
Programming natural interfaces through the
combination of smart phone sensors
Javier Hernández-Aceituno

Dpto. Ingenierı́a Informática y de Sistemas
Universidad de La Laguna

San Cristóbal de La Laguna, Spain
jhernaac@ull.edu.es

Isabel Sánchez-Berriel
Dpto. Ingenierı́a Informática y de Sistemas

Universidad de La Laguna
San Cristóbal de La Laguna, Spain

isanchez@ull.edu.es

Abstract—One of the most striking aspects of learning how to
program smart phone applications is the possibility of producing
interfaces based on motion and basic human physical skills,
instead of bing limited to the usage of keyboards and mice. The
present work describes a series of practical exercises, designed to
provide students with the required skills to access and process the
information generated by smart phone sensors, and to combine
them to create natural interfaces.

Index Terms—Intelligent interfaces, natural interfaces, smart
phones, programming, sensors.

I. INTRODUCTION

One of the main objectives of the design of computer
application, especially regarding those destined to operate
predominantly under mobile platforms such as tablets or smart
phones, is the usage of interfaces that are not limited to
conventional user interaction methods, such as keyboards or
computer mice.

A natural interface is that which allows the user to interact
with a system or application through gestures, motions and
basic human skills, such as gaze and speech, in a way that
feels simple and comfortable o the user, without requiring any
training. This kind of interfaces has been broadly studied and
applied o several research fields [1]–[4].

Students’ interest in developing this kind of interfaces is
motivated by the large amount of sensors which are available
in mobile devices, such as gyroscopes, accelerometers, global
positioning, cameras and microphones, and the simplicity of
modern programming languages regarding their integration in
any kind of application.

It is therefore imperative to teach university students of
Computer Science degrees how to use the development tools
which are available to them and which allow them to create
computer applications with natural interfaces.

There currently exists a trend that favors he usage of natural
interfaces as teaching support, especially in cases where tradi-
tional methods are unavailable or ineffective. The Telematics
Faculty of Colima University (Mexico) has developed gesture
and tactile interfaces for special education and he physical
activation of elementary school students [5]. The University
of Zaragoza has also developed a visual detection system
for early childhood education, based on shape and color
recognition trough a camera [6]. The University of La Coruña

performed an analysis of possible designs in augmented reality
as a learning interface [7].

The present work is based on the quarterly subject “Intel-
ligent Interfaces”, belonging to the Computation itinerary of
the Computer Science degree of University of La Laguna. This
subject teaches the basics and technologies of the analysis and
design of interactive experiences, virtual reality, augmented
reality and natural interfaces, organized in the following
epigraphs:

1) Basics and technology of the analysis and design of
interactive experiences

2) Virtual reality and augmented reality
3) Natural interfaces
4) Affective and emotional interaction

The skills with which it provides students are the following:

• General skills
CG4 Ability to define, evaluate and choose hardware and

software platforms for the development and execu-
tion of systems, services and computer applications.

CG6 Ability to conceive and develop computer systems
and centralized or distributed architectures integrat-
ing hardware, software and networks.

CG9 Ability to solve problems with initiative, decisive-
ness, autonomy and creativity. Ability to know how
to communicate and transmit knowledge and skills
of the Computer Engineering Technician profession.

• Itinerary specific skills
C44 Ability to develop and evaluate interactive systems

and complex information presentations, and their
application in solving design problems in person–
computer interaction.

• Transversal skills
T7 Ability of effective communication (expression and

comprehension), both oral and written, with special
emphasis in technical documentation drafting.

T10 Ability to quickly integrate and efficiently work in
unidisciplinary teams and collaborate in multidisci-
plinary environments.

T21 Ability of critical, logical and mathematical reason-
ing.



T23 Abstraction skills: ability to create and use models
that represent real situations.

Being eminently practical, the valuation of the “Intelligent
Interfaces” subject is based on weekly individual lab projects
and the group development of two prototypes, one based on
virtual reality and the other in one of he remaining techniques
that are explained during the term.

We must point out that the “Intelligent Interfaces” subject
does not deal with the physical functioning of mobile device
sensors, but only with their usage in programming applications
with natural interfaces. However, the University of La Laguna
offers other subjects within its Computer Engineering Degree,
such as Computational Robotics [8], through which students
may complement their learning with detailed hardware-level
explanations of the inner functioning of sensory devices.

A. Evaluation

The importance of practical exercises in the subject is
reflected on the strategies followed for its evaluation. During
each practical lab session involves an exercise that requires the
development of a minimally functional application, in which a
specific element is required to be used. This way, all exercises
can be grouped within one of the following categories:

• Learning 3D graphics programming through Unity
• Development of applications using sensors:

– Development of VR applications
– Development of AR applications
– Development of applications involving sensor-based

interaction
Every week, the tasks to be solved by students are graded,

making up to 50% of the final grade of the subject. Further-
more, all the learned techniques and technologies must be
applied to the development of a VR application prototype.
The theme of the prototype is free for students to decide and,
although generally students choose to develop a videogame,
they have sometimes chosen immersive simulations, such as
“space mining simulation using reactive agents” (2017–2018
term). They are also asked for the application to integrate some
of the additional sensors, such as the accelerometers or the
microphone, as part of the user interaction aspect.

All these works are produced by teams of at most three peo-
ple, so there is a special emphasis on the usage of collaborative
project development tools. This aspect is especially important
in the development of skill T10, which is considered basic in
the daily work of any Computer Engineer. On the other hand,
from the point of view of the teacher, grading becomes easier
as it allows them to trace the input of each member of the
group.

While there are no restrictions regarding which tool to use,
the usage of Git and the Github platform, along with the
collaborative development tool Collaborate provided by Unity,
is recommended. Regardless of which tool each team choses
to use for their collaborative work, all prototypes must be
delivered through a link to Github, with the whole project
code and a document which includes:

Fig. 1. Google Cardboard frame

• Accomplished milestones
• Problems and difficulties faced during the project, both

solved and simplified when unfeasible
• Record of team decisions and project tracking

The grade of the prototype development makes up to 20% the
final grade of the subject; the presentation of the project makes
up to another 20%.

II. METHODS

The practical lessons of this subject are based on the
development of Unity3D applications [9], using C# language,
generally for their execution on smart phones with an Android
operative system. After an introduction to the implementation
of Unity3D code, students are weekly introduced to different
tools to access and process the information provided by
smart phone sensors, and their combination to create natural
interfaces.

Generally students are not imposed a strict description of
what application they must program very week. Instead, they
are given freedom to use the acquired information creatively,
producing customized applications which adhere only to a
small amount of requisites, related to the usage of the different
sensors.

A. Virtual reality

For their first assignment, students become familiarized with
the Google Cardboard Virtual Reality package [10]. Using
the accelerometers of a smart phone mounted on a cardboard
frame, it is possible to create a set of very low-cost virtual
reality goggles, which are really easy to program (Fig. 1).

The integration of Google Cardboard functionalities within
a Unity application is relatively simple and is explained in
detail in the web sites of both projects. Generally, it suffices to
include the GoogleVRForUnity *.unitypackage package in the
resource list of the application, which produces a stereoscopic
view aligned to the relative orientation of the mobile device
in which it runs (Fig. 2).

The main difficulty when using this resources derives from
the constant changes in Google’s virtual reality application



Fig. 2. Stereoscopic view

development framework. Since this technology began being
used in practical teaching–learning tasks in the “Intelligent
Interfaces” subject, during the 2015–2016 term, there have
been variations in the development API. During the 2015–2016
term, the Google Cardboard package was available for Unity;
during the 2016–2017 term, Google launched DayDream, their
first attempt to produce a mobile device which would improve
the VR experience.

During the 2017–2018 term, Google updated their VR
framework, unifying both devices, Cardboard y Daydream,
within the same Unity package. In both terms, the change
happened just one month before the period in which the
subject is taught, which made all the teaching material of
previous terms obsolete. Furthermore, counting exclusively on
Google documentation creates an additional difficulty, since
the developer community does not have the time to produce
other resources. There is however the advantage of the great
productivity the usage of the Unity scene editor allows for,
since it gives students the chance to obtain playable, highly
immersive, low-cost VR application prototypes.

This kind of applications, which is generally highly appeal-
ing to users, entails the risk of lessening the experience of
the user due to the discomfort caused by the effect known
as simulator drowsiness. For this reason, one of the labo-
ratory exercises involves studying and practicing the design
recommendations offered by Google Team, regarding VR
applications.

On one hand, considerations that must be taken into account
in order to avoid drowsiness are provided, all of which are
expected to reduce the discrepancy between the real perception
of the user and the events happening within the virtual world.
On the other hand, there are guidelines to orient the user during
this new form of interaction, with which they are not yet
familiar, unlike conventional PC or mobile phone applications.
Along this line, the laboratory exercise regarding the usage of
grids and raycast-based scene object interaction is especially
important. Grids are a visual object that lets the user know
when their line of sight has focused on (selected) an element
of the scene that can be interacted with.

Fig. 3. Screen shot of application “Zombie Timer α”, which integrates the
use of the mobile device compass.

B. Position sensors

Afterwards, students learn how to manually access the
values returned by the accelerometers, the inner compass and
the global positioning system (GPS) of the device. The devel-
opment code for all these elements is held within the Input
class of the UnityEngine package, which must be imported to
the application.

The output data of the inner compass are
given by the numeric floating-point (float) attribute
Input.compass.trueHeading, which provides the orientation of
the device in respect to the geographic North Pole. Although
this value is enough for most functional applications,
the Input package also provides the orientation in
respect to the magnetic North Pole, given by attribute
Input.compass.magneticHeading, and raw geomagnetic
information, measured in microteslas, given by object
Input.compass.rawVector. In order to access all these values,
the application must initialize the localization system of the
device, by calling function Input.location.Start() (Fig. 3).

The accelerometer information of the mobile device can be
easily accessed at any moment, as a vector-type (Vector3)
object Input.acceleration. Vector3 data contain three float
attributes, labeled as x, y, z which, for accelerometers, indicate
the device acceleration in each Cartesian axis (Figs. 4 and 5).

Finally, the global positioning system of the device provides
its coordinates, as latitude, longitude and altitude values, as
attributes of object Input.location.lastData. These attributes
are only updated once function Start() of object Input.location
is called.

Function Start() has two optional arguments: the desired
precision and the minimum update distance, both measured
in meters and with a default value of 10m. The value of
attribute Input.location.status tells if the service is active (Lo-
cationServiceStatus.Running), and should be checked before
reading Input.location.lastData. Once the localization service
is done being used, it should be stopped by calling function



Fig. 4. Screen shot of application “VR Combat Arcade”, which uses the
mobile device accelerometers as control input

Fig. 5. Screen shot of application “GRESBALL”, which uses the mobile
device accelerometers as control input

Input.location.Stop().

C. Audiovisual input sensors

In the next exercise, students are taught how to access the
microphone and camera of their mobile devices through code.
Their data are processed in following exercises (Fig 6).

Unity can obtain sound from the microphone of the com-
puter or mobile device through function Start (input, loop,
duration, frequency) of class Microphone, which returns an
AudioClip object and whose parameters are:

• input: Name of the input device, given as a character
string. If empty, the default device will be used.

• duration: Maximum duration in seconds of the AudioClip
object, given as an integer (int).

• loop: Boolean value (bool) which tells if, once the maxi-
mum duration is reached, the recording should loop back
to the beginning of the AudioClip object or just stop.

• frequency: Sampling frequency, given as a float value,
which defines the quality of the produced audio.

To stop the recording, function Microphone.End (input) must
be called.

The simplest way to obtain images from the mobile phone
camera or the computer webcam is through Unity’s Web-
CamTexture class, which converts the data provided by those
devices into 2D textures. To see the recorded images, the

Fig. 6. Screen shot of application “Program for the Investigation of Pursuing
Objectives”, which integrates the usage of the microphone to interact with
characters.

WebCamTexture object must be associated to the visual texture
attribute mainTexture of a material, followed by calling the
Play() function of the object. Calling function Pause() will
pause the reproduction and function Stop() will stop it. In the
practical exercise, students were tasked with using all of these
functions, in such a way that isolated frames could be captured
and stored as still images.

D. Speech recognition

Unity offers some speech recognition tools, although for
now their usage is limited to devices equipped with the
Windows 10 operative system [11]. To use these tools, pack-
age UnityEngine.Windows.Speech must be imported. Although
this package offers several methods to recognize words and
sentences through the microphone of the device, only classes
KeywordRecognizer y DictationRecognizer were proposed in
the “Intelligent Interfaces” subject, due to their lower com-
plexity.

Class KeywordRecognizer attempts to match audio, captured
from the microphone of the computer or mobile phone, to
a given list of keywords. It is possible to keep several of
these objects active at the same time, as long as their sets
of keywords contain no common elements.

To initialize an object of this class, constructor Keywor-
dRecognizer (List) must be called, where the string array List
contains all the keywords to be matched. An object of this class
can be enabled and disabled through its functions Start() and
Stop() respectively. Students were told about the importance
of calling the Dispose() function when done using this type
of objects, in order to free their resources.

The KeywordRecognizer object detects speech once associ-
ated to a listener void function (data), where the PhraseRec-
ognizedEventArgs data parameter contains:

• the obtained phrase data.text, as a string;
• the confidence level data.confidence, as a

Windows.Speech.ConfidenceLevel enumerate, whose
values can be High, Medium, Low and Rejected;

• the duration of the phrase data.phraseDuration, as a
TimeSpan;

• the start time data.phraseStartTime, as a DateTime;



• the semantic meaning data.semanticMeanings, as a Se-
manticMeaning[]. This attribute holds no use for Keywor-
dRecognizer, but it does for other more complex speech
recognition classes, such as GrammarRecognizer

. Once the listener function is built, it is associated
to the KeywordRecognizer object using the sentence ob-
ject.OnPhraseRecognized += function.

Additionally, class DictationRecognizer tries to transcript
the audio captured from the microphone of the computer
or the mobile phone, not requiring a list of keywords. An
object of this class can also be enabled or disabled through its
Start() and Stop() functions respectively. Again, it’s important
to call function Dispose() when done using the object to
free its resources. A DictationRecognizer object expects to
be associated to four listener functions:

• void object.DictationResult (string text, Win-
dows.Speech.ConfidenceLevel confidence), called
whenever a phrase is recognized;

• void object.DictationHypothesis (string text), called
whenever the captured phrase is updated;

• void object.DictationComplete (Win-
dows.Speech.DictationCompletionCause cause), called
whenever the dictation is interrupted, where the values
of the enumerate cause parameter can be the following:

– Complete, if the dictation ended correctly;
– AudioQualityFailure, if the dictation stopped due to

bad audio quality;
– Canceled, if the dictation was canceled or the appli-

cation was paused;
– TimeoutExceeded, if the expected capture time was

exceeded;
– NetworkFailure, if the dictation was interrupted due

to a network failure;
– MicrophoneUnavailable, if the dictation was inter-

rupted because no microphone was detected;
– UnknownError, in any other case.

• void objeto.DictationError (string error, int result), called
when an error is detected during the dictation.

In all cases, the listener functions must be associated to
the corresponding attribute of the DictationRecognizer object
using the sentence object.attribute += function.

E. Augmented reality

Finally, students are tasked to train an application to rec-
ognize specific visual elements and use them in augmented
reality [12]. To do so, they must simply add the vuforia-unity-
xx-yy-zz.unitypackage development package to a Unity project
and include the ARCamera prefab object, which replaces the
main camera of the scene (MainCamera). Afterwards, students
must add a database that relates objective images, to be
captured by the camera of the device, with 3D objects to be
shown on the scene.

F. Evaluation signature

The evaluation signature of the subject is defined to take into
account each of the aspects that are important in this work:

• Models used in the scene – Scale: Simple, Geometrical,
Complex without animation, Complex with animation,
Also including scenery: terrain, skybox, ...

• Complexity of the actions of the characters – Scale:
The characters only move through the game, The char-
acters move and interact with elements of the scene,
Some character interacts in different ways with some of
the objects of the scene, All of the former and some
character interaction produces special effects, such as
particle systems.

• Variety of characters – Scale: Static objects along with
the player, Dynamic objects such as enemies, All of the
former and several types of non-static characters other
than the player, All of the former and the behaviour of
each type of character towards the player is different.

• Originality – Scale: Low, Medium, High
• Development complexity – Scale: The code is exclu-

sively based off prefabs from the asset store and the
standard asset package, Along the prefabs the student
implements update scripts over at least two objects in
the scene, All of the former and Unity component events
are implemented, an event-based GameController is im-
plemented based on events including user-defined events.

• Code quality – Scale: Low-quality undocumented code
with no logical object hierarchy, Properly documented
code, Properly documented code with a coherent collec-
tion of objects, All of the former plus whether properties
and methods should be public or private is considered and
the efficiency regarding performance in mobile phones is
taken into account.

• Immersion level – Scale: Low, Medium, High
• Interaction with Cardboard – Scale: Only head motion

interaction is considered, The magnetic button is used,
All of the former and a Gamepad or another interaction
method is used.

• VR interaction quality – Scale: Head motion is followed
at all time, Grid recommendations are followed, other
VR application recommendations are followed to avoid
discrepancies between physical perception and the virtual
world.

• Teamwork – Scale: The report only includes uncon-
nected tasks, The report shows both tasks and a work
discussion, The report shows tasks and several work
discussions.

• Individual work – Scale: The student shows a low
grasp of VR application development in their individual
answers: they mistake concepts, they cannot answer ac-
curately, they do not identify code segments; The student
shows an average grasp of VR application development
in their individual answers: they mistake advanced VR
concepts, they cannot accurately answer advanced VR
questions; The student shows a high grasp of VR appli-
cation development: they answer advanced VR questions
accurately, they correctly identify all implemented scripts.

• Other sensors – Scale: No other sensors are used, Simple
usage of microphone or accelerometer, Complex usage of



either microphone or accelerometer or simple usage of
both, Complex usage of both sensors.

III. RESULTS Y CONCLUSIONS

The practical lessons of the “Intelligent Interfaces” subject
allow students to creatively develop their own natural interface
applications, by using a combination of cell phone sensors.
These exercises introduce them to the code required to use
the device compass, accelerometers, global positioning sys-
tem, camera and microphone, in virtual or augmented reality
applications. These elements are the building blocks of several
design techniques for natural interfaces, such as speech and
image recognition, that can be used in the development of
complex adaptive applications.

The main obstacle resides in the intrinsic difficulty of
the usage of technologies that are still evolving, since their
frameworks change between terms or are yet unavailable for
several kinds of devices. However, the main advantage the
presented methodology brings is the motivation that students
feel towards the usage of these technologies, by applying
production tools to create functional prototypes in a very short
time.

At the end of the 2017/2018 term, all 37 enrolled students
were requested to share their opinion regarding the subject in
an on-line survey. Their responses are shown below:

• Which of all of the projects and exercises of this subject
do you consider to have helped your formation the most?

– Seminars/debates (0%)
– Oral project presentation (7.14%)
– Laboratory exercises (92.86%)

• What difficulties did you face when carrying out the
projects/exercises?

– Lack of information (23.08%)
– Lack of knowledge regarding which sources to use

(23.08%)
– Lack of guidance provided by the subject teachers

(7.69%)
– The work load was too high (0%)
– Amount of time given for development and delivery

(7.69%)
– Difficulty understanding the meaning of the given

tasks (23.08%)
– Teamwork difficulty (15.38%)

• Grade the following exercise concepts from the point
of view of learning how to program natural interfaces
and sensor-based applications. (1 Inadequate. 2 Hindered
learning. 3 Irrelevant. 4 Eased learning. 5 Fundamental.)

– C# language (4.14)
– Unity 3D (4.43)
– Virtual Reality on mobile phones (4.00)
– Google Cardboard Framework (3.43)
– Vuforia (3.29)
– Accelerometer (3.79)
– Compass (3.69)
– Microphone (3.93)

– Camera (4.00)
• Grade the following exercise concepts from the point of

view of motivating learning to program natural interfaces
and sensor-based applications. (1 Completely discourag-
ing. 2 Somewhat discouraging. 3 Irrelevant. 4 Motivating.
5 Completely motivating.)

– C# language (3.71)
– Unity 3D (3.86)
– Virtual Reality on mobile phones (3.86)
– Google Cardboard Framework (2.86)
– Vuforia (2.86)
– Speech recognition in Unity (3.57)

• Grade the following exercise concepts from the point of
view of acquiring new knowledge that might be useful in
the professional future. (1 No new knowledge. 2 Insuf-
ficient new knowledge. 3 Acceptable new knowledge. 4
Noticeable increase in knowledge. 5 Acquired completely
new knowledge)

– C# language (3.71)
– Unity 3D (4.14)
– Virtual Reality on mobile phones (4.00)
– Google Cardboard Framework (3.71)
– Vuforia (3.64)
– Accelerometer (3.93)
– Compass (3.93)
– Microphone (4.00)
– Camera (4.00)

• Grade the following exercise concepts regarding the diffi-
culty they entailed when programming natural interfaces
and sensor-based applications. (1 Excessive difficulty. 2
High difficulty. 3 No difficulty. 4 Eased the development.
5 Greatly eased the development)

– C# language (3.46)
– Unity 3D (3.36)
– Virtual Reality on mobile phones (3.14)
– Google Cardboard Framework (2.79)
– Compass (3.07)
– Microphone (3.07)
– Camera (3.29)
– Speech recognition in Unity (2.86)

• Write any suggestion regarding learning about natural
interfaces and sensors programming that you believe
would help improve the syllabus. (Among the suggestions
that students provided, the following stood out:)

– Reducing the theoretical load of the subject, favoring
a greater amount of practical exercises.

– Teaching Blender [13] as a modeling tool.
– Computer equipment more capable of taking the

graphical load the exercises require.
– More emphasis on the explanation of virtual reality

on mobile phones.
• Write your personal valuation of learning how to program

natural interfaces by developing a virtual reality applica-
tion for mobile phones.



– Except for very few outliers, the general opinion
regarding the subject was highly positive. Students
valued its usefulness, since it is the subject of the
degree that focuses the most on graphical tools.
The claim to have enjoyed developing games, as it
allowed them to satisfactorily observe the results of
their work.

Students provided mostly positive feedback regarding the
mainly practical approach of the “Intelligent Interfaces” sub-
ject. They appreciated learning about the C# language and
the Unity 3D platform, and felt motivated towards the chance
of creating their own virtual reality applications, although they
showed some disappointment regarding the Google Cardboard
Framework and the usage of Vuforia. A reduction in the
practical load of these elements could therefore be proposed,
in favor of an introduction to the Blender modeling tool.

REFERENCES

[1] G. Fischer and B. Reeves, “Beyond intelligent interfaces: Exploring,
analyzing, and creating success models of cooperative problem solving,”
Applied Intelligence, vol. 1, issue 4, pp. 311–332, May 1992, Kluwer
Academic Publishers

[2] A. Malizia and A. Bellucci, “The Artificiality of Natural User Inter-
faces,” Magazine Comm. ACM, vol. 55, issue 3, pp. 36–38, March 2012,
ACM, New York, NY, USA

[3] T.M. Alisi, A. Del Bimbo and A. Valli, “Natural interfaces to enhance
visitors’ experiences”, IEEE MultiMedia, Vol. 12, issue 3, pp. 80–85
Sept. 2005

[4] R. Francese, I. Passero and G. Tortora, “Wiimote and Kinect: gestural
user interfaces add a natural third dimension to HCI,” AVI ’12 Proc. Int.
Working Conf. Advanced Visual Interfaces, pp. 116–123, May 2012,
ACM New York, NY, USA

[5] P. Santana, “Interfaces Naturales de Usuario - La Experiencia de la
Universidad de Colima,” Software Guru, vol. 43.

[6] J. Marco, E. Cerezo and S. Baldassarri, “Desarrollo de interfaces
naturales para aplicaciones educativas dirigidas a niños,” VIII Congreso
Internacional de Interacción Persona Ordenador, pp. 79–82, 2007.

[7] J. Videla, A. Sanjun, S. Martnez and A. Seoane, “Diseo y usabilidad
de interfaces para entornos educativos de realidad aumentada,” Digital
Education Review, vol. 31, pp. 61–79, June 2017.

[8] R. Arnay, J. HernndezAceituno and E. Gonzlez, “Teaching kinematics
with interactive schematics and 3D models,” Computer Applications in
Engineering Education, vol. 25, pp. 420–429, 2017, Wiley Periodicals.

[9] Motor de videojuegos multiplataforma Unity3D (unity3d.com)
[10] Plataforma de realidad virtual Google Cardboard

(vr.google.com/cardboard)
[11] Paquete de reconocimiento de voz para Windows10 en Unity3D (Uni-

tyEngine.Windows.Speech)
[12] Paquete de realidad aumentada Vuforia para Unity3D (devel-

oper.vuforia.com)
[13] Programa de modelado 3D Blender (blender.org)


