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A B S T R A C T

Coating mortars act as a physical barrier to protect the load-bearing structure against corrosion.
However, not all mortars have the same protective capacity. Hydration in the early ages of manu-
factured mortars is a very influential parameter in their electrical resistivity values and in the
evolution of their mechanical performance. In this work, the electrical resistivity data and its re-
lationship with the evolution of the mechanical strength in different mortar dosages are analysed.
From the data obtained, a predictive system with fuzzy logic is designed with the aim of predict-
ing the value of the compressive strength of the mortar at the age of 28 days based on the electri-
cal resistivity measurement obtained within the first seven days after its manufacture. The de-
signed system has been validated with data from other mortar dosages not included in the design,
proving to be a useful tool for establishing quality criteria for coating mortars.

1. Introduction
Currently,more than half of the world's population lives within 60 km of the coast [1]. This means that many buildings are located

in an aggressive marine environment where chloride ions are the main depassivating agent for reinforcement [2]. The durability of
the reinforced concrete structure depends on the thickness and quality of the reinforcement coating [3]. For this reason, the addition
of a coating mortar provides a physical barrier against corrosion and contributes to improving the useful life of these structures. An in-
dicator of the quality of this coating is the compressive strength of the mortar [4].

From more than two decades ago to the present day, the importance of evaluating the quality of mortars as a coating material to
improve the durability of concrete has been highlighted in numerous investigations. Thus, for example [5], reported the results of a
study carried out to evaluate the durability of concrete covered with surface coatings of different polymeric natures [6]. determined
the effects of commercial coating mortars with polymeric additions in relation to their resistance to chloride penetration and the ser-
vice life of concrete coatings [7]. studied the properties of mortars with different additions to determine their physical properties,
such as compressive strength and chloride diffusion coefficient. Recently [8], addressed the study of the efficiency of seven polymer-
based cement repair mortars when applied on concrete supports. However, no bibliographic references have been found on the con-
tribution of mortars made with nonreactive volcanic aggregates of basaltic nature as a coating for reinforced concrete. This paper
analyses this type of mortar. The behavior of these mortars is unique because they are nonlightweight aggregates with high absorp-
tion [9].
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This work addresses a methodology based on fuzzy logic to evaluate the quality of these particular mortars. The application of this
methodology allows predicting the 28-day compressive strength of the mortar from the measured value of electrical resistivity in the
first hardening ages. Fuzzy set theory is used to model the relationship between these variables. Fuzzy logic is an alternative to classi-
cal logic for representing human reasoning and situations with uncertainty, since it allows phenomena and observations to have more
than two logical states. The basis of this theory is the "fuzzy sets" and the so-called "membership functions", which qualify the mem-
bership of an element to different fuzzy sets simultaneously.

The research literature collects some studies for other types of mortars within this subject [10,11]. These works suggest methods
to predict the standard compressive strength from the measurement of electrical resistivity. Other researchers [12,13], on the con-
trary, raise the danger of using indirect correlations such as compressive strength and indirect durability indices whose relationship
may lead to incorrect deductions. In both works, the conclusions result from the application of relationship models between variables
that do not apply adaptive fuzzy logic models.

Artificial Intelligence techniques other than Fuzzy Logic have been used to predict the compressive strength of different types of
concrete, such as Artificial Neural Networks [14,15], Decision Trees and Random Forest algorithms [16,17]. In contrast, the works of
[18–23] apply Fuzzy Logic to evaluate the compressive strength of mortars. It is important to highlight that all these works propose
methods for evaluating mortars made with components different from those used in our work, and analysing other types of variables.

The present work provides a fuzzy system that allows estimating the 28-day compressive strength of a basaltic mortar by introduc-
ing into the system only the amount of cement used in the manufacture of the mortar, the electrical resistivity measurement and the
number of days elapsed between the manufacture of the mortar and the instant at which the measurement was made. Therefore, this
work provides a novel tool that contributes to the control of mortars made in situ without the need to carry out destructive tests that
require a curing time of 28 days. In this sense, the application of a fuzzy model has already reported favorable results for the predic-
tion of other variables related to the dosage of cementitious mortars [24]. The results of this current work also show that the applica-
tion of this model is very useful in this new problem.

The following section (section 2) presents a brief description of the theoretical foundations of Fuzzy Logic and Fuzzy Rule-Based
Systems (FRBSs),which are the basis of the predictive system designed in this work. Our research work comprises two distinct phases.
First, an experimental phase was developed in the laboratory, where basaltic mortars with three different dosages and different cur-
ing periods were manufactured in a controlled manner. In these experiments interest is focused on measuring the electrical resistivity
of each sample. Subsequently, 28 days after its manufacture, the mechanical compressive strength is measured. All the data collected
in these experiments are analysed in depth to study the relationship between the electric resistivity and the compressive strength. In
the second phase, a fuzzy system is designed and adjusted to model this relationship, and is evaluated with different validation tests.
The methodology followed is detailed in section 3 (Material and Methods). Section 4 (Results and Discussion) first shows the results
obtained in the laboratory, as well as the complete analysis performed on these data to estimate the relationship between electrical re-
sistivity and compressive strength. This analysis will be the basis of the designed fuzzy system, as will be explained in the second part
of this section. Finally, at the end of section 4, the results of the different validation studies performed will be presented and dis-
cussed. The article ends with the conclusions and future research lines (section 5).

2. Fuzzy logic and Fuzzy Rule-Based Systems
The Theory of Fuzzy Sets, introduced by Zadeh [25], is an extension of classical logic. In a classical set, the value 1 or 0 is assigned

to each element to indicate whether it belongs to that set, but in the context of Fuzzy Logic, an element can belong to several sets at
once, with varying degrees of membership. Mathematically, this is achieved by assigning a membership function to each fuzzy set
that returns a value between 0 and 1, indicating the element's degree of membership in a given fuzzy set. By considering an element's
membership in several sets simultaneously, we can model the imprecision that exists in human reasoning. As a result, Fuzzy Set The-
ory is more suitable than classical logic to represent human knowledge, since it allows phenomena and observations to have more
than two logical states.

The first step in modelling a system with fuzzy logic is to define the system's input and output variables as linguistic variables. Lin-
guistic variables (for example, Resistance) are variables whose possible values can be represented by linguistic terms (for example, High,
Somewhat High, Medium, Somewhat Low, and Low), and each linguistic term has a fuzzy set associated with it. This step is very impor-
tant since it allows converting the semantic concept used in human reasoning (the linguistic label) to a mathematical function that is
used to represent the fuzzy set. This process is shown graphically in Fig. 1.

The second step consists of relating the system's input and output variables to each other with fuzzy rules of the “if-then” type: If x
is A, then y is B, where A and B are linguistic labels for the respective linguistic variables. The term “x is A” is called the antecedent,
while the term “y is B” is called the consequent [26]. Fig. 2 shows a graphical example with an if-then rule. The rule relates the lin-
guistic labels of two input variables (A and B) to a linguistic label for one output variable (C). The membership functions are shown
graphically in red for the input variables and in blue for the output variable. Using fuzzy rules, we can model the knowledge of an ex-
pert in the field: the degree to which an output variable is modified depending on the input variables that affect it.

The third step involves fuzzy inference,which yields the conclusions from a set of fuzzy if-then rules, and known real facts. This re-
lies on fuzzy reasoning, also known as approximate reasoning. In this work, fuzzy inference is carried out as explained graphically in
Fig. 3. For each rule of the fuzzy system, each antecedent is analysed, and the intersection between the fuzzy sets of the antecedent of
the rule (in red) and the fact (in green) is calculated. The minimum value is chosen, and this value is used to activate the proportional
part of the fuzzy set that represents the consequent. Once the activated parts of each rule's consequents are obtained, the output of the
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Fig. 1. Definition of the “resistance” linguistic variable and its linguistic labels (low, somewhat low, medium, somewhat high and high) expressed as fuzzy sets with a
trapezoidal shape.

Fig. 2. Example of a fuzzy rule with two input variables and one output variable: if input X is A1 and input Y is B1, then output Z is C1.

system is calculated as the union of all these activated parts (final fuzzy set C′ in Fig. 3). This type of inference, proposed by Mamdani
[27], is widely used in the literature.

The resulting set C′ is a fuzzy set. In the last step of the process, the numerical value that best represents the resulting fuzzy set (de-
fuzzification process), which will be the system's output, has to be extracted. In this paper, we use the centroid of the area of the out-
put fuzzy set.

In this work, a Fuzzy Rule-Based Systems (FRBS) capable of predicting the 28-day compressive strength of a mortar from the mea-
sured value of electrical resistivity at the first hardening age (7 days)was designed. Based on the knowledge extracted from the exper-
iments carried out with mortars in the laboratory, the input and output variables involved in the decision-making process (linguistic
variables with their corresponding linguistic labels) have been identified, the fuzzy sets and the mathematical functions that represent
them have been properly defined, and the rules that model the relationship between the variables have been extracted.

3. Materials and methods
3.1. Materials

The materials used in this research correspond to cement mortars manufactured in situ for the execution of coatings. The cement
used was type IV, pozzolanic cement with the addition of natural pozzolan (P),with a strength of 32.5 N. Its designation, according to
UNE 80303–2 [28], is CEM IV/A (P) 32.5 N. The sand used comes from a local quarry and the petrographic analysis carried out ac-
cording to UNE-EN 12407 [29] classifies it as basalt and trachybasalt sand [30].

3.2. Determination of compressive strength and electric resistivity
Cylindrical test tubes 300 × 150 mm in height and diameter, and prismatic test tubes 40 × 40 × 160 mm in width, height and

length respectively, were made with three types of mortars of different recipes. The mortar recipes used according to the ce-
ment:sand:water ratio are as follows: dosage 1 (1:5:1.25), dosage 2 (1:4:1.25) and dosage 3 (1:3:1.25).

These test-tubes were subjected to different days of curing (0, 1, 3 and 7 days), and to the test for the determination of electrical re-
sistivity [31] at different times (1, 2–3, 7 days). Finally, the test-tubes were broken at 28 days of age, in accordance with the standard-
ised test for cylindrical test-tubes [32] and prismatic test-tubes [33].

The results of the experiments carried out on the cylindrical test-tubes have been used for the analysis of the behavioural factors of
the mortar, and for the subsequent design of the fuzzy prediction system proposed in this work. The results of the prismatic test-tubes
have been used to validate the designed intelligent system, as independent tests.
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Fig. 3. Fuzzy system with two rules, each with two antecedents and one consequent. It shows the use of Mamdani's fuzzy implicator (minimum) and the max-min com-
positional operator to carry out the inference.

3.3. Fuzzy Rule-Based Systems (FRBS) design methodology
The proposed system, based on fuzzy rules, is appropriate for modelling the problem mainly due to two aspects: 1) the fuzzy na-

ture of the system allows us to handle the diversification of the input variables that influence the behaviour of the mortars, and 2) the
construction of these mortars and their quality depend to a large extent on human interpretations. The fuzzy system allows working
with "approximate" definitions and evaluations, close to those used in human reasoning.

In order to design this system, a study was carried out with mortars manufactured with different dosages and degrees of hydration.
Based on the electrical resistivity and mechanical strength data at different ages, the design of a predictive system with fuzzy logic is
proposed with the aim of predicting the value of the compressive strength of the mortar at the age of 28 days based on the electrical
resistivity measurement obtained within the first seven days of its manufacture.

The designed system is validated with data obtained from the laboratory and with data from other mixtures. This tool could be
used by professionals in the sector to predict the evolution of mortars during their manufacture, quickly and nondestructively.

Two phases can be distinguished in the methodology followed in this work. The first phase, carried out in the laboratory, consisted
of the design and development of a series of experiments and tests with different mixtures of cement and sand mortars manufactured
in the Canary Islands. The objective of these experiments was to verify the existence of a direct relationship between the amount of ce-
ment in the dosages, the age of curing, and the measurements of electrical resistivity in the first seven days and the mechanical com-
pressive strengths at 28 days.

After this objective was achieved, the information collected in the laboratory was used during the second phase. The experimental
data from the laboratory, that show the relationship between the mortar manufacturing variables and its mechanical properties, have
been used to constitute the knowledge base of the Fuzzy Rule-Based System (FRBS) and to build the rule base. Fig. 4 shows a summary
of the methodology followed.
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Fig. 4. Schematic view of the methodology followed in this work.

4. Results and discussion
4.1. Compressive strength and electric resistivity experimental results

Table 1 shows the experimental results obtained (according to the dosages, the type of test-tube and the days of curing) for the
values of electrical resistivity measured at different instants and the value of mechanical strength to compression measured at the
age of 28 days.

One of the objectives of this work is to analyse in depth the behaviour of the mortar, in order to determine the variables and para-
meters that influence its mechanical compressive strength at 28 days. To this end, we focused especially on the study of the experi-
mental results obtained with the cylindrical test tubes (shown in the lower rows of each dosage in Table 1), which are those that have
been considered for the subsequent design of the proposed fuzzy system.

In the cylindrical test tubes the compressive strengths at 28 days of age reach values between approximately 10.90 N/mm2 and
24.65 N/mm2. The amount of cement present in the dosage of each mortar is directly related to the increase in the mechanical
strength of the mortar, together with the degree of curing applied. It can be observed that mortars cured at seven days improve their
strengths compared to uncured mortars by up to 43%. The increase in the strength value of the longer cured mortars is due to the pres-
ence of water throughout this time. The hydration of the mortar components is more complete in these cases, as the water necessary
for hydration does not evaporate due to the heat generated by the exothermic reactions that occur during the setting and hardening of
the mortar.

In this work, electrical resistivity measurements were carried out at 1, 2–3 and 7 days after their manufacture (which we will call
"INITIAL", "MIDDLE" and "FINAL" measurement instants, respectively) on each of the dosages manufactured in the laboratory
(dosages 1, 2 and 3, which we will call "POOR", "NORMAL" and "IMPROVED" dosages, respectively).

The measurements made at the INITIAL instant (1 day) reflect low resistivity values, in the range of 1.00–1.50 kΩcm for all
dosages. These electrical resistivity values vary for the following measurement instants (MIDDLE and FINAL), independently for each
dosage, but increase in value in all cases. This is because in the INITIAL instant the mortars retain a large part of the mixing water. At
that moment, the exothermic reactions of the components of the dosage (cement-sand-water) have not been completed, and there-
fore,water is conserved in the solid mass of each test-tube. After 48–72 h, the hydration phase and at least 80% of the hardening have
been completed, so the water present in the solid mass depends on the curing carried out on it. Proof of this is that in the MIDDLE
measurement instant (2–3 days) a slight increase in the measured values of electrical resistivity is observed, but it is in the FINAL
measurement instant (7 days) when the value obtained is maximum.

Analysing the results according to the curing time, the highest electrical resistivity measurements correspond to the test-tubes sub-
jected to fewer days of curing. Conversely, the lowest electrical resistivity results are obtained in the test-tubes that have undergone
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Table 1
Experimental results: Electrical Resistivity and Mechanical Compressive Strength.

Dosage Test-tube Curing (Days) Electrical Resistivity (KΩcm) Mechanical Compressive Strength at 28 days (N/mm2)

Measurement instant (Days)

1 3 7

1 Prismatic 0 1.40 2.80 8.10 11.37
1 1.10 2.00 6.10 12.18
3 1.10 1.60 4.10 12.45

Cylindrical 0 1.40 2.90 8.70 10.90
1 1.10 2.10 6.60 11.65
3 1.10 1.70 4.70 13.58
7 1.10 1.60 2.50 15.67

Dosage Test-tube Curing (Days) Electrical Resistivity (KΩcm) Mechanical Compressive Strength at 28 days (N/mm2)
Measurement instant (Days)
1 3 7

2 Prismatic 0 1.50 4.20 4.80 11.92
1 1.30 2.90 3.30 12.53
3 1.30 3.00 3.40 14.27
7 1.30 2.10 2.30 15.47

Cylindrical 0 1.50 4.10 4.60 13.97
1 1.30 3.00 3.50 14.52
3 1.30 3.10 3.40 14.76
7 1.30 2.20 2.30 15.15

Dosage Test-tube Curing (Days) Electrical Resistivity (KΩcm) Mechanical Compressive Strength at 28 days (N/mm2)
Measurement instant (Days)
1 2 7

3 Prismatic 0 1.20 2.00 7.50 18.55
1 1.10 1.40 6.10 23.13
3 1.20 1.40 5.80 24.33
7 1.20 1.40 2.90 26.70

Cylindrical 0 1.00 1.90 7.30 19.66
1 1.00 1.30 5.70 22.56
3 1.10 1.30 5.50 21.59
7 1.00 1.30 2.70 24.65

more days of curing. For example, in dosage 1 (POOR),with 7 days of curing, it is observed that the measured values are 1.10 kΩcm at
the INITIAL measurement instant, 1.60 kΩcm at the MIDDLE instant and 2.50 kΩcm at the FINAL instant. All these values are lower
than those measured with less days of curing.

On the other hand, it can be observed that the mechanical strength values of each dosage increase with the days of curing,with the
highest values obtained in the mixes subjected to the maximum curing time (7 days). Therefore, an inverse correspondence relation-
ship can be established between the electrical resistivity values and mechanical strength values. Fig. 5 shows that the electrical resis-

Fig. 5. Electrical resistivity of each dosage with 7 days of curing and delimitation of the CONDUCTIVE REGION (red zone).
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tivity values of the three dosages cured for 7 days represent a region of minimum electrical resistivity, which we call the "CONDUC-
TIVE REGION".

It can be observed that the values of mechanical compressive strengths measured in mortars with 1 and 3 days of curing represent
a range of intermediate values. These values are higher than those obtained in mixtures subjected to 0 days of curing, and lower than
those obtained in mixes subjected to 7 days of curing. For example, for the NORMAL dosage (dosage 2), the values are lower than
1.30 kΩcm at the INITIAL measurement instant, 3.10 kΩcm at the MIDDLE instant and 3.50 kΩcm at the FINAL instant. According to
the data, a relationship can be established between the electrical resistivity values and the mechanical strength values, so intermedi-
ate electrical resistivity values correspond to the intermediate values of mechanical strength to compression. With these data corre-
sponding to 1 and 3 days of curing, we can identify an "INTERMEDIATE REGION", as shown in Fig. 6.

The electrical resistivity values of the test-tubes that have not been subjected to any curing (0 days of curing) are the maximum
values obtained. For example, for dosage 3 (IMPROVED) these values are 1.00 kΩcm at the INITIAL measurement instant, 1.90 kΩcm
at the MIDDLE instant and 7.30 kΩcm at the FINAL instant. As previously done,we establish a relationship between the values of elec-
trical resistivity and mechanical strength according to the data obtained. In this case, it is observed that for these maximum electrical
resistivity values, the measured values of mechanical strengths are minimal,which delimits a new region, called "ADVERSE REGION",
as shown in Fig. 7.

The measured values of the compressive mechanical strengths are inversely related to the measured values of electrical resistivity
at all dosages (POOR, NORMAL and IMPROVED). According to the observed distribution, the highest mechanical strength values
("HIGH MECHANICAL STRENGTH") are presented by those mortars whose electrical resistivity values are in the region identified as
CONDUCTIVE REGION.Mortars with electrical resistivity values within the region identified as INTERMEDIATE REGION show inter-
mediate values of mechanical strength ("MODERATE MECHANICAL STRENGTH"). Finally, mortar mixtures with electrical resistivity
values in the region identified as ADVERSE REGION reach the lowest values of mechanical strength ("LOW MECHANICAL
STRENGTH").

4.2. Design of the Fuzzy Rule-Based Systems (FRBS)
The general design of an FRBS involves the following tasks.

1. Identify the variables of the system to be modelled. Define these variables as linguistic variables and assign them the necessary
linguistic labels. As these labels are represented by fuzzy sets, it is necessary to define the form and situation of these fuzzy sets in
the universe of discourse.

2. Construct the rule base: relate input and output variables by means of if-then rules.
3. Build the fuzzy inference system.

Fig. 6. Electrical resistivity of each dosage with 1–3 days of curing and delimitation of the INTERMEDIATE REGION (blue zone).
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Fig. 7. Electrical resistivity of each dosage with 0 days of curing and delimitation of the ADVERSE REGION (green zone).

In many cases, these tasks are performed in collaboration with a domain expert, in order to properly translate the expert knowl-
edge into variables and rules. Defining the variables, the labels, what the fuzzy sets should look like, their shape, etc., is not a trivial
task. In this work, the knowledge necessary to correctly choose the variables and labels and to adjust the rule base is extracted from
the data obtained in the mortar tests carried out in the laboratory.

First, the relevant variables that determine the behaviour of the mortar are selected, defined as linguistic variables and assigned
linguistic labels that represent the problem to be modelled. In our case, the input linguistic variables are "Dosage", "Electrical resistiv-
ity" and "Measuring instant", and the output variable is "Mechanical strength". The labels assigned to each variable are shown in Table
2. For example, for the variable "Dosage", the labels considered are "Poor", "Normal" and "Improved" corresponding to cement-sand ra-
tios of the mortars of 1:5, 1:4 and 1:3, respectively.

Once the variables and their labels have been identified, it is necessary to assign fuzzy sets to them. Gaussian membership func-
tions have been chosen for all the fuzzy sets because the smooth form of this function allows to better represent the gradual transition
between labels. The ranges where the membership functions of each label should be placed are taken from the experimental results
obtained in the laboratory.

Table 2
Input and output linguistic variables and linguistic labels. Ranges assigned.

Linguistic variables Linguistic labels Distribution Normalised range [0–1]

INPUTS Dosage Poor 1:5 0.00–0.33
Normal 1:4 0.33–0.66
Improved 1:3 0.66–1.00

Electrical resistivity Conductive 1.00–1.39 0.00–0.05
Intermediate 1.40–2.89 0.05–0.25
Adverse 2.90–8.70 0.25–1.00

Measurement instant Initial From 0 to 1 day 0.00–0.14
Middle From 2 to 3 days 0.14–0.43
Final From 4 to 7 days 0.43–1.00

OUTPUT Mechanical strength Low 10.90–14.00 0.00–0.23
Moderate 14.10–19.66 0.23–0.64
High 19.67–24.65 0.64–1.00
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The universe of discourse of each input variable has been normalised to the range [0,1]. For example, for the variable "Mechanical
strength", the universe of discourse is the range of values of the mechanical compressive strengths obtained, from 10.90 N/mm2 to
24.65 N/mm2. Following the distribution column in Table 2, we will assign the first section of mechanical strengths labelled "Low" to
the values between 10.90 and 14.00 N/mm2. The range of this first label corresponds to approximately 23% of the total universe of
discourse, so that within the universe of discourse [0.1], the result is [0.00–0.23]. For the second label of this variable, label "Moder-
ate", the operation is the same and the range corresponds to approximately 41% of the total universe of discourse, resulting in a range
of [0.23–0.64]. Finally, for the label "High", the range corresponds to 36% of the total universe, resulting in a remaining range of
[0.64–1.00].

The FRBS rule base has been constructed by analysing the experimental data obtained in the laboratory reflecting the behaviour of
the manufactured mortars. In this work, 15 rules have been designed, as shown in Table 3. The first rule is interpreted as follows: IF
"Dosage" is "Poor", "Electrical resistivity" is "Intermediate" and "Measuring instant" is "Final" THEN "Mechanical strength" is "Moder-
ate". The other rules are interpreted similarly.

4.3. Evaluation of the Fuzzy Rule-Based Systems (FRBS)
Two independent evaluations of the fuzzy system have been performed. The first evaluation checks that the output of the fuzzy

system corresponds to the behaviour observed in the experiments with the cylindrical test-tubes,which are the experiments whose re-
sults have been used to adjust it. In this first validation, the aim is to confirm the correct design of the system. Although all possible
combinations of inputs have been tested, only the four most relevant tests are presented here. In a second validation, the data from
the prismatic test-tubes are introduced into the fuzzy system, and its output is analysed. The aim is to study its performance when pro-
cessing data other than those used in its design. This section will show four of these tests.

4.3.1. First validation
Table 4 presents four validation tests using data corresponding to the experiments performed on the cylindrical test-tubes. The

measurements of the input variables ("Experimental data") are introduced into the system previously normalised ("Normalised in-
put"), according to the ranges of the corresponding linguistic labels ("Input and output labels"). It is verified that the numerical out-
put provided by the FRBS corresponds to the range of the expected output label in all cases (mechanical strength value measured in
the laboratory experiments), so it can be concluded that the FRBS is well designed.

For example, in validation test 1, a mortar type 1:5:1.25, with 7 days of curing, has an electrical resistivity value of 2.5 kΩcm. Its
mechanical compressive strength at 28 days yielded 15.67 N/mm2. The FRBS input values are as follows: for the variable "Dosage" the
label "Poor", for the variable "Electrical Resistivity", the label "Intermediate"; and for the variable "Measuring instant", the label "Fi-
nal". The expected output would be a "Moderate" "Mechanical Resistivity", according to the behaviour collected in the rule base. The
input values are normalised according to the ranges defined in the linguistic labels, and an output of 0.485 is obtained, a numerical
value corresponding to the range of the "Moderate" label, coinciding with the real output of the experiment. As seen in the graphical
representation of the behaviour of the designed FRBS (Fig. 8), the output value is within the range proposed for the "Moderate" label,
and the most activated rule is number 1.

4.3.2. Second validation
Table 5 presents four validation tests using data corresponding to tests performed on prismatic tet-tubes (data not used in the sys-

tem design). The measurements of the input variables ("Experimental data") are introduced into the system previously normalised
("Normalised input"), according to the ranges of the corresponding linguistic labels ("Input and output labels"). It is verified that the

Table 3
Set of fuzzy rules of the designed system.

Rule INPUTS OUTPUT

ID Dosage Electrical resistivity Measurement instant Mechanical strength

1 Poor Intermediate Final Moderate
2 Poor Adverse Final Low
3 Poor Intermediate Middle Moderate
4 Poor Adverse Middle Low
5 Normal Intermediate Final Moderate
6 Normal Adverse Final Low
7 Normal Intermediate Middle Moderate
8 Normal Adverse Middle Low
9 Normal Conductive Initial Moderate
10 Normal Intermediate Initial Low
11 Improved Intermediate Final High
12 Improved Adverse Final Moderate
13 Improved Conductive Middle High
14 Improved Intermediate Middle Moderate
15 Improved Conductive Initial High
Finally, a fuzzy inference system is selected. In this work we have used the Mamdani inference system explained in section 2 [27]. The tool used for the design and con-
struction of the system was the MATLAB Fuzzy Logic library [34].
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Table 4
Examples of tests performed in the first validation of the FRBS.

Validation test 1 Dosage ratio Electrical resistivity (KΩcm) Measurement instant (day) Mechanical strength at 28 days (N/mm2)

Experimental data 1:5:1.25 2.5 7 15.67
Input and output labels Poor

0.00–0.33
Intermediate
0.05–0.25

Final
0.43–1.00

Moderate
0.23–0.64

Normalised input 0.14 0.16 0.705
FRBS output Moderate

0,486
Correspondence between expected output and obtained FRBS output: YES
Validation test 2 Dosage ratio Electrical resistivity (KΩcm) Measurement instant (day) Mechanical strength at 28 days (N/mm2)
Experimental data 1:5:1.25 6.6 7 11.65
Input and output labels Poor

0.00–0.33
Adverse
0.25–1.00

Final
0.43–1.00

Low
0.00–0.23

Normalised input 0.077 0.465 0.604
FRBS output Low

0.178
Correspondence between expected output and obtained FRBS output: YES
Validation test 3 Dosage ratio Electrical resistivity (KΩcm) Measurement instant (day) Mechanical strength at 28 days (N/mm2)
Experimental data 1:4:1.25 1.5 1 13.97
Input and output labels Normal

0.33–0,66
Intermediate
0.05–0.25

Initial
0.00–0,14

Low
0.00–0.23

Normalised input 0.455 0.199 0.045
FRBS output Low

0.207
Correspondence between expected output and obtained FRBS output: YES
Validation test 4 Dosage ratio Electrical resistivity (KΩcm) Measurement instant (day) Mechanical strength at 28 days (N/mm2)
Experimental data 1:3:1.25 2.7 7 24.65
Input and output labels Improved

0.66–1.00
Intermediate
0.05–0.25

Final
0.43–1.00

High
0.64–1.00

Normalised input 0.832 0.162 0.731
FRBS output High

0.695
Correspondence between expected output and obtained FRBS output: YES

Fig. 8. Behaviour of the proposed FRBS in validation test 1 of the first evaluation.

numerical output offered by the FRBS corresponds to the range of the expected output label in all cases (mechanical strength value
measured in the laboratory experiments), so it can be concluded that the FRBS works correctly with data different from those used in
its design, and that, therefore, it is able to generalise. Fig. 9 shows the graphical representation of the behaviour of the designed
FRBS for validation test 1 of this second evaluation. It can be seen that the output value is within the range proposed for the "Moder-
ate" label, and that the most activated rule is number 15.
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Table 5
Examples of tests performed in the second validation of the FRBS.

Validation test 1 Dosage ratio Electrical resistivity (KΩcm) Measurement instant (day) Mechanical strength at 28 days (N/mm2)

Experimental data 1:3:1.25 1.10 1 23.13
Input and output labels Improved

0.66–1.00
Conductive
0.00–0.05

Initial
0.00–014

High
0.64–100

Normalised input 0.832 0.0399 0.13
FRBS output High

0.663
Correspondence between expected output and obtained FRBS output: YES
Validation test 2 Dosage ratio Electrical resistivity (KΩcm) Measurement instant (day) Mechanical strength at 28 days (N/mm2)
Experimental data 1:4:1.25 3.00 3 14.27
Input and output labels Normal

0.33–0.66
Adverse
0.25–1.00

Initial
0.14–0.43

Moderate
0.23–0.64

Normalised input 0.407 0.396 0.386
FRBS output Moderate

0,264
Correspondence between expected output and obtained FRBS output: YES
Validation test 3 Dosage ratio Electrical resistivity (KΩcm) Measurement instant (day) Mechanical strength at 28 days (N/mm2)
Experimental data 1:4:1.25 3.30 7 12.53
Input and output labels Normal

0.33–0.66
Adverse
0.25–1.00

Final
0.43–1.00

Low
0.00–0.23

Normalised input 0.529 0.428 0.513
FRBS output Low

0.213
Correspondence between expected output and obtained FRBS output: YES
Validation test 4 Dosage ratio Electrical resistivity (KΩcm) Measurement instant (day) Mechanical strength at 28 days (N/mm2)
Experimental data 1:5:1.25 4.10 7 12.45
Input and output labels Poor

0.00–0.33
Adverse
0.25–1.00

Final
0.43–1.00

Low
0.00–0.23

Normalised input 0.21 0.566 0.673
FRBS output Low

0.162
Correspondence between expected output and obtained FRBS output: YES

Fig. 9. Behaviour of the proposed FRBS in validation test 1 of the second evaluation.

5. Conclusions
In this work, several laboratory experiments were carried out to measure the electrical resistivity of mortars manufactured with

different degrees of hydration. The objective of this empirical study is to adequately evaluate the relationship between the electrical
resistivity and the mechanical strength offered by the mortar at 28 days after its manufacture. With this information, an intelligent
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system based on fuzzy rules is subsequently designed, capable of predicting the mechanical strength at 28 days of a mortar by using
the measured values of electrical resistivity in the first days of hardening.

The factors that have been studied in each experiment are the amount of cement in the dosage, the days of curing, the value of the
electrical resistivity at different measurement instants, and the mechanical strength obtained after 28 days. The data from these ex-
periments show that the amount of cement present in the dosages is directly proportional to the mechanical compressive strength
measured at 28 days. It has also been observed that the longer the curing process of the mortars, the greater the final mechanical
strength obtained, due to better hydration in the initial phase, and consequently, a complete reaction between the components of the
mortar.

The proposed fuzzy logic systemmodels the complex relationship between the input variables,which are "dosage ratio", "electrical
resistivity", and "measurement instant", and the output variable,which is "mechanical strength at 28 days".With this fuzzy system, the
user could estimate the compressive strength at 28 days of a mortar without having to wait that time to measure it. The user could es-
timate the compressive strength simply by entering into the system the amount of cement used in the manufacture of the mortar, the
electrical resistivity value that has been measured, and the number of days that have elapsed between the manufacture of the mortar
and the moment in which this measurement has been carried out.We believe that this work provides, therefore, an interesting tool for
professionals in the sector, which can help in the control of mortars made in situ, by estimating their mechanical strength value with-
out the need to carry out preliminary disposable tests.

The proposed system, based on fuzzy rules, is appropriate to model the problem mainly due to three aspects.
1. The parameters of the approached problem can be represented by fuzzy sets. The fuzzy nature of the system allows us to handle
the diversification of the input variables that influence the behavior of the mortars.

2. The quantities used in the preparation of the mortars and the quality of the resulting mortars depend to a great extent on human
interpretations. The FRBS allows working with “approximate” definitions and evaluations, close to those used in human reasoning.

3. The available information, obtained through laboratory experiments, allows us to adjust the rules in an efficient way.
The FRBS has been validated by comparing the calculated outputs of the system with real data from new laboratory tests. The sys-

tem has shown that it is capable of outputting the mechanical strength of the mortar even in situations not considered during the de-
sign process.

In future research work, new laboratory tests will be developed with different mortar dosages and other types of cement and sand
to determine other behavior factors that allow improving the proposed fuzzy system. Likewise, it is planned to implement a comfort-
able interface for the management of the fuzzy system, such as an application in handheld devices,which facilitates the use of the sys-
tem for professionals in the sector.
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