SoftwareX 22 (2023) 101355

journal homepage: www.elsevier.com/locate/softx

Contents lists available at ScienceDirect

SoftwareX

Original software publication

DIGNEA: A tool to generate diverse and discriminatory instance suites

for optimisation domains

L))

Check for
updates

Alejandro Marrero **, Eduardo Segredo ?, Coromoto Le6n ?, Emma Hart"

2 Departamento de Ingenieria Informdtica y de Sistemas, Universidad de La Laguna, San Cristébal de La Laguna, Spain

b School of Computing, Edinburgh Napier University, Edinburgh, United Kingdom

ARTICLE INFO ABSTRACT

Article history:

Received 21 November 2022

Received in revised form 22 February 2023
Accepted 6 March 2023

Keywords:

Instance generation
Novelty search
Evolutionary algorithm
Optimisation
Knapsack problem

To advance research in the development of optimisation algorithms, it is crucial to have access to
large test-beds of diverse and discriminatory instances from a domain that can highlight strengths and
weaknesses of different algorithms. The DIGNEA tool enables diverse instance suites to be generated
for any domain, that are also discriminatory with respect to a set of solvers of the user choice. Written
in C++, and delivered as a repository and as a Docker image, its modular and template-based design
enables it to be easily adapted to multiple domains and types of solvers with minimal effort. This
paper exemplifies how to generate instances for the Knapsack Problem domain.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version

Permanent link to code/repository used for this code version

Code Ocean compute capsule

Legal Code License

Code versioning system used

Software code languages, tools, and services used

Compilation requirements, operating environments & dependencies
If available Link to developer documentation/manual

Support email for questions

v1.0.0
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00386
None

GPL-3.0 License

Git

C++, OpenMP, CMake, Catch2

C++20 (tested with gcc 10.3.0+), Linux; alternatively Docker.
https://dignea.github.io/

dignea@ull.edu.es

1. Metivation and significance

In any optimisation domain, it is well known that no sin-
gle solver can best solve all instances, necessitating the use of
algorithm-portfolios which collectively provide coverage of the
instance space of the problem. Therefore, this leads to the per-
instance Algorithm-Selection Problem (ASP) proposed by Rice in
1976 [1], i.e. choose the best solver from a portfolio for a given
instance. The ASP has garnered considerable attention over recent
years [2] with the raise of Machine Learning approaches to predict
either performance of a given algorithm or the label of the best
solver using large datasets of instances from the optimisation
domain. However, the process of gathering sufficient instances

* Corresponding author.
E-mail addresses: amarrerd@ull.edu.es (Alejandro Marrero),
esegredo@ull.edu.es (Eduardo Segredo), cleon@ull.edu.es (Coromoto Ledn),
e.hart@napier.ac.uk (Emma Hart).

https://doi.org/10.1016/j.s0ftx.2023.101355

that both cover the feature-space of instances and are discrimi-
natory with respect to the solvers in the portfolio is considerably
challenging.

While most of the work in the field has been focused on gen-
erating difficult instances in different domains [3-5], recent re-
search has focused on generating instances which are maximally
discriminative with respect to a portfolio of solvers proposed for
a specific domain, for instance, maximising the performance-gap
between a target and other solvers for the Bin-Packing, Travelling
Salesman Problem (TSP) and Knapsack Problem (KP) domains,
respectively [6-9]. Nevertheless, most of these approaches do
not include explicit mechanisms to generate instances that are
diverse with respect to the feature-space — they focus only on
generating instances that are diverse with respect to solver per-
formance. The work of Smith-Miles does attempts to generate
space-filling instances, i.e. in unexplored regions of the feature-
space, but only generates ten instances per run and needs to be
repeatedly run at each point in the space where an instance is

2352-7110/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2023.101355
https://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2023.101355&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00386
https://dignea.github.io/
mailto:dignea@ull.edu.es
mailto:amarrerd@ull.edu.es
mailto:esegredo@ull.edu.es
mailto:cleon@ull.edu.es
mailto:e.hart@napier.ac.uk
https://doi.org/10.1016/j.softx.2023.101355
http://creativecommons.org/licenses/by/4.0/

Alejandro Marrero, Eduardo Segredo, Coromoto Ledn et al.

required. In contrast, alternative proposals attempted to generate
instances across domains rely on instances which can be solved
by any solver in the portfolio [10], or even on a completely
random generation process [11].

Our software, which we refer to as DIGNEA, is a generalisable
C++ framework that is capable of either generating instances that
are diverse with respect to a feature-space defined by a user, or
generating instances that are diverse with respect to a perfor-
mance vector relating to a pre-defined portfolio, which implicitly
also promotes diversity in the feature-space. The term feature-
space refers to the space defined from the set of features that can
be used to define an instance in a optimisation domain. The set
of features of an instance is known as its feature-descriptor. On
the other hand, generating diverse instances with respect to the
performance vector defines the performance-space of the portfo-
lio used. The set of performance values with respect to a user
pre-defined portfolio is known as its performance-descriptor.
Unlike the feature-descriptor, the performance-descriptor of an
instance is completely dependent to the algorithms which shape
the portfolio.

A run of DIGNEA requires the specification of a target algo-
rithm belonging to the portfolio. A single run generates multiple
instances that are diverse with respect to either features or per-
formance and, at the same time, solved better by the chosen
target in comparison to any other algorithm in the portfolio.
Therefore, a user would typically run DIGNEA once for each
target-algorithm in their chosen portfolio.

DIGNEA is based on the usage of Novelty Search (NS) [12],
which refers to a type of Evolutionary Algorithm (EA) that re-
wards novelty, i.e. differences between solutions, rather than the
quality of a solution. A pure EA rewards only objective fitness,
while a pure NS rewards only novelty, and therefore, tends to
result in more exploration. In DIGNEA, as in much other work,
the two different types of fitness are combined into a single-
objective function via a weighting factor, i.e. when the weight is
1, it becomes a pure EA, while when it is 0, the approach becomes
a pure NS.

The software has been used in recent conference work [13]
where we first proposed the usage of NS to generate instances
in the KP domain for a portfolio consisting of a set of different
parameterisations of a traditional EA.

For more detail about the roles of the algorithms in the port-
folio and other components, as well as to get further information
about the experimental procedure carried out, please, refer to
previous work [13].

Finally, it is worth mentioning that the modular structure of
DIGNEA could facilitate the work of researchers to create large
datasets of instances for any domain, analyse strengths/weak-
nesses of solvers, conduct algorithm-selection or construct a port-
folio of solvers.

2. Software description

DIGNEA is written in modern C++ combining template-based
types with creational design patterns that allow users to extend
the framework to their needs.

2.1. Software architecture

Interconnections between DIGNEA types, classes and modules
are defined by inheritance, a common approach in optimisation
software [14]. AbstractSolver is the main algorithm interface
for defining new algorithms across the entire framework. More-
over, Problem is a class which collects the necessary information
to define any optimisation problem the user may want to gen-
erate instances for. It allows users to define different solution

SoftwareX 22 (2023) 101355

representations via template parameters. To solve a problem, a
solution must be defined. Solution is a template class which
represents a typical solution for an optimisation problem. It in-
cludes the variables (genotype) and the objective values (pheno-
type) of a given solution for a particular problem. Since DIGNEA
covers a range of pre-defined solution types, defining your own
custom solution type might be optional.

To improve the user experience in DIGNEA, two creational
design patterns were considered for its design: builders and facto-
ries. Builders are used to instantiate algorithms, experiments and
Evolutionary Instance Generator (EIG) configurations. At the same
time, factories allow variation operators and other components to
be created on the fly.

From the previous building blocks, EvolutionaryInstance
Generator (EIG), AbstractDomain, AbstractInstance,
as well as two NS descriptor types, NSFeatures and NSPerfor-
mance were written. EIG is the main component of DIGNEA. It
implements an NS approach to generate sets of diverse and dis-
criminatory instances for any optimisation problem. Abstract
Domain defines an instance generation domain for EIG. It basi-
cally defines a domain to generate instances for an optimisation
problem P previously defined in DIGNEA (an object of class
Problem). AbstractInstance is a solution in the Abstract
Domain domain, i.e. it represents an instance for the optimisation
problem P. It includes all the information to construct an actual
instance for optimisation problem P.

Fig. 1 shows the relationship among the main components
for instance generation in DIGNEA. For example, to instanti-
ate an object of type EIG, users must specify the following
components: an NS descriptor type, such as NSFeatures or
NSPerformance, created through factory NSFactory; a domain
to generate instances for (AbstractDomain), such as KPDomain,;
the representation of an instance (AbstractInstance), such as
KPInstance; and a portfolio of algorithms for which instances
are going to be produced (AbstractSolver), such as EA or
Simulated Annealing (class SA).

Classes AbstractDomain and AbstractInstance are com-
pletely dependent since they may include ad-hoc operations,
specific attributes and a particular representation.

Therefore, to specify a new domain in DIGNEA, users must
define at least: an optimisation problem Problem, a specific
domain AbstractDomain, and the representation of an instance
of the problem AbstractInstance.! Colour codes and different
types of lines in Fig. 1 reflect the inheritance and extension
needs in DIGNEA. Red rectangles with dotted lines represent the
base classes that must be extended for specifying new domains.
Those in green with dashed lines are the custom types for the
KP domain provided with the tool. Finally, yellow rectangles with
straight lines are the base types that users do not have to modify
necessarily.

Finally, it is worth mentioning at this point that DIGNEA is
offered as a Docker image to facilitate the user experience, as
well as to make the software portable to different platforms.? The
image contains all the dependencies and source code of DIGNEA.
In order to run the tests or examples, users only need to move
inside the bin directory and execute the files they want. There
is no need to build the software when creating a new container.
However, any modifications or additions to the framework will
require to rebuild it. Additionally, the building steps are reduced
to execute the build.sh script that can be found in the root
directory.

1 1o see the full documentation and examples of DIGNEA, check the
documentation at Github: https://dignea.github.io/.

2 The Docker image can be accessed through: https://hub.docker.com/r/
dignea/dignea.

https://dignea.github.io/
https://hub.docker.com/r/dignea/dignea
https://hub.docker.com/r/dignea/dignea

Alejandro Marrero, Eduardo Segredo, Coromoto Ledn et al.

EIG Builder

|

NSFactory

Evolutionary Instance
Generator ‘ﬁ
<< ask descriptor>>

NSFeatures. NSPerformance

_|
=

KPDomain

.1
(o

[

KPInstance

SoftwareX 22 (2023) 101355

L L

Problem

I Solution

r N
EAs D Li_J

KP heuristics SA

I L Sscreate>>

[

MutFactory

<< ask >>

- EABuilder

l |

SelFactory CXFactory

<< ask >>
<< ask >>

Uniformo

) Crossover
Selection

BinaryTournament i
ry’ UniformCrossover OTdercrossover

Fig. 1. Relationship of DIGNEA main components for instance generation. Red rectangles with dotted lines represent those classes which must be extended to specify
new domains. At the same time, green rectangles with dashed lines refer to the custom types for the KP domain. Yellow rectangles with straight lines are the base
types used in DIGNEA that users do not necessarily need to modify. (For interpretation of the references to colour in this figure legend, the reader is referred to the

web version of this article.)

2.2. Software functionalities

The principal contribution of DIGNEA is to bring researchers
a complete generalisable software to generate instances in any
optimisation domain. These instances could be then used for
instance space representation, instance characterisation via hand-
designed features, automate designed features, algorithm design
and selection or even parameter tuning evaluation for algorithms
across domains. Moreover, since the generation of a set of in-
stances involves the resolution of those instances with several
algorithms, DIGNEA could also be used as an optimisation frame-
work to separately validate the instances generated.

The software is not only extendable from the domain point
of view, but also from the portfolio and novelty search descrip-
tors. From the portfolio perspective, even though the software is
mainly conceived to use EAs, any other non-EA algorithms could
also be included. The current version of DIGNEA includes the
following components for instance generation:

e Solvers: Evolutionary Algorithms (EA objects), such as First

Improve, Generational, Steady-State and Parallel Genera-

tional [15]; a Simulated Annealing approach (SA), as well as

four well-known deterministic heuristics for the KP

(KPHeuristics).

Novelty Search descriptor types: Novelty-Search by Fea-

tures (NSFeatures) and Novelty-Search by Portfolio Perfor-

mance (NSPerformance).

Domains: Knapsack

KPInstance and KP).

e Builders and Factories: EIGBuilder, a builder of EIG ob-
jects to generate instances; EABuilder, a builder of EA con-
figurations; NSFactory, an NS descriptor factory;
CXFactory, a crossover operator factory; MutFactory, a
mutation operator factory; and a parent selection operator
factory SelFactory.

e An instance printer class to generate domain dependent
instance files using the insertion operator.> This operator

Problem

(classes KPDomain,

3 C++ documentation: https://en.cppreference.com/w/cpp/io/basic_ostream/
operator_ltlt2.

must be defined when creating a new domain through the
extension of class AbstractDomain.

Regarding the NS descriptors, NSFeatures allows to search
for diversity in a pre-defined feature-space of the domain. Thus,
users must define the set of features which characterise an in-
stance in the domain and how to compute them inside the classes
extending AbstractDomain. Alternatively, NSPerformance
searches for diversity in the portfolio-performance space. Here,
we search for instances that are diverse with respect to the
performance of the solvers without considering any other infor-
mation. NSPerformance is a suitable option for domains where
the features are difficult to define or computationally expensive
to calculate. We should note at this point that, considering the
above NS descriptors, diversity can be calculated using three
different distance metrics: Euclidean, Manhattan and Hamming.
For further detail, refer to the NS proposal [12].

The evolutionary process performed by EIG is detailed in Fig. 2.
Once the specific domain and the portfolio of solvers are config-
ured, the evolutionary process begins. First, a random population
of instances are created and evaluated. After that, during G gen-
erations, the instances are evolved by following the classical EA
scheme. The variation operators (crossover and mutation) are
applied before evaluating all the instances with each algorithm
in the portfolio. After solving all instances with each algorithm in
the portfolio, a fitness value must be assigned to each instance.
Here we use the term fitness from the evolutionary computation
field to define how suitable an instance is at a specific point dur-
ing the evolutionary process. Particularly, the fitness is calculated
as a linear weighted combination of two values, the performance
score and the novelty score. The performance score ps of each
instance is calculated by using Eq. (1), i.e the difference between
the mean performance achieved in R repetitions by the target
algorithm, denoted as t,, when solving the instance at hand; and
the maximum of the mean performance achieved in R repetitions
by the remaining approaches in the portfolio, defined as o,, when
solving that particular instance. We should note at this point that
DIGNEA assumes that the algorithm in the first position of the

https://en.cppreference.com/w/cpp/io/basic_ostream/operator_ltlt2
https://en.cppreference.com/w/cpp/io/basic_ostream/operator_ltlt2

Alejandro Marrero, Eduardo Segredo, Coromoto Ledn et al.

Instance Generation
Configure the enviroment:

* Domain specification

« Portfolio definition

* Novelty search descriptor
« EIG parameters

'

EIG Execution

« Creates initial population of instances

« Apply variation operators

« Solve instances with portfolio

« Calculates fitness based on target alg.
performance

¢ Calculates instances diversity

!

Returns most diverse
instances from NS archive

Fig. 2. Program flowchart of an instance generation process in DIGNEA.

portfolio is considered the target. Therefore, the user must be
careful when specifying the order of the solvers in the portfolio.

ps = t, — max(op) (1)

After that, we calculate the novelty score s of each instance in
the population depending on the particular descriptor selected.
Then, the fitness f is calculated as a linear weighted combination
of the novelty score s and the performance score ps, where ¢ is
the performance/novelty balance weighting factor (Eq. (2)). Set-
ting low ¢ values will produce more spread and diverse instances,
while higher values will generate better grouped and discrimina-
tory instances. Finally, those instances with a novelty score larger
than a predefined threshold and a positive performance score are
included into an archive to be part of the final set of solutions
returned by the approach.

f=¢xps+(1—¢)xs (2)
3. Illustrative examples

In this section, we provide a source code example on how
DIGNEA can be used to generate instances in the KP domain. For
this, we only need to define the parameters for the domain, the
portfolio of solvers and the particular NS descriptor to run the ex-
periment. The documentation available at the Github repository.*
provides complete tutorials for creating new domains, algorithms
and run instance generation experiments.

In our example, we will be using a portfolio of four deter-
ministic KP heuristics [8] to evolve KP instances based on the
performance of those solvers. The portfolio is defined as a C++

4 The Github repository of DIGNEA can be accessed through: https://github.
com/DIGNEA/dignea.

SoftwareX 22 (2023) 101355

vector of unique pointers to AbstractSolver objects. The order
in which the vector is populated is extremely important. The
solver in the first position, i.e. that located at position zero in the
vector, will be considered as the target solver, and therefore, the
instances generated will be tailored so this solver outperforms the
remaining solvers in the portfolio when solving those particular
instances. Considering the KP domain, we set the number of items
in the instances to N = 50, and the bounds wj;, p;Vi € N to
be in the range [1, 1000]. After that, we use EIGBuilder to
create a unique pointer to an EIG object with all the configuration
required to generate a set of instances for the KP domain. Notice
that EIGBuilder facilitates the initialisation process by using the
necessary factories, i.e. withSearch uses the NSFactory type to
create a new NS descriptor object of type NSFeatures with the
remaining arguments. The above is illustrated in the fragment
of C++ code shown in Fig. 3. This source code fragment shows
that the builder pattern is used to create a unique pointer to a
EIG object. The methods are self explanatory. Calling the method
run starts the evolutionary process and the method getResults
provides the set of instances at the end of the execution.

Fig. 4 shows a Javascript Object Notation (JSON) file gener-
ated from the experiment detailed in this section. The JSON files
usually contains all the information from the EIG, the domain
(KPDomain in our example) and a front of solutions. The front
contains the set of diverse instances generated by the EIG. For
each instance, it contains its novelty score, performance score, fit-
ness and the actual instance information. Besides, it may contain
its feature values if defined.

Applying a simple data analysis procedure of scalarisation and
dimensionality reduction can provide a clear visualisation of the
instances produced. Fig. 5 shows the results of two instance gen-
eration experiments. The subfigure at the top shows the instances
generated by EIG using NSFeatures as the NS descriptor, while
the subfigure at the bottom shows those instances produced by
NSPerformance. It can be observed how instances spread across
the space but also are divided in different clusters (one per solver
in the portfolio), thus facilitating their classification.

4. Impact

Since the definition of the ASP back in 1976, researchers
have struggle to address this computationally expensive problem.
Traditionally, solving the ASP for a domain involves at least a
three step procedure. First, you start by generating and gather-
ing large amount of instances to generate a dataset. Then, after
defining a portfolio of solvers, you must undergo a considerable
expensive computational experiment, i.e., solving each instance
in the dataset with every solver in the portfolio. Thereafter, a
selection mechanism must be applied to associate each instance
to the solver which obtains the best performance. This process is
very time consuming and prone to human mistakes when switch-
ing from one step to the next one. Besides, in most cases, the
instance generation process was performed randomly and does
not guarantee to be representative of the domain or emphasise
the strengths/weaknesses of the solvers.

DIGNEA was designed to facilitate this process by combining
the previous three steps in one single procedure. The workflow
of the software not only ensures that the generated instances are
correctly labelled to the best performing solver in the portfolio,
but also allow researchers to define the diverse the instances they
want to be with respect to each other. Moreover, the modular
and template-based architecture of DIGNEA allow researchers to
switch domains and include their own solvers in a straightfor-
ward manner. Although DIGNEA allows the instance generation
process in one single step to be simplified, the above still is a
computationally expensive task. However, the software supports

https://github.com/DIGNEA/dignea
https://github.com/DIGNEA/dignea

Alejandro Marrero, Eduardo Segredo, Coromoto Ledn et al.

SoftwareX 22 (2023) 101355

1 unique_ptr<EIG<IP, IS, KP, OS> eig =
2 EIGBuilder<IP, IS, KP, OS>::create()
3 .toSolve (move(instKP))
4 .with ()
5 .weights(fRatio, nRatio)
6 .portfolio (algs)
7 .evalWith (move(easyEvaluator))
8 .repeating (reps)
9 .withSearch (NSType: : Features,
10 move(distance), thresholdNS, k)
11 .with ()
12 .crossover (CXType: : Uniform)
13 .mutation (MutType: : UniformOne)
14 .selection(SelType: : Binary)
15 .withMutRate (mutationRate)
16 .withCrossRate (0.8)
17 .populationOf(nInstances)
18 .runDuring (generations) ;
19 eig->run() ;
20 auto instances = eig->getResults();
Fig. 3. C++ source code fragment to generate KP instances in DIGNEA.
0 { "algorithm": {
1 "portfolio": [
2 { "isTarget": true, "name": "Default KP"
3 s
4 { "isTarget": false, "name": "MPW KP"
5 1
6 { "isTarget": false, "name": "MaP KP"
7 Jis
8 { '"isTarget": false, "name": "MW KP"
9 }
10 15
11 (...) // Other relevant information
12 "front": {
13 "0": { // First instance
14 "novelty": 6938.35498046875,
15 "features": {
16 "Q": 23678.0,
17 "avg_eff": 0.7300000190734863,
18 "max p": 991.0,
19 "max w": 985.0,
20 "mean": 538.2100219726563,
21 “min p": 8.0,
22 "min w": 48.0,
23 "std": 298.83905029296875
24 1
25 "fitness": 116.80326843261719,
26 "n_vars": 100, // Inst. definition starts here
27 "capacity": 23678,
28 "profits": [
29 // 50 integers, one for each p_i
30 1,
31 "weights": [
32 // 50 integers, one for each w_i
33 1
34 ,
35 (...) // More instances
36 P
37 "n_solutions": 37,
38
39 1}

Fig. 4. JSON file with the results from the instance generation experiment. This type of file is directly provided by DIGNEA.

MPI parallelism of the experiments and, as a result, it can be run
in HPC systems to speed-up the process. For instance, DIGNEA
has been deployed and executed correctly in various HPC systems
such as Archer2® and TeideHPC.°

In a recent conference paper, DIGNEA was used to generate
several sets of instances in the KP domain [13] for a set of
different EA configurations. Results proved that the software is
able to generate large sets of instances in a single run per target
solver. Moreover, such instances demonstrated to be significantly
biased to the performance of the target solver. In terms of space
covering, the results outperformed other related proposals that
rely on a pure evolutionary process with diversity management.

5 Archer2 website: https://[www.archer2.ac.uk/.
6 TeideHPC website: https://teidehpc.iter.es/.

DIGNEA can be of great assistance to get more insight about
problems, their instances, and how these instances share the fea-
ture and performance spaces with the aim of better design them.
Furthermore, DIGNEA can be applied to pursue new research
questions, for example, about instance space representation, in-
stance characterisation via hand-designed features, automate de-
signed features, algorithm design and selection or even parameter
tuning evaluation for algorithms across domains. The software is
now available as open source for the community.

5. Conclusions

We presented DIGNEA, a Diverse Instance Generator with
Novelty Search and Evolutionary Algorithms. Our goal was to
design a framework to generate instances in any optimisation
domain. We achieved this by defining generic types and a mod-
ular architecture for DIGNEA. The current version of the software

https://www.archer2.ac.uk/
https://teidehpc.iter.es/

Alejandro Marrero, Eduardo Segredo, Coromoto Ledn et al.

SoftwareX 22 (2023) 101355

KP instances generated using NSy after PCA over features space

x1

-2

-6

-6 -4 -2

target
Default
MaP
MW
MPW

*nne

X0

KP instances generated using NS, after PCA over performance space

* = ne

x1

-2

-4

- -2

Fig. 5. Two-dimensional representation of KP instances generated through DIGNEA. Colours reflect the target algorithm for which an instance was produced. Instances
on the top were generated using NSFeatures, while NSPerformance was used to generate instances shown at the bottom.

contains the required types for generating instances for the KP
domain. Currently, we are working on including more domains,
such as TSP and Bin-Packing.

The software has been used as the experimental framework
for several conference papers and recent work. Results proved
that it is able to generate better instances with respect to space
coverage, novelty and fitness [13] in comparison to previous
approaches which only considered random generation of maximi-
sation of the performance gap among solvers [8,11].

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

The work of Alejandro Marrero was funded by the Canary
Islands Government “Agencia Canaria de Investigacion, Inno-
vacion y Sociedad de la Informacién - ACIISI” [contract number
TESIS2020010005].

References

[1] Rice JR. The algorithm selection problem. Adv Comput 1976;15(C):65-118.
http://dx.doi.org/10.1016/S0065-2458(08)60520- 3.

Kerschke P, Hoos HH, Neumann F, Trautmann H. Automated algorithm
selection: Survey and perspectives. Evol Comput 2019;27(1):3-45. http:
//dx.doi.org/10.1162/evco_a_00242.

Pisinger D. Where are the hard Knapsack problems? Comput Oper Res
2005;32(9):2271-84. http://dx.doi.org/10.1016/j.cor.2004.03.002.
Smith-Miles K, Christiansen], Mufioz MA. Revisiting where are the
hard Knapsack problems? via instance space analysis. Comput Oper Res
2021;128:105184. http://dx.doi.org/10.1016/j.cor.2020.105184.

2

3

[4

http://dx.doi.org/10.1016/S0065-2458(08)60520-3
http://dx.doi.org/10.1162/evco_a_00242
http://dx.doi.org/10.1162/evco_a_00242
http://dx.doi.org/10.1162/evco_a_00242
http://dx.doi.org/10.1016/j.cor.2004.03.002
http://dx.doi.org/10.1016/j.cor.2020.105184

Alejandro Marrero, Eduardo Segredo, Coromoto Ledn et al.

Michalak K. Generating hard inventory routing problem instances using
evolutionary algorithms. In: Proceedings of the Genetic and Evolution-
ary Computation Conference. 2021, p. 243-51. http://dx.doi.org/10.1145/
3449639.3459401.

Alissa M, Sim K, Hart E. Algorithm selection using deep learning without
feature extraction. In: Proceedings of the Genetic and Evolutionary Com-
putation Conference. 2019, p. 198-206. http://dx.doi.org/10.1145/3321707.
3321845.

Bossek], Kerschke P, Neumann A, Wagner M, Neumann F, Trautmann H.
Evolving diverse TSP instances by means of novel and creative mutation
operators. In: Proceedings of the 15th ACM/SIGEVO conference on foun-
dations of genetic algorithms. 2019, p. 58-71. http://dx.doi.org/10.1145/
3299904.3340307.

Plata-Gonzalez LF, Amaya I, Ortiz-Bayliss JC, Conant-Pablos SE, Terashima-
Marin H, Coello Coello CA. Evolutionary-based tailoring of synthetic
instances for the Knapsack problem. Soft Comput 2019;23:12711-28. http:
//dx.doi.org/10.1007/s00500-019-03822-w.

[9] Julstrom B. Evolving heuristically difficult instances of combinatorial prob-

lems. In: Proceedings of the 11th annual conference on genetic and
evolutionary computation. GECCO, ACM; 2009, p. 279-86. http://dx.doi.
org/10.1145/1569901.1569941.

SoftwareX 22 (2023) 101355

Akgiin O, Dang N, Miguel I, Salamon AZ, Stone C. Instance generation
via generator instances. In: Schiex T, de Givry S, editors. Principles and
practice of constraint. Cham: Springer International Publishing; 2019, p.
3-19. http://dx.doi.org/10.1007/978-3-030-30048-7_1.

Ullrich M, Weise T, Awasthi A, Ldssig]J. A generic problem instance gen-
erator for discrete optimization problems. In: Proceedings of the Genetic
and Evolutionary Computation Conference Companion. 2018, p. 1761-8.
http://dx.doi.org/10.1145/3205651.3208284.

Lehman], Stanley KO. Abandoning objectives: Evolution through the search
for novelty alone. Evol Comput 2011;19(2):189-222. http://dx.doi.org/10.
1162/EVCO_a_00025.

Marrero A, Segredo E, Leén C, Hart E. A novelty-search approach to
filling an instance-space with diverse and discriminatory instances for the
Knapsack problem. In: Parallel problem solving from nature - PPSN XVIL
Cham: Springer International Publishing; 2022, p. 223-36. http://dx.doi.
org/10.1007/978-3-031-14714-2_16.

Le6n C, Miranda G, Segura C. METCO: A parallel plugin-based
framework for multi-objective optimization. Int] Artif Intell Tools
2009;18(04):569-88. http://dx.doi.org/10.1142/50218213009000275.
Marrero A, Segredo E, Ledn C. A parallel genetic algorithm to speed up
the resolution of the algorithm selection problem. In: Proceedings of the
Genetic and Evolutionary Computation Conference Companion. 2021, p.
1978-81. http://dx.doi.org/10.1145/3449726.3463160.

http://dx.doi.org/10.1145/3449639.3459401
http://dx.doi.org/10.1145/3449639.3459401
http://dx.doi.org/10.1145/3449639.3459401
http://dx.doi.org/10.1145/3321707.3321845
http://dx.doi.org/10.1145/3321707.3321845
http://dx.doi.org/10.1145/3321707.3321845
http://dx.doi.org/10.1145/3299904.3340307
http://dx.doi.org/10.1145/3299904.3340307
http://dx.doi.org/10.1145/3299904.3340307
http://dx.doi.org/10.1007/s00500-019-03822-w
http://dx.doi.org/10.1007/s00500-019-03822-w
http://dx.doi.org/10.1007/s00500-019-03822-w
http://dx.doi.org/10.1145/1569901.1569941
http://dx.doi.org/10.1145/1569901.1569941
http://dx.doi.org/10.1145/1569901.1569941
http://dx.doi.org/10.1007/978-3-030-30048-7_1
http://dx.doi.org/10.1145/3205651.3208284
http://dx.doi.org/10.1162/EVCO_a_00025
http://dx.doi.org/10.1162/EVCO_a_00025
http://dx.doi.org/10.1162/EVCO_a_00025
http://dx.doi.org/10.1007/978-3-031-14714-2_16
http://dx.doi.org/10.1007/978-3-031-14714-2_16
http://dx.doi.org/10.1007/978-3-031-14714-2_16
http://dx.doi.org/10.1142/S0218213009000275
http://dx.doi.org/10.1145/3449726.3463160

	DIGNEA: A tool to generate diverse and discriminatory instance suites for optimisation domains
	Motivation and significance
	Software description
	Software Architecture
	Software Functionalities

	Illustrative Examples
	Impact
	Conclusions
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References

