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Abstract

The k -means algorithm is a Machine Learning clustering method that has gained
popularity both for its scalability and its simplicity. The output of this method
contains a distribution of the input data in k groups as well as k representative
examples.

The aim of this Bachelor’s Thesis is to test k -means clustering results under
controlled conditions by means of an artificial dataset. The data mimic solar
observations from the Interface Region Imaging Spectrograph (IRIS) in the Mg II

h&k lines. The situation is made incrementally more complex and the impact
on the clustering is studied on a case by case basis. The goal is to consistently
obtain a distribution that accurately separates the different profiles in the dataset.
Furthermore, the results are compared to those of hierarchical clustering methods
and the effect of two common preprocessing schemes is analyzed.

The k -means final results are considered satisfactory, given that the main goal of
discerning between spectral behavior patterns is achieved with very low error rates,
even when the data are purposefully contaminated with defective profiles and noise.
Nevertheless, when these impediments become too widespread, masking becomes
necessary, allowing for the previous statistics to be recovered. The hierarchical
methods are deemed equal or inferior to k -means in terms of performance, depending
on the specific criterion.

Keywords: Machine Learning, k -means algorithm, agglomerative hierarchical
clustering, feature scaling, Principal Component Analysis

Resumen

El algoritmo k -means es un método de clustering de aprendizaje automático que
ha ganado popularidad por su escalabilidad y su simplicidad. El output de dicho
método es una distribución en k grupos de los datos introducidos, además de k
ejemplos representativos.

El objetivo de este Trabajo de Fin de Grado es someter a escrutinio los resultados
de k -means bajo condiciones controladas por medio de un conjunto de datos artificial.
Los datos imitan observaciones solares obtenidas con el satélite Interface Region
Imaging Spectrograph (IRIS) en las ĺıneas de Mg II h&k. La complejidad de la
situación se incrementa gradualmente, estudiando el impacto sobre el agrupamiento
caso por caso. La finalidad es obtener consistentemente una distribución que separe
los diferentes perfiles del conjunto de datos. Además, los resultados se comparan
con los de algunos métodos de clustering jerárquico y se analiza el efecto de dos
estrategias de preprocesado comunes.

Los resultados finales de k -means son satisfactorios, dado que el objetivo
principal de discernir comportamientos espectrales se consigue con tasas de error
muy bajas, incluso cuando los datos están intencionadamente contaminados con
ṕıxeles defectuosos y ruido. Sin embargo, cuando estos impedimentos se extienden
demasiado, es necesario aplicar máscaras, que permiten volver a las estad́ısticas
previas. Los métodos jerárquicos son declarados inferiores o iguales a k -means
en términos de cuántos ejemplos agrupan correctamente, dependiendo del criterio
concreto.

Palabras clave: Aprendizaje automático, algoritmo k -means, agrupamiento
jerárquico aglomerativo, escalado, Análisis de Componentes Principales
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1. Introduction

El Machine Learning o aprendizaje automático es una rama de la inteligencia
artificial en la que se entrenan modelos matemáticos mediante algoritmos para
efectuar predicciones. Las dos grandes ramas en las que se divide son el aprendizaje
supervisado y el no supervisado. El aprendizaje no supervisado contiene al clustering
o agrupamiento.

k -means es un algoritmo de clustering que separa un conjunto de datos en
diferentes grupos, asignando un “centroide” a cada uno. Este centroide actúa como
media representativa del cluster.

1.1. Machine Learning. Unsupervised learning and
clustering.

The term Machine Learning (abbreviated ML) was first coined by Arthur
Lee Samuel, who developed a trailblazing program capable of playing checkers
and gradually learning how to become better at the game by analyzing each
position and its possible ramifications, much like a human mind would (Samuel,
1959). This algorithm was said to reach an amateur playing level after years of
development. Since these humble beginnings, Machine Learning and artificial
intelligence in general have flourished and continue to grow exponentially, the latest
examples being some recently controversial Artificial Intelligence chat bots, which
are profoundly impacting modern society (Dwivedi et al., 2023).

Machine Learning, at its core, is the process of training a program (called
a model) to make predictions or decisions, with the capability of learning from
previous results. Mathematically, the outline is simple: at first, the model has a
set of initial coefficients that allow it to take the input data and calculate a result,
which is translated onto a specific answer if the desired output is not in the form
of a number. For example, some predictions require yes or no answers, which
could be manually assigned to certain result ranges. The act of training the model
changes these coefficients recursively, slowly making the model more accurate in
its predictions. Given a sufficient amount of high-quality data, an ML algorithm
is capable of finding relationships between data points or variables that a human
being would be incapable of.

Applications of Machine Learning are as wide as one can imagine. Even the
development of seemingly inconsequential algorithms such as a checkers playing
program can help develop new strategies that are then extrapolated for other uses.
ML has found great success in social media engagement algorithms, text pattern
recognition for various end goals, information compression for scientific purposes,
climate and weather predictions, the early stages of self-driving vehicles, text and
image generation, assistance in medical diagnoses, and many more (Alzubi et al.,
2018).

Like most areas in science, Machine Learning has its own jargon. Here, we define
some terms that will be used later on:

• Example: each of the singular data points in the dataset. Each example has
a defined value for all the features, and they may have a label in the case of
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supervised learning, which we define further below. When treating spectral
data, for instance, each spectral profile is an example.

• Feature: each of the properties that characterize an example. Not all features
are equally useful for prediction purposes. The choice of features will depend
on the available computational power, the desired precision, and the nature of
the prediction one wishes to make. In a spectral profile, the intensity at each
certain wavelength is a feature.

• Label: the empirical, true answer of the prediction for an example. These
are only sometimes available, and if they are, the goal of the algorithm is
to match these labels when producing results. A label could be manually
given to a spectral profile if desired, identifying it as the outcome of a certain
phenomenon or the result of a specific atomic transition, for example.

• Dataset: the entirety of the data available for training and testing the
algorithm, which includes all examples with their respective feature values
and, optionally, labels.

• Model: the set of mathematical relationships that the algorithm finds and
uses to make a prediction.

• Convergence: When the algorithm stops iterating because a given condition
has been fulfilled, it is said to have converged, and the situation at the last
iteration is taken as that run’s final results.

A classic example of ML is that of automatic spam management. In this case,
the terms would be used as follows: we may have a dataset that contains all the
e-mails managed by a company on a certain day, and we may try to predict whether
or not the e-mail contains spam. The examples would be the individual e-mails,
and some features could be: the hour when it was received, the presence of certain
keywords or the number of characters in the e-mail. Each e-mail has an assigned
label that says if it truly contains spam. Upon convergence, the model may find that
the presence of keywords is a much more reliable way to tell if an e-mail is spam or
not compared to the other features.

As a side note, in order for an ML algorithm to work, all the features must
be numerical. If they are not (like the presence of keywords), then they must be
encoded as numbers somehow. Such encoding is outside of the scope of this work,
since the features we use are inherently numerical.

ML can be divided into two main branches: supervised learning, which is used
with datasets that contain labels, and unsupervised learning, for those datasets that
have none. Clustering methods belong to the latter.

Supervised learning comprises both regression and classification. These are
intended to predict quantifiable (in the case of regression) or classifiable (in the case
of classification) phenomena that have a true outcome, and therefore are labeled.
Real life examples would be a model that predicts the amount of precipitation on a
city (regression) or an algorithm that identifies handwritten digits (classification).
Classification may be binary or multivalued.

Unsupervised learning, however, is not designed to find a known pattern.
Instead, it aims to find relationships between examples in the dataset that
programmers cannot find on their own. This is mainly used for data reduction and
to find links between data that can then provide some insight into the system of

2



study. In this kind of problem, the programmer must make use of mathematical,
logical and statistical methods to analyze the performance of the model.

Clustering methods attempt to form groups such that the examples in the same
group or cluster are as similar as possible while the groups themselves are as different
from each other as possible. Specifically, in the case of this Bachelor’s Thesis, the aim
is to get an algorithm to identify and cluster regions with similar spectral behavior,
in order to reduce the amount of data that will require human analysis or undergo
lengthy operations. This will be discussed later in more detail.

1.2. The k-means algorithm.

The k -means algorithm is a widely used clustering method, and it will be the
focus of this work. Say we have a dataset with a number of examples n, each with
a number of features f and numerical values for each feature, and we would like
them to be distributed in k clusters.

The model’s modus operandi is the following: the number of clusters k is input
by the programmer. Then, the first step is to choose k centroids. These centroids
are generated by copying k random examples in the dataset. The creation of the
centroids is called initialization1.

Then, each example in the dataset is assigned to the centroid which is closest
to it distance-wise. Most commonly, the Euclidean metric is used, identifying each
feature with a dimension and using the definition of Euclidean distance for a space
with f dimensions. At this point, the centroids are redefined as the mean of all
the examples assigned to it. This is the working definition of a centroid and it is
the one that will be used from now on, unless otherwise stated. The centroids do
not necessarily coincide with examples present in the dataset anymore. After the
redefinition of the centroids, the examples are reassigned to their closest centroid,
which is, in general, not the same one as before. This marks the end of the first
iteration.

Every subsequent iteration involves (a) the recalculation of the centroids
according to their definition and (b) the reassignment of the examples. Note that
after step b is carried out, the centroids do not necessarily match with the mean of
the examples assigned to them because, in general, some examples have switched
groups. This continues on until k -means declares convergence, which happens once
the difference in the centroids’ position between two consecutive iterations is lower
than a certain threshold value called the tolerance2.

Figure 1 is an example of a fully converged k -means clustering result on a
two-dimensional distribution of points. These types of datasets are ideal for
illustrating the algorithm since the concept of Euclidean distance on a plane is
completely intuitive. In this case, the features are the x and ·y values. The
centroids are represented by the white crosses. Datasets with more than 2 or 3
features are hard to visualize, but the idea remains the same —the clusters will
contain examples that are close to each other (as per the Euclidean metric) in this

1Due to abuse of language, oftentimes the word “initialization” will be used to refer to the full
convergence process. Therefore, “performing N initializations” means “to run the data through
the algorithm N times, each with different centroid seeds”.

2More specifically, the algorithm declares convergence when the Frobenius norm of the matrix
given by the difference between the centroids’ array in two consecutive iterations is lower than the
tolerance value.
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phase space, the multidimensional space made up by all the features.

Figure 1: Clustering by k -means on a 2-dimensional distribution (the features are the x and y
values). Image adapted from an example code in the k -means user guide (scikit-learn, 2023b).

The way k -means operates is designed to minimize the second-order central
momentum or inertia, both for each cluster and globally. This quantity can be
defined as follows. A single cluster’s inertia is:

n∑
i=0

f∑
m=0

(||xi
m − µm||2) (1)

where n is the number of examples, f is the number of features, x is an example and
µ is the mean of the cluster’s examples. As we can see, the difference is computed
for every feature.

The total inertia is therefore:

k∑
j=0

[
nj∑
i=0

f∑
m=0

(||xi
mj − µmj||2)

]
(2)

where we have simply added the inertia for all clusters, j being the index that
identifies a cluster and nj being the number of examples in cluster j.

The way inertia is computed, namely, as the total distance to the local cluster
mean summed over all clusters, may cause k -means to be inaccurate when it comes
to anisotropic clusters, where one feature or combination of features exhibit a wider
range of values. This is one of the reasons why scaling the data is sometimes useful.
The viability of feature scaling will be discussed in Sections 7.1 and 7.3.

Although it is a useful success metric, it can be hard to judge a model’s
performance solely on the inertia. For example, though inertia values close to 0 are
desirable, a clustering with a number of clusters equal to the number of examples
would yield 0 inertia. One would be hard-pressed to consider this a useful situation,
since the clustered data are identical to the original data and no new information
has been gained. Additionally, because of the so-called curse of dimensionality,
inertia tends to inflate in high-dimensional datasets (in other words, datasets with
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many features). For these reasons, the most useful way to use inertia in the case
that concerns us will be by comparing its values for various choices for the number
of clusters to use, k, under the same conditions. The details on this will be given
later on as this metric is introduced.

Due to the nature of the algorithm, a number of problems may arise. Firstly, the
random positioning of the centroids upon initialization might cause convergence
to happen to a local minimum rather than the optimal clustering distribution.
As a means to avoid this, the algorithm allows for a number of initializations to
be done, each with different centroid seeds, keeping the results with the lowest
inertia. Another way to avoid local minima is to use the k -means++ initialization
scheme (Arthur and Vassilvitskii, 2007), which ensures that the centroid seeds are
somewhat distant from each other rather than completely random. We will use
both k -means++ and several initializations. Secondly, the tolerance threshold may
never be reached if the number of clusters or the data do not allow for a proper
convergence. k -means also accounts for this, letting the user set a maximum number
of iterations. If this maximum is reached, the algorithm will stop and the results
from the last iteration will be kept. In the event of this termination, the centroids
may not coincide with the average of all the profiles assigned to it, since the iterative
process stops before the centroids can be recalculated. This can be spotted and it
was evaluated for every case to make sure convergence was reached naturally.

2. System under study

La cromosfera y la región de transición son dos zonas de la atmósfera solar de gran
interés. El satélite IRIS observa rutinariamente estas capas mediante espectroscoṕıa
e imagen (De Pontieu et al., 2014). Entre las ĺıneas espectrales que es capaz de
observar se encuentran las de Mg II h&k, que han sido ampliamente utilizadas
como herramientas de diagnóstico en la cromosfera (por ejemplo, Leenaarts et al.,
2013b; de la Cruz Rodŕıguez et al., 2016; Kriginsky et al., 2023), y además también
han sido objeto de clustering con k -means (Panos et al., 2018; Bose et al., 2019;
Nóbrega-Siverio et al., 2021, entre otros).

Se construyeron dos conjuntos de datos artificiales simulando las ĺıneas
espectrales Mg II h&k. Para ello se sumaron varias funciones gaussianas centradas
en diferentes longitudes de onda y con distintas desviaciones estándar, emulando
la forma de los perfiles reales. Se crearon rásteres tridimensionales cuyas primeras
dos dimensiones pueden considerarse los ejes x e y de una imagen y cuya tercera
dimensión es el eje de longitudes de onda, distribuyendo ordenadamente los perfiles
para su identificación inmediata tras el proceso de clustering.

2.1. The Mg II h&k lines. The Interface Region Imaging
Spectrograph.

The chromosphere is a dynamic, complex layer of the Sun’s atmosphere that lies
between the photosphere and the corona. This region is important both for the many
physical processes that occur within its confines, such as magnetic reconnection,
wave propagation, ionization/recombination out of equilibrium, and so on; as well
as the different associated phenomena, namely, surges, spicules, prominences, among
others. In addition, anything that gets to the corona must pass through the
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chromosphere first. Hence, the characterization of the chromosphere may very well
be key in understanding fundamental solar open questions, for instance, the solar
wind, the solar coronal heating, and the coronal magnetic field (see the Introduction
on de la Cruz Rodŕıguez et al., 2016).

The Mg II h&k lines are high-quality diagnostics for many processes in the
chromosphere (e.g., Leenaarts et al., 2013b; Kriginsky et al., 2023). For this reason,
inversion codes are often used on these lines when focusing on said region (e.g.,
the STiC code by de la Cruz Rodŕıguez et al., 2016; de la Cruz Rodŕıguez, J.
et al., 2019). Inversion can be computationally costly, especially when undertaking
considerations of Non Local Thermodynamical Equilibrium (NLTE), which is
common in the chromosphere and particularly in the Mg II h&k lines (Leenaarts
et al., 2013a). This is why spectral datasets could benefit from a clustering
method: instead of inverting every single spectral profile, the inversion code is
run on a representative subset of the original data, potentially saving a significant
amount of time and, if done right, neglecting a very minimal amount of information.

The Interface Region Imaging Spectrograph (IRIS) is a satellite launched by
the National Aeronautics and Space Administration (NASA) in 2013 as part of the
Small Explorer program. It is designed to provide images and spectroscopic data
focusing on the chromosphere and the transition region (De Pontieu et al., 2014),
and it is often used to retrieve Mg II h&k data. In light of this, the chosen dataset
of this Bachelor’s Thesis will consist of artificial profiles mimicking the Mg II h&k
lines, and they will be collected in a three-dimensional raster, much like IRIS data.

It is worth mentioning that the use of Machine Learning and the k -means
algorithm to study these lines is not unheard of. Clustering methods are beginning
to be exploited as data reduction mechanisms to assist and influence subsequent
human analysis (Panos et al., 2018; Bose et al., 2019; Nóbrega-Siverio et al., 2021,
among many others), further backing the previous argument. The present work
intends to be but an introduction to such strategies.

2.2. Creation of artificial data.

A three-dimensional raster is built, the first two dimensions being the x and y
axes of a hypothetical IRIS image and the third dimension being the wavelength
axis. The dimensions for the Mg II h&k raster are (108, 64, 327). We will refer
to the 108x64 (x, y) positions in the raster as pixels, following the analogy with a
digital image. Eight different spectral profiles, shown in the left panels of Figure 2,
are created by adding Gaussian functions centered at specific wavelengths and with
different standard deviations. In ML terms, each spectral profile is an example and
the intensity at each wavelength is a feature. Therefore, there are 64 · 108 = 6912
examples and 327 features. The distribution of the profiles in the raster is as
follows: the first profile is assigned to all pixels in the first 8 rows; the second profile
to all pixels in rows 9 through 16; and so on, until filling the whole matrix.

An illustration of this pattern is provided in the right panel of Figure 2.
This spatial distribution, although unrealistic, will allow for an immediate

estimate of performance upon seeing the clustering results in a color map. No
issues arise because of this ordering since k -means is insensitive to example order.
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Figure 2: Different profiles included in the dataset (left) and distribution of each profile in the
raster (right). Each profile fills 8 consecutive rows, as indicated by the different colors.

3. Control case

Se realizó un primer clustering con los datos originales. Los resultados tuvieron
una inercia total de cero (salvo precisión computacional), y los grupos finales estaban
todos compuestos por 864 ejemplos, cada grupo conteniendo solo un tipo de perfil.
Por tanto, el agrupamiento fue tal como se esperaba obtener, sin mezclar distintos
comportamientos espectrales. Se comprobaron los resultados mediante la inercia
total y el comportamiento de plateau de la inercia.

3.1. Raw data. Preliminary results and first success metrics.

The k -means method was implemented via the scikit-learn module for Python
(Pedregosa et al., 2011), which is a Machine Learning oriented package. A first
clustering was performed on the aforementioned raster. This will serve as a
benchmark with which other cases will be compared. The parameters input in
k -means were the following: the number of initializations was 100, the maximum
number of iterations for each initialization was 450, the tolerance was 10−5 (same
units as the intensity) and we chose a certain random state seed so that the first
centroid chosen would remain the same upon running the clustering several times
and the results were somewhat reproducible.3 Having input 8 different profiles in
the raster, k -means was always run with the instruction to find 8 clusters, unless
otherwise stated.

After retrieving the results, we show in an x, y frame the cluster assigned to the
spectrum in each pixel: this is achieved by using different colors for the different
clusters. The resulting color map, or ‘image’ is expected to look like the one in
Figure 2, with eight clean stripes occupying eight rows each, though the ordering of
the colors may change. This result is indeed obtained and it is shown in Figure 3.

The reason for the color arrangement changing is the following: the colors are

3By using k -means++ and a random state together, we ensure that the first centroid seed is
always the same, but the other centroids are chosen via the k -means++ probability function and
can vary. Hence, it still makes sense to do several initializations.
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assigned sequentially, always in the same order (the one that appears on the color
bar on top of the left panel in Figure 3), to the clusters. However, we sorted the
clusters by their number of examples, and when this number is the same for several
clusters, their order is arbitrary. This is due to the fact that k -means does not
follow a spatial order when assigning labels.

The matrix on the right in said Figure is analogous to a confusion matrix.
These are used in supervised methods to quantify the amount of errors made, since
the label of each example is known and can be compared to the label assigned by
the ML algorithm. In this case, label numbers were not always associated with
the same profile. However, it is possible to count the number of instances of each
label at every 8-row layer of the raster, and subsequently build a confusion matrix
that identifies how many profiles were mislabeled with respect to the layer’s general
trend. Since this method relies on comparison between label frequencies, it will
only be applicable when the vast majority of pixels in the same layer share a label.
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Figure 3: Left: the different clusters for this control case are assigned a color and a label each. In
the panel, the pixels show the color of the cluster they have been associated with by the k -means
processing. Right: confusion matrix for this case. The results show no errors.

The tallies on the bottom row of the confusion matrix in Figure 3 show that all
clusters contain an equal amount of examples: 864 each. This amount is often called
the cardinality of the cluster. This quantity holds little meaning in general cases
more complicated than the very simple test we are doing in this section. In those
cases, the relative rate of occurrence of each behavior is unknown, and therefore we
have no guidelines on how many examples each cluster should have. However, in
our toy dataset, it is clear that equal cardinalities (exactly as they are in Figure 3)
are the ideal result.

In this case, the inertia per cluster (Eq. 1) is practically zero for all clusters (see
Figure 4), and so is the total inertia (Eq. 2). The fact that they are not exactly
zero is due to computational precision limitations. These will be taken as baseline
values to interpret the other results, as they are as close to perfection as possible
using this algorithm and the described dataset.

The last success metric that will be introduced for now is the behavior of the total
inertia as the number of clusters changes. This technique is referred to as a plateau
or elbow alluding to the distinctive shape of the produced graph, and it has been used
in research (see Appendix in Bose et al., 2019 and in Nóbrega-Siverio et al., 2021).
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It works as follows: the k -means algorithm is requested to fully converge (under the
same conditions of regular runs: 450 iterations maximum, 100 initializations, 10−5

tolerance in the same units as intensity) to a varying number of clusters. First, it is
asked to find 2 clusters, then 3, and so on all the way to 15.
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Figure 4: Inertia per cluster (Eq. 1) for the control case. Each cluster is assigned to a certain
label, which need not necessarily correspond to those shown in Figure 2.

For a number of clusters (k) lower than the number of distinct profiles included
in the dataset (8 in our case), the inertia is very high, since very different examples
are being clustered together. Increasing the number of clusters steadily decreases
the inertia at first, but as k approaches the number of distinct profiles, the values
of the inertia stabilize. This change in the rate of descent happens because, as
k surpasses the number of profiles, similar examples will be separated, but each
cluster will still contain very similar examples. Once we reach this point, the inertia
will not change much regardless of the exact value of k.

When real data are employed, the “ideal” number of clusters is unknown. In
this scenario, the researcher must find a number of clusters that sufficiently reduces
the data volume in order to manually analyze the minimum number of behaviors
while taking care that very different examples are not being put into the same
group. One possibility is to approximate this number by looking for an inertia
plateau, and then adjusting if necessary.
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Figure 5: Total inertia plateau behavior for the control case. The dashed black line shows that
after 8 clusters, the inertia becomes zero (save for machine precision).

The final results for this inertia plateau check are displayed in Figure 5. In this
first case, when we have 8 clusters, the profiles in each cluster are identical to each
other and therefore the point of inflexion is very clear. The values, which are as
close to zero as computationally possible after 8 clusters, indicate that having fewer
than 8 is highly inadequate and more than 8 is unnecessary separation. Thus, the

9



conclusion is that 8 clusters is an ideal number in this situation. This behavior will
be sought after in the following cases as well.

4. Added noise

Tomando el caso de control como referencia para los posteriores resultados, se
introdujo un ruido aleatorio con una distribución normal (ruido blanco Gaussiano)
que desvió los perfiles de sus valores originales. Ante este cambio, los ejemplos de un
mismo perfil dejaron de ser idénticos. Los resultados del clustering siguieron siendo
perfectos, separando adecuadamente los ocho comportamientos espectrales. A pesar
de que la inercia aumentó en muchos órdenes de magnitud, afectada por el ruido y
por la alta dimensionalidad, se siguió observando el comportamiento de plateau, lo
que justificó el número de clusters escogido.

4.1. Addition of noise to the profiles.

The original profiles serve well as a control case, however, in order to realistically
test the algorithm, some modifications were implemented to make the data look more
like a true observation.

As a first strategy to achieve this, White Gaussian noise (random noise with a
normal distribution which is equal for all wavelengths) was added, with a standard
deviation of 0.2, which lies between 5 and 10% of the signal amplitude, depending
on the profile. This made the profiles look jagged and irregular, which is a common
feature of observational data. An example of these new profiles can be seen in Figure
6.
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Figure 6: Profiles with an added normal noise distribution. The amplitude of said distribution is
the same for all examples. While there is contamination in their shape, the general look of each
profile is maintained.

A very important remark is in order: in the previous section, the profiles
in each “layer” of the raster were completely identical. Now, while the base
profile is shared within a layer, each pixel holds a unique example, since the
exact sequence of noise values is different for every (x, y) position. The examples
in Figure 6 are meant to be a visual guideline of what the data look like at this point.
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Though the examples look quite noisy, their general shape is still discernible, to
the extent where if a profile were to be put into the wrong cluster, one would likely
be able to tell, if it was superimposed with the other profiles. Following this idea,
we introduce a new type of graph: the centroid and the “most different profile”
in a cluster, plotted in the same figure. The profile with the largest cumulative
standard deviation from the centroid is chosen as the “most different one”. This
graph might allow us to identify clusters that contain at least one stray profile that
clearly belonged in another group, and would be the principal metric to do so in
general cases that do not have an ordered distribution like the present dataset.

4.2. Results. New success metrics.

After adding noise, the algorithm held up and continued to yield the same
results as for the control case, correctly segregating the different spectral patterns
as intended. This is a good first sign, as it proves that k -means can withstand some
alterations to the examples and accurately recognize the patterns that are most
interesting to us, that is, the shape of the peaks of the lines.
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Figure 7: Most different profile of each cluster (blue) together with the corresponding centroids
(red) for the case with noise. On top of each panel is each cluster’s cardinality in absolute value
and percentage.

Figure 7 shows the aforementioned most different profile (in blue) in contrast
to the centroid of each cluster (in red). This graph alone serves as an appreciation
of the general performance of the clustering: firstly, we can once again look at
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the number of examples in each cluster. The aim is to have equal cardinalities of
864. In this case, no incidents seem to have happened. However, it is possible that
switching of an equal amount of examples might have happened, leaving no trace on
the cardinalities. This would be easily seen on the confusion matrix and the color
map. Nonetheless, detection could happen here as well since a wrongly clustered
example is likely to be the most different one. By seeing this Figure only, one could
conclude that the clustering has been successful, since no most different profiles look
out of place.

On another note, the inertia shows significant changes. In this case, the effect of
arbitrary deviations from the profiles caused by the random noise, combined with
the large dimensionality in the dataset, drive the inertia per cluster up to around
1.1 · 104 (Figure 8).
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Figure 8: Inertia per cluster for the case with noise. Given the high dimensionality and the added
noise, values are much higher than the ones for the control case.

In a realistic case, where the data is not as tidy as our raster and therefore we
lack a good guideline like the color map to see if we have made mistakes or not,
these high values of the inertia could make one wonder how good the results truly
are. In that situation, it is still possible to fall back on the inertia plateau to justify
the clustering (see Figure 9). This time, the difference between having 6, 7 or 8
clusters is not as striking.
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Figure 9: Plateau test for the case with noise.

However, the plateau behavior is clearly still there and therefore 8 still seems
to be an appropriate number of clusters. Nevertheless, this supports the chosen
number of clusters, but not the distribution of the examples. To analyze that, we
may turn to Figure 7 or the color map (not shown for this case).

Another useful verification is to plot the relative difference between each cluster’s
centroid and the mean of all profiles assigned to it as a function of wavelength (see
Eq. 3).

12



δ(λ) =
µ(λ)− x̄(λ)

µ(λ)
· 100 [%] (3)

with δ being the relative difference in percentage, µ the centroid of the cluster
and x̄ the mean of the intensity at that wavelength for all the examples in the cluster.

Since, theoretically, µ and x̄ should be the same, a result that greatly differs
from 0 in most wavelengths will mean the algorithm declared convergence without
fulfilling the tolerance condition, and consequently, that the number of iterations
was fully exhausted before k -means had the chance to reach the best distribution.
Should this issue happen, the maximum number of iterations must be increased
until this phenomenon disappears (ideally).
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Figure 10: Relative differences between the mean of each cluster and the centroid (as per Eq. 3)
for the case with noise.

Figure 10 shows low values for this difference, suggesting that the algorithm
reached convergence before reaching the maximum number of iterations. The profiles
have also been plotted in red, for ease of showing the wavelength placements of the
largest relative differences. There are visible peaks at the edges of the x axis;
however, they are not a major issue: Eq. 3 shows that we are dividing by the
centroid’s value at each wavelength, therefore it is expected that this quantity could
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become exceptionally large in places where the centroid is close to zero. Moreover,
the order of magnitude is, at most, 10−10 in this Figure, so the highest values are
still not a concern.

All in all, the clustering is very successful for a reasonable amount of normalized
noise. As an interesting comment, we notice that the centroids (Figs. 7 and
10, in red) look extremely similar to the original profiles. This is due to having
averaged out over 800 profiles for each cluster with normalized, white noise. A
non-normalized noise distribution might not yield such a good replica of the original
data.

We have also tested the algorithm’s resilience when adding noise of a higher
amplitude. For instance, for a standard deviation of 0.4 (10-20% of the signal), the
average error rate (pixels that were put in a group that did not correspond to its
original shape) in 500 runs was 1.87 errors (0.03% of the total number of pixels).
This is still a very positive result.

5. Defective pixels

Para poner el algoritmo frente a situaciones más realistas, se introdujeron dos
tipos de ṕıxel defectuoso: impactos de rayo cósmico, en los que se añad́ıa al perfil una
gaussiana muy estrecha (visualmente, un pico muy pronunciado) en una longitud
de onda aleatoria; y ṕıxeles muertos, que consist́ıan en un perfil plano con un valor
negativo constante para todas las longitudes de onda.

Al introducir pocos rayos cósmicos, los resultados decayeron ligeramente en
calidad, asignando algunos ejemplos a un grupo que no le correspond́ıa según su
forma original. Al aumentar el número de rayos se comenzaban a cometer errores
más graves, incluso mezclando comportamientos espectrales.

A fin de remediar esto, se introdujeron máscaras, que sustituyeron este tipo
de ṕıxeles por perfiles planos en cero, y sabiendo que esto se hab́ıa aplicado, se
realizó el clustering con un grupo adicional. Los nuevos resultados recuperaron
el comportamiento previo, y los ṕıxeles enmascarados se agruparon correctamente,
separados del resto.

5.1. Addition of defective pixels to the raster.

As the final step in the introduction of realistic features, the presence of
defective pixels was accounted for in the form of cosmic ray impacts and pixels that
malfunctioned. In the same vein as the profile distribution, we added these defects in
a predictable pattern, as follows: if the total number of defective profiles for a specific
case is less than the number of pixels in a column, we distribute them uniformly in
that column. If larger, then they are distributed in as many adjacent columns as
necessary to accommodate all of them. The cosmic rays always began in column
10 and the dead pixels, in column 90. Concerning the actual spectral profiles with
defects, Figure 11 shows two examples. All dead pixels look identical and contain
no information, but profiles with cosmic rays still contain a lot of information, save
for the wavelengths that the ray renders unusable, so it is feasible that k -means can
still cluster them correctly.

This uniform distribution was chosen so that a mistake caused by a defective
pixel could be easily identified as such, as opposed to a mistake that incorrectly
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clustered an example with no cosmic ray. Once again, no clustering bias emerged,
given that k -means does not account for spatial correlation between the examples,
and the position of the profile in the raster was not a feature in the dataset.

Cosmic rays were approximated by another Gaussian, albeit much sharper than
the ones used for the lines, with a smaller width. The exact width and the wavelength
it fell on were both randomized. Any wavelength was a possible impact point, but
the full width at half maximum was limited to the 0.07-0.14 Å range. Dead pixels
were simply flat profiles with large negative values.
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Figure 11: Example of a profile with an added cosmic ray and a dead pixel flat profile.

5.2. Results.

For a first test, we added no dead pixels and 70 cosmic rays, which is around 1%
of the total number of pixels (6912). Figure 12 displays the results for this scenario.
The color map on the left shows the first indications of clustering mistakes, with
four pixels having a different color than the rest of their layer. The confusion
matrix on the right shows this as well, where four cells off the main diagonal are
nonzero.

Though the results are not perfect, 4 mistakes among 6912 examples, traded
for a reduction to only 8 profiles (a factor of 864), are completely negligible. The
mistakes will not be noticeable after the centroids are retrieved, since hundreds
of similar profiles will be averaged and the dominant behavior will be that of all
the correctly assigned examples, and more specifically, the ones with no cosmic
ray impacts. Therefore, the clustering is still very adequate, and the output
representative profiles, still useful.
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Figure 12: Color map (left) and confusion matrix (right) for the case with 70 cosmic rays. The
errors can be clearly identified both on the color map and the matrix.
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Figure 13: Most different profiles (blue) along with their centroids (red) for the case with 70 cosmic
rays. The cosmic rays are clearly visible on the blue profiles.

The viability of the clustering can also be seen in Figure 13: the centroids
clearly still look like the original profiles. In this graph, the most different profile is
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always one with a cosmic ray. However, we see no evidence of the wrongly clustered
examples being detectable via the most different graphs. This is curious, since the
wrongly clustered examples, which contain cosmic rays, differ from the centroid
both in the cosmic ray and in the general shape of the profile, so logically they
should be the most different ones. To further explore what is going on, let us add
a very significant amount of cosmic rays, specifically, 25% of the total number of
profiles.4

Figure 14 shows the great decline in clustering quality. 1728 cosmic rays have
been added. The edges of the area in which we contaminated the profiles with
cosmic rays are indicated on the color map by the dashed black lines. Every pixel
inside them contains exactly one cosmic ray.

We see that all of the individual mistakes are caused by the presence of rays,
though many examples inside this area are still clustered correctly. Additionally,
there is a big systematic error as two full stripes of the color map have been assigned
to the first cluster (shown in red), mixing the information of two of the original
profiles and almost doubling this cluster’s expected cardinality. Further, the last
cluster contains 50 examples (shown in dark green) that are exclusively located
within the confines of the ray region. This is a step back in the clustering, as
valuable information has been lost in the merging of two different profiles, not to
mention the fact that the last centroid will not be representative of any real behavior
either.
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Figure 14: Color map (left) and confusion matrix (right) for 1728 cosmic rays (25% of the total).
The dashed black lines on the color map represent the limits of the cosmic ray affected area.

Figure 15 shows the six most different profiles for each cluster in various colors.
The centroids of the clusters are shown in black. Comparing it with Figure 14, an
inevitable question appears: if there are so many wrongly clustered examples, why
are they not visible as the most different profiles (other than in the last cluster)?
If each cluster contains: 1) a bulk of profiles with no cosmic rays, which define
the “correct” spectral behavior for each cluster and the shape of the centroid; 2)
a significant amount of the same type of profile, but with a cosmic ray, and 3)

4Though this might seem excessively pessimistic, it is not unprecedented, because “IRIS passes
through the South Atlantic Anomaly (SAA) on a regular basis.” (cited from IRIS data notes,
LMSAL, 2022, included in the references). The SAA is a region in Earth’s magnetosphere that
has an increased flux of energetic particles due to the solar wind and cosmic rays. Observations
with such large quantities of impacts are usually discarded, though.
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some completely different profiles that, moreover, also have a cosmic ray; we should
expect the most different examples to come from the third category instead of the
second.

2795 2800 2805
0

1

2

3

4
L1: 1708 (24.71%)

Centroid

2795 2800 2805

L2: 897 (12.98%)

2795 2800 2805
0

1

2

3

4
L3: 874 (12.64%)

2795 2800 2805

L4: 867 (12.54%)

2795 2800 2805
0

1

2

3

4
L5: 855 (12.37%)

2795 2800 2805

L6: 835 (12.08%)

2795 2800 2805
0

1

2

3

4
L7: 826 (11.95%)

2795 2800 2805

L8: 50 (0.72%)

0.0 0.2 0.4 0.6 0.8 1.0
 [Å]

0.0

0.2

0.4

0.6

0.8

1.0

I [
ar

b.
 u

ni
t]

Figure 15: Six most different profiles (various colors) for each cluster, for the case with 1728 cosmic
rays. Centroids are shown in black.

Figure 16 shows a sample of the errors in the clustering that sheds some light on
this issue. The solid black line represents the centroid of one of the clusters. The
colored lines are some examples that were originally a different profile, but have
been incorrectly assigned to said cluster. Finally, the dashed black line is one of the
original profiles, clearly showing the common tendency among these errors in the
absence of the cosmic rays.

This is why the most different profiles look unexpected: the errors are caused
by the cosmic rays landing directly on the h&k lines and twisting the information
contained in them by making them look like completely different profiles in the eyes
of the algorithm. Thus, the standard deviation that the cosmic ray introduces in
these cases is not being fully accounted for, because some of it is mistaken as part
of the signal, while the standard deviation of a ray in the wings is completely taken
into account, ending up as one of the most different. The reason why we have so
many of these errors is because we have added a great amount of rays, and therefore
it is statistically bound to happen for several pixels in the raster.
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Figure 16: Wrongly clustered examples (various colors) plotted against their assigned cluster’s
centroid (solid black line) and the original profile that the errors actually had (dashed black line).

To sum up, the presence of cosmic rays severely hinders the proper functioning
of k -means when they affect the spectral lines in our dataset. The errors that ensue
are both problematic in terms of loss of information and hard to detect graphically
(since the spatial distribution of profiles is unknown in a general case). It stands to
reason that one must try to remove these outliers.

The idea stays the same when dealing with dead pixels. Because of the evident
similarity between all dead pixels, k -means will surely cluster them together,
inevitably joining two different profiles in the same cluster.

Figure 17 shows a case with only 10 cosmic rays and 10 dead pixels, which shows
the aforementioned issue. Since the 10 dead pixels are extremely favorable as a
cluster (the inertia in it is zero), two profiles are forced into the first cluster.
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Figure 17: Color map (left) and confusion matrix (right) for 10 cosmic rays and 10 dead pixels.
The dead pixels are alone in cluster 8 and two different profiles have been fused.

This is further proof that once the outliers start piling up, efforts need to be put
towards masking them so they do not affect the clustering of the other examples.

19



5.3. Masking. New results.

The previous section has proven that, if cosmic rays are not masked, the results
can be misleading. It is clear why identifying and masking anomalous examples
is paramount in any ML application. In this section, we will test the accuracy of
k -means when defective pixels are added, but masked. For this last test, we added
128 cosmic rays (two entire columns) and 128 dead pixels. Figure 18 shows the
clustering results for this run.
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Figure 18: Color map (left) and confusion matrix (right) for the masked case. 9 clusters are now
in play, the ninth one being the masked pixels only. The results have gone back to showing no
errors.

Masking was performed with a very simple function that checked if the example’s
maximum was above a certain threshold, or if any of its features was a very large
negative number, and substituted the entire example for a flat profile at 0. As
stated before, flat profiles will undoubtedly be clustered together, so when masks
are in play, k -means is asked to find 9 clusters. Given the nature of this ninth
cluster, it is safe to say it does not impact the total inertia any more than a factor
given by machine precision, as the centroid will be exactly equal to all of the
examples in the cluster. This is, of course, negligible compared to the inertia of
other clusters.

After adding the mask and performing the clustering again, the results were
much more positive —the defective pixels all fall into the same cluster, as they have
become identical, and the rest of the clustering is akin to that of the previous cases.

Figure 19 shows the most different profiles for each cluster, which once again
look like the ones in the case for noise. The last cluster contains identical examples,
so the most different one is perfectly superimposed with the centroid.

The mask defined in this work could be considered rather rudimentary, and
rightfully so. Its construction was purely based on the need for analysis of the
clustering and not aimed at nuanced detection of outliers. For this purpose, many
procedures exist, but one can always assume some cosmic rays will be missed in the
masking or removal process. Cases with 10 cosmic ray impacts (∼ 0.1% of the total)
were also tested and, fortunately, no errors were detected in those runs.

In conclusion, the act of masking is both a necessary and a beneficial step in
a dataset where remarkable outliers appear, as long as their characteristics are
identifiable. This is not only the case for clustering, or k -means, but for all ML
purposes.
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Figure 19: Most different profiles for the masked case. They look like those in the case with
noise only, since cosmic rays have been completely filtered out and masked. Knowing how many
defective pixels we have introduced of each type, we can tell how many examples of each profile
were affected, given the method of distribution. It is confirmed that 256 pixels were affected in
this run (128 cosmic rays and 128 dead pixels), equally affecting all profiles.

6. Hierarchical clustering methods

Los métodos de clustering jerárquico realizan la misma tarea que k -means
pero de una forma distinta; concretamente, los métodos aglomerativos comienzan
considerando todos los ejemplos como clusters y unen en cada paso los dos grupos
más cercanos entre śı, hasta que todos los ejemplos están en un solo grupo. Para
determinar qué dos clusters están más “cerca”, se utilizan distintos criterios de
enlace. A menudo se muestran las últimas uniones en un dendrograma, que es
un tipo de gráfico que muestra las distancias a la que se realiza cada fusión entre
grupos. Este entonces se emplea para determinar el número óptimo de clusters
bajo la suposición de que este se encontrará donde haya la mayor separación entre
uniones.

El criterio ‘ward’ resultó ser muy comparable a k -means, siendo ligeramente
peor al añadir rayos cósmicos. Los resultados del resto de métodos fueron pobres,
teniendo solo un desempeño equivalente en el caso de control.

6.1. General description and different methods.

Agglomerative hierarchical clustering methods begin with each example in its
own cluster, called singleton cluster, and iteratively merge clusters until there is only
one.5 The first merging happens between the two clusters that are closest together,

5Agglomerative methods are also often called inductive methods. Deductive methods, in which
all examples start in one cluster and slowly separate, also exist, but were not used in this work.
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and each successive merging follows the same rule, therefore each consecutive
merging will have a higher distance associated. Sometimes the distance at which a
merging happens is called the cophenetic distance (Sokal and Rohlf, 1962). Once
the whole merging scheme is finished, the user chooses an intermediate distance at
which to extract the clustering results, called the cut-off distance.

The difference between individual hierarchical methods is the way they
determine which clusters are to be merged next, that is, the linkage criterion.
This should not be confused with the distance metric, which is the way the
distance between two examples is calculated, and which, in this work, will always
be Euclidean. Some linkage criteria are defined as follows: the distance between
clusters equals the minimum of all the distances between all examples in both
clusters (‘single’), the maximum of them (‘complete’) or the average of them
(‘average’). These are sometimes biased towards merging some of the largest
clusters, in a “rich get richer” manner (see the comment on scikit-learn, 2023a).
The criterion that was found to be most useful was ‘ward’, which uses the Ward
variance minimization algorithm (see SciPy documentation, for example: SciPy,
2023). We will revisit this later.

The cut-off distance is commonly chosen as the one in between the two
consecutive cophenetic distances that are the furthest apart. This can be visualized
in a graph called a dendrogram, a generic example of which is presented in Figure 20.
The basic principle is that the cophenetic distance at which the mergings happen
will be very low while the examples joined are very similar to each other, and will
suddenly become very large as completely different examples are joined together.
Since the clustering is hierarchical and the merged clusters are always the ones
with the lowest distance out of all the possibilities, there should theoretically be a
turning point where the distance increases greatly between two specific mergings.

Examples

Di
st

an
ce

Figure 20: Example dendrogram. The horizontal red line shows a possible cut-off distance.

Figure 20 shows the general anatomy of a dendrogram: vertical lines represent
clusters, and horizontal lines that join two vertical ones represent mergings. The
height in the y axis indicates the distance at which the merging happens, and the
horizontal red line shows a possible cut-off distance. Plotting any horizontal line
can tell us how many clusters there are at the corresponding distance by counting
how many vertical lines intersect it. In this example, the cut-off distance is chosen
where there are 3 clusters left. We see that some of the mergings (horizontal blue
lines) happen very close together, indicating that those clusters had a similar level
of likeness, and some others are further apart. The cut-off distance will likely be
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chosen in one of these last instances, but the specifics of it depend on the dataset
and this method is not always the most reliable.

Though this is the usual way to get the number of clusters, in this work the
distance will be chosen so that the algorithm finds 8 clusters (or 9 when adding
an extra cluster that contains all the masked profiles). Thus, the results will be
judged based on the accuracy of the clustering. For some cases, we will mention
how different the cophenetic distances were between the correct number of clusters
and the next merging, which will indicate how favorable it is to have that number
of clusters.

Several linkage criteria are supported both by the SciPy library and scikit-learn.
We found no discernible differences in performance between the same criterion in
different libraries, so they will be used indistinctly.

6.2. Results in contrast with k-means.

For the sake of brevity, only the color maps and dendrograms will be discussed
for the hierarchical methods.

Figure 21 shows two different dendrograms, both for the ‘ward’ criterion: the
one on the left is obtained for the control case and the one on the right corresponds
to the case with noise. Both dendrograms show the last 10 mergings before all the
examples are fused together in a single cluster. We have indicated no units for the
distance between clusters because the units depend on the criterion used and are
not relevant for the analysis.
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Figure 21: Dendrograms for the ‘ward’ criterion, for the control case (left) and the case with noise
(right). The horizontal red line represents a distance at which there are exactly 8 clusters.

The dendrogram for the control case is peculiar in that the first two mergings,
the lowest ones, occur for exactly 0 distance, and so do all the previous ones (in
this Figure, the 0 value for distance does not lie on the x axis, but at −∞, so the
first two mergings are simply not visible). This it is the epitome of the sought
after large difference in distance between two mergings. In this case, it is ideal
to have 8 clusters, and the color map results (not shown here) proved that the
hierarchical clustering was able to consistently cluster all 8 profiles separately with
no confusion. As a final note, we see that after merging the two examples (shown
as numbers without parentheses) with the cluster that contains 862 examples, all
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clusters contain 864 examples.

When noise was added, the dendrogram on the right of Figure 21 was obtained.
This dendrogram shows a much tighter set of mergings (the previous ones are not
below the 100 mark, they are just not represented here for ease of interpretation),
which implies that ‘ward’ is having a harder time differentiating the profiles, but the
results were still completely accurate for this criterion (see Figure 22). After adding
up all the cardinalities for the two pairs of clusters that merge completely shortly
before the red line threshold, each cluster’s cardinality comes up to 864.

From now on, we will limit the analysis to comparing the ‘single’ and the ‘ward’
criteria. The ‘single’ criterion will act as a representative for all non-‘ward’ criteria,
as their behavior is very similar.
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Figure 22: Color maps for the case with noise. The ‘single’ criterion (left) is all right other than
the problematic mix-up of the two profiles in red and the dark green singleton cluster, while ‘ward’
(right) yields perfect results.
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Figure 23: Color map for the ‘single’ criterion, with noise,
at the point where 16 clusters were left.

The clustering results for
the run with noise are shown
in Figure 22. On the left, we
see that the ‘single’ criterion is
incapable of isolating 2 of the 8
profiles and has a cluster with
only one example (the dark
green pixel on the pink stripe),
in line with the aforementioned
“large cluster” bias, while the
‘ward’ criterion holds up to the
k -means standard.

It is not necessary to limit
ourselves to a strict 8 clusters,
though. Another attempt
may be made with a larger
number of clusters, hoping
that, while the two clusters
that were merged previously
might be subdivided, there
is a distinction between them and a successful grouping is still salvageable.
Unfortunately, this was not the case as seen in Figure 23, where the two
problematic profiles are already merged. The results in said figure also prove that
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the situation for 8 clusters will not be very promising, even if we lacked Figure 22,
as the only possibility is to continue merging clusters.

Predictably, adding defective pixels did not help the non-‘ward’ criteria. For
10 cosmic ray impacts, methods such as single now exhibit a very high-cardinality
cluster encompassing most of the pixels whereas the cosmic ray impacted examples
are singleton clusters (Fig. 24). On the other hand, ‘ward’ begins to show a few
mistakes. In a good portion of our tests, ‘ward’ still had a perfect clustering in this
situation, but not always. This is an indication that it might not be as robust as
k -means when outliers are present.
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Figure 24: Color maps for noise and 10 cosmic rays. The ‘single’ criterion now fuses most of the
profiles into one cluster, while ‘ward’ shows its first mistakes.

Figure 25 depicts the clustering results with 70 cosmic rays. In this scenario,
‘ward’ shows several mistakes, having incorrectly clustered many of the cosmic ray
impacted pixels. These results now clearly put ‘ward’ a step behind k -means,
because the latter made fewer mistakes than the former with this amount of
anomalous pixels. The ‘single’ criterion, in contrast, shows exactly the same
propensity to singleton clusters.
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Figure 25: Color maps for noise and 70 cosmic rays. The ‘single’ criterion fuses most of the profiles
into one cluster. ‘Ward’ shows several mistakes.

Figure 26 shows the results for 128 cosmic rays and 128 dead pixels, both of
them masked. The trends that emerged when only noise was present are once again
reproduced, except for the fact that masked examples are now separated into a
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different cluster. The ‘ward’ criterion continues to do a good job, but the issues of
the ‘single’ criterion remain unsolved.
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Figure 26: Color maps for 128 cosmic rays and 128 dead pixels, all masked. On the left, ‘single’
method, and on the right, ‘ward’ method, showing similar tendencies to the cases with noise.

In summary, some of the hierarchical clustering methods have proven ineffective
in dealing with the dataset at hand. The presence of noise alone is able to deteriorate
the results, fusing the information of two profiles. The best one out of the considered
criteria, however, is very comparable to k -means.

7. Effects of preprocessing

Una parte importante del Machine Learning es la preparación de los datos o
preprocesado. El preprocesado consiste en modificar los datos originales (raw data)
con un fin espećıfico, a menudo el de reducir el coste computacional o el de evitar
sesgos no deseados. Se analizaron los efectos de dos métodos de preprocesado, el
escalado de features y el Análisis de Componentes Principales (PCA por sus siglas
en inglés).

El escalado demuestra ser adecuado en ausencia de ruido, pero contraproducente
en casos subsiguientes, dado que reduce la importancia de la señal e incrementa la
del ruido y los rayos cósmicos. En cuanto al PCA, se muestra que es capaz de
reducir el número de dimensiones del conjunto de datos sin perder gran parte de la
información.

Finalmente, se discuten los aspectos estad́ısticos de cada situación en términos
del número medio de errores y el tiempo de computación medio. Se demuestra que
el PCA reduce el tiempo computacional sin causar grandes estragos en las tasas de
error, mientras que el escalado aumenta el tiempo computacional y los errores, siendo
inadecuado para este tipo de datos ruidosos. Ante estos resultados, se consolida la
gran importancia del enmascarado.

Performing any kind of ML with raw data is generally discouraged, because it
can lead to inaccurate results. Hence, data preparation is an integral part of ML.
Some of the most common techniques include data scaling and dimension reduction.
The present section is a discussion of the general effects that preprocessing had on
the data, both in terms of loss of accuracy and reduction of computational time.
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7.1. Feature scaling.

Feature scaling is the act of modifying the values in the dataset so that all
features have a similar range; this is a useful method when some features span wider
ranges than others. If they are left untouched, the linear nature of the algorithms
would treat these characteristics as though they were much more important and
representative than the rest. While this can be true sometimes, it is not always the
case or at the very least it is unknown whether or not it applies. Feature scaling
can help remove this bias.

Our original profiles are such that some features are practically zero for all
examples and others range from 0 to 4, approximately. While it is not extremely
significant, feature scaling could still be a good idea. A short analysis for the
feasibility of scaling in the different cases considered in this work will now be
provided.

In order to perform the scaling at hand, each feature was standardized, namely,
its mean was subtracted and then it was divided by its variance. Figure 27 shows
the rough effect of this process for the control case, the top panel being the original
profiles and the bottom one the scaled ones. One of the important differences
between both is that, where all 8 original profiles are hardly indistinguishable (in
the middle and far ends of the wavelength spectrum), the scaled profiles split, making
them that much more differentiable. For instance, the green and red scaled profiles
show the opposite behavior (when one is up, the other one is down), which could
aid k -means in telling them apart.
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Figure 27: Effect of scaling on the profiles for the control case. We have omitted the y label on
the bottom panel, as negative intensities hold no physical meaning.

Performing this type of scaling effectively removes all physical meaning from
the data until they are returned to their original range. Therefore, we have omitted
the y label on the bottom panel, since the values on the scaled profiles (which are
sometimes negative) are not considered intensity.
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Figure 28: Effect of scaling on the profiles for the case with noise. We have omitted the y label on
the bottom panel once again due to the negative values having no physical meaning.

The situation changes when noise is added, however. The outcome of feature
scaling in this case can be seen in Figure 28. Upon forcing all features onto the
same range, the noise-dominated features and the signal-dominated ones become
equally important, and instead of becoming more distinguishable, the profiles
become more easily confused.
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Figure 29: Effect of scaling on the profiles for the case with cosmic rays, showing that scaling the
data as-is will enlarge the rays. The bottom panel has no y label for the same reason as Figs. 27
and 28.

Finally, Figure 29 shows the effect of scaling on the cosmic rays. The rays are
complete outliers, affecting at most 1% of the profiles, and since this type of scaling
is done feature by feature, each feature will contain at most 1 or 2 rays in the entire
dataset. Hence, the noise-dominated features (that is, those on the wings of the
h&k lines) will have a very low standard deviation despite the presence of a cosmic
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ray. This feature will then be scaled, dividing by a number smaller than 1, which
enlarges the rays instead of reducing them. All in all, the meaningful signal in the
line peaks has been scaled down to the same level as the noise and the least relevant
characteristics have been amplified. This is obviously not a desirable outcome, and
it reinforces the importance of masking the outliers in the data before attempting
the clustering.

7.2. Principal Component Analysis.

Dimension reduction is used in very large datasets in order to greatly reduce
the computational cost and time it takes for the algorithm to converge. A common
method to do so is Principal Component Analysis, or PCA for short. PCA uses
the concept of variance to transform the data to a new phase space, in which each
direction is called a “Principal Component”. Let us exemplify this idea:

Figure 30: Diagram showing the eigenvectors for PCA
in a Gaussian scatter in 2 dimensions.

Figure 30 shows a simple
2-dimensional distribution and
its 2 principal components after
performing PCA. The concept is
easy to understand in this case:
the original features are the x and
y values of each point. However,
there is a direction in this space
(the Cartesian plane) that contains
the widest spread of points, that
is, the most variance, indicated by
the larger black arrow. The other
Principal Component, for a total of
2 (to account for all the dimensions
of the phase space), is perpendicular
to the first one. This is akin to a
coordinate transformation, in this
case, a simple rotation of the axes.

Further, we can see that each
component is a linear combination
of both features. Finally, if we
decided to eliminate the second component, the final data would be the projection
of all these points along the line that the first Principal Component defines. While
we have surely lost some information, the amount of data values has been cut
in half. PCA can be extremely significant in large datasets that contain much
redundancy.

In a more general case, with N features, the phase space is N-dimensional, but the
concepts are the same: PCA transforms the data by linearly combining features. The
principal components are chosen recursively, with the first one being the direction
in the original phase space that explains the most variance, and each successive one
being the one that maximizes the remaining variance while being orthogonal to all
previous components. This creates a new system of orthogonal axes that have a
specific order based on the amount of information that they provide, much like the
previous 2-dimensional example.

Logically, following this order, every component explains less variance than
each of the ones before. In light of this, one can choose to eliminate a number of
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components starting from the end, knowing that most of the information is still
contained in the first ones. It is important to remember that the new components
obtained through the PCA method are not features directly extracted from the
dataset, but linear combinations of them. In the case of the spectra, we cannot
say that each component corresponds to the intensity at a certain wavelength, but
rather an indication of a certain set of values of intensity.

The number of features in our dataset is 327, which is the number of individual
wavelengths for which we have values of intensity. In the control case, only 5
Principal Components (about 1.5% of 327 possible components) are needed to
explain 100% of the variance. This is proof that most of the information in the
original dataset is redundant.

Nevertheless, after adding noise, this percentage is no longer reasonably
achievable. Aiming for close to 100% of the variance would eliminate almost no
dimensions, and to retrieve just over 90% of the variance, around 218 components
are needed.

Other than dimensionality reduction, Principal Component Analysis can also be
used to filter out random noise. For this specific purpose, very few components were
needed, as the inverse transform of the PCA in the case with noise returned fully
identifiable profiles that matched the original ones reasonably well (though they were
visibly imperfect) with as few as 5 components, like in the control case. However,
in order to achieve good clustering results, we noticed that more components were
required.

7.3. Statistical comparison between preprocessing schemes.

In order to better understand how the preprocessing affected k -means’
performance, we tested the algorithm on 300 runs, each with regenerated noise and
cosmic rays (if applicable), all under the same conditions of tolerance, number of
initializations, etc. We quantified the average number of errors made with respect
to the expected layered distribution and the average time taken by k -means for each
case. We considered the control case, the case with noise in the 5-10% range with
respect to the signal and the case with 70 (1%) cosmic rays. Each of these cases
was analyzed for the following situations: no preparation, only feature scaling, only
PCA at 80% of variance explained, and combinations of both PCA and scaling.
The results are shown in Table 1.

Control Noise Cosmic (70)
Errors Time [s] Errors Time [s] Errors Time [s]

No prep 0 1.83 0 3.47 5.25 3.59
PCA 80% 0 0.42 0 1.79 5.29 1.72
Scaling 0 1.86 0.07 5.78 >800 5.33

PCA 80% + scaling 0 0.54 18.58 4.23 >800 3.96
PCA 95% + scaling 0 0.58 0.30 4.70 >800 4.69

Table 1: Average errors and time per k -means run for different cases and preprocessing situations.

Table 1 shows very clear trends: Principal Component Analysis consistently
reduces the computational time, while introducing little to no errors compared to
the case with no preparation. As a curious fact, although the run for 70 cosmic rays
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with PCA had a slightly higher average error rate than with raw data, the maximum
amount of errors (11) was smaller than the one for no preprocessing (14). However,
this could merely be a coincidence as any statistical analysis is subject to bias due
to the number of observations not being infinite.

On the other hand, feature scaling invariably increases the computational time
while either maintaining the previous error rate or worsening it. Singularly large
values of >800 are present because the clustering has begun to fuse two of the
spectral behaviors together, therefore often making over 800 mistakes as each profile
is placed in 864 examples. The minor variations in making additional mistakes
were considered negligible in the face of mixing up two profiles, so they were not
specifically quantified.

Finally, the combined effect of both PCA and scaling may also be discussed, as
they are often used together. For the control case, the use of scaling along with PCA
at 80% explained variance represents a small step back in terms of computational
time, and adding additional information further increases the required time for
convergence. No worsening of the error rates is seen, but nothing can be said about
whether or not this makes the examples slightly more differentiable. It could be
argued, given the scaled profiles in Figure 27 that scaling can help the clustering in
this case, but seeing that it only slows down the process and does not improve the
results, it is deemed completely unnecessary. Applying PCA at 80% is the optimal
strategy in this case.

As for the case with noise, we see that all the cases with feature scaling contain
some wrongly clustered examples, while the ones without it obtain perfect results.
Additionally, the results with PCA at 80% and scaling are significantly worse than
the rest, suggesting that the loss of 20% of the variance is being aggravated by the
inadequacy of the scaling for the dataset at hand. Once again, only PCA at 80%
variance comes out on top.

Finally, the case for 70 cosmic rays is problematic in that there are always errors
present, but the results become deplorable as soon as scaling is introduced. This
is in line with the previously mentioned enlarging of the cosmic rays and noise and
reduction of the signal. The glaring issues with this scheme are now definitively
proven seeing as two different spectral behaviors are being mixed up, resulting in an
irretrievable loss of information.

As previously mentioned, the use of PCA marginally increased the amount of
errors for 70 cosmic rays. However, the computational time is halved. In large
datasets, this could be significant, as the clustering could take minutes or hours,
and the trade-off seems to be quite small. Therefore we also declare this strategy to
be the optimal one in this case.

A special mention is due for the control case, where PCA at 80% reduced the
time for convergence by a factor of 4. This is due to the very small number of
components required to achieve 80% of the variance (as specified in Section 7.1, 5
components account for ∼ 100% of the variance), which greatly reduces the number
of arithmetic calculations that k -means needs to perform. As per the academic
nature of this control case, though, it is not expected that this will be true for any
real observations.

In conclusion, we see consistent trends among the data that show that feature
scaling is detrimental both in terms of accuracy and time, or at the very least,
rather inconsequential. The biggest issues happen when there are cosmic rays
involved, which is why masking the outliers is of utmost importance. Conversely,
PCA shows time improvements whilst minimally impacting the error rate. This
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will under no circumstances be true for every Machine Learning implementation
or dataset, of course. The particular needs of every application must be studied
with care, regardless of how popular the use of certain schemes are. Regardless,
the act of masking a small amount of pixels in favor of maintaining the integrity of
the information presents no downsides and has the potential to greatly improve the
clustering results.

8. Conclusions

En este Trabajo de Fin de Grado se ha analizado el comportamiento del algoritmo
k -means y de algunos métodos de clustering jerárquico utilizando un conjunto de
datos artificial y sencillo al que se le han añadido ruido y ṕıxeles defectuosos, estos
últimos tanto enmascarados como sin enmascarar. Además, se ha discutido el efecto
del Análisis de Componentes Principales y del escalado por feature en los resultados
del agrupamiento.

El agrupamiento con k -means ha demostrado ser viable tanto en el caso de control
como en el caso con ruido, donde los resultados fueron totalmente satisfactorios.
Las diferencias entre ambos casos fueron caracterizadas visualmente y a través de
la inercia.

Al añadir ṕıxeles defectuosos, se evidenció la importancia de conocer y tratar
el conjunto de datos antes de emplear métodos de Machine Learning, dado que en
ausencia de una máscara para obviar los ejemplos anómalos, estos tend́ıan a “falsear”
la información espectral de algunos ejemplos si se daba el caso de que cayeran sobre
las ĺıneas de h&k. Tras aplicar máscaras, los resultados volvieron a ser agrupados a
la perfección.

Los métodos jerárquicos, por su parte, han demostrado ser peores que k -means
para la mayoŕıa de los casos de este Trabajo de Fin de Grado, a excepción de ‘ward’,
que solo mostró ligeras deficiencias en los casos con rayos cósmicos.

Finalmente, la comparación de las estrategias de preprocesado demostró las
ventajas del PCA y los inconvenientes del escalado, reforzando la tesis de que el
enmascarado es imprescindible.

In this Bachelor’s Thesis we analyzed the behavior of the k -means algorithm
and some hierarchical clustering methods using a simple, artificial dataset. The
initial data were modified by adding noise and defective pixels, in one case adding
masks to conceal the latter. Furthermore, we discussed the effect of Principal
Component Analysis and feature scaling on the clustering results.

The results of the control case and the case with noise both exhibit the viability
of the k -means algorithm to cluster spectral profiles, proving its utility in reducing
the volume of a sample of IRIS-like data for its subsequent analysis.

The addition of defective pixels that differed greatly from the noisy examples
took a toll on k -means’ performance. Nevertheless, this effect was neutralized by
the implementation of a mask function, which ensured that the outlier data points
were clustered separately, and the clustering returned to the previous accuracy levels.

In light of the results in this Bachelor’s Thesis, k -means is acknowledged
as a practical clustering method, given that the data is analyzed and prepped
beforehand. This conclusion is backed by the aforementioned examples of scientific
articles in which k -means has been used to cluster solar profiles (Panos et al., 2018;
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Bose et al., 2019; Nóbrega-Siverio et al., 2021).

The ‘ward’ criteria proved to be almost as useful as k -means, for the most part
having an equal performance, but being marginally worse when clustering data with
cosmic rays. Other agglomerative hierarchical clustering methods were objectively
less accurate than k -means for most of the cases considered.

Finally, while PCA-prepared data took notably less time to converge and
contained roughly the same amount of errors as raw data, scaling in this case
hindered the clustering, making it take longer and increasing the number of mistakes.
This strengthened the argument that masking is essential for the results to be
optimal.
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