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A B S T R A C T

In this work two mathematical models based on soft computing techniques for the forecasting of the wave energy
in the Macaronesian region are exposed. The intelligent systems proposed for the wave energy prediction are
Fuzzy Inference Systems (FIS) and Artificial Neural Networks (ANN). The models were implemented and vali-
dated thanks to the dataset of deep waters buoys belonging to Spain's State Ports, in several places near the
Canary Islands. The buoys dataset covered a total period of 18 years. Once this research finished, it was possible
to conclude that there is an excellent correspondence between annual wave energy predicted by ANN- and FIS-
based models with respect to both buoys. These models constitute an effective tool to compute the wave power
quickly and accurately at any point in oceanic deep waters, which allows for an optimal use of the dataset from
the buoys even with only a few months of measurements.

1. Introduction

The Canary Islands (Spain) are an archipelago formed by eight main
volcanic islands (El Hierro, La Palma, La Gomera, Tenerife, Gran
Canaria, Fuerteventura, Lanzarote, and La Graciosa) located on the
Atlantic Ocean (27.5°N - 29.5°N, 13°W - 18.5°W), near the southern
coast of Morocco (Fig. 1). The established population in all the islands is
over 2 millions and the more than 13 million tourists visit the islands
each year, which has escalated up to 16 millions in the last years. This
tourism industry is only possible by the desalination of seawater, be-
cause the majority of the islands have scarcity of water, which becomes
extreme in the case of Lanzarote and Fuerteventura [1-8]. Another huge
problem in the islands is the energy production; more than 98% of
primary energy consumption comes from imported fuel and the elec-
trical system is isolated, so that increases the difficulty of its optimi-
zation [6,7,9].

The Canarian Archipelago can be considered a reference in the fresh
water production from desalination. Currently, desalination produces
19% of the total water consumption required in the islands [5,10,11].
The highest limitation of desalination is its great energy requirements,
which is a serious problem due to the increasing environmental pollu-
tion caused by the use of fossil fuels required for its production, hence
the fact that this is the most extended electrical energy source in the
islands, not only for desalination use, but also for the supply of energy
in general.

The use of renewable energies results in green technology, which
minimizes the environmental impact of the electricity production. The
Canary Islands present high renewable energy availability such as solar
irradiation, wind speed and, surrounded by the Atlantic Ocean, wave
energy is abundant too [2,5].

As reported by [1,2,12,13] the Canary Islands are exposed to en-
ergetic seawaters from the North Atlantic Ocean and a substantial wave
resource can be found in the west and northern coasts of the archipe-
lago, with an average wave power of 25-30 kW/m, although the re-
source is less abundant in the east and south of the islands.

Based on these natural resources, special attention should be paid to
wave energy; since it is one of the most promising one owing to the
ocean renewable energy resources. This type of renewable energy offers
an abundant high energy density resource, accessible by most coastal
regions and islands; furthermore, it is more predictable than wind or
solar energy, with lower environmental and visual impacts [1,12-14].
Ruso and Soares [15] claim that the wave energy resources that usually
surround the areas of the archipelagos are abundant, the particular
bathymetric of these places generates significant wave energy con-
centrations. The ones located near the coast may become effective lo-
cations for the transformation of the wave energy. In the case of this
work, the power calculations for the studied zones show a promising
energy source for this region.

As it is known, new prototypes for taking advantage of marine en-
ergy are developing in recent years. Furthermore, the energy research
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community is showing much interest in wind offshore energy, one of
the most developed ones along with other marine energy sources. The
wave energies are one of the less developed ones among them. Because
of that a lot of efforts are being made in order to devise new commercial
prototypes. In this sense, new prototypes and tools to evaluate this
energy are necessary. In fact, it is important to determine the most
adequate areas to take advantage of this kind of energy. In the case of
this work, the power calculations for the studied zones show a pro-
mising energy source for this archipelago. Moreover, it is likely that
there will be an extraction growth in the coming decades since this
technology is becoming more advanced and specialized [1]. Wave en-
ergies are expected to play a significant role in the upcoming years for
the reduction of CO2 and greenhouse gas emission in the world, parti-
cularly in the European Union (EU) [12,16].

The European Renewable Energy Council predicts that the ocean
energy will represent 0.15% of the electricity consumption at the end of
2020, contributing to the objectives of the European energetics strategy
[17]. This renewable energy source, in particular wave energy, has a
singular link in the adoption of the Renewable Energy Directive (2009/
28/EC), to which the EU has committed to reduce its contaminants gas
emissions by 80-95% by 2050 [17-19].

In order to determine, or estimate the potential production of en-
ergy from a Wave Energy Converter (WEC) at any place, it is necessary
to know the potential of the waves, for this reason it is possible to say
that maybe wave energy prediction is not an objective in itself, but it is
necessary to lay the foundations of the evaluation of any WEC [1].

In the last decade many projects for the development of Wave
Energy Converters (WECs) for its use in energy production, desalina-
tion, hydrogen production and pumping of water have been designed
and tested in a lot of places around the world, mainly in Europe [12,19-
24]. However, most of said technologies still need to be improved be-
fore being used on a commercial scale; meanwhile, the industry of
Wave Energy Converters (WECs) keeps growing. Therefore, it is

important to work on the improvement of wave energy prediction
methods. It is necessary to determine the regions in the world where it
is feasible to implement wave energy farms in a faster and more in-
expensive manner [21,25,26].

Since the early 1960s, buoys have been used for measuring waves
due to their good estimates of the sea state. Nevertheless, buoys present
a problem when it is necessary to maintain the wave climate estimation
in the long term, because it is too costly, except for some key reference
sites, for example, near ports [27].

Wave forecasting has come to rely fundamentally on computer
hindcast third-generation (3G) wind-wave models, such as WAve
Modelling, (WAM) and SWAN, acronym for Simulating WAves
Nearshore [27-30]. At present WAM provides global coverage, and has
been used in many projects such as WERATLAS for European waters
and WorldWaves project to cover the entirety of the globe [27-30,31].
SWAN is a third generation phase-averaged Eulerian numerical wave
model, designed to simulate the propagation of random waves ranging
from deep to coastal locations [27,32-34].

Currently, several studies and assessments have been implemented
making use of 3G wind-wave models in different regions of the world,
such as in the Macaronesian Islands, which include the Canary Islands,
Cape Verde and the Azores. Some noteworthy research projects are
Gonçalves, Martinho and Guedes in [1], which deliver a numerical
study of wave power distribution around the Canary Islands. For this
study the SWAN model was used to define the transformation of the
waves in the archipelago. The model was validated by buoy and sa-
tellite data. In El Hierro Island, the wave resource was determined using
third generation wave model WAM [2]. A study of the wave energy
resources using wave model SWAN in the Cape Verde coast is found in
[3]. In this research it is intended to identify potential wave energy
hotspots. In the Azores Archipelago a wave energy evaluation was
made, for this aim, satellite data and SWAN numerical models were
used [23].

Fig. 1. Geographic location of the studied points.
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Every day more and more researchers use in their studies computing
systems different to wave forecasting, for example, the systems based
on Artificial Intelligence. These soft computing techniques (SC) are
frequently used to model complex relations in databases, not only to
relate inputs and outputs, but also to find patterns. Some of the most
widely used intelligent computing methods for regression and data
classification are: Fuzzy Inference Systems (FIS), Artificial Neural
Networks (ANN), Support Vector Machines (SVMs), Bayesian Networks
(BNs) and Decision Trees (DTs) [35].

One such example of this is the use of Artificial Neural Networks in
wave height prediction in places such as Indian coasts [36], the
northern part of the Adriatic Sea, offshore Croatia [37], or the west
coast of Portugal [38]. There are many other studies in lakes that can be
extrapolated to sea conditions which aim to forecast wave heights based
on ANN and other soft computing techniques [28,35]. Other im-
plementations of the intelligent systems are the assessment of the wave
energy potential, for example in [21,25,26,39,40].

A key element in the development of renewable energies based on
waves is the prediction of such energy resource. In this sense, island
regions will be very interested in taking advantage of this resource
especially if the characteristics of the wave resources are convenient for
the production of a considerable amount of energy. This is the case of
the Canary and other islands or archipelagos where these resources are
a promising source of energy. Currently, there is not much research
based on soft computing techniques for wave height prediction or wave
energy forecasting in the North Atlantic Ocean, especially in the
Macaronesian region. For this reason, the main objective of this re-
search is to determine the behavior of the intelligent systems Fuzzy
Inference System (FIS) and Artificial Neural Network (ANN) for wave
energy prediction, in order to demonstrate the advantages entailed by
the use of soft computing methods rather than numerical models. As a
starting point, the research was done taking wave data buoys belonging
to Puertos del Estado (Spain's State Ports), located in deep waters near
the Canary Islands. Even with a few months of dataset measurements to
determine the wave energy forecasting for the evaluation of any Wave
Energy Converters (WECs) for energy production or pumping of water
for desalination, this document can be considered as the first stage of
research for the application of soft computing in regions with wave
energy conditions similar to the Canarian Archipelago. The renewable
energy produced can be injected directly in the electrical network or
can be used in isolated desalination systems.

On the other hand, some particularities such as environmental im-
pact, protected zones, military zones, or bathymetry, have not been
taken into consideration in this research.

This paper is organized in five sections. Following this introduction,
the used data sources are shown. The third section presents the model
based on different intelligent systems and the fourth one showcases the
validation and analysis of such models. Finally, the conclusions of the
whole research are given in the last section.

2. Used data sources

In order to model the behavior of waves, data from two buoys lo-
cated near the Canary Islands were taken. The first one is the Gran
Canaria buoy (2442), whose position is 28.20 North latitude and 15.78
West longitude, with a mooring depth of 780 m. The other one is the
Tenerife Sur buoy (2446), whose position is longitude 16.58° W and
latitude 27.99° N, with a mooring depth of 710 m. Both buoys are part
of the Deepwater Buoys Network of the State Ports of Spain, which are
characterized by being anchored far from the coastline at great depth
(more than 200 meters deep). They are SeaWatch buoy type, which
measure waves, atmospheric and oceanographic parameters. The buoys
have different types of sensors, as well as process units, dataset storage
and satellite transmission. The obtained data provide representative
observations of large coastal areas [41,42].

The sea surrounding the Canary Islands is characterized by being

particularly deep; even near the coast, given the fact that these islands
have no continental shelf. Thus, the wave energy in general, is un-
affected by refraction or shoaling [1]. Fig. 1 shows the geographic lo-
cation of the studied buoys. The obtained dataset covers a total period
of 18-years (1998 to 2016).

In both buoys, measurements of spectral significant wave height, H,
and mean peak period, T, were carried out every three hours. It should
be noted that an average value of the analyzed variable is calculated
over the data obtained during the first 30 minutes, after every two
hours and a half. That is, the data are average values rather than data
collected at a very specific point in time. The measurement accuracy
was± 0.05 m and±0.05 s, respectively. All this dataset was facilitated
by Puertos del Estado (Spain's State Ports) through an official request.

3. Modelling

3.1. Data pre-processing

Considering the fact that it is a random phenomenon, a frequency
distribution was used to describe wave behavior in order to later obtain
the wave power prediction, which depends on the spectral significant
wave height (H) and the mean peak period (T). By following the other
researchers' recommendations [27,41-44], a two-dimensional Weibull
distribution was used, with the expression:
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where B0 is the zero-order Bessel function, whereas c1, k1, c2, k2 and c12
are the obtained distribution coefficients. The fitting process was car-
ried out by using the Simultaneous Maximum Likelihood Estimate
method [27,41-44]. Figs. 2 and 3 show the graphical representation of
these coefficients for each month and hour in both buoys.

As it can be noted, most of the coefficients appear in similar inter-
vals in both buoys, but the corresponding distribution is remarkably
different. An important issue that can be identified is the variation of
the coefficient values in relation with the months, while having only
minor changes in relation with the hours. This can be explained because
the influence of the seasons of the year on wave characteristics is much
more important than that of daily behaviors.

3.2. Artificial Neural network (ANN) -based modelling

In order to predict wave power at any instant (month and hour), a
model that related the 2D-Weibull coefficients with the month and the
hour was established. For this purpose, the first approach used was an
Artificial Neural Network (ANN). A multi-layer perceptron (MLP) was
selected since this paradigm has universal approximation capability
(i.e., it can approximate any function, with arbitrary accuracy, if the
proper number of neurons is supplied). Several authors have proposed
different architectures, in which the choice of the number of neurons on
hidden layers is a key issue [21,28,35,37-39,45-48].

In this paper, the MLP has 15 neurons on a single hidden layer and
one neuron on the output layer. In general, this choice is problem de-
pendent. Because of that, this number was selected by trial and error,
starting from five and increasing by steps of five, until reaching no
decrement in the obtained coefficient of determination. However, the
number was kept low enough in order to guarantee fewer model
parameters (i.e., weights and biases) than the number of training data,
thus avoiding the indetermination of the training process. As for the
hidden neurons, the hyperbolic tangent was used as a transfer function,
while a linear transfer function was used in the output neuron. In order
to facilitate the training process, all the inputs and outputs were nor-
malized to the interval [–1, 1]. The gradient descent with momentum
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and adaptive learning rate backpropagation algorithm were used to
train the MLP, with a learning rate of 0.01; the ratio used to increase the
learning rate was 1.05; the ratio used to decrease it was 0.70; the
maximum performance increase was 1.04; the minimum performance
gradient was 10–5; and the momentum constant was 0.90. All the
aforementioned values were selected by heuristic recommendations.
Most of them match the default values of the training algorithm im-
plemented, and have proved to be effective. The training process was
stopped after 5000 epochs in order to avoid overtraining.

Fig. 4 shows the predicted vs. observed values for each coefficient in
the 2D-Weibull model for Gran Canaria (2442) buoy, as forecast by the
neural network. As it can be seen, there is a higher matching for
coefficients c1 (R2 = 0.9241), k1 (R2 = 0.9579) and c2 (R2 = 0.9876),
while k2 (R2 = 0.6810) and c12 (R2 = 0.8424) are more scattered.

Graphical representations of Neural Network-based predictions for
each coefficient are given in Fig. 5. There is a sound coincidence with
the observed values (see Fig. 2), but the graphs are smoother, because
the fitted models were capable of eliminating the unavoidable random
noise presented in the training data.

Predictions for Tenerife Sur (2446) buoy are shown in Fig. 6, for
each 2D-Weibull model coefficient. As for Gran Canaria, coefficients c1
(R2 = 0.9464), k1 (R2 = 0.9200) and c2 (R2 = 0.8983) present a high
goodness-of-fit. However, coefficients k2 (R2 = 0.5723) and, specially,
c12 (R2 ≈ 0) show a lower correlation. Nevertheless, due to the lower
values of c12, errors do not propagate to the predicted distribution va-
lues (see Eq. 1).

Fig. 7 depicts the models as fitted for each 2D-Weibull coefficient for
Tenerife Sur (2446) buoy. A high correspondence with the values
shown by Fig. 3 can be noted, which means a high correlation with the
observed values.

3.3. Fuzzy inference system (FIS) -based modelling

The second approach tested for modeling the 2D-Weibull coeffi-
cients was a Sugeno-type Fuzzy Inference System (FIS), which was
fitted through subtractive clustering [35,49-52]. The FIS uses Gaussian
membership functions for the inputs, and linear membership functions
for the outputs. Radii (i.e., the cluster centre's range of influence in each
of the data dimensions) was set to 0.35.

Fig. 8 shows the predicted vs. observed values, forecast by the FIS-
based model, for Gran Canaria (2442) buoy.

With this technique, the models for c1 (R2 = 0.9606), k1
(R2 = 0.9490) and c2 (R2 = 0.9927) have high coefficient of de-
termination (even higher than those for the Neural Network-based
models). As in the neural models, correlation for coefficients k2
(R2 = 0.7282) and c12 (R2 = 0.7816) are noticeably lower than the
other ones.

The graphical representation of the models obtained is depicted in
Fig. 9. A great coincidence can be appreciated not only with training
data (Fig. 2) but also with values predicted by the Neural Network-
based model (Fig. 5).

Fig. 10 shows the Fuzzy Inference System predicted vs. observed
values, in the Tenerife Sur buoy (2446).

As in all the previously obtained models, the correlation for coef-
ficients c1 (R2 = 0.9369), k1 (R2 = 0.8617) and c2 (R2 = 0.9377) is
very high, while it is lower for coefficient k2 (R2 = 0.5909) and ex-
tremely low for c12 (R2 = 0.1122). However, this issue does not sig-
nificantly affect the accuracy of the overall predictions as coefficient c12
appears squared and subtracted from one in the expression for the
distribution probability (Eq. 1), which means that lower c12 values have
very small influence in the equation outcome.

Fig. 11 shows the graphical representation of the model predictions

Fig. 2. 2D-Weibull distribution coefficients for Gran Canaria buoy (2442).
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Fig. 4. Predicted vs. observed values for the neural network model of Gran Canaria (2442) 2D-Weibull coefficients.

Fig. 3. 2D-Weibull distribution coefficients for Tenerife Sur buoy (2446).
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Fig. 5. Neural network-based predictions for Gran Canaria (2442) 2D-Weibull coefficients.

Fig. 6. Predicted vs. observed values for the neural network model of Tenerife Sur (2446) 2D-Weibull coefficients.
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Fig. 7. Neural network-based predictions for Tenerife Sur (2446) 2D-Weibull coefficients.

Fig. 8. Predicted vs. observed values for the fuzzy inference system of Gran Canaria (2442) 2D-Weibull coefficients.
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Fig. 9. Fuzzy inference system-based predictions for Gran Canaria (2442) 2D-Weibull coefficients.

Fig. 10. Predicted vs. observed values for the fuzzy inference system of Tenerife Sur (2446) 2D-Weibull coefficients.
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vs. the independent variables (month and hour). The coincidence with
observed data (Fig. 3) and outcomes from neural network-based models
(Fig. 7) can be noted.

A noteworthy issue brought up from all the previously fitted models,
is the high influence of the year period (month) on the 2D-Weibull
distribution coefficient value, while the influence of the specific mo-
ment (hour) is significantly lower.

4. Validation and analysis

A preliminary validation was carried out by comparing the pre-
dicted 2D-Weibull distribution coefficients with those observed for
2015 and 2016. Fig. 12 shows the mean absolute errors of the dis-
tribution coefficient predictions. The most remarkable point is the co-
incidence in prediction on both models.

In order to analyze the forecasting capability of the previously ob-
tained models, the power predicted for each year was computed in the
period used for training such models (1998 to 2014), which represent
approximately 88.9% of the total dataset. That is, a high percentage of
samples are used in the training phase as usual. Validation set was se-
lected outside the period of time used in the training process (2015 and
2016), which represent 11.1% of total datasets. The validation was
carried out by extrapolating the model predictions (which is a very

rigorous method for testing the generalization capability of a soft-
computing based model).

In all the cases, the power, PH,T, was computed from the 2D-Weibull
probability distribution, fW2D(H, T), which is characterized by the
parameters, k1, c1, k2, c2, c12, through the equation:

=P tAH T f H T dH dT(0.8571 ) ( , )H T W D
cdf

,
2

2
(2)

where t is the period considered and A is a factor (this study considered
A = 0.49). For given values of ΔH and ΔT, eq. (2) was numerically
integrated by using the expression:
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In Eq. (3), + +p H H T T
H T| ,

, is the cumulative probability of the
2D Weibull distribution in the interval bound by [H, H + ΔH] and [T,
T + ΔT].

This paper does not include the analyses of wave direction, because
the main purpose of this work at this first stage is the prediction of the
total wave power at any point oceanic deep waters near the coast with
island conditions.

Fig. 11. Fuzzy inference system-based predictions for Tenerife Sur (2446)2D-Weibull coefficients.
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Fig. 13 and 14 show the behaviour of Gran Canaria (2442) and
Tenerife Sur (2446) buoys. The white bars represent the value of the
actual power in the period from 1998 up to 2014. In both figures, solid
lines represent mean values and dotted lines indicate the corresponding
95% confidence interval. The black bars represent the models, fitted
with data up to 2014. It should be noted that predictions from both
models, Artificial Neural Network (ANN) and Fuzzy Inference System
(FIS), fall into the confidence intervals for all the months. Actually, they
are close to the respective mean values.

For validating the models proposed, the forecasting data were
compared with those measured in 2015 and 2016 for every month. As it
can be noted (see Fig. 15 and 16), there is a good matching between
predicted and observed values.

For Gran Canaria buoy (2442), the mean relative errors were 23.1%
for ANN-based model and 24.2% for FIS-based model. The maximum
forecasting relative error, with values of 85.6% and 91.2%, respec-
tively, takes place in April 2015.

Mean relative errors, for Tenerife Sur (2446) buoy were 36.3% and
36.0%, for ANN- and FIS-based models, respectively. The maximum
error, with respect to the observed values was 101.1%, for ANN, and
96.8% for FIS, both corresponding to October 2016.

Model divergences can be explained on the one hand, by weather
variability, which can result in outliers; and on the other hand, by the
shade projected by the island of Tenerife. In the future it will be

necessary to investigate to make corrections in the models for these
particular cases.

Table 1 summarizes the total annual power forecast by both models,
and a comparison with the respective observed value for the period
1998-2014 (training data) and for 2015 and 2016 (validation data).

As it can be inferred from this table, there is an excellent corre-
spondence between annual power predicted by ANN- and FIS-based
models for both buoys. On the other hand, mean relative errors are in
all the cases lower than 25%.

5. Conclusions

In the future, oceanic energies could play an important role re-
garding renewable energies for the enhancement of electric power
systems, especially wave energies, which will contribute greatly to the
reduction of greenhouse gas emissions.

The Canary Islands and other similar archipelagos are isolated zones
from the energy point of view and this issue is of particular interest
when it comes to searching new ways of producing energy. In this
sense, this work proposes new methods to predict the amount of energy
and how this energy is distributed throughout the year in a faster and
more inexpensive way. In fact, a soft computing approach has been
used based on several artificial intelligence techniques applied in a
wide range of engineering problems.

Fig. 12. Mean absolute errors for distribution coefficient predictions compared with observed data from 2015 and 2016.
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Moreover, two alternative approaches have been taken. One of them
was based on Artificial Neural Networks (ANN) and it focused on
learning properties; whereas the another one was based on Fuzzy
Inference Systems (FIS) in which rule extraction is a possibility. One of
the singularities of this work is the opportunity of having a very wide
range of data over a long period of time in the training stage. This has
allowed for the testing of the proposed methods in a more adequate
way, both approaches have achieved satisfactory results. The model
was implemented and validated with and by datasets from two different
buoys located near the Canary Islands: the Gran Canaria buoy (2442)
and the Tenerife Sur buoy (2446), both in deep waters.

The coefficient of determination (R2) for distribution coefficients c1,
k1 and c2 in all the previously obtained models for both buoys is very
high, while it is lower for coefficients k2 and c12. However, this issue

does not significantly affect the accuracy of the overall predictions.
Taking this observation into consideration, it is possible to affirm that
in this study there are very high correlation coefficients for both
training and testing data.

Once this study has finished, it can be concluded that there is an
excellent correspondence between annual power predicted by ANN-
and FIS-based models with respect to both buoys, with mean relative
errors less than 25% in both cases.

The developed models based on the Artificial Neural Network and
the Fuzzy Inference System in this work constitute an efficient tool to
compute wave power quickly and accurately at any point near coastal
oceanic deep waters, which reaches an optimal use of the data obtained
for the wave monitoring systems in the buoys. These two mathematical
models will allow us to obtain an annual wave power prediction

Fig. 13. Modelled power [MW•h/(m•month)] for Gran Canaria buoy (2442).

D. Avila, et al. Applied Ocean Research 101 (2020) 102189

11



Fig. 14. Modelled power [MW•h/(m•month)] for Tenerife Sur buoy (2446).

Fig. 15. Comparison of forecasting and observed power [MW•h/(m•month)] data for Gran Canaria buoy (2442).
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without needing a base data of many years in a particular place, which
is of great importance for the evaluation of the WECs to produce re-
newable energy for desalination, hydrogen production or for its injec-
tion into the electric power network.
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