy dataset for 8 NPB kernels in their serial

version, similarly to Fig.3b. Again, the best energy efficiency is the normalized

value 1. Since the time heatmap is analogous to Fig. 3a, time data will still

Springer Nature 2021 LATEX template

Energy efficient power cap configurations 23

be discussed, but we will mainly focus on the energy efficiency of power cap

configurations.

The target architecture allows a broader range for power capping, below 3

Watts and over 8 Watts. However, these executions never required more than

8 Watts, so it represents the absence of power capping (> 8 Watts). On the

other side, metrics from the experimentation with a 3 Watts limit have shown

an extreme decrement in both performance and efficiency.

We can apply the conclusions drawn from the BT study to all the stud-

ied kernels. This includes knowing the values for the Pareto front set, which

are the power values in between the power limit for the best execution time

(> 8 Watts), and the power limit that achieves the best energy efficiency. We

will also denote how energy consumption and execution time is affected using

power cap with tuples in the form of (execution time, energy comsumed). Both

execution time and energy consumed will be the normalized values where 1.00

represents the best possible outcome. To exemplify, in the BT.W kernel pre-

sented in Fig. 4b, the best performance is achieved with a power limit > 8

Watts, pth,s > 8W → (1.00, 1.16), which translates to increasing energy con-

sumption by 16% , while the best energy efficiency is achieved at 4.5 Watts,

peh,s = 4.5W → (1.53, 1.00), an increased execution time of 53%.

Three different patterns can be observed in the data presented in Fig. 4b:

• The first case includes the DC.W and the IS.B. These kernels reach the

best energy efficiency at 4 Watts, where DC pth,s > 8W → (1.00, 1.21),

peh,s = 4W → (1.65, 1.00) and, IS pth,s > 8W → (1.00, 1.14), peh,s = 4W →

(1.66, 1.00). Both algorithms are memory intensive, and while data does not

indicate why, we suspect the similar power configuration is related to it.

• The CG.A reaches the best energy efficiency at 5 Watts, pth,s > 8W →

(1.00, 1.11) and peh,s = 5W → (1.46, 1.00).

Springer Nature 2021 LATEX template

24 Energy efficient power cap configurations

(a) Execution Time (b) Energy Efficiency

Fig. 5: Intel power cap application to parallel NPB Benchmarks. Normalized
values, the closest the cell value is to 1, the better.

• The rest of the kernels reach the best energy efficiency at 4.5 Watts. These

kernels have a mix of memory accesses and computation, and operate at

a similar power limit. Despite the multiple differences between them, these

algorithms barely require different power limits in their serial version.

Moreover, Fig. 4b indicates that multiple algorithms could have a similar

energetic behavior. With this information, instead of having a set of power

policies per algorithm, every decision that improves execution time or energy

efficiency could be applied to a problem category.

The analogous study using the OpenMP version of the NPB kernels was

also performed to analyze a different target CPU, where we observe a similar

energetic and performance behavior. We analyzed a Xeon Gold 6230N CPU fol-

lowing the same experimentation methodology. The different hardware power

consumption increases the range of feasible power limits to manage the energy

efficiency for the NPB kernels. We also selected classes with bigger problem

Springer Nature 2021 LATEX template

Energy efficient power cap configurations 25

instances, to properly adapt the problems the increased computational capaci-

ties. For DC, however, the selected class is still W , as performance is dependent

on I/O.

Fig. 5 represents the OpenMP parallel execution using the same kernels

presented in the previous section. Here, we execute using the twenty cores

available in our Intel Xeon Gold 6230N, thus expanding our power limits from

30 W up to the TDP of 125 W.

For this hardware, the fastest configurations still require removing any

power limitations, as expected from the serial executions. For the optimal

energy efficiency, we find again different patterns in the data presented in Fig.

5a and 5b. The minimum in both heatmaps was incremented to 40 Watts, since

the efficiency loss using less energy in most of the studied cases reduced the

clarity of the chart. Still, every omitted value was strictly worse than the value

at 40 W. Similar patterns are observed in the data presented in Fig. 5a and 5b,

which are: DC.W; LU.A, EP.B, UA.B, and CG.A; BT.A and SP.A; and IS.C.

We conclude that the addition of parallelism does not affect the methodology

to analyze the behavior of the target applications using power limits.

A classification process is applicable for both serial and parallel versions.

We can determine a small number of power and performance policies for a given

system, and adapt the execution to the needs of a user. By introducing problem

categorization, we also change from considering specific trade–offs in seconds

or joules, for normalized values that determine if a given configuration is better

or worse for a given resource. Without generalization, we could determine for a

given algorithm how much execution time is increased to save a given amount of

energy. However, our objective here is to provide configurations based on their

performance and efficiency, rather than estimate the exact amount consumed

for each resource, as analytical and statistical models are better tools for that

Springer Nature 2021 LATEX template

26 Energy efficient power cap configurations

purpose. Parallelization also adds enough complexity to the process, so that

the expert has to increase the effort to properly categorize the kernels, hence, a

simpler approach could be achieved with help of Machine Learning procedures.

5 Machine Learning Based Analysis

Users often want the best available performance, but as energy has become a

major issue, less critical applications can be executed more efficiently over a

longer period without degrading the user experience. In the previous section,

we proved that a categorization of different algorithms is possible in order to

reduce the total number of power configurations in a given system, and deep

insight is achievable for a given problem in a given architecture. However,

manually determining the membership of every new algorithm to an existing

set of power configurations is a costly task, as we have shown through the

whole computational experience. To further improve the management of the

performance and energy efficiency in a given system, we propose the usage

of ML algorithms to reduce the analysis complexity. We present a use–case

using the data from our previous Pareto front analysis to clusterize the power

configurations of the different NPB kernels. Furthermore, we will also present,

through the same previous use–case, how to insert a new algorithm into an

already existing clusterization so that previous knowledge can be reapplied to

a new algorithm.

A cluster can be defined as a collection of records that have a high degree

of “natural association” while the clusters are “relatively distinct” from one

another [31]. In our context, the energetic behavior of each algorithm deter-

mines how we collect them into a cluster. The amount of power required for

optimal energy efficiency and for optimal performance are the characteristics

we have been analyzing to determine their association.

Springer Nature 2021 LATEX template

Energy efficient power cap configurations 27

Clustering techniques serve the purpose of segmenting data in groups that

have not been previously defined. As their counterpart, classification algo-

rithms assigns the records in our data to previously defined groups. With

the help of clustering, we can find the properties of similar items and use

these properties to make recommendations. The main purpose of using clus-

tering techniques in our proposal is to minimize the manual input of an expert

to designate the power configurations illustrated in Section 4. Additionally,

suggesting new target algorithms to existing categories without the need of

intensive computation.

In unsupervised classification, determining the optimal number of clusters

is a widely studied problem by itself. In diverse proposals, such as [32, 33],

methodologies to identify a good enough representation of how data is intrin-

sically grouped. Clustering validation is achievable with different techniques.

Internal validation of the clustering technique uses data information exclu-

sively, which allows to evaluate our clustering structure without the need of

an external data input. Including external data, such as the manual clustering

achieved in Section 4, is often used to choose the optimal clustering algorithm

over a specific dataset. In our particular case, clustering techniques can be

used to extrapolate relationships between the different NPB kernels.

The proposal in this Section is divided in two steps. In the first step, we use

clustering techniques to define a number of kernel categories by using differ-

ent algorithms, indexes and distances from each cluster centroid. The attained

number of clusters is compared to the experimental results from Section 4,

presented in Fig. 4b, 5a and 5b. As a result from this step, a number k of clus-

ters and their µ centroids are obtained. This step is performed once. Finally,

in a second step, we determine the distance from a new kernel or algorithm

Springer Nature 2021 LATEX template

28 Energy efficient power cap configurations

to each centroid µ using an algorithm selected during the first step. This step

would be repeated for each new kernel we would like to analyze.

The chosen software implementation of the clustering algorithms is the R

library NbClust. This package provides 30 statistical indices to determine the

number of clusters, allowing the selection of various distance measurements

such as Euclidean, maximum, Manhattan, Canberra and Minkowski dis-

tances, and various agglomeration methods: Ward, single, complete, average,

McQuitty, median and centroid. In our work, we also combine various simi-

larity measures, grouping and validity indexes, such as, KL index, Silhouette,

Tau Index and SDindex

To determine which combination of algorithm and parameters yields better

results in our environment, we have performed an in depth study using the 20

core study of the NPB, represented in Fig. 5a and 5b. The input records for

our clustering algorithm correspond to each column in Fig. 5a and 5b, i. e. each

kernel execution with the different applied power limits conforms a record.

We obtained the following best number of clusters after the combination

of parameters for the executions illustrated in Table 3:

• 2 different clusters were obtained using 26 different clustering algorithms.

• 3 different clusters were obtained using 68 different clustering algorithms.

• 4 different clusters were obtained by only 7 different clustering algorithms.

• 5 different clusters were obtained using 2 different clustering algorithms.

• 6 different clusters were obtained using 32 different clustering algorithms.

Table 3 also contains the specific results obtained by each of the studied

parameter combinations. The most common outcome for the best number of

clusters is 3, which offers a counterpart to the analysis performed in Section 5.

In Section 4, we categorized the NPB kernels in 4 different categories due to two

specific power values presenting some strange behavior. Still, as the optimal

Springer Nature 2021 LATEX template

Energy efficient power cap configurations 29

Agglomeration Index
Distance Measurement

Eucl Max Manh Canb Mink

ward.D kl 6 5 6 3 6
ward.D2 sdindex 3 6 3 6 3

tau 3 2 3 3 3

single kl 6 2 6 3 6
sdindex 3 2 3 3 3
tau 3 2 3 3 3

complete kl 6 4 6 2 6
sdindex 3 6 3 3 3
tau 3 4 3 3 3

average kl 6 2 6 2 6
sdindex 3 2 3 2 3
tau 3 4 3 3 3

mcquitty kl 6 2 6 2 6
sindex 3 2 3 3 3
tau 3 4 3 3 3

median kl 6 2 4 2 6
sindex 3 3 3 3 3
tau 3 4 3 3 3

centroid kl 6 2 2 3 6
sindex 3 3 3 3 3
tau 3 4 3 3 3

k–means kl 6 6 6 6 6
sindex 2 2 2 2 2
tau 2 3 2 2 2

Table 3: Number of power configurations suggested by each ML clustering
algorithm, index and distance parameters

time and energy configurations in both categories are similar, the machine

learning algorithms categorize them equally, as they are proven statistic and

robust methods. These results justify the use of ML algorithms as part of a

methodology to extract the optimal number of power configurations for a given

software and hardware. The most influential parameter is the selection of the

validity index, where the KL, Tau and SD indices yield 3 different clusters.

It is important to remark that the selection of 2 or 6 clusters is still a valid

clusterization for the input NPB kernels, where having more or less power

configurations could satisfy special needs for specific environments.

Springer Nature 2021 LATEX template

30 Energy efficient power cap configurations

i5-6200U Categorization output

Added Distance to Centroid
Kernel K–means Analysis 1 2 3

BT.W < 1, 1, 1, 1, 1, 2, 2, 3 > 1 7.99 15.14 20.70
LU.W < 1,2, 1, 1, 1, 2, 2, 3 > 1 10.67 7.30 28.82
EP.W < 1, 1,1, 1, 1, 2, 2, 3 > 1 8.51 13.81 22.59
UA.W < 1, 1, 1,1, 1, 2, 2, 3 > 1 8.15 17.85 17.83
SP.W < 1, 1, 1, 1,1, 2, 2, 3 > 1 8.74 19.44 12.76
IS.B < 1, 1, 1, 1, 1,2, 2, 3 > 2 10.78 10.26 26.75
DC.W < 1, 1, 1, 1, 1, 2,2, 3 > 2 10.39 7.26 27.25
CG.A < 1, 1, 1, 1, 1, 2, 2,1 > 3 9.95 19.82

Table 4: Cluster membership comparative, NPB serial version in i5-6200U

Xeon Gold 6230N Categorization output

Added Distance to Centroid
Kernel K–means Analysis 1 2 3

BT.A < 1, 2, 1, 1, 1, 3, 1, 1 > 1 20.70 25.72 39.80
LU.A < 1,1, 2, 1, 1, 3, 2, 2 > 2 20.86 22.73 42.81
EP.B < 1, 2,1, 1, 1, 3, 1, 1 > 2 16.86 44.11 25.22
UA.B < 1, 2, 1,1, 1, 3, 1, 1 > 2 21.20 31.58 43.13
SP.A < 1, 2, 1, 1,1, 3, 1, 1 > 1 21.73 23.16 42.35
IS.C < 1, 2, 3, 1, 1,3, 3, 3 > 3 27.25 35.81 24.81

DC.W < 1, 1, 2, 1, 1, 3,2, 2 > 4 24.90 23.08 33.87
CG.A < 1, 1, 1, 1, 1, 3, 2,2 > 2 19.44 18.88 37.18

Table 5: Cluster membership comparative, NPB parallel version in Xeon Gold
6230N

For illustrative purposes, we have chosen the K–means agglomeration using

the Manhattan distance, and will set the number of clusters to k = 3 in order

to categorize our use–cases. The execution of a selected algorithm with the

data obtained in the previous experimentation and illustrated in Fig. 4b, 5a

and 5b yield the results presented in Tables 4 and 5.

For each individual kernel we performed the experimentation using the

other 7 NPB kernels as training set and use the remaining kernel as testing set,

so that we perform a k–fold cross validation. To introduce a new element to an

existing categorization we have to perform these exact steps, which reinforces

Springer Nature 2021 LATEX template

Energy efficient power cap configurations 31

our proposal. Each row in both Tables contains the data related to each of the

training and testing sets, with the kernel used for testing referenced in column

Added Kernel.

The column K–means shows a vector of the kernel membership to the

clusters, where each position of the vector indicates which kernel in the tuple

(< BT,LU,EP,UA, SP, IS,DC,CG >) belongs to which cluster (1, 2 or 3),

with the testing kernel in bold. The column Analysis determines the Added

Kernel cluster from our previous analysis for easy comparison with the con-

clusions extracted in the previous Section. Finally, the distance of the kernel

to every cluster centroid is shown to better understand the presented data.

For better explanation, we will discuss the first row in Table 4, the serial

version of BT.W. After executing the K–means for 3 clusters using all the

kernels but the BT.W, we calculated the distance of the kernel to the existing

centroids using the Manhattan distance. These distances, 7.99, 15.14, 20.70,

determine that the BT.W belongs to cluster number 1, in bold in our K–means

vector of membership. If we compare the obtained results and our manual

analysis, we can observe that the automated procedure achieves the same

results we achieved using the heatmaps.

For the i5-6200U case, in Table 4, the exact same results are obtained for

the Pareto analysis and the categorization algorithm for the majority of the

kernels. LU.W when used as test, switches from the cluster 1 to cluster 2.

Another remarkable case, the CG.A, has the peculiarity that it is the only

member of cluster 3 in the other instances, and the k–means has a different

suggested categorization using only 2 clusters. In this last case, we cannot

conclude that CG.A is significantly distant to the other kernels when added

afterwards, and is categorized in one of the existing categories.

Springer Nature 2021 LATEX template

32 Energy efficient power cap configurations

For the Xeon Gold 6230N case, Table 5 shows more variability for some

kernels such as the LU.A, CG.A and DC.W, that is different from what we

analyzed using the heatmaps, Fig. 5a and 5b. Still, each result in both tables

is a valid solution, as our manual approximation, and each of the presented

categorizations are reasonable to improve the efficiency of our target systems.

We profiled our R code and calculated the execution time for both cluster-

ization and introduction of a new element to the existing clusters to illustrate

the performance of this methodology. For the presented case, calculating the

membership and number of clusters using the 7 kernels required 1.8± 0.8 ms

in the Intel i5-6200U. In the other hand, incorporating a new element to

the existing classification required 1.7 ± 0.5 ms, and had an straightforward

implementation.

Comparing the low computational effort required and the relatively low

implementation difficulty to apply a clustering algorithm, and the costly task

of studying all the data manually, we have determined that ML algorithms

facilitate the process to obtain different power configurations to optimize soft-

ware execution in a target architecture and automatize the data analysis to

simplify the work necessary to apply our proposal. The initial categorization of

the applications, could be automatically gathered together with a small bench-

mark when installing the system and also it could be incorporated as part of

a queue manager or an scheduler in the target system. When new tasks are

sent to the queue manager or scheduler, the resource usage of these tasks is

collected and used to perform off–line calculations to classify the new items,

software or tasks, to an existing category for future executions. Furthermore,

when the volume of new items classified increases considerably, a recalcula-

tion of the clusters could be executed to refine the existing classification of the

algorithms.

Springer Nature 2021 LATEX template

Energy efficient power cap configurations 33

6 Conclusion

We have analyzed the effect of power capping technologies in a given

architecture, and proposed a methodology to categorize the feasible power con-

figuration of a target application. As the energetic behavior depends on both

hardware and software, we have illustrated a use–case using the NPB kernels

in a specific hardware. We extract a Pareto front of solutions for execution

time and energy consumption for each kernel. The analysis of the Pareto front

allows us to classify the different kernels to understand the power configura-

tions in our system. This simplifies the optimization problem as we obtain

an optimal power configuration per category, instead of optimizing each algo-

rithm individually. Then, to automate and reduce the effort of applying this

methodology, we presented a Machine Learning approach based in clustering

to reduce the number of unique power limit configurations.

Due to the data–driven approach of Machine Learning, we cannot use our

work as proof of truth to automate our methodology. However, our experi-

mentation strongly supports the automation capabilities and illustrates how

to incorporate new software to an existing categorization so that previous

knowledge can be reused for a better resource allocation.

For the near future we plan to extend our ideas to highly parallel systems

and introduce the methodology in power constrained environments where the

power draw of the hardware is higher than the total available power. This

likely will involve to incorporate some other Machine Learning techniques.

Additionally, we hold interest in heterogeneous benchmarks, such as Rodinia,

and architectures, including GPU processing. We have analyzed homogeneous

codes in CPU environments that can be used as a starting methodology to

better manage the difficulties introduced by heterogeneous environments

Springer Nature 2021 LATEX template

34 Energy efficient power cap configurations

Declarations

Ethical Approval

not applicable

Competing interests

The authors have no conflicts of interest to declare that are relevant to the

content of this article.

Authors’ contributions

These authors contributed equally to this work.

Funding

This work was supported by the Spanish Ministry of Science and Innovation

with the PID2019-107228RB-I00 project; by the Government of the Canary

Islands, with the project ProID2021010012 and the grant TESIS2017010134,

which is co-financed by the Ministry of Economy, Industry, Commerce and

Knowledge of Canary Islands and the European Social Funds (ESF), operative

program integrated of Canary Islands 2014-2020 Strategy Aim 3, Priority Topic

74(85%); and the Spanish network CAPAP-H. This work was also supported

by the European Union’s Horizon 2020 research and innovation program under

the FET-HPC grant agreement 801137 (RECIPE).

Availability of data and materials

The datasets generated during and/or analysed during the current study are

available from the corresponding author on reasonable request.

References

[1] Jones, N.: How to stop data centres from gobbling up the world’s

electricity. Nature 561(7722), 163–167 (2018)

[2] Andrae, A.S., Edler, T.: On global electricity usage of communication

Springer Nature 2021 LATEX template

Energy efficient power cap configurations 35

technology: trends to 2030. Challenges 6(1), 117–157 (2015)

[3] Fox, G.C., Glazier, J.A., Kadupitiya, J.C.S., Jadhao, V., Kim, M., Qiu,

J., Sluka, J.P., Somogyi, E.T., Marathe, M., Adiga, A., Chen, J., Beck-

stein, O., Jha, S.: Learning everywhere: Pervasive machine learning for

effective high-performance computation. CoRR abs/1902.10810 (2019)

arXiv:1902.10810

[4] Lison, P.: An introduction to machine learning. Language Technology

Group (LTG), 1 35 (2015)

[5] Cabrera, A., Almeida, F., Blanco, V., Castellanos–Nieves, D.: Finding

energy efficient hardware configurations under a power cap. In: Avances

en Arquitectura Y Tecnoloǵıa de Computadores: Actas de Jornadas

SARTECO, Cáceres, 18 a 20 de Septiembre de 2019, pp. 253–258 (2019).

Servicio de Publicaciones

[6] Jalali, F., Khodadustan, S., Gray, C., Hinton, K., Suits, F.: Greening iot

with fog: A survey. In: 2017 IEEE International Conference on Edge Com-

puting (EDGE), pp. 25–31 (2017). https://doi.org/10.1109/IEEE.EDGE.

2017.13

[7] Jin, C., de Supinski, B.R., Abramson, D., Poxon, H., DeRose, L., Dinh,

M.N., Endrei, M., Jessup, E.R.: A survey on software methods to improve

the energy efficiency of parallel computing. IJHPCA 31(6), 517–549

(2017). https://doi.org/10.1177/1094342016665471

[8] Ahmed, K., Bull, J., Liu, J.: Contract-based demand response

model for high performance computing systems. In: Chen, J.,

Yang, L.T. (eds.) ISPA/IUCC/BDCloud/SocialCom/SustainCom

https://arxiv.org/abs/1902.10810
https://doi.org/10.1109/IEEE.EDGE.2017.13
https://doi.org/10.1109/IEEE.EDGE.2017.13
https://doi.org/10.1177/1094342016665471

Springer Nature 2021 LATEX template

36 Energy efficient power cap configurations

2018, Melbourne, Australia, December 11-13, 2018, pp. 580–589.

IEEE, ??? (2018). https://doi.org/10.1109/BDCloud.2018.00091.

https://doi.org/10.1109/BDCloud.2018.00091

[9] Lei, D., Li, M., Wang, L.: A two-phase meta-heuristic for multiobjec-

tive flexible job shop scheduling problem with total energy consumption

threshold. IEEE Trans. on Cybernetics 49(3), 1097–1109 (2019)

[10] Mahboubi, H., Masoudimansour, W., Aghdam, A.G., Sayrafian-Pour, K.:

An energy-efficient target-tracking strategy for mobile sensor networks.

IEEE Trans. on Cybernetics 47(2), 511–523 (2017)

[11] Curtis-Maury, M., Shah, A., Blagojevic, F., Nikolopoulos, D.S., de Supin-

ski, B.R., Schulz, M.: Prediction models for multi-dimensional power-

performance optimization on many cores. In: 2008 International Confer-

ence on Parallel Architectures and Compilation Techniques (PACT), pp.

250–259 (2008)

[12] Wu, X., Taylor, V., Cook, J., Mucci, P.J.: Using performance-power mod-

eling to improve energy efficiency of hpc applications. Computer 49(10),

20–29 (2016)

[13] Rauber, T., RÜnger, G.: Dvfs rk: Performance and energy model-

ing of frequency-scaled multithreaded runge-kutta methods. In: 2019

27th Euromicro International Conference on Parallel, Distributed and

Network-Based Processing (PDP), pp. 392–399 (2019). https://doi.org/

10.1109/EMPDP.2019.8671593

[14] Lively, C., Taylor, V., Wu, X., Chang, H.-C., Su, C.-Y., Cameron, K.,

https://doi.org/10.1109/BDCloud.2018.00091
https://doi.org/10.1109/EMPDP.2019.8671593
https://doi.org/10.1109/EMPDP.2019.8671593

Springer Nature 2021 LATEX template

Energy efficient power cap configurations 37

Moore, S., Terpstra, D.: E-amom: an energy-aware modeling and opti-

mization methodology for scientific applications. Computer Science -

Research and Development 29(3), 197–210 (2014). https://doi.org/10.

1007/s00450-013-0239-3

[15] Rountree, B., Ahn, D.H., de Supinski, B.R., Lowenthal, D.K., Schulz,

M.: Beyond dvfs: A first look at performance under a hardware-enforced

power bound. In: 2012 IEEE 26th Intl. Parallel and Distributed Processing

Symposium Wksh. PhD Forum, pp. 947–953 (2012). https://doi.org/10.

1109/IPDPSW.2012.116

[16] Lawson, G., Sundriyal, V., Sosonkina, M., Shen, Y.: Runtime power

limiting of parallel applications on intel xeon phi processors. In: 4th Inter-

national Workshop on Energy Efficient Supercomputing, E2SC@SC 2016,

Salt Lake City, UT, USA, November 14, 2016, pp. 39–45. IEEE Computer

Society, ??? (2016). https://doi.org/10.1109/E2SC.2016.011

[17] Marathe, A., Bailey, P.E., Lowenthal, D.K., Rountree, B., Schulz, M., de

Supinski, B.R.: A run-time system for power-constrained hpc applications.

In: Kunkel, J.M., Ludwig, T. (eds.) High Performance Computing, pp.

394–408. Springer, Cham (2015)

[18] Han, J., Jentzen, A., Weinan, E.: Solving high-dimensional partial dif-

ferential equations using deep learning. Proceedings of the National

Academy of Sciences 115(34), 8505–8510 (2018)

[19] Kadupitiya, J., Fox, G.C., Jadhao, V.: Machine learning for parameter

auto-tuning in molecular dynamics simulations: Efficient dynamics of ions

near polarizable nanoparticles. Indiana University, Nov (2018)

https://doi.org/10.1007/s00450-013-0239-3
https://doi.org/10.1007/s00450-013-0239-3
https://doi.org/10.1109/IPDPSW.2012.116
https://doi.org/10.1109/IPDPSW.2012.116
https://doi.org/10.1109/E2SC.2016.011

Springer Nature 2021 LATEX template

38 Energy efficient power cap configurations

[20] Yager, K.: Autonomous experimentation as a paradigm for materials

discovery. In: Big Data and Extreme-Scale Computing Workshop (2018)

[21] Fahad, M., Shahid, A., Manumachu, R.R., Lastovetsky, A.: A novel sta-

tistical learning-based methodology for measuring the goodness of energy

profiles of applications executing on multicore computing platforms.

Energies 13(15), 3944 (2020). https://doi.org/10.3390/en13153944

[22] Reddy, R., Lastovetsky, A.: Bi-objective optimization of data-parallel

applications on homogeneous multicore clusters for performance and

energy. IEEE Transactions on Comp. PP(99), 1–1 (2017). https://doi.

org/10.1109/TC.2017.2742513

[23] Endrei, M., Jin, C., Dinh, M.N., Abramson, D., Poxon, H., DeRose, L.,

de Supinski, B.R.: Energy efficiency modeling of parallel applications.

In: Proceedings of the International Conference for High Performance

Computing, Networking, Storage, and Analysis, SC 2018, Dallas, TX,

USA, November 11-16, 2018, pp. 17–11713. IEEE / ACM, ??? (2018).

http://dl.acm.org/citation.cfm?id=3291679

[24] De Sensi, D., Torquati, M., Danelutto, M.: A reconfiguration algorithm

for power-aware parallel applications. ACM Trans. Archit. Code Optim.

13(4) (2016). https://doi.org/10.1145/3004054

[25] Coutinho Demetrios, A.M., De Sensi, D., Lorenzon, A.F., Georgiou, K.,

Nunez-Yanez, J., Eder, K., Xavier-de-Souza, S.: Performance and energy

trade-offs for parallel applications on heterogeneous multi-processing

systems. Energies 13(9) (2020). https://doi.org/10.3390/en13092409

https://doi.org/10.3390/en13153944
https://doi.org/10.1109/TC.2017.2742513
https://doi.org/10.1109/TC.2017.2742513
https://doi.org/10.1145/3004054
https://doi.org/10.3390/en13092409

Springer Nature 2021 LATEX template

Energy efficient power cap configurations 39

[26] Wang, X., Zhao, B., Wang, L., Mak, T., Yang, M., Jiang, Y., Daneshta-

lab, M.: A pareto-optimal runtime power budgeting scheme for many-core

systems. Microprocessors and Microsystems 46, 136–148 (2016). https:

//doi.org/10.1016/j.micpro.2016.03.006

[27] Ma, K., Wang, X.: Pgcapping: Exploiting power gating for power cap-

ping and core lifetime balancing in cmps. In: Proceedings of the 21st

International Conference on Parallel Architectures and Compilation Tech-

niques. PACT ’12, pp. 13–22. Association for Computing Machinery,

New York, NY, USA (2012). https://doi.org/10.1145/2370816.2370821.

https://doi.org/10.1145/2370816.2370821

[28] Cabrera, A., Almeida, F., Arteaga, J., Blanco, V.: Measuring energy con-

sumption using eml (energy measurement library). Computer Science -

Research and Development 30(2), 135–143 (2014). https://doi.org/10.

1007/s00450-014-0269-5

[29] Fahad, M., Shahid, A., Manumachu, R.R., Lastovetsky, A.: A compara-

tive study of methods for measurement of energy of computing. Energies

12(11), 2204 (2019). https://doi.org/10.3390/en12112204

[30] Bailey, D., Harris, T., Saphir, W., Van Der Wijngaart, R., Woo, A.,

Yarrow, M.: The nas parallel benchmarks 2.0. Technical report, Technical

Report NAS-95-020, NASA Ames Research Center (1995)

[31] Anderberg, M.R.: Cluster Analysis for Applications: Probability and

Mathematical Statistics: a Series of Monographs and Textbooks vol. 19.

Academic press, ??? (2014)

[32] Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans.

https://doi.org/10.1016/j.micpro.2016.03.006
https://doi.org/10.1016/j.micpro.2016.03.006
https://doi.org/10.1145/2370816.2370821
https://doi.org/10.1007/s00450-014-0269-5
https://doi.org/10.1007/s00450-014-0269-5
https://doi.org/10.3390/en12112204

Springer Nature 2021 LATEX template

40 Energy efficient power cap configurations

on pattern analysis and machine intell. (2), 224–227 (1979)

[33] Handl, J., Knowles, J., Kell, D.B.: Computational cluster validation in

post-genomic data analysis. Bioinformatics 21(15), 3201–3212 (2005)

	Introduction
	Related Work
	Power Cap Performance Analysis
	Power management technologies
	Multi–objective optimization using power limits

	Pareto Front based Analysis
	Machine Learning Based Analysis
	Conclusion

