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Abstract: Glaucoma, a leading cause of blindness, damages the optic nerve, making early diagnosis
challenging due to no initial symptoms. Fundus eye images taken with a non-mydriatic retinograph
help diagnose glaucoma by revealing structural changes, including the optic disc and cup. This
research aims to thoroughly analyze saliency maps in interpreting convolutional neural network
decisions for diagnosing glaucoma from fundus images. These maps highlight the most influential
image regions guiding the network’s decisions. Various network architectures were trained and
tested on 739 optic nerve head images, with nine saliency methods used. Some other popular
datasets were also used for further validation. The results reveal disparities among saliency maps,
with some consensus between the folds corresponding to the same architecture. Concerning the
significance of optic disc sectors, there is generally a lack of agreement with standard medical criteria.
The background, nasal, and temporal sectors emerge as particularly influential for neural network
decisions, showing a likelihood of being the most relevant ranging from 14.55% to 28.16% on average
across all evaluated datasets. We can conclude that saliency maps are usually difficult to interpret
and even the areas indicated as the most relevant can be very unintuitive. Therefore, its usefulness
as an explanatory tool may be compromised, at least in problems such as the one addressed in
this study, where the features defining the model prediction are generally not consistently reflected
in relevant regions of the saliency maps, and they even cannot always be related to those used as
medical standards.

Keywords: saliency methods; glaucoma diagnosis; convolutional neural networks; deep learning;
retinal fundus images

1. Introduction

Explainability of deep learning systems is a research field of paramount importance in
many areas where decisions must be carefully analyzed due to their complexity and/or
implications. This is the case of medical image analysis, where the specialist needs to know
the pieces of evidence that support the system’s decision so that they can be contrasted
against her knowledge and experience. This paper presents a study of an important class
of explainability techniques, called attribution/saliency maps, in the particular area of
glaucoma diagnosis from fundus images. Therefore, the main question that this paper
tries to answer is if the relevant image areas according to saliency maps computed on
trained deep learning models for this particular problem (glaucoma) can be used by the
specialists to support a diagnosis. A positive answer to this question is only possible if the
evidence resulting from the attribution map can be aligned with the standard features that
experts commonly analyze in medical images. This idea has led us to design an evaluation
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methodology that differs from other proposals, where saliency maps are scored case by case,
comparing the signaled regions with the ones marked by experts (local interpretability).

In contrast, the proposed methodology evaluates the outcome of interpretability
methods from a global perspective, rather than on a per-image basis. The aim is to estimate,
for a trained model, a degree of coincidence between the image areas used in standard
practice and the areas that are frequently relevant for the trained model. With this objective,
we propose a new metric that we consider appropriate for this global interpretability
analysis and in a context where there are standard relevant regions. The metric relies on
the set of saliency maps obtained from a distribution of input images for the trained model,
and in the standard relevant areas where the medical experts find shreds of evidence to
support a glaucoma diagnosis.

Glaucoma is a disease that causes vision loss, as it leads to irreversible damage to the
optic nerve. It is the second leading cause of blindness in the Western world, and is very
difficult to diagnose, especially in its earliest stages of development, due to the absence of
initial symptoms [1]. Thus, accurate systems with reliable interpretation methods for the
automatic detection of glaucoma would mean a major positive change given the particular
features of this illness and the importance of early identification.

A photograph of the fundus of the eye is one of the most widely used tools in the
diagnosis of glaucoma, since it is possible to appreciate the state of the structures of the
eye as shown in Figure 1. The disease produces a structural change in the head of the optic
nerve, an elliptical region called the optic disc that contains a central depression called the
cup. Glaucoma causes progressive enlargement of the optic cup such that one method of
estimating the disease with a fundus photograph is to measure the cup-to-disc diameter
ratio (CDR) [2].

Optic 
Disc

Fovea

Blood 
Vessels

(a)

Optic Disc

Optic Cup

(b)
Figure 1. Sample color fundus image highlighting its main structures: optic disc, optic cup, fovea,
and blood vessels. (a) Full fundus image with its main structures: optic disc, fovea, blood vessels;
(b) A magnification of the image showing the optic disc and cup.

The visual assessment of these images is a very subjective operation and not always
simple, especially in the most incipient cases of the disease. Therefore, automated methods
can reduce costs and make quick and consistent predictions, helping the specialist in the
diagnosis of this disease. Techniques based on deep learning (DL), such as convolutional
neural networks (CNNs), and more recently, visual transformers, have proven to be very
useful for solving computer vision problems [3]. In this work, we focus on CNNs, which
have been one of the most researched DL models in recent years and have led to spectacular
advances in their performance, surpassing classic machine learning techniques. Their
main advantage is that they are capable of autonomously detecting and learning the
most important features present in the image if their training is carried out with a large
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number of samples. Despite this success, these networks have a major drawback: a lack of
transparency. CNNs are known to work very well, but it is not easy to understand why,
since they do not provide an explanation for the decisions they make internally. They are
often used as black boxes, even in medicine, where a human-friendly explanation of their
behavior would be essential [4–6].

If we apply a CNN to perform diagnostic tasks on medical images, it would be
very enriching to understand/visualize what high-level factors or features the network
extracts from the images to make decisions. This knowledge could reinforce that of the
medical specialist and even unveil new influential aspects in diagnosis hitherto unknown.
Furthermore, if we want to fully integrate this type of system into clinical practice, we
must achieve the confidence of the end user (the physician) in the decisions made by the
network, and this can only be carried out by making the internal behavior of the system
more transparent.

To try to explain this behavior, several visualization methods have emerged in recent
years. The most popular, known as attribution or saliency methods, aim to identify those
pixels of the input image that most influence the final prediction of the model. The result of
the application of these methods is usually a heat map in which the pixels of the image that
appear most relevant to the decision are highlighted [7].

There are several published works on the application of CNNs in the diagnosis of
glaucoma that use these saliency maps. Most of them are limited to calculating the heat map
corresponding to some example images to obtain an idea of which parts of them have been
more determinant for the CNN used [8–11]. However, none of them perform an exhaustive
analysis of these heat maps to know if they are reliable, coherent between different images
or networks, coincident with the criteria of the medical specialist, or representative of the
important areas of the image. The few publications that we have found focused on the
detailed study of this type of technique are oriented to other medical problems, as will be
discussed in Section 2.

Therefore, the present work aims to study, critically and in depth, the application of
some of the most commonly used attribution methods in the interpretation of the behavior
of CNNs trained to diagnose glaucoma utilizing eye fundus images. For this purpose, we
performed a systematic application of these methods to determine the most relevant areas
in the images and we analyzed different network architectures, as detailed in Section 3.
As far as we are aware, we have identified a significant research gap, as there is currently no
comprehensive publication addressing the specific subject of explainability in the context
of glaucoma diagnosis using color fundus images, through the lens of saliency methods.
Our primary contributions to the existing body of knowledge are as follows:

1. Assessment of saliency method suitability. We systematically assess the appropriate-
ness and effectiveness of various widely recognized saliency methods in the context of
glaucoma diagnosis using color fundus images. This involves a thorough examination
of their applicability and performance metrics to determine the most suitable methods
for this particular medical imaging problem.

2. Impact of CNN architecture and training data. We delve into a detailed analysis of
the influence exerted by different convolutional neural network architectures and
variations in training data on the resultant saliency maps. By systematically varying
these factors, we aim to provide insights into the robustness and generalizability of
saliency methods across different CNN configurations and datasets.

3. Correlation of saliency maps with medical criteria. Our research extends to an in-
depth evaluation of the relevance of distinct regions within the images as identified by
CNNs in making diagnostic decisions. Moreover, we establish correlations between
these highlighted regions and established medical criteria for glaucoma diagnosis.
This step is crucial for understanding the gap between algorithmic interpretations
and clinically relevant features.
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The rest of the article is structured as follows. Section 2 describes the related work.
Section 3 refers to the materials and methodology used. Section 4 describes and discusses
the experiments performed, and finally, Section 5 provides the conclusions.

2. Related Work

As already mentioned in the introduction, several research papers apply attribution
methods to analyze the decisions made by CNNs for glaucoma diagnosis. However, these
works lack an in-depth systematic analysis and evaluation of the heat maps obtained with
these methods. In other medical problems, we have found some papers that address this
issue from a more comprehensive and systematic point of view, although there are few.

Arun et al. [12] evaluate the (un)reliability of saliency maps for locating abnormalities
in X-ray images for pneumothorax segmentation and pneumonia detection. They apply
8 saliency methods to the results of several CNNs. They conclude that the use of saliency
maps in the high-risk domain of medical imaging warrants additional scrutiny. Similar
conclusions were obtained in [13], where seven saliency methods were evaluated across
multiple neural network architectures for chest X-ray interpretation. The popular Grad-
CAM method performed better than the other saliency methods considered, but still, all
seven provided significantly different explanations compared to the human benchmark.
They also conclude that saliency methods have several important limitations.

In the field of ophthalmology, Singh et al. [14] present an interesting evaluation of
13 attribution methods. They train the InceptionV3 model to diagnose three retinal dis-
eases (choroidal neovascularization, diabetic macular edema, and drusen) and calculate
saliency maps with these attribution methods. The explanations obtained are evaluated
by a panel of 14 clinicians to assess their clinical significance. The results showed that
the most appropriate method for a specific medical diagnostic problem may be different
from the one considered best for another problem. In a systematic investigation, Van
Craenendonck et al. [15] conducted a comprehensive evaluation of saliency methods in the
context of diagnosing diabetic retinopathy through fundus images. They trained several
network models, including ResNet50, VGG16, and InceptionV3, and assessed the perfor-
mance of 10 different saliency methods. Their experiments revealed significant disparities
between the regions highlighted by heat maps and the annotations provided by expert
clinicians. Ayhan et al. [16] used three different network architectures and trained CNNs
to detect diabetic retinopathy and neovascular age-related macular degeneration from
retinal fundus images and optical coherence tomography scans, respectively. They used
various explanation methods and obtained a large set of saliency maps that were validated
against clinicians. They found that the choice of CNN architecture and explanation method
significantly influenced the quality of the saliency maps.

The research outlined in this paper aligns with the studies previously mentioned, yet it
is specifically centered on the challenge of diagnosing glaucoma. In pursuit of this objective,
we have examined nine distinct saliency methods and trained a total of twenty CNN
models with four distinct architectures: VGG19, ResNet50, InceptionV3, and Xception.

3. Materials and Methods
3.1. Datasets

The dataset employed for training and evaluating various CNNs in this study com-
prises two components. Firstly, the publicly available image set RIM-ONE DL [17] is
utilized, encompassing 172 images of glaucomatous eyes and 313 images of healthy eyes.
Additionally, eye fundus images sourced from medical specialists within our research
team, affiliated with the Hospital Universitario de Canarias, are included. This supple-
mentary set consists of 191 glaucoma images and 63 images of healthy eyes. These images,
which are not publicly available, were acquired with a Topcon TRC-NW8 multifunctional
non-mydriatic retinograph. Patients with a diagnosis of primary or secondary open-angle
glaucoma with untreated intraocular pressure greater than 21 mmHg were included in
the study. The diagnosis of glaucoma was not only based on the observation of the eye
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fundus images but on the presence of reproducible defects in the white–white perimetry
and/or morphological criteria based on a spectral domain optical coherence tomograph
SD-OCT Spectralis with the glaucoma Premium and Posterior Pole module. Both eyes were
included if they met the inclusion criteria. Subjects with concomitant ocular pathology
other than glaucoma, lower visual acuity of 20/40, refractive error greater than five diopters
of spherical equivalent or three diopters of astigmatism, level of false positives, negatives,
and fixation errors equal to or greater than 25% in the visual field, were excluded from the
study. Patients with hypoplastic or oblique optic nerves were also excluded. Considering
the two sets, a total of 739 images have been used: 363 of glaucomatous eyes and 376 of
healthy eyes. All these images have been annotated by two experts and include manual
disc and cup segmentation.

For a more thorough validation of the CNNs, we have used other publicly avail-
able databases, namely REFUGE, DRISHTI-GS1, and G1020. The REFUGE challenge
database [18] is composed of 1200 retinal images, of which 10% (120 samples) correspond
to glaucomatous subjects, including primary open-angle glaucoma and normal tension
glaucoma. The dataset also contains the ground-truth segmentation of the disc and cup.
The DRISHTI-GS1 dataset [19] contains 101 fundus images with different resolutions and
ground truth labels for the optic disc and cup. The G1020 dataset [20] is a large dataset
of retinal fundus images for glaucoma classification. This dataset consists of 1020 high-
resolution color fundus images and provides annotations of the ground truth for glaucoma
diagnosis; optic disc and optic cup segmentation; vertical CDR; neuroretinal rim size in the
inferior, superior, nasal, and temporal quadrants; and location of the optic disc bounding
box. Importantly, the authors of the G1020 dataset acknowledge that this is a very difficult
set to classify automatically because it represents fundus imaging in routine clinical practice
and does not impose strict inclusion criteria on the images captured.

3.2. Deep Learning Models

In this section, we explain how the CNN models used in this work were trained.
To do so, we describe how the training and test sets were obtained from the available data,
the training strategy, and the parameters selected for each CNN. Finally, we show the
performance attained.

In training the CNNs for this study, the initial set of 739 images underwent a ran-
dom division into training and test sets, maintaining an 80/20 proportion, respectively.
The training set comprised 290 retinographies of glaucoma and 301 of healthy eyes, while
the test set included 73 retinographies of glaucoma and 75 of healthy eyes. Additionally,
the training set was further partitioned into five distinct training and validation subsets,
employing a 5-fold approach.

We selected four prominent convolutional neural network architectures, namely
VGG19 [21], ResNet50 [22], InceptionV3 [23], and Xception [3], based on their widespread
adoption and extensive utilization in the domain of glaucoma diagnosis and other medical
fields. These architectures have also been evaluated in similar studies, such as the works
analyzed in Section 2.

All specified neural network architectures are accessible in the Keras module of the
Tensorflow v2 package [24]. To tailor these models to our specific problem, we modified the
top layer of each network. The adaptation involved introducing a DropOut layer, succeeded
by a Flatten layer, and then a Dense layer featuring 128 neurons with ReLU activation.
Subsequently, another DropOut layer was added, followed by a final Dense layer with two
outputs utilizing the SoftMax activation function.

For VGG19, the DropOut rate was set to 0.5, while for InceptionV3, ResNet50, and Xcep-
tion, it was set to 0.2. Additionally, in these three networks, the BatchNormalization layers
were maintained in inference mode to prevent the non-trainable weights from being up-
dated during the training phase.

Concerning the size of the Input layer, it was configured as 224 × 224 × 3 for
ResNet50 and VGG19, and 299 × 299 × 3 for InceptionV3 and Xception.
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Our training strategy is the same for all the models. First, starting with the pre-trained
weights from ImageNet, the base model was frozen and we trained the new top layer for
200 epochs using an Adam optimizer, with a learning rate of 1 × 10−6, and categorical
cross-entropy as the loss function. Second, we unfroze the base model, except for the
BatchNormalization layers, and trained the entire model end-to-end for 250 epochs, using
the same optimizer, with a learning rate of 1 × 10−5, and the same loss function as before.
In all cases, a batch size of 8 was used.

Regarding the pre-processing step, we implemented the pre-processing function in-
cluded in Keras for each network. To mitigate over-fitting, we employed data augmentation
on the input samples. This involved the introduction of random contrast adjustments (±0.3),
random brightness variations (±0.3), horizontal random flipping, random rotation (±45◦)
with nearest fill mode, random translation (±0.05) both horizontally and vertically with
nearest fill mode, and random zooming (±0.2) while preserving the aspect ratio, using
nearest fill mode.

The final weights for each model were chosen from the epoch that maximized the
validation accuracy on average among the five folds. This resulted in five different models
per network architecture, totaling 20 models.

The trained CNN models were tested with the independent set we mentioned previ-
ously, which consists of 75 samples from healthy subjects and 73 from glaucoma subjects.
The results achieved per network architecture and fold have been included in Table 1,
highlighting those corresponding to the best performance per architecture in terms of
balanced accuracy, which is the arithmetic mean of sensitivity and specificity [25]. Analo-
gously, Tables 2–4 show the performance obtained by evaluating the trained models on the
REFUGE, DRISHTI-GS1, and G1020 datasets. It is important to remark that these additional
image sets have only been used for testing.

Table 1. Results obtained by training and testing with our dataset, according to different metrics.
Results corresponding to the maximum balanced accuracy (B. Accuracy) are highlighted in bold.

Network Fold Sensitivity Specificity Accuracy B. Accuracy F1 Score

VGG19 1 0.8767 0.9467 0.9122 0.9117 0.9078
VGG19 2 0.9726 0.9467 0.9595 0.9596 0.9595
VGG19 3 0.9041 0.9733 0.9392 0.9387 0.9362
VGG19 4 0.9863 0.9467 0.9662 0.9665 0.9664
VGG19 5 1.0000 0.9200 0.9595 0.9600 0.9605

ResNet50 1 0.9315 0.9067 0.9189 0.9191 0.9189
ResNet50 2 0.9589 0.9867 0.9730 0.9728 0.9722
ResNet50 3 0.9863 0.9600 0.9730 0.9732 0.9730
ResNet50 4 0.9178 0.9467 0.9324 0.9322 0.9306
ResNet50 5 0.8904 0.9200 0.9054 0.9052 0.9028

InceptionV3 1 0.9589 0.8800 0.9189 0.9195 0.9211
InceptionV3 2 0.9452 0.8667 0.9054 0.9059 0.9079
InceptionV3 3 0.9726 0.9067 0.9392 0.9396 0.9404
InceptionV3 4 0.9178 0.9333 0.9257 0.9256 0.9241
InceptionV3 5 0.9178 0.9200 0.9189 0.9189 0.9178

Xception 1 0.9452 0.9067 0.9257 0.9259 0.9262
Xception 2 0.9315 0.8933 0.9122 0.9124 0.9128
Xception 3 0.9452 0.8267 0.8851 0.8859 0.8903
Xception 4 0.9178 0.9067 0.9122 0.9122 0.9116
Xception 5 0.9315 0.8133 0.8716 0.8724 0.8774

Although an exhaustive analysis of the performance of the trained CNN models is
not the subject of this article, it can be seen that the models classify reasonably well the
images of all the sets considered, except those of the G1020 dataset. The loss of performance
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achieved with this set is striking, confirming, therefore, what the authors of this dataset
indicated in their publication, as commented in Section 2.

Table 2. Results obtained by evaluating the models with the REFUGE dataset, according to different
metrics. Results corresponding to the maximum balanced accuracy (B. Accuracy) are highlighted
in bold.

Network Fold Sensitivity Specificity Accuracy B. Accuracy F1 Score

VGG19 1 0.8000 0.8769 0.8692 0.8384 0.5501
VGG19 2 0.8167 0.8472 0.8442 0.8319 0.5117
VGG19 3 0.7333 0.9269 0.9075 0.8301 0.6132
VGG19 4 0.7833 0.8537 0.8467 0.8185 0.5054
VGG19 5 0.8833 0.8898 0.8892 0.8866 0.6145

ResNet50 1 0.7250 0.9620 0.9383 0.8435 0.7016
ResNet50 2 0.8417 0.9009 0.8950 0.8713 0.6159
ResNet50 3 0.8000 0.8981 0.8883 0.8491 0.5890
ResNet50 4 0.7833 0.9296 0.9150 0.8565 0.6483
ResNet50 5 0.8083 0.8065 0.8067 0.8074 0.4554

InceptionV3 1 0.7500 0.9435 0.9242 0.8468 0.6642
InceptionV3 2 0.8333 0.9065 0.8992 0.8699 0.6231
InceptionV3 3 0.8500 0.9389 0.9300 0.8944 0.7083
InceptionV3 4 0.6750 0.9843 0.9533 0.8296 0.7431
InceptionV3 5 0.7750 0.9426 0.9258 0.8588 0.6764

Xception 1 0.7500 0.9083 0.8925 0.8292 0.5825
Xception 2 0.8083 0.8963 0.8875 0.8523 0.5897
Xception 3 0.7000 0.9241 0.9017 0.8120 0.5874
Xception 4 0.7333 0.9148 0.8967 0.8241 0.5867
Xception 5 0.9250 0.6898 0.7133 0.8074 0.3922

Table 3. Results obtained by evaluating the models with the DRISHTI-GS1 dataset, according to
different metrics. Results corresponding to the maximum balanced accuracy (B. Accuracy) are
highlighted in bold.

Network Fold Sensitivity Specificity Accuracy B. Accuracy F1 Score

VGG19 1 0.8429 0.7742 0.8218 0.8085 0.8676
VGG19 2 0.8857 0.7419 0.8416 0.8138 0.8857
VGG19 3 0.8429 0.8065 0.8317 0.8247 0.8741
VGG19 4 0.8857 0.7419 0.8416 0.8138 0.8857
VGG19 5 0.9571 0.6452 0.8614 0.8012 0.9054

ResNet50 1 0.9286 0.7742 0.8812 0.8514 0.9155
ResNet50 2 0.8571 0.7419 0.8218 0.7995 0.8696
ResNet50 3 0.8143 0.7419 0.7921 0.7781 0.8444
ResNet50 4 0.9143 0.7419 0.8614 0.8281 0.9014
ResNet50 5 0.9429 0.6774 0.8614 0.8101 0.9041

InceptionV3 1 0.8429 0.8065 0.8317 0.8247 0.8741
InceptionV3 2 0.8571 0.7419 0.8218 0.7995 0.8696
InceptionV3 3 0.9000 0.7097 0.8416 0.8048 0.8873
InceptionV3 4 0.8571 0.7742 0.8317 0.8157 0.8759
InceptionV3 5 0.8857 0.7742 0.8515 0.8300 0.8921

Xception 1 0.8429 0.7097 0.8020 0.7763 0.8551
Xception 2 0.8714 0.6774 0.8119 0.7744 0.8652
Xception 3 0.8286 0.7419 0.8020 0.7853 0.8529
Xception 4 0.9143 0.6452 0.8317 0.7797 0.8828
Xception 5 0.8857 0.6774 0.8218 0.7816 0.8732
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Table 4. Results obtained by evaluating the models with the G1020 dataset, according to different
metrics. Results corresponding to the maximum balanced accuracy (B. Accuracy) are highlighted
in bold.

Network Fold Sensitivity Specificity Accuracy B. Accuracy F1 Score

VGG19 1 0.2297 0.7459 0.5961 0.4878 0.2482
VGG19 2 0.3142 0.6630 0.5618 0.4886 0.2938
VGG19 3 0.2095 0.7845 0.6176 0.4970 0.2412
VGG19 4 0.3919 0.5939 0.5353 0.4929 0.3286
VGG19 5 0.4628 0.5318 0.5118 0.4973 0.3549

ResNet50 1 0.2973 0.6754 0.5657 0.4864 0.2843
ResNet50 2 0.3547 0.6809 0.5863 0.5178 0.3323
ResNet50 3 0.2230 0.7983 0.6314 0.5107 0.2598
ResNet50 4 0.2872 0.7169 0.5922 0.5020 0.2901
ResNet50 5 0.3919 0.6188 0.5529 0.5053 0.3372

InceptionV3 1 0.3108 0.6906 0.5804 0.5007 0.3007
InceptionV3 2 0.3986 0.5787 0.5265 0.4887 0.3282
InceptionV3 3 0.3986 0.6506 0.5775 0.5246 0.3538
InceptionV3 4 0.3784 0.6174 0.5480 0.4979 0.3270
InceptionV3 5 0.2905 0.7417 0.6108 0.5161 0.3023

Xception 1 0.3243 0.6865 0.5814 0.5054 0.3102
Xception 2 0.4865 0.5635 0.5412 0.5250 0.3810
Xception 3 0.3277 0.6823 0.5794 0.5050 0.3114
Xception 4 0.1689 0.8108 0.6245 0.4898 0.2070
Xception 5 0.3311 0.6713 0.5725 0.5012 0.3101

3.3. Saliency Methods

This paper evaluates a set of attribution/saliency methods for the problem of glaucoma
diagnosis with CNNs trained with eye fundus images. These techniques aim to identify
which features of the input image are most influential in the final prediction of the model.
To do so, they generate attribution/saliency maps, which are maps in which the pixels of
the image that seem most relevant to the decision are highlighted. In this study, we obtain
the attribution from the model’s inferred class, whether it is correct or not. Therefore, in our
interpretation of the attribution map, the most important thing is to find the features that
are relevant to each particular model in the construction of its decision.

In [26] a very complete review of the currently existing techniques for interpreting
the internal behavior of machine learning systems, including CNNs, is presented. In this
work, two types of interpretability are differentiated, global interpretability and local
interpretability. Global interpretability is attained when the user is able to understand how
the model works at a global level by inspecting the internal structures and parameters
of the model. On the other hand, local interpretability analyzes an individual prediction
of the model and attempts to explain what input feature led to the particular decision
corresponding to that prediction.

The attribution methods analyzed in this paper fall within the second category, as their
objective is to provide an interpretation of the model’s decision for a particular sample
within the domain, in our case a specific fundus image. However, the research strategy
carried out also aims to achieve a global interpretation by studying the attribution results
across a set of samples. This approach is intended to unveil insights into general aspects
of the performance exhibited by the trained models. For this purpose, nine different
attribution techniques, as outlined in Table 5, were examined. The selection of these
saliency methods was driven by their widespread usage in analogous studies, as detailed
in Section 2, where their effectiveness in elucidating model decisions and their contribution
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to the interpretability of deep learning models in medical image analysis was extensively
evaluated.

The Grad, GBack, SGrad, SGrad2, and VGrad methods rely on the gradient calculation
to obtain a sensitivity measure, i.e., how much a variation in the input contributes to a
variation in the output. On the other hand, the IGrad, Occl, GCam, and SCam methods
analyze how much of the CNN output can be attributed to the contribution of a feature.
Therefore, the correct interpretation of the attribution maps must take this fact into account.
In what follows, we briefly describe the basics of each of these methods.

The Gradient (Grad) method [7,27] is based on the calculation of the gradient, using the
backpropagation algorithm together with automatic differencing to estimate the sensitivity
of the model to each input. It is a fast method with a simple interpretation but has some
important drawbacks. There is a strong dependence between the sensitivity recorded for
one feature and the value of the other feature due to the nonlinearity of the models, which
makes it a very noisy method. Moreover, when the model is saturated for a subset of its
features, the gradient remains zero even for large variations of the inputs [28].

The Guided Backpropagation (GBack) method [29] is another gradient-based visual-
ization technique that allows only the propagation of positive gradients through the ReLU
activation function, changing the negative gradient values to zero. The elimination of these
negative values reduces the noisy appearance of the attribution map.

The SmoothGrad (SGrad) method [30] attempts to reduce the noise of the saliency
maps through the perturbation of the original image by adding noise to this image before
calculating the gradient. This is repeated N times and the resulting gradients are averaged,
leading to a reduction of the apparent noise in the attribution map while still emphasizing
important regions. Variants of SmoothGrad are SmoothGrad Squared (SGrad2), in which
the gradient is squared before averaging, and VarGrad (VGrad) [31], where the attribution
value is obtained from the variance of the gradients.

The Integrated Gradient method (IGrad) [32] integrates the gradient attribution map
between a baseline image and the input image, and the result is multiplied by the difference
between the input image and the baseline. The baseline image can be a black image, an all-
white image, or a random image. It is similar to the SmoothGrad method because it works
from a set of perturbed images. In the SmoothGrad method, they are perturbed by adding
noise, while in the IGrad method, this perturbation is a linear interpolation between the
baseline and the original image.

The Occlusion method (Occl) [33] attempts to discover which features of an input
image are the most influential in the network decision. They start from the assumption
that the contribution of a feature can be determined by measuring how the prediction
changes when that feature is occluded. The key question is as follows: Which parts of the
input image, if the model cannot see them, would change the final prediction the most? Its
simplest implementation is to replace a region of the input image with a uniform square of
a given color, but noise or specific textures can also be used as replacements. The region is
slid over the entire image, and the differences in prediction values for the reference class
are given as the estimated saliencies.

Both occlusion-based and gradient backpropagation-based interpretation methods do
not consider explicitly the intermediate layers of the network, which may contain important
information about its interpretability. There is a third type of method that investigates
what happens in the hidden layers of the network, to try to determine which features of
the input are the most relevant. This is the case of GradCAM (GCam) [34] and ScoreCAM
(SCam) [35], which generate saliency maps by combining the feature maps of intermediate
layers. GCam uses the gradient information flowing into the last convolutional layer to
assign importance values to each neuron, for a given output decision. These importance
values or weights are applied to compute the weighted sum of the feature maps generated
by each neuron of this last convolutional layer, thus obtaining the saliency map. SCam
applies an occlusion technique on the input image using the feature activation maps of the
last convolutional layer of the network as masks (previously adjusting the size of these
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feature maps to the size of the original image). In this way, a score is obtained for each
feature map, which indicates the importance of that feature map in the final predicted class.
As in GCam, these scores are used as weights to calculate the weighted sum of the feature
maps and thus obtain the final saliency map. The authors of SCam claim that this method
is better than GCam because, by not relying on gradients, it avoids irrelevant noise and
generates cleaner and more meaningful explanations.

Figures 2 and 3 show examples of the saliency maps obtained with the different attribu-
tion methods considered. Figure 2 groups the methods based on gradient backpropagation,
while Figure 3 shows the saliency maps of the remaining methods. The results of the CAM
methods are shown at the resolution at which they were actually calculated instead of
interpolating them, as is usually carried out, to avoid introducing distortions in the results.

Table 5. List of the saliency methods employed in this study, along with their respective abbrevi-
ated names.

Method’s Name Abbreviated Name

Gradient Grad
Guided Backprop GBack
SmoothGrad SGrad
SmoothGrad Squared SGrad2
VarGrad VGrad
Integrated Gradients IGrad
GradCAM GCam
ScoreCAM SCam
Occlusion Occl

(a) Input image (b) GBack (c) Grad (d) SGrad (e) SGrad2 (f) VGrad

(g) Input image (h) GBack (i) Grad (j) SGrad (k) SGrad2 (l) VGrad

(m) Input image (n) GBack (o) Grad (p) SGrad (q) SGrad2 (r) VGrad

Figure 2. Saliency maps from GBack, Grad, SGrad, SGrad2, and VGrad are displayed for three cases:
a scenario confidently classified as healthy with a probability of 1.0 in the first row, a highly uncertain
case with a probability of 0.61 for being healthy in the second row, and a case confidently classified as
glaucoma with a probability of 1.0 in the third row. The first column shows the input image for the
respective case.
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(a) Input image (b) IGrad (c) Occl (d) GCam (e) SCam

(f) Input image (g) IGrad (h) Occl (i) GCam (j) SCam

(k) Input image (l) IGrad (m) Occl (n) GCam (o) SCam

Figure 3. Saliency maps from IGrad, Occl, GCam, and SCam are displayed for three cases: a scenario
confidently classified as healthy with a probability of 1.0 in the first row, a highly uncertain case
with a probability of 0.61 for being healthy in the second row, and a case confidently classified as
glaucoma with a probability of 1.0 in the third row. The first column shows the input image for the
respective case.

3.4. Evaluation Methodology

In order to discover the most relevant information contained in the saliency maps,
the evaluation methodology that we have followed in this work is partially inspired by the
one used in [12]. In that study, the authors calculate for each saliency map what they call
the “localization utility”, which is a measure of the coincidence between the areas of the
original image marked as relevant in the saliency maps and those studied by the medical
specialists in their diagnosis. Therefore, for a saliency method to be considered useful,
the maximum values of the saliency map must be located in the image area indicated by
the experts in the ground truth.

The study performed in [12] was carried out with radiology datasets, in which the
image areas of diagnostic interest are well determined and localized. However, for special-
ists diagnosing glaucoma, it is not so easy to precisely specify the most relevant regions in
retinal images due to the lack of a reliable diagnostic biomarker. The diagnosis of glaucoma
is usually based on the joint analysis of the patient’s clinical history and the results of
various structural and functional tests. This is the main reason why, in this work, we have
followed a different approach for the evaluation of the localization utility of the CNNs used.

As mentioned in the introduction, glaucoma is characterized by a progressive enlarge-
ment of the optic cup area, leading to a narrowing of the neuroretinal rim [2]. In glaucoma,
the enlargement of the optic cup occurs in all directions, but generally, some areas are
affected earlier than others. Thus, in eyes with modest glaucomatous damage, rim loss
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is found mostly at the temporal inferior and temporal superior regions. In eyes with
moderately advanced glaucomatous atrophy, the temporal region is the location with the
most relative marked rim loss. In cases of highly advanced glaucoma, the least pronounced
rim loss is typically observed in the nasal disc area, while the nasal inferior region tends
to exhibit greater impairment than the nasal superior region. Examples of a healthy case
and an advanced glaucomatous case can be seen in Figure 2a,m, respectively. In order to
identify these zones of the image in a standard way, some sectors are defined in the optic
disc [36], as shown in Figure 4. This sectoral identification allows us to relate the most
relevant zones of the saliency maps with the areas of interest for medical specialists, which
facilitates the calculation of the localization utility of the analyzed method. In addition,
the sector analysis allows us to dispense with the pixel level and perform a higher-level
study that is less noisy and of greater meaning for the specialist. In [15], a discretization of
the problem is also proposed but through an arbitrary regular grid.

Temporal
Superior

(TS)

Nasal
Superior

(NS)

Nasal
(N)

Nasal
Inferior

(NI)

Temporal
Inferior

(TI)

Temporal
(T)

Background
(B)

Figure 4. Illustration depicting the partitioning of the optic disc into six sectors: nasal superior
(NS), nasal (N), nasal inferior (NI), temporal inferior (TI), temporal (T), and temporal superior (TS).
An additional sector is dedicated to the background (B). This visual representation pertains to the
right eye. Note that for a left eye, the sectors would be horizontally mirrored.

Formally, given an input image I and a model f , a saliency or attribution method,
denoted as S = S f

I (p), can be defined as a function that assigns a relevance score to each
pixel p in the image. Consequently, we transition from this conventional saliency map to
a discretized counterpart, denoted as Sd = Sd f

I (sec), which allocates relevance scores to
sectors associated with the image I. This is computed as follows:

Sd f
I (sec) =

|Msec ∩ Msal |
|Msal |

, sec ∈ {N, NI, TI, T, TS, NS, B} (1)

Here, Msec represents the binary mask for pixels encompassed within the sector being
examined, and Msal is the binary mask derived by applying a threshold to the saliency
map. This threshold retains pixels with values surpassing 75% of the maximum value,
specifically:

Msal(p) =
{

1 if S(p) ≥ 0.75max(S(p))
0 otherwise

(2)

Therefore, the saliency score of each sector is the fraction of mask pixels that fall within
that sector. The choice of the threshold (0.75 of the maximum value of the saliency map)
was made empirically. Neither the maximum value of the saliency map nor the average
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value per sector has been used as a threshold because we have found that these choices lead
to noisy and unreliable results. In Figure 5, we exemplify the transformation of a saliency
map into a discretized saliency map for the respective sectors. This conversion process is
performed following Equations (1) and (2).

In addition to discovering the most relevant sectors from the information contained in
the saliency maps, we have carried out a complete comparative study between saliency
maps to measure the degree of agreement between saliency methods for a specific model,
the degree of agreement between saliency methods for models with the same architec-
ture, and the degree of agreement between saliency methods for models with different
architectures.

Spearman’s rank correlation [37] served as the method for quantifying the level of
agreement among the saliency maps derived from all the experiments conducted within this
study. Furthermore, to have a baseline of what can be considered a reasonable correlation
according to [38], we performed two additional tests for each of the 20 trained models: a
model parameter randomization test and a label randomization test.

The model parameter randomization test compares the output of a saliency method
on a trained model with the output of the same saliency method on an untrained network
of the same architecture, with its parameters randomly initialized. In [38], it is pointed
out that if the saliency method is truly useful and representative, it must depend on
the learned parameters of the model, and therefore, it is expected that its output differs
substantially between the two cases. A high correlation between the outputs may indicate
that the saliency map remains unresponsive to the characteristics of the model, which is an
undesirable outcome. This basic requirement can be used to rule out saliency methods.

In the label randomization test, the class labels are randomized. For this purpose,
the models are retrained by changing the labels of 50% of the samples with which they are
trained. According to [38], a high correlation between the saliency maps of well- and poorly
trained models is also undesirable, and if it occurs, it may be an indication to discard that
saliency method.

(a) (b) (c) (d)
Figure 5. Example demonstrating the conversion of a saliency map into a discretized saliency map
for the respective sectors. In this specific instance, the majority of the information significant for the
network is located in the temporal superior, temporal, and nasal superior sectors. (a) Input image;
(b) saliency map; (c) saliency mask; (d) discretized saliency map.

4. Experimental Results and Discussion

Different experiments have been carried out with the 20 CNN models trained with
our dataset (see Section 3.2 for more information), from the four architectures previously
described and the nine selected attribution methods. Details of these experiments can
be found in the following subsections. First, we present the experiments that verify the
validity/representativeness of the selected attribution methods, and then, we thoroughly
analyze the results obtained with them. All the results reported in this section were achieved
by testing the models on our dataset, except for Section 4.6, where we additionally test
them using the third-party datasets described in Section 3.1.
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4.1. Model Parameter Randomization

In this section, the experiments of the model parameter randomization test are pre-
sented. As already indicated in Section 3.4, for the calculation of the correlation, the values
of the saliency maps at the pixel level have not been used directly, but the values are
calculated by sectors using Equations (1) and (2). This is the same for all experiments
performed in this work. Therefore, since we have seven saliency values in each image (with
the background considered as one additional sector) and 148 test images, the Spearman
rank correlation for each pair of models is calculated, effectively, between two vectors of
1036 elements each. Figure 6 shows the boxplots for all the saliency methods. Each boxplot
has been computed from the five correlation values obtained by considering the model
corresponding to each fold per architecture. The results for the different architectures are
shown separately.

It can be seen that, in general, the correlations between the methods and their random-
ized equivalents are low, with a maximum value that, at most, is around 0.25 in absolute
value. Hence, we consider that the basic requirement of dependence on the learned pa-
rameters of the model seems to be fulfilled in all cases, and therefore, it is not necessary
to discard any of the methods. Additionally, Figures 7 and 8 display the saliency maps
obtained with the different methods for the randomized model in the same three cases as
Figures 2 and 3. The differences are quite noticeable, with the saliency maps highlighting
pixels that, in general, are scattered over the entire image.
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(a) Correlation coefficients for VGG19.
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(b) Correlation coefficients for ResNet50.
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(c) Correlation coefficients for InceptionV3.
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(d) Correlation coefficients for Xception.

Figure 6. Boxplots depicting the correlation coefficients between discrete saliency maps of the
randomized models and their original counterparts. A distinct boxplot is presented for each saliency
method and architecture. Each boxplot encapsulates the five correlation values stemming from each
fold per architecture.
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(a) Input image (b) GBack (c) Grad (d) SGrad (e) SGrad2 (f) VGrad

(g) Input image (h) GBack (i) Grad (j) SGrad (k) SGrad2 (l) VGrad

(m) Input image (n) GBack (o) Grad (p) SGrad (q) SGrad2 (r) VGrad

Figure 7. Saliency maps from GBack, Grad, SGrad, SGrad2, and VGrad obtained for the models with
randomized weights in the same three cases as in Figure 2. The first column shows the input image
for the respective case.

(a) Input image (b) IGrad (c) Occl (d) GCam (e) SCam

(f) Input image (g) IGrad (h) Occl (i) GCam (j) SCam

(k) Input image (l) IGrad (m) Occl (n) GCam (o) SCam

Figure 8. Saliency maps from IGrad, Occl, GCam, and SCam obtained for the models with randomized
weights in the same three cases as in Figure 3. The first column shows the input image for the
respective case.



Sensors 2024, 24, 239 16 of 28

4.2. Data Randomization

In this section, the experiments of the class label randomization test are presented.
Let us recall that in this test what is randomized are the class labels. Once again, a high
correlation between the saliency maps of well-trained models (with the original data) and
wrongly trained models (with random class labels) is also undesirable. If it occurs, it can be
considered a reason to discard the corresponding saliency method.

In these experiments, we also considered the seven saliency values in each of the
148 test images, calculating the Spearman rank correlation for each pair of models (the
original model and the model retrained with the mislabeled samples). Figure 9 displays
the boxplots for all the saliency methods. Each boxplot has been generated from the
five correlation values obtained by considering the model corresponding to each fold per
architecture. The results for the different architectures are presented separately.
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(a) Correlation coefficients for VGG19.
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(b) Correlation coefficients for ResNet50.
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(c) Correlation coefficients for InceptionV3.
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(d) Correlation coefficients for Xception.

Figure 9. Boxplots depicting the correlation coefficients between discrete saliency maps of the models
trained with randomized labels and their original counterparts. A distinct boxplot is presented for
each saliency method and architecture. Each boxplot encapsulates the 5 correlation values obtained
from each fold per architecture.

In this case, we can observe that some methods present higher correlations than in the
previous experiment. In particular, GBack and SCam achieved median correlation values
close to or above 0.50 for ResNet50 and Xception, even reaching 0.75 in the case of GBack.
Consequently, we have decided to discard these two methods in subsequent experiments.
It is important to note that the GBack method also did not pass the sanity checks carried
out in [38].

4.3. Correlation between Saliency Methods for a Specific Model

We calculated the correlation between the saliency maps produced by the 20 models
in our study. Figure 10 displays the resulting correlation coefficients, with each boxplot
summarizing the statistical information for this analysis. These distinct boxplots were
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derived from the 20 correlation values calculated for pairs of saliency methods, encompass-
ing all possible pair combinations listed in Table 5 and arranged alphabetically, excluding
GBack and SCam, as previously noted. In this section, we did not differentiate between the
various network architectures since the obtained results were similar. Additionally, we have
included Table 6, which details some of the selected pairs of methods, sorted in descending
order of their median correlation values, including those with the highest correlations.

Table 6. Correlation coefficients for various method pairs, organized by descending median correla-
tion values. The table provides details on each method pair, including their assigned pair number
and associated minimum correlation (with its p-value), median correlation, and maximum correlation
(with its p-value) values.

Pair Index # Pair of Methods Min. corr. val. (p-Value) Med. corr. val. Max. corr. val. (p-Value)

11 Grad, SGrad 0.918 (p < 0.001) 0.943 0.985 (p < 0.001)
12 Grad, SGrad2 0.623 (p < 0.001) 0.690 0.737 (p < 0.001)
19 SGrad, SGrad2 0.619 (p < 0.001) 0.688 0.739 (p < 0.001)

4 Grad, IGrad 0.250 (p < 0.001) 0.401 0.606 (p < 0.001)
14 IGrad, SGrad 0.265 (p < 0.001) 0.400 0.616 (p < 0.001)
13 Grad, VGrad 0.177 (p < 0.001) 0.373 0.460 (p < 0.001)
20 SGrad, VGrad 0.188 (p < 0.001) 0.365 0.461 (p < 0.001)
21 SGrad2, VGrad 0.213 (p < 0.001) 0.363 0.468 (p < 0.001)
15 IGrad, SGrad2 0.190 (p > 0.001) 0.353 0.505 (p < 0.001)
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Figure 10. Boxplots illustrating the correlation coefficients for every pair of saliency methods.

It can be seen that saliency methods of the same type record the highest correlation
values. Gradient backpropagation-based methods are the ones that appear in almost the
entire table, as they exhibit the highest correlation. In contrast, GradCAM (GCam) and
Occlusion (Occl) methods do not appear in the table because their correlation with the
others and with each other is low. This approximately aligns with what was observed in
the examples in Figures 2 and 3.

It should be noted that for distinguishing between high and low correlation values, we
can use as a reference baseline the ones obtained in the case of random parameter models
with values in the range of 0.25, as previously seen.

The results found can be considered, to a certain extent, logical, since the methods
related by their very nature are the ones that show a greater correlation. However, it begs
the question of whether an even higher correlation could be expected, in general, since the
saliency maps are computed on the same model trained with the same images.
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Since there is no such thing as a ground truth of the saliency maps to be obtained,
we cannot rely on any objective basis to consider one result better than another. However,
we believe that the low correlation found in most cases may be because, depending on
what is specifically computed in each type of method, different parts of the image may be
highlighted without necessarily being mutually exclusive results. For example, the problem
formulation is different in the case of a gradient-based backpropagation method compared
to an occlusion-based method, as discussed in Section 3.3. Another issue is whether what
is highlighted may have a higher or lower correlation with what may be of interest in the
context of the considered pathology. This point will be addressed in Section 4.6.

4.4. Correlation between Saliency Methods for Models with the Same Architecture

We computed the correlation between saliency maps across the five folds under exam-
ination. Figure 11 illustrates the outcomes, with each boxplot representing the correlation
values among the seven saliency methods for pairs of folds within the same network
architecture.
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(a) Correlation coefficients for VGG19.
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(b) Correlation coefficients for ResNet50.
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(c) Correlation coefficients for InceptionV3.
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(d) Correlation coefficients for Xception.

Figure 11. Boxplots representing the correlation coefficients between the different pairs of folds of
each architecture for the seven saliency methods under investigation.

The response of the saliency methods to model changes in VGG19 and InceptionV3 is
similar, with median values between 0 and 0.25, in general, and maximum values bordering
0.5 in some pairs. For both ResNet50 and Xception, the medians were higher, with maxi-
mum values above 0.5 in some cases. Xception appears to be the least sensitive to model
change when these methods are applied to it.

We have identified a single comparable study in this context, conducted by Arun et al.
in 2020 [12], which focused on employing X-ray imaging for diagnosing pneumonia.
In their research, they undertook an evaluation of the repeatability of two distinct instances
of the InceptionV3 architecture. These instances were randomly initialized and trained
until convergence. Their published findings revealed significant variations across various
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saliency methods. Methods that yielded higher correlation values between the saliency
maps of the two models were considered more favorable.

In our study, we also observed elevated values in the upper range of the box-and-
whisker plots for certain saliency methods. However, we caution against interpreting these
values as a direct measure of method superiority. It is important to recognize that these high
values may arise due to the presence of image areas containing redundant information that
can equally distinguish between the two classes. Consequently, neural networks trained
under such circumstances may exhibit dissimilar training trajectories yet still yield similar
performance. In such cases, a saliency method can appropriately highlight this scenario,
indicating a discrepancy resulting from differing training processes rather than a flaw in
the method itself.

4.5. Correlation between Saliency Methods for Models with Different Architectures

We computed the correlation among saliency maps for the four network architectures
under scrutiny. Figure 12 visually presents the correlation coefficients, with each boxplot
derived from the seven saliency methods for pairs of architectures within the same fold.
In this experiment, the objective is to assess the level of concordance between saliency maps
generated by models trained on distinct architectures using the same data.

v19,r50 v19,i3 v19,xcp r50,i3 r50,xcp i3,xcp
pairs of network architectures
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Figure 12. Boxplots illustrating the correlation coefficients for each pair of network architectures.

Negative correlations can be found in all architecture pairs except ResNet50 and
Xception. In general, the maximum correlation values achieved are lower compared to the
previous scenario. In all cases, the average correlation values are around 0.125. In general,
the results depicted in Figure 12 align with reasonable expectations, as lower correlations
were anticipated when changing architectures, compared to the assumptions explored in
the previous section. It is evident that altering the architecture has a more pronounced
impact on correlation levels than changing the fold.

Once again, a closely related study was conducted by Arun et al. [12]. Their research
also demonstrates that correlations between models of the same architecture (repeatability)
tend to be higher than correlations between models of different architectures (reproducibil-
ity) across all considered saliency methods.

4.6. Relevance of Sectors in Neural Network Decisions

As previously elaborated in Section 3.4, a primary objective of this study is to deter-
mine the image regions that exert the greatest influence on the outcomes of the trained
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neural network models. To accomplish this, we have employed the regions within the
optical disc that clinicians regard as standard, a consistent approach utilized throughout
our experiments, as discussed in previous sections.

Sections 4.3–4.5 have delved into calculating correlations between saliency maps under
various assumptions. In this section, we introduce a global relevance metric for each sector.
This metric is calculated by determining the likelihood, within a specified test dataset,
that the highest relevance value generated by a saliency technique for a particular image
falls within the designated sector. The relevance value itself is derived using Equation (1).
Notably, for this probability calculation, we differentiate between the neural network
architectures, while considering all folds collectively.

Figures A1–A4 in Appendix A show the global relevance values by sectors for each
of the test datasets evaluated, and for the different network architectures and attribution
methods, separating the data between cases classified by the network as glaucoma and
those predicted as healthy. It can be seen that there exist differences depending on the
saliency method and architecture used, although some similar patterns can be seen among
the methods that rely more directly on gradient backpropagation: Grad, SGrad, SGrad2,
and VGrad. The IGrad method also produces some similarities with the previous ones in
terms of the sectors it considers most relevant, although it tends to highlight the background
sector less in all cases. This is in agreement with the results we saw in the previous sections,
especially those of the correlation between methods for a specific model in Section 4.3.

In addition, as mentioned in Section 3.1, we performed a validation of the models
with other external sets: REFUGE, DRISHTI-GS1, and G1020. For the latter set, G1020, we
removed from the study those images in which the optic nerve could not be fully seen,
in order to correctly perform the calculation of the global relevance per sector. In total,
27 images of normal subjects and 13 of glaucoma were removed, leaving us with 697 normal
and 283 glaucoma images. It should also be noted that for the calculation of the attribution
maps on these sets, we only used the fold that obtained the best balanced accuracy according
to the results presented in Section 3.2, to reduce the computation time given the volume of
images they contain.

Besides the figures provided in Appendix A, for a comprehensive and coherent anal-
ysis, we have computed the average values presented in Table 7. This table consolidates
data from all methods and architectures, offering a holistic perspective.

From the observation of these data, we can highlight the following:

1. The background, nasal, and temporal sectors are, in general, the most relevant for all
sets and classes, but the importance of each of the sectors varies depending on the
specific case.

2. The temporal inferior sector has approximately twice the probability of glaucoma than
normal in our dataset and REFUGE, unlike the rest of the datasets, whose probability
remains closer between classes. In our dataset, this sector has the highest probability
of glaucoma cases compared to the rest of the sets. Perhaps this may be giving a clue
to the performance difference between our dataset and the rest.

3. A common characteristic of all datasets seems to be the low probability, in general,
of the nasal inferior sector. On the other hand, the nasal superior and temporal
superior sectors also generally present a low probability, although higher than the
nasal inferior.

4. In our dataset, the most globally relevant sector was the temporal sector, being the
most predominant in both classes. Moreover, the temporal inferior sector is the second
most important in glaucomas. This does not occur in any other dataset. The temporal
and temporal inferior sectors, being the most globally important for glaucomas,
approximately align with the medical criteria, except for the temporal superior region,
whose relevance falls behind the background and nasal sectors.

5. Additionally, for our dataset, a Spearman correlation coefficient of 0.43603 (p-value < 0.001)
was obtained between the overall relevance by sectors of samples classified as healthy
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and those classified as glaucoma. This indicates a moderate, or moderate to low,
correlation between them.

6. In REFUGE, the most relevant sector was the nasal, but its relative importance varies
by class. It is the most likely in normals but the third most likely in glaucomas.

7. In DRISHTI-GS1, the most important sector was the temporal sector, which main-
tained its position in both classes. The rest of the sectors in DRISHTI-GS1 also maintain
their position unchanged by class.

8. In G1020, the most relevant sector was the background. It does not change its relative
position by class and remains in first position in both, despite being more likely in
glaucomas than in normal cases.

9. The behavior observed on average for DRISHTI-GS1 and G1020 could derive from a
difference in the distribution of the data, which may have caused the loss of perfor-
mance that our models produced when evaluated on these samples.

From what was highlighted above, it may be surprising that the background sector is
one of the most relevant. In this regard, it is worth mentioning the study carried out in [39],
where a series of experiments with this type of images are performed, hiding increasingly
larger parts of the retina centered on the optic disc, until it is completely hidden. They
conclude that there may be significant information outside the optic disc, such as the retinal
nerve fiber layers, which may allow this type of model to detect glaucoma or even to
estimate the vertical cup-to-disc ratio. In our case, something similar could be occurring
with the trained models, which may have relied on information present in the surroundings
of the disc to perform the prediction. Moreover, the experiments performed in [40] show
that convolutional neural networks trained with ImageNet are strongly biased towards
texture recognition rather than shape recognition. Note that, as explained in Section 3.2, our
models have been trained starting from the ImageNet pre-trained weights, as usual when
a large number of samples is not available, to avoid the over-fitting phenomena and to
obtain better performance. So, another possible explanation is that some kind of calculation
is being performed based on the texture of these images, where the background could play
a relevant role.

Table 7. Average results of the global relevance of the sectors, combining the results of all architectures
and attribution methods. Averages are shown for both classes together and individually, and also for
each dataset with which we evaluated the models (our dataset, REFUGE, DRISHTI-GS1, and G1020).
Those sectors with a probability greater than or equal to 10% are highlighted in bold.

Class Test Set B N NI TI T TS NS

Both Our dataset 16.53% 19.03% 8.35% 13.37% 22.76% 11.20% 8.76%
REFUGE 21.42% 21.77% 8.78% 10.39% 20.30% 7.51% 9.82%
DRISHTI-GS1 15.92% 22.73% 7.76% 12.28% 24.93% 10.30% 6.07%
G1020 25.80% 18.41% 5.47% 8.69% 23.63% 9.03% 8.96%

Healthy Our dataset 16.46% 22.20% 7.33% 9.52% 22.41% 12.16% 9.92%
REFUGE 18.97% 25.80% 9.06% 6.43% 18.67% 7.96% 13.13%
DRISHTI-GS1 17.30% 23.38% 8.52% 11.63% 23.43% 10.15% 5.59%
G1020 23.44% 19.95% 5.32% 6.46% 22.12% 10.76% 11.96%

Glaucoma Our dataset 16.59% 15.86% 9.37% 17.22% 23.12% 10.25% 7.60%
REFUGE 23.87% 17.75% 8.51% 14.36% 21.94% 7.06% 6.52%
DRISHTI-GS1 14.55% 22.08% 7.00% 12.93% 26.43% 10.45% 6.56%
G1020 28.16% 16.88% 5.62% 10.92% 25.14% 7.31% 5.97%

5. Conclusions

The main conclusion we draw from the analysis carried out is that saliency maps
are difficult to interpret and often provide rather unintuitive results in this particular
problem. Regarding the degree of coincidence in the evaluation of the importance of the
sectors of the optic disc, it seems that there is not much agreement between standard
medical criteria and the decisions of neural networks, except in the particular case of our
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dataset for the glaucoma class. In this particular case, the lower and upper sectors of
the disc are the ones that generally stand out in most saliency maps and architectures,
which is in agreement with medical criteria. However, this consistency is lost when the
trained models are confronted with other data sources. Here, the accuracy of the models is
decreased and, even with a slight reduction, the previously described alignment with the
medical standards disappears. This leads us to think that there is a relationship between the
performance derived from the generalization capacity of the model and the consistency of
the relevant areas in the saliency maps. Consequently, it may also influence the agreement
with established medical criteria.

However, other factors could produce disagreement with the expected explanations.
On one hand, saliency map techniques have their caveats, for example, it is well known
that in the case of gradient-based techniques, saturation of the model can easily diminish
the importance assigned to a relevant area. On the other hand, the model could be learning
novel features or interactions between already known ones. For this reason, we believe that
the results obtained in this paper should not be seen as a disadvantage of the application of
deep learning systems for glaucoma diagnosis from fundus images, but on the contrary,
as evidence of the absence of clear biomarkers in the images. This leaves the problem very
open to be explored in different ways by humans and machines, unlike what occurs with
other types of pathologies.

Finally, we need to address the practical implications of these results. In short, the use
of saliency maps as tools for explainability in a problem like this should be handled
very carefully to avoid incorrect interpretations. Deep learning models can be accurate
predictors of glaucoma in fundus images, but a direct human comprehensible explanation
that summarizes all the factors that the model is considering is not always possible. From an
intuitive point of view, the model is probably perceiving the image globally as we perceive
textures: there is no specific collection of spatially well-defined and consistently located
features that distinctly differentiate one texture from another. Alternative approaches seek a
more balanced integration of deep learning models’ predictive accuracy and interpretability.
One such example is the use of “surrogate models,” wherein a more easily explainable
model, like a high-level decision tree based on standard geometric features, is trained to
mimic the predictions of a pre-trained deep learning system using a set of images [41].
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Appendix A

Figures A1–A4 contained in this Appendix show the global relevance values by sectors
for the different network architectures and attribution methods, as explained in Section 4.6.
The data to obtain these diagrams were divided between the cases classified by the networks
as healthy and those inferred as glaucoma.
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Figure A1. Global relevance values by sectors obtained with our dataset for the different network
architectures and attribution methods, divided into healthy and glaucoma as classified by the net-
works. The color scheme visually represents relevance values, with lighter red tones indicating lower
values and darker tones signifying higher values.
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Figure A2. Global relevance values by sectors obtained with the REFUGE dataset for the different
network architectures and attribution methods, divided into healthy and glaucoma as classified by
the networks. The color scheme visually represents relevance values, with lighter red tones indicating
lower values and darker tones signifying higher values.
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Figure A3. Global relevance values by sectors obtained with the DRISHTI-GS1 dataset for the different
network architectures and attribution methods, divided into healthy and glaucoma as classified by
the networks. The color scheme visually represents relevance values, with lighter red tones indicating
lower values and darker tones signifying higher values.
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Figure A4. Global relevance values by sectors obtained with the G1020 dataset for the different
network architectures and attribution methods, divided into healthy and glaucoma as classified by
the networks. The color scheme visually represents relevance values, with lighter red tones indicating
lower values and darker tones signifying higher values.
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