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The present research is focused on the use of intelligent techniques to perform anomaly detection. This
task represents a special concern in complex systems that operate in different regimes. Then, this work
proposes a hybrid intelligent classifier based on one-class techniques, capable of detecting anomalies of
the different operating ranges. The proposal is implemented over an industrial plant designed to control
the water level in a tank, taking into consideration three different operating points. The hybrid classifier is
validated by using real anomalies, obtaining successful results.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

Since the beginning of the industrial activity, the objectives and
the production in general terms have changed significantly. For
instance, initially the most important concern was to increase
the production to the fullest, specially, trying to industrialize pro-
cesses that were manual up to this time. But nevertheless, over
time, many different goals have been included, obviously main-
taining the production. Examples of these factors are the optimiza-
tion, sustainability, all types of efficiency, and so on. At the same
time, they are motivated by the need to take care of the environ-
ment, new regulations, trends and, of course, the need to be com-
petitive in a globalized world [1].

Being more specifically, for achieving these new factors, it is
very important to minimize the energy consumption, minimize
the impact over the environment, reduce non-conforming prod-
ucts, increase the final quality of the product or the service, among
others. In summary, with the minimum environment impact and
the minimum expenditure, the same production is sought [2]. All
the contributions on this way are welcomed.

A specific reason that causes a lot and huge problems during the
operation of processes are the anomalies and faults. This fact trig-
gers the consequent failures over the process or the service quality
(total or partial). In spite of the fact that in an early stage, the con-
sequences do not seem important, after a certain time, dire effects
may appear. Frequently, one of the possible reasons of the above
described problem is the sensor failures under a global point of
view: reading failures, signal perturbations, physical damages,
etc. At first, it could lead to smaller problems, but the carried con-
sequences could be fatal or at least momentous [3].

In [4], a classification of sensor errors is presented: total failure
and measure deviation. The detection and the possible solution of
the first case could be easy to solve. However, the detection pro-
cess in the second case could entail difficulties. This case, that
needs special attention, could be a very problematic concern for
the process under a control point of view, and of course, for accom-
plishing the fault detection (FD) and diagnosis, supervising and
optimizing. Both problems mentioned at the classification are very
important.

Due to the above mentioned, this fact plays a key role in a very
huge amount of cases. Then, it was defined Sensor Fault Detection
(SFD) as a malfunction of a sensor that involves a deviation of right
puting,
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reading. Some are the possible reasons that can give rise to this
problem: reading device problems, perturbations, wrong location
of the sensor, etc. Although the possible solution for the problem
will be feasible and even easy, first, it is important to know that
the sensor or transducer reading is not right. There are some pro-
posals to accomplish the sensor fault detection [5]. One of them
is physical redundancy, for both accomplishing diagnose and faults
discovering. This kind of method for achieving SFD is implemented
over applications that are very critical. But the main problem is
that it does not have an easy implementation for reasons like dif-
ficult application, high cost and viability [4]. Then, lately it is in dis-
use due to these reasons.

Nowadays people live in the era of digitalization with trends
like Industry 4.0, Internet of Things, Cyber-Physical systems, and
so on. It implies that a lot of variables must be read, and monitored
continually. These readings are carried out by sensors, and it is
required to ensure the right sensors performance. This task is clear,
but it is not easy, especially in industrial environments [6]. Some
are the problems at these places: process perturbations, actuators
faults, sensors faults and noise at sensors and transducers [7]. With
the main purpose of avoiding the possible impact of the mentioned
problems, it is desirable to make use of methods for accomplishing
fault detection [8].

It could be a very interesting choice to make a SFD based on
intelligent systems, when systems are not crucial, or even when
it is not the case, use these techniques as a complementary tool
to another one. With that kind of methods it could be possible to
detect sensor failures, and even to predict possible deviations [9].
Also, there are methods for achieving wrong data recovering when
the bad reading is detected [7,10].

The present research work deals with the anomaly detection of
an industrial plant used to control the water level in a tank. This
kind of installations represents a challenge, since the appearance
of any anomaly may be produced by many different sources
[6,11]. Then, the anomaly detection must take into consideration
different plant parameters and variables. In this case, the data used
to perform the anomaly detection is collected from the correct
operation of the plant.

In many different works [12], the use of global one-class classi-
fiers is proposed to achieve the anomaly detection over a wide
variety of systems. However, the plant under study presents an
additional complexity, that is the possibility of working in different
operating points. Then, a hybrid intelligent classifier based on one-
class techniques is proposed by training different local classifiers
for each point. The best configuration is selected after testing seven
one-class techniques: Gaussian Model [13], Parzen Density Estima-
tor [13], Principal Component Analysis [14], k-Nearest Neighbor
[15], Approximate Polytope Ensemble [12], Autoencoder Artificial
Neural Network [16] and Support Vector Data Description [13].
The proposed approach was tested and validated using real created
anomalies, giving very successful results.

This paper is structured according to the next sections. After the
present introduction, the case study describes the plant operation
and the initial dataset. Then, the one-class classification techniques
used to implement the hybrid classifier are described. The next
section proposes the hybrid intelligent classifier approach to work
with different operating points. Finally, the results section and the
conclusions and future works section are presented.
Fig. 1. Picture of the real plant.
2. Case study

This section describes the industrial plant, where the hybrid
intelligent classifier is implemented, and the features of the dataset
used on this work.
2

2.1. Industrial system description

The hybrid intelligent classifier based on one-class techniques
proposed in this work is trained, tested and validated in the indus-
trial plant (see Fig. 1), whose scheme is shown in Fig. 2. The main
aim of this plant is to control the water level in a tank (1), that is
pumped from a storage tank (2) using a three phase pump (3).
The objective tank has an electric built-in valve (4), to send the
water back to the initial tank. This element plays a significant role
to validate this work, since the anomalies are created by opening
the valve.

The control process is implemented using Matlab software,
installed in a computer with a Intel Core i7-8550U 1.80 GHz proces-
sor and 8 GB of RAM memory. The communication between the
computer and the plant is carried out by a National Instruments
data acquisition card (model USB-6008 12-bit 10 KS/s Multifunc-
tion I/O). This element is in charge of two main tasks:

� Sending to the computer the current value measured the ultra-
sonic Banner sensor, model S18UUA.

� Sending to the variable frequency drive (VFD) the control signal
from the computer.

Given the strong nonlinearity of the industrial plant, a virtual
adaptive PID controller is implemented to manage the water level.
The first stage for tunning the PID parameters consists on identify-
ing the plant coefficients using the Recursive Least Squares (RLS)
algorithm, following the Eq. (1) [17]:
Hplantðz�1Þ ¼ q�k
0

1� p1z�1 � p�2
2

ð1Þ
where:

� q0 – Open loop gain
� k – System delay
� p1 – First order coefficient
� p2 – Second order coefficient



Fig. 2. Control level system.
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Then, from the transfer function identified during process oper-
ation, an adaptive PID is self-tuned following the Eq. 2 [18].

PIDcontrollerðz�1Þ ¼ a0 þ a�1
1 þ a�2

2

1� z�1 ð2Þ

where:

� a0 ¼ 1
q0T

2
c ð2Kcþ1Þ

� a1 ¼ �p1a0

� a2 ¼ �p2a0

� Kc – Critical gain
� Tc – Critical period

The scheme shown in Fig. 3 represents all the elements involved
in the control loop described above.

2.2. Dataset

The initial dataset is comprised by five different variables regis-
tered during the system operation, whose control loop is designed
to ensure a constant sampled rate of 2 Hz. These monitored vari-
ables are the following:
Fig. 3. Scheme of the ind
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� Control signal calculated by the control loop that drives the
pump. This signal can variate from 0 to 100 to modify the pump
speed from 0 to 50 Hz.

� Error signal from the difference between the set point and the
process value.

� The PID parameters a0; a1; a2, described according to Eq. (2).

As the main idea of this work is to propose a hybrid intelligent
classifier, the following three different operating points are consid-
ered as correct:

� Set point 40% and electric valve closed. 5400 samples.
� Set point 50% and electric valve closed. 5400 samples.
� Set point 60% and electric valve closed. 5400 samples.

Then, to check the performance of each local classifier, the data
from real anomalous situation is registered. This anomalies repre-
sent three cases:

� Set point 40% and electric valve open. 5400 samples.
� Set point 50% and electric valve open. 5400 samples.
� Set point 60% and electric valve open. 5400 samples.

3. Methods

This section describes the different methods considered on the
present research work to perform the hybrid classifier. They are
contemplated due to their very positive performance in a wide
variety of one-class classification tasks.

3.1. Gaussian model

One of the most simple ways to achieve a one-class classifier is
based on the density estimation of the data using a Gaussian or
normal distribution [13]. Though it is quite simple, its use on
one-class classification problems has offered interesting results
[13].

The training data, which is collected from correct plant opera-
tion, is used to implement a Gaussian model of the target set, fol-
lowing Eq. (3) [19].

pGðx;l;RÞ ¼
1

ð2pÞðd=2ÞjRj1=2
e�

1
2ðx�lÞTR�1ðx�lÞ ð3Þ

where:

� x is the test point.
� l is the mean vector of the target set.
� R is the covariance of the target set.
� d is the dimension of the dataset.
ustrial plant setup.
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Then, a test point is classified depending on the value of the
density function. When it exceeds a set threshold, the anomaly is
detected. This method does not present a high computational cost,
being the covariance matrix inversion the most significant process
[13] and gives successful results when the data follows a normal
distribution.

3.2. Parzen Density Estimator

A similar approach to obtain a one-class classifier can be consid-
ered using the non-parametric Parzen Density Estimator (PDE)
[20], whose performance has proven to be successful [21].

Unlike the Gaussian, this method does not make any specific
assumptions about the data shape. In this case, the density distri-
bution is computed as shown in Eq. 4 [19].

pPDEðxÞ ¼
1
N

XN
i¼1

1
V
/

x� xi
Wp

� �
ð4Þ

Where:

� x is the test point.
� N is the size of the training set.
� V is the volume of the region in a form of the hypercube with
edge Wp.

� / is the Parzen window.

� xi is the ith point of the dataset.

As with Gaussian Model, it performs properly when the training
set is representative enough of the target set. After the training
process, this method can estimate the novelty of each test sample,
by establishing a threshold [22].

3.3. Principal Component Analysis

The Principal Component Analysis (PCA) has shown satisfactory
results in both dimensional reduction and one-class tasks
[23,14,12]. The use of PCA for one-class classification aims to
map the training data into a linear subspace defined by the eigen-
vectors of the covariance matrix.

The principal components x0i are the projection of the original
variable over the eigenvectors ei ¼ ðei1; . . . ; eidÞ of the covariance
matrix R, ordered according to the decreasing eigenvalues ki. Then,
the first component of a test point x is computed according to Eq.
(5) [19,24].

x01 ¼ eT1ðl� xÞ ð5Þ
Hence, the number of eigenvectors, known as components, can

be at most the same as the number of variables. The criteria fol-
lowed to decide if a test data belongs to the target class is based
on the reconstruction error. This is computed as the difference
between the original point and the point projected in the subspace.
This technique offers good results when the subspace is clearly
linear [13].

3.4. k-Nearest Neighbor

The k-Nearest Neighbor (kNN) method uses the distances
between objects instead of probability density functions, such as
Gaussian or Parzen. In particular, the outlier nature of a specific
point x, is determined by the local density of the hypersphere con-

taining its kth nearest neighbors [25].
Then, a test point x is considered anomalous when its distance

to the kth nearest training data neighbor kNNtrðxÞ is higher than the

local distance from the kth neighbor to its kth neighbor [13].
4

dðxÞ ¼
x� kNNtrðxÞ

��� ���
kNNtrðxÞ � kNNtrðkNNtrðxÞÞ

��� ��� ð6Þ

Hence, the classifier identifies an outlier when its local density d
is lower than the local density of it first nearest neighbor belonging
to the training set [13].

The value of k plays a significant role in the classifier perfor-
mance, and it depends on the dataset structure shape [25].

3.5. Approximate Polytope Ensemble

The Approximate Polytope Ensemble (APE) has been used for
classification tasks in many different fields [26] and it was tested
successfully over many UCI repositories [27].

The main idea of this technique is to obtain the boundaries of
the training set X by using its convex hull CHðXÞ, according to
Eq. (7) [26].

CHðXÞ ¼
XN
i¼1

aixik
XN
i¼1

ai ¼ 1;0 6 ai 6 1

( )
ð7Þ

However, this calculation has the problem of a significant com-
putational cost when dealing high dimensional datasets. Then, it is
possible to model the convex hull of the training data by using p
random 2D projections.

After the training process, a test data is classified as outlier if it
is out of at least one of the projections. It is also possible to expand
or shrink the projections of the convex hull to evaluate the best
classifier configuration.

3.6. Autoencoder Artificial Neural Network

The Autoencoder Artificial Neural Network has shown interest-
ing results in different works [16,28,29]. This technique uses the
well known Multilayer Perceptron (MLP) Artificial Neural Network
(ANN), whose structure is divided into three parts or layers: input
layer, hidden layer and output layer. This ANN is configured to
reconstruct at the output the input pattern by means of a nonlinear
intermediate reduction in the hidden layer [30].

Therefore, the hidden layer output v is computed as shown in
Eq. (8), and the output x0 is calculated following the expression
in (9).

v ¼ f 1ðW1xþ b1Þ ð8Þ
Where:

� W1 – Weight matrix between input and hidden layer.
� b1 – Bias vector.

x0 ¼ f 2ðW2v þ b2Þ ð9Þ
where:

� W2 – Weight matrix between hidden and output layer.
� b2 – Bias vector.

The criteria to detect anomalies is the following: since the MLP
is trained with target objects to reconstruct the input, the test
instances that are dissimilar to the target class may lead to high
reconstruction error.

3.7. Support Vector Data Description

The Support Vector Machine (SVM) is a supervised learning
used for classification and regression tasks [25]. Its main goal is
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to map the training set into a hyperspace and then, implement a
hyperplane to maximize the distance between classes [31].

From this basic principles, the Support Vector Data Description
(SVDD) method is designed to look for a closed boundary (hyper-
sphere) instead of a hyperplane [32]. During the training phase,
all the training points are closed by the high dimensional sphere.
This minimum hypersphere with a center a and radius R is
achieved minimizing the Eq. (10), subjected to the constraints in
Eq. (11) [33].

FðR;a; niÞ ¼ R2 þ C
X
i

ni ð10Þ

kxi � ak2 6 R2 þ ni ni 6 R2 ð11Þ
Where:

� ni is the slack variable.
� C is a tradeoff parameter between volume and errors in the
training set.

Then, when a new test data is assessed, it is labeled as anomaly
if it is out of the hypersphere.
4. Hybrid intelligent classifier proposal

The present section is divided into two parts. First, the approach
to achieve the one-class classifier is described. Then, the experi-
ments setup proposed to obtain the hybrid topology is explained.

4.1. One-class classifier approach

The main goal of this approach is to achieve a classifier capable
of detecting anomalies in the three different operating points of an
industrial plant.

The proposal is illustrated in Fig. 4, where the process followed
to detect an outlier is represented. First, the classifier selector block
routes the system variables to the appropriate classifier depending
on the current plant operating point. For instance, when the sys-
tem is working in the first operating point, the system variables
are routed to Classifier 1. Then, the selected classifier determines
if the data belongs to the target class and the anomaly detection
block reports it. Each local classifier is implemented with the tech-
nique that shown the best performance during the test phase. In
the scheme of Fig. 4 is presented an example where the system
is working in the third operating point. Hence, the classifier three
is in charge to detect the anomalous situation.

To evaluate the proposed approach and obtain the three local
one-class classifiers, the techniques described in Section 3 are
applied to the dataset. The operating points considered as target
class for each classifier are the following:
Fig. 4. Hybrid classifier approach.
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� Level 40% and valve closed.
� Level 50% and valve closed.
� Level 60% and valve closed.

On the other hand, as mentioned in Section 2, the data regis-
tered with the same tank levels but with the valve open are labeled
as anomalies.

Considering three different tank levels x; y and z, an example of
the data distribution used to train and test each local classifier is
presented in Fig. 5. The data is distributed and processed as
follows:

1. The data corresponding to a x % level with the valve closed rep-
resents the target set. The 90% of this set is randomly selected to
train the classifier.

2. Once the classifier is trained, it is tested with different data
groups:
� The 10% left from the target class.
� The data from x % level and the valve open.
� The data from y% and z% levels with valve open and closed.

3. This process is repeated 10 times following a 10 k� fold cross-
validation.

This process is the same for each one-class technique.

4.2. Experiments setup

As the main idea of this work is to implement the best one-class
classifier for each plant operation, the performance of each tech-
nique is assessed. The applicability of these techniques is evaluated
through a detailed comparative analysis of the hyperparameter
influence over the results. A brief explanation of the tested hyper-
parameters is presented below:

� Gaussian.
– Ofr: represents the percentage of outliers in the training set.

This parameter sets the threshold to determine the criteria
to detect anomalies. This parameter is also used in Parzen,
kNN, PCA, Autoencoder and SVDD classifiers.

– Rp: represents a factor for the covariance matrix.
� Parzen Density Estimator.
– Wp: is the kernel width used to obtain the density function.

� Principal Component Analysis.
Fig. 5. Train and test process to obtain the classifier for the operating point x % and
valve close.
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– Ncomp: represents the number of principal components used
to project the new point into a lower dimensional space.

� k-Nearest Neighbor.

– k: is the number of neighbors taken into consideration to
compute the distance of a test object to the target set.

� Approximate Polytope Ensemble.
– Npr: number of 2D projections to determine the approximate

convex hull of the target set.
– h: expansion parameter to modify the convex hull extension.

� Autoencoder Artificial Neural Network.
– Nhl: number of neurons in the hidden layer.

� Support Vector Data Description.
– r: width parameter of the radio basis function.

Hence, all hyperparameters described are checked to achieve
the best classifier. The values tested are shown in Table 1.

In addition to the different techniques setups, regardless of the
technique applied, all classifiers were trained with three prior
dataset configurations: raw data, normalization 0 to 1 and normal-
ization using z-score [34]. The z-score zi of a certain point xi repre-
sents how many standard deviation is deviated from the mean,
according to Eq. (12).

zi ¼ xi � l
r

ð12Þ

All algorithms were implemented using Matlab software. The
Gaussian Model, PDE, PCA, k-NN and SVDD classifiers were
obtained using the ddtools toolbox [15]. In the case of Autoencoder
classifiers, they were achieved with the ‘trainAutoencoder’ function
[35].
5. Results

The Area Under the Receiving Operating Curve (AUC) parame-
ter, in%, is used to evaluate the performance of each technique. This
parameter, that represents a relationship between true positives
and false positives, is a good indicator of the performance in one-
class classification problems [36].
Table 1
Techniques setup.

Technique Parameters Values tested

Gaussian Model
Outliers % in the target class (Ofr) 0:2,5:15
Regularization parameter (Rp) 0:0,001:0,01

PDE
Outliers % in the target class (Ofr) 0:2,5:15

Width parameter (Wp) 0:0,001:0,01

PCA
Outliers % in the target class (Ofr) 0:2,5:15
Number of components (Ncomp) 1:1:4

k-NN
Outliers % in the target class (Ofr) 0:2,5:15

Number of neighbors (k) 1:1:10

APE
Number of projections (Npr) 50, 100, 500, 1000
Expansion parameter (h) 0,5:0,1:2

Autoencoder ANN
Outliers % in the target class (Ofr) 0:2,5:15
Neurons in the hidden layer (Nhl) 1:1:4

SVDD
Outliers % in the target class (Ofr) 0:2,5:15
Width parameter of RBF kernel (r) 1:1:10
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As mentioned in Section 4, a 10-fold cross-validation was per-
formed. The mean AUC and the standard deviation (STDD) calcu-
lated from the 10 iterations are used as a measure of the
performance and repeatability of each classifier. In addition to
the classifier performance, the time needed to train each one (ttr)
is also a key parameter to take into consideration.

Tables 2–4 represent the best classifiers results obtained by
each technique, in terms of AUC, considering the three operating
points (40%, 50% and 60% levels, respectively) with the valve
closed. Furthermore, the training configuration needed to achieve
these results is also presented.

From all the tested classifiers, the best configuration for each
operating point is chosen following an AUC criteria. Then, the
one-class hybrid topology is implemented according to Table 5.
5.1. Comparative results

This section describes the main findings of each technique. First,
the average performance of all methods, in terms of AUC and train-
ing times, is show in Figs. 6 and 7. It can be noted that APE has the
best general performance regardless the chosen configuration. The
differences between training times are significant, being Gaussian
the fastest and SVDD the slowest.

In addition to this general performance overview, a more
detailed analysis of the hyperparameters influence for each tech-
nique was carried out.

Gaussian Model. In general terms, it can be noticed that the
Gaussian Model presents a very low training time (ttr) in the three
local classifiers. This fact is reasonable, because it is the simplest
technique. However, this technique does not lead to specially high
values of AUC. The best regularization parameter Rp is always 0,
and the outlier fraction and data conditioning is not the same for
each operating point.

PDE. The PDE presents a very interesting performance in the
three classifiers, with the best AUC values in two of them. The
training time is always below 0,5 s, which is the system sample
time. In the three cases, the best results were achieved with the
data normalized.

PCA. Regarding the PCA, it is interesting to remark that the opti-
mum number of components was always 4. However, the AUC
obtained is not among the bests in any case. This method presents
the advantage of a very low training time.

k-NN. The k-NN shown the best AUC in the second local classi-
fier and the second best AUC in the third local classifier. In the
three cases, the optimum number of cluster was 1, and the data
was not conditioned. A slight disadvantage of this technique is
the training time, that is about a minute.

APE. This technique gives very irregular AUC results. The first
and second classifiers presents values of at least 99;50%, but the
third classifier has the lowest value. It is important to remark
the influence of the number of projections in the training time.
The first classifier (Npr ¼ 1000) has a training time 25 times higher
than the third one (Npr ¼ 50). It is also interesting to emphasize
that the third classifier expands its projections (h ¼ 1;8) and the
rest reduce them (h ¼ 0;8).

Autoencoder ANN. The Autoencoder technique presents rela-
tively low values of AUC in the three local classifiers. Autoencoder
ANN. The best results are obtained with raw data and 2, 4 and 4
neurons in the hidden layer, respectively. From all the experi-
ments, it is concluded that number of neurons plays a significant
role in the training times. In this case, an increase of the hidden
layer neurons leads to an increase in the training time. For this rea-
son, the first autoencoder classifier has lower training time (2 neu-
rons) than the second and third classifiers (4 neurons).



Table 2
Best classifier obtained for each technique. Tank at 40% and valve closed.

Technique AUC (%) STDD (%) ttrðsÞ Configuration

Gaussian Model 93,74 0,81 0,01 Ofr ¼ 0;05
Rp ¼ 0
Norm

PDE 99,69 0,03 0,41 Ofr ¼ 0
Wp ¼ 0;005

Norm

PCA 93,66 0,27 0,02 Ofr ¼ 0;025
Ncomp ¼ 4
Norm

k-NN 98,84 0,03 1,03 Ofr ¼ 0
k ¼ 1
Raw

APE 99,50 0,03 1,01 h ¼ 0;8
Npr ¼ 1000

Raw

Autoencoder ANN 96,61 2,77 0,90 Ofr ¼ 0;025
Nhl ¼ 2
Raw

SVDD 99,39 0,04 193,67 Ofr ¼ 0
r ¼ 1
Zscore

Table 3
Best classifier obtained for each technique. Tank at 50% and valve closed.

Technique AUC (%) STDD (%) ttrðsÞ Configuration

Gaussian Model 87,51 0,31 0,01 Ofr ¼ 0;075
Rp ¼ 0
Zscore

PDE 99,96 0,02 0,28 Ofr ¼ 0;025
Wp ¼ 0;005

Norm

PCA 91,31 0,20 0,05 Ofr ¼ 0;025
Ncomp ¼ 4
Norm

k-NN 99,99 0,02 0,99 Ofr ¼ 0
k ¼ 1
Raw

APE 99,99 0,03 0,11 h ¼ 0;8
Npr ¼ 100

Raw

Autoencoder ANN 97,84 1,66 1,26 Ofr ¼ 0;025
Nhl ¼ 4
Raw

SVDD 99,93 0,05 175,47 Ofr ¼ 0
r ¼ 3
Raw
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SVDD. This technique has the main drawback of its high compu-
tational cost, with a training time of at least 175 s. This value is sig-
nificantly higher than the values of the rest of techniques. The AUC
values are in the three cases really interesting, specially in the first
and second classifiers.

6. Conclusions and future works

The present works deals with the anomaly detection prob-
lem in an industrial plant. The basic idea is to divide the dif-
ferent operating points of the system and then, train a one-
class classifier for each one. Different one-class techniques
were trained, tested and validated over the system, and the
best one is chosen to implement the hybrid classifier. These
results can lead to many competitive advantages in terms of
7

cost reduction in predictive and corrective maintenance tasks,
low rejection rates, high quality production or energy savings,
among others.

From this work, we can conclude that it is possible to detect
anomalies successfully in an industrial plant that operates in dif-
ferent points by using the hybrid intelligent methodology pro-
posed. This approach can be presented as a very useful tool in a
wide variety of applications, such as medicine, surveillance sys-
tems or fraud detection in credit card usage, to detect deviations
from the correct operation.

As future works, due to the fact that the three chosen classifiers
need a training time lower than 0,5 s, that is the sample time, it
could be possible to retrain the system on line. This future proposal
could be interesting to be applied with the aim of updating the sys-
tem behavior during its use.



Table 4
Best classifier obtained for each technique. Tank at 60% and valve closed.

Technique AUC (%) STDD (%) ttrðsÞ Configuration

Gaussian Model 92,78 0,39 0,01 Ofr ¼ 0;1
Rp ¼ 0
Raw

PDE 97,87 0,27 0,40 Ofr ¼ 0
Wp ¼ 0;004

Norm

PCA 94,54 0,44 0,03 Ofr ¼ 0;075
Ncomp ¼ 4
Zscore

k-NN 97,71 0,27 1,11 Ofr ¼ 0;025
k ¼ 1
Raw

APE 85,63 0,06 0,04 h ¼ 1;8
Npr ¼ 50
Raw

Autoencoder ANN 91,46 0,60 1,22 Ofr ¼ 0;125
Nhl ¼ 4
Raw

SVDD 91,49 1,83 209,98 Ofr ¼ 0;05
r ¼ 1
Raw

Table 5
Final hybrid one-class classifier configuration.

Tank level Technique AUC (%) STDD (%) ttrðsÞ Configuration

40% level PDE 99,69 0,03 0,42 Ofr ¼ 0
Wp ¼ 0;005

Norm

50% level APE 99,99 0,03 0,11 h ¼ 0;8
Npr ¼ 100

Raw

60% level PDE 97,87 0,27 0,40 Ofr ¼ 0
Wp ¼ 0;004

Norm

Fig. 6. Average AUC for each technique (%).
Fig. 7. Average training times for each technique (ms).

E. Jove, R. Casado-Vara, José-Luis Casteleiro-Roca et al. Neurocomputing xxx (xxxx) xxx
Another challenge to face in future works would consist of
implementing one classifier for each sensor and actuator. Then,
besides the anomaly detection, it could be possible to identify
the source of the problem.

In addition, the use of other well known one-class techniques
could help the proposed approach to improve its results.
8
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