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Abstract
With the aim to control and reduce the pain of patients during a surgery with general anesthesia, one of the main challenges

is the proposal of safe an optimal and efficient methods of drugs administering. First step to achieve this goal is the

proposal and development of right indexes that correlate satisfactory with analgesia. One of this index gives the most

hopeful results is the Analgesia Nociception Index (ANI). The present research work deals the ANI response of patients

during surgeries with general anesthesia with intravenous drug infusion. The main aim is to predict the ANI signal behavior

regarding of the analgesic infusion rate. To do that, a hybrid intelligent model is developed, using clustering and regression

techniques based on artificial neural networks and support vector regression. The proposal was validated with a dataset of

surgeries real cases of patients undergoing general anesthesia. The achieved results attest for the potential of the proposed

technique.

Keywords ElectroMyoGram signal (EMG) � Analgesia Nociception Index (ANI) � Multi-layer perceptron (MLP) �
Support vector regression (SVR)

1 Introduction

Supplying the proper dose of drug in patients undergoing

general anesthesia has become an important challenge in

medicine. Anesthesiologist must control the level of hyp-

nosis, analgesia and muscle relaxation during surgery. As a

general rule, they evaluate the state of patients by means of

clinical signs and then decide whether increasing or

decreasing the corresponding drug dose manually. Nowa-

days, different automatic controllers have been proposed in

order to adapt the drug titration automatically. Specifically,

automatic control of hypnosis has been widely researched

[1, 2]. However, the automatic control of analgesia is still a

problem to face. Closed-loop control strategies are based

on the use of a feedback variable. Nevertheless, the

absence of a feedback variable capable of measuring the

analgesic state of patient has become the main problem for

the automation.

Traditional methods have been based on the evaluation

of the autonomic reactions [3]. Currently, new monitors

and sensors [4, 5] have been proposed in order to measure

analgesia [6]. Among the different possibilities, the Anal-

gesia Nociception Index (ANI), developed by Mdoloris

Medical Systems, is supposed to be designed to optimize

drug delivery in the analgesic process. It is able to compute

an index that ranges from 0 to 100 in order to quantify the

parasympathetic activity in patients undergoing surgery.

Previous successful results have been reached when using

the ANI to guide analgesic delivery [7–9]. However, more

research is needed in order to validate the Analgesia

Nociception Index as a measure of analgesia.
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On the other hand, not only the presence of a feedback

variable, but also the availability of a mathematical model

is necessary when trying to automate the analgesic process.

Despite of hypnosis, where pharmacokinetic/pharmacody-

namics models have been widely studied [10–12], anal-

gesic models for patients are still a challenge for experts. In

this sense, proposing a model able to relate the drug

infusion of analgesic with the ANI index would make the

automation of analgesia easier.

This work is based on the techniques used in [13], where

a hybrid model was created for predicting the Elec-

troMyoGram signal (EMG) and Bispectral index signal

(BIS), taking into account different variables involved in

the surgery. For this research, the hypothesis is that the

ANI index is correlated, not only to the infusion rate of

analgesic, but also to the EMG as a measure of the painful

surgical stimuli. Then, the objective is to predict the ANI in

terms of EMG and Remifentanil rate. Understanding this

index, as well as the variables involved would let the

development of new strategies applied to the analgesia

control. Specifically, the availability of a model able to

predict a wide time horizon would let the application of

predictive control strategies.

For the ANI prediction, many different methods can be

considered. The accepted regression methods are typically

based on multiple regression analysis techniques, that are

very usual in applications in different fields [14–16].

However, these methods have limitations and do not pro-

vide a good performance [15, 17, 18]. In order to increase

this feature, many new proposals have been developed.

These proposals are based on soft computing techniques,

both simple or hybrid [19, 20]. As it is shown in [21–25]

these techniques improve the first ones mentioned above.

This study implements a global model to predict the

ANI signal from the EMG signal and the Remifentanil

infusion rate. Two regression methods (ANNs, artificial

neural networks, and SVR, support vector regression) and

different configurations were verified to select the best one

based on the lowest mean squared error (MSE) reached.

This paper is structured in the following way. After the

present section, the case of study is described. Then, the

model approach and the tested algorithms taken into

account in the research are shown. The results section

shows the best configuration achieved by the hybrid model.

After the results, the conclusions and future works are

presented.

2 Case of study

Data for the analysis were obtained from fifteen patients

scheduled for cholecystectomy surgery at the Hospital

Universitario de Canarias. All patients included received an

informative document about the study and an informed

consent was signed. A Total IntraVenous Anesthesia with

Propofol and Remifentanil (hypnotic and analgesic drugs,

respectively) was performed. Drugs were manually deliv-

ered according to the anesthesiologist criteria using two

intravenous Graseby 3500 pumps. For the control of hyp-

nosis, BIS monitor was used as a guidance variable.

Propofol dose was changed in order to obtain an adequate

level of hypnosis, with a BIS target of 50. On the other

hand, Remifentanil dose was adjusted depending on auto-

nomic reactions and the presence of surgical events. During

the surgery, ANI index as well as EMG signal and

Remifentanil rate (mcg/kg/min) were automatically regis-

tered with a sample time of 5 s using a laptop via RS232

interfaces. Although ANI was registered, this information

was not visible for the clinician to avoid conditioning their

decisions based on traditional clinical parameters. In

patients undergoing anesthesia, it is supposed that the ANI

level will vary depending on the concentration of

Remifentanil and the external disturbances that will be

considered taking the EMG information into account.

The studied problem could be represented as shown in

Fig. 1.

Fig. 1 Case of study. Input/

output representation
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3 Model approach

The model approach used in this research is shown in

Fig. 2. In this figure, two of the model inputs are measured

signals (Remifentanil drug—Remi- and the Elec-

troMyoGram—EMG-) and the third input represents

feedback of the predicted Analgesia Nociception Index—

ANI. As the model is used to predict the future value of

ANI, the inputs are the actual and the 4 previous values of

the signals; and the output is the predicted ANI value at the

next 40 s.

The time values that appear in Fig. 3 are the real surgery

time; but as the acquisition system uses a sample time of

5 s, the model uses the 4 previous value to predict the value

in the next 8th instant. These previous values allow the

intelligent model to predict the signal including the

dynamic on the process.

Moreover, Fig. 4 shows the internal layout of the hybrid

intelligent model. Each internal model is selected to

achieve the best global results, then, the training phase is

taking into account all the different clusters and the dif-

ferent regression algorithms used (and its configuration).

The dataset used in the training process was divided

using K-fold cross-validation with tenfold. This type of

cross-validation ensures more general parameters to cal-

culate the error for each regression technique. Figure 5

shows the modeling process, this training repeats K times

until all the training data are used with each algorithm.

Once all the K-fold were trained, the error for each specific

algorithm is calculate as shown in Fig. 6.

3.1 Dataset obtaining and description

The dataset has been obtained from 15 patients undergoing

general anesthesia. The three variables used on this

research (Remifentanil drug infusion rate, EMG and ANI)

have been monitored during surgeries. A preconditioning

stage was considered for the signals. The dataset is com-

posed with the data of all patients, recording new set of

values with a sample time of 5 s. The dataset was initially

inspected visually to detect outliers. Additionally, missing

measurements were recovered by performing simple

interpolation on each data with its neighbors. The induction

phase and the recovery phase were not considered in this

study; only the maintenance phase of surgery has beenFig. 2 Model approach

Fig. 3 Model approach with the

timed variables indicated

Neural Computing and Applications (2020) 32:1249–1258 1251

123



used. With the conditions exposed above, the employed

dataset contains 19,441 samples.

The data registered for two patients were separate in the

first processing step to perform the validation at the end of

the modeling process; with this validation, the dataset was

reduce until 17,356 samples. As the model predicts future

signals, the dataset had to be prepared in a specific way,

and the final dataset had 17,200 samples. The last 12

samples for each patient were not used, they do not have

the future ANI signal to train the model.

3.2 Used techniques

In this section, the different regression algorithm used to

achieved the final hybrid intelligent model are described.

Different configurations for the intelligent regression

techniques are tested. The best algorithm and its configu-

ration is chosen based on MSE criteria, using 10 K-fold

cross-validation to allow a more general measure than

when hold-out is used. Moreover, as the hybrid intelligent

model is divided internally in different clusters, a mean

MSE (taking into account the number of samples in each

cluster) of local model is used to compare the different

clusters configurations.

3.2.1 Data clustering: the K-means algorithm

Clustering techniques make data grouping measuring the

similarity between samples [26, 27]. These algorithms

organize unlabeled data in groups; the samples within a

cluster are similar to each other [26]. K-means is a fre-

quently used clustering algorithm with square-error crite-

rion, which minimizes the specific error function shown in

Eq. 1.

e ¼
XC

k¼1

X

x�Qk

x� ckk k2 ð1Þ

where x new input vector, ck centroid of cluster k.

Fig. 4 Hybrid intelligent model

Fig. 5 Modeling process
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The obtained clusters depend on the initial centroids and

on the K value (number of groups). The most critical

election is the choice of K value because it needs certain

knowledge of total clusters present in the data and, some-

times, it is extremely uncertain. The K-means clustering

algorithm is computationally effective, it works well when

Fig. 6 K-fold training process
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the data are close to its cluster, the cluster is hyperspherical

in shape and they are well-separated in the hyperspace.

3.2.2 Artificial neural networks (ANN), multi-layer
perceptron (MLP)

A multi-layer perceptron is the most known feedforward

artificial neural network [28, 29]. It is due to its simple

configuration and its robustness. Despite of that, the ANN

architecture must be carefully chosen in order to achieve

satisfactory results. MLP is made of one input layer, one or

more hidden layers and one output layer. The layers have

neurons with an activation function. In a typical configu-

ration, all layer neurons have the same activation function,

but this is not a restriction. This function could be step,

linear, log-sigmoid or tan-sigmoid.

3.2.3 Support vector regression (SVR), least square support
vector regression (LS-SVR)

Support vector regression is based on the algorithm of the

support vector machines (SVM) for classification. In SVR

the data are mapped into a high-dimensional feature space

F through a nonlinear plotting and linear regression is done

in this space [30].

The least square algorithm of SVM is called LS-SVM

(least square support vector machines). The solution esti-

mation is obtained by solving a system of linear equations,

and it is similar to SVM in terms of performance gener-

alization [26, 31, 32]. The use of LS-SVM algorithm to

regression is well-known as LS-SVR [33, 34]. In LS-SVR,

the insensitive loss function is replace by a classical

squared loss function, which makes the Lagrangian by

solving a linear Karush–Kuhn–Tucker.

4 Results

As it was explained, the model was obtained using the

current and previous values of the variables to predict the

ANI signal in the next 40 s. To improve the prediction, a

hybrid intelligent model is selected in this paper.

The MLP-ANN regression algorithm was trained for

different configurations; always with one hidden layer, but

the number of neurons in the hidden layer varies from 1 to

8. The activation function of this neurons was tan-sigmoid

for all tests, and the output layer neuron had a linear

activation function to perform regression. The used opti-

mization algorithm was Levenberg–Marquardt; gradient

descent was used to finish the training phase, and the

performance function was set to mean squared error.

The LS-SVR was trained with the self auto-tuning

implemented in the toolbox for MATLAB developed by

KULeuven-ESAT-SCD. The kernel of the model was set to

radial basis function, and the type was ‘Function Estima-

tion’ to perform regression. The optimization function is

‘simplex’ and the cost-criterion is ‘leaveoneoutlssvm’ with

‘mse’ as a performance function.

Table 1 shows the best mean absolute error (MAE) in

each cluster. It was decided to show the MAE because, as

the ANI signal has a range from 0 to 100, this value is a

real percentage of error.

The regression techniques for each cluster are shown in

Table 2, where the best hybrid configuration is marked in

bold. This choice was made according to the less hybrid

MSE, shown in Table 3, that was obtained taking into

account the number of samples in each cluster.

Once the best configuration is selected, another model is

trained with all the data from the 13 patients (without K-

fold cross-validation). Given the small size of the dataset

and the difficulty of obtaining more data from patients

during surgery, the model was validated with the data from

2 patients undergoing a complete surgery. The chart of the

real (blue continuous line) and predicted (red dashed line)

ANI signals for the first patient are shown in Fig. 7. In this

figure, the black dotted lines are included to represent the

times with failures in ANI signal.

The charts figures are divided in different subfigures,

and it is possible to appreciate that the part where the

predicted signal has more errors occurs when the real ANI

signal has failures (black dotted line). In Fig. 8, the charts

for the second testing patient are shown, and it is possible

to confirm that the model achieved good results with no

dependence of the patient.

Table 4 shows different performance measures calcu-

lated with the validation data (not used in the modeling

phase). These measures are the MSE, the MAE, and also

the normalized MSE (NMSE) and the mean absolute per-

centage error (MAPE).

5 Conclusions

Very good results are achieved with the model described in

this research. The main aim of the study was to predict the

ANI signal. The validation tests using data from two

patients during a complete surgery showed that the output

of the model fits the real signal with very small error.

This model was obtained from a real dataset of 13

patients using a 10 K-fold cross-validation method. The

approach is based on intelligent techniques, selecting the

best algorithm configuration to train the final model. The

tests performed on the hybrid intelligent model showed that

the regression technique whose model leads to lowest MSE

is a combination of LS-SVR and ANN with 5 and 6 neu-

rons in the hidden layer. This model achieves an error of at
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Table 1 Best MAE for each

cluster
No. of Clusters Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Global model 8.2671 – – – –

2 8.6724 7.8817 – – –

3 10.3670 7.8255 7.9929 – –

4 12.3109 7.3376 7.7564 8.2283 –

5 8.4106 12.3932 7.3711 7.7617 8.1807

6 8.5501 13.0157 7.6364 6.8030 8.6106

7 7.0869 8.7982 12.9908 6.8433 7.5856

8 6.8502 8.4535 13.0756 7.5731 6.4382

9 8.3157 6.8406 8.8573 13.0720 7.5834

10 11.2199 11.0361 6.7533 8.4414 12.9735

No. of Clusters Cluster 6 Cluster 7 Cluster 8 Cluster 9 Cluster 10

Global model – – – – –

2 – – – – –

3 – – – – –

4 – – – – –

5 – – – – –

6 7.8270 – – – –

7 8.6617 7.8577 – – –

8 8.6511 8.1463 8.0148 – –

9 6.5073 8.6156 8.1677 7.9807 –

10 7.2847 6.4954 8.6857 8.0276 7.8395

Table 2 Best algorithm for each

cluster
No. of Clusters Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Global model ANN8 – – – –

2 ANN7 ANN8 – – –

3 LS-SVR ANN5 ANN6 – –

4 LS-SVR ANN7 ANN7 ANN7 –

5 ANN4 LS-SVR ANN5 ANN7 ANN5

6 LS-SVR LS-SVR LS-SVR LS-SVR ANN5

7 LS-SVR ANN2 LS-SVR LS-SVR LS-SVR

8 LS-SVR LS-SVR LS-SVR LS-SVR LS-SVR

9 ANN2 LS-SVR LS-SVR LS-SVR LS-SVR

10 LS-SVR ANN1 LS-SVR ANN1 LS-SVR

No. of Clusters Cluster 6 Cluster 7 Cluster 8 Cluster 9 Cluster 10

Global model – – – – –

2 – – – – –

3 – – – – –

4 – – – – –

5 – – – – –

6 ANN6 – – – –

7 ANN4 ANN5 – – –

8 ANN6 ANN3 ANN6 – –

9 ANN2 ANN4 ANN5 ANN5 –

10 LS-SVR LS-SVR ANN2 ANN2 ANN4
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most a 10% in the prediction, which is very good perfor-

mance, taking into consideration that the ANI signal range

goes from 0 to 100 and the model predicts the signal with

40 s in advance.

From a clinical point of view, the proposal of this hybrid

intelligence model involves different enhancements. Minto

proposed a pharmacokinetic model trying to correlate the

Remifentanil infusion rate to the effect site concentration in

patients [35]. Pharmacodynamics models have been also

proposed to relate the effect site concentration to clinical

signs [36]. However, this is the first study that establishes a

preliminary correlation between the Remifentanil dose and

novel measure proposed as a measurement of analgesia. As

a result, the Analgesia Nociception Index may be related to

the supply of Remifentanil and the presence of painful

stimuli considering the EMG information.

The model proposed could be applied to several systems

related to different fields with the aim of improving spec-

ifications or predicting signals. It is important to emphasize

that quite satisfactory results have been obtained with the

approach proposed in this research.

6 Future works

The present work opens new future research lines. The

most important work for accomplishing could be to

increase the prediction time, with the aim to give more

reaction time to the medical staff. Then, some advantages

are achieving like the fitness drug delivery, problems

detection in advance, deviations detection due to other

clinical reasons, and so on.

From the automatic control perspective, the availability

of a model makes it possible to test new control strategies

for the closed-loop of analgesia. Different studies have

concluded that closed-loop systems for hypnotic drug

supply shows better performance than manual administra-

tion [37]. Specifically, the application of predictive control

Table 3 Hybrid MSE for each

combination
No. of clusters Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Hybrid MSE 113.0991 112.4629 111.6747 111.8557 112.8173

No. of clusters Cluster 6 Cluster 7 Cluster 8 Cluster 9 Cluster 10

Hybrid MSE 112.2949 112.9054 113.1251 113.2711 111.8772

Fig. 7 All the surgery ANI signal for the first testing patient. Real (blue continuous) and predicted (red dashed) ANI signals (color figure online)

1256 Neural Computing and Applications (2020) 32:1249–1258

123



strategies has been applied to the anesthetic scenario due to

the results obtained [2, 38]. The model proposed in this

study is able to predict the ANI response for a wide time

interval. As a result, model-based predictive controllers

could be also applied.

It could be developed an ANI sensor fault detection

based on the deviation of the real signal with the predic-

tion. With the same principle, it could be possible to detect

patient problems when there are the above deviations and

the sensor is not the problem reason.

Another possible research line is to include more mon-

itored variables during the surgery, with the aim to increase

the accurate, and to explore possible interactions between

the different administrated drugs. As future works, the

possibility of obtaining a wider dataset could enable the

authors to validate the final model using nested cross-

validation.

Under a more general point of view, the proposed

method can be extended to other indicators for health

monitoring so that quality of patient monitoring will be

increased.
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