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Abstract: Despite their ecological and socio-economic importance, seagrasses are often overlooked in
comparison with terrestrial ecosystems. In the Canarian archipelago (Spain), Cymodocea nodosa is the
best-established species, sustaining the most important marine ecosystem and providing ecosystem
services (ES) of great relevance. Nevertheless, we lack accurate and standardized information regard-
ing the distribution of this species and its ES supply. As a first step, the use of species distribution
models is proposed. Various machine learning algorithms and ensemble model techniques were
considered along with freely available remote sensing data to assess Cymodocea nodosa’s potential dis-
tribution. In a second step, we used InVEST software to estimate the ES provision by this phanerogam
on a regional scale, providing spatially explicit monetary assessments and a habitat degradation char-
acterization due to human impacts. The distribution models presented great predictive capabilities
and statistical significance, while the ES estimations were in concordance with previous studies. The
proposed methodology is presented as a useful tool for environmental management of important
communities sensitive to human activities, such as C. nodosa meadows.

Keywords: Cymodocea nodosa; remote sensing; species distribution models; ensemble model;
invest; ecosystem services; monetary assessment; habitat suitability models; coastal ecosystems;
oceanographic variables

1. Introduction

Seagrasses are important coastal and marine habitats in temperate and tropical re-
gions [1], providing a broad range of ecological functions and ecosystem services (ES) [2,3].
Due to over-exploitation, physical modification, nutrient and sediment pollution, the in-
troduction of non-native species and global climate change, these important habitats are
declining worldwide [4,5] at even faster rates than tropical forests [6]. This decline, partly
explained by global scale phenomena [7], is greatly enhanced by the accumulation of local
threats, exposing them as one of the main causes of seagrasses regression [8].

Among the three species of seagrasses present in the Canarian Archipelago (Spain),
Cymodocea nodosa (Ucria) Ascherson, Zostera noltei Hornemann and Halophila decipiens
Ostenfeld [9], C. nodosa is by far the best-established species, sustaining the most important
marine ecosystem in sandy bottoms and being considered as a suitable bioindicator of
ecosystem conservation status [10]. In the archipelago, local threats menacing this species
are mainly related to human coastal activities [4,11].

Although the distribution of C. nodosa has been already studied in the Archipelago [11–16]
these one-time cartography attempts present limitations in terms of spatial coverage. Some
areas were not covered due to technical infeasibility, and temporal discrepancies could
be found in C. nodosa’s historic distribution datasets, with a few years’ time difference.
These discrepancies, together with the high seasonal variability of the species [17], make it
particularly difficult to map its actual distribution accurately.

Previous attempts to model the distribution of C. nodosa can also be found in the
literature [18], although at global scales, with coarser resolutions and failing to capture the
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intrinsic specificities of C. nodosa in the archipelago. Species distribution models (SDM)
rely on presence records (known localities where the species can be found) and a series
of predictor variables describing the environmental conditions of the study area to find
their statistical relation and predict species distributions in any given geographic area [19].
As an alternative, some modeling techniques rely on absence data as well, depicting
localities where the species is known to be absent. Nevertheless, due to the nature itself of
these data, true absences are commonly unavailable [20], and the generation of pseudo-
absence is presented as an alternative [21]. Pseudo-absence data allow the use of standard
presence/absence analysis methods [22] while improving model performance [23]. There is
no clear consensus on the best approach [24]. Two common approaches for pseudo-absence
generation are the random selection from a background dataset or the limiting to areas
with different environmental characteristics [25]. Another concern when selecting pseudo-
absences is the prevalence of the species in the study area, or the ratio between presence
and absence records, as the optimal ratio of presence data to pseudo-absence data is
debated [23,26]. Among other alternative techniques for species distribution modeling, we
can find ensemble models. This technique has recently gained popularity in SDM [27–32]
and can improve model robustness [33,34] and predictive capabilities [35].

Seagrasses produce ES of great socio-economic importance, providing food sources
and playing climate regulation and coastal protection roles, as well as positively affecting
tourist activities and helping climate change mitigation [36,37]. Nevertheless, they are
often overlooked in comparison with other terrestrial ecosystems [38], with an even more
pronounced difference when considering ES mapping [39].

Evaluations/analyses of ES supply related to seagrass have been carried out previously
in the archipelago [4,40]. Following the general trend, these kinds of studies focused more
on mainland Europe rather than on Outermost Regions of Europe (ORs), such as the Canary
Islands. A general lack of spatially explicit assessments of island ecosystems and their
services can be found, mainly related to a lack of data and research efforts [41]. This
particular bias leads to overlooking the socio-economic importance of ES supply [42].

The main objective of this study was to explore the capabilities of different algorithms
and modeling procedures to produce the potential distribution of C. nodosa in the Canarian
Archipelago. The proposed methodology is presented as an alternative to cope with the
lack of standardized cartographies of the coastal ecosystems and their ES supply, while
relying on Remote Sensing (RS) products and images as an alternative to data-scarce
scenarios. Finally, we propose using this potential distribution to estimate the ES supply
and its economic valuation, producing spatially explicit assessments of the ecological
and socioeconomic consequences of the impacts of human coastal activities, affecting this
species distribution in the Canarian Archipelago.

2. Materials and Methods
2.1. Study Area

The Canarian Archipelago comprises eight main islands located in the North-east
Atlantic (Figure 1). It is a volcanic oceanic archipelago formed progressively from a long-
lived magma source over 60 million years.

The islands possess steep bathymetry, with depth profiles abruptly ranging from
over 2000 m to narrow shelves, presenting deep channels between islands. In the western
regions, we can find the oldest islands, with higher availability of soft substrate, in contrast
with the predominant rocky bottoms of the eastern region. The trade winds make the
northern and north-eastern slopes the most exposed to waves.

The Canary Islands have a sub-tropical climate with warm temperatures and small
seasonal variations. The main large-scale oceanic flow in the Canary Islands is the Canary
Current, a relatively cold surface current following the SSW direction [43].

In contrast to the African coast, considered a rich region in fishery production, the
Canary Islands are generally characterized by oligotrophic waters, with relatively low
primary production rates and limited fishing resources [44]. Nevertheless, close to the
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transition zone of the Canarian current, eutrophic areas can be found [45] and fishing
activities still play an important role from a cultural and socio-economic point of view, as
numerous towns and families are dependent on this sector.
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Figure 1. Canarian Archipelago. Mean Sea Surface Temperature (SST) during cold season (February–
March) taken from NASA GHRSST Level 4 MUR Global Foundation Sea Surface Temperature
Analysis (https://podaac.jpl.nasa.gov/dataset/MUR-JPL-L4-GLOB-v4.1, accessed on 4 July 2022).

2.2. Distribution Model

The distribution model of C. nodosa was developed using different machine learning
(ML) algorithms with known presence records of the species, along with generated pseu-
doabsence data. A set of environmental variables retrieved from different freely available
RS products were used in the modelling process. The potential Habitat Suitability was
constructed from an ensembled model for the whole Canarian archipelago. Finally, the
model obtained was used to assess the C. nodosa’s potential ES supply (Figure 2).

2.2.1. Presence and Pseudo-Absence Data

C. nodosa presence records were extracted from historic benthic maps [11–15]. Records
were identified as stable meadows and, hence, representative of optimal environmental
conditions. A total of 148 presence records were gathered.

Two different groups of pseudo-absence datasets were generated. On the one hand, a
series of random localities was pre-selected across the study area as background records,
later to be referred to as Aleatory Pseudo-Absences (APA). On the other hand, previously
identified areas with a low probability of species occurrence were subsampled [46,47] to
define a set later to be referred to as Environmental Pseudo-Absences (EPA).

In the last step, both APA and EPA were randomly subsampled, aiming for differ-
ent prevalence ratios. Prevalence ratios of 1, 0.5, 0.25, and 0.1 were considered, leading
us to create 8 different sets: APA1 and EPA1, with 148 randomly selected respectively,
APA0.5 and EPA0.5, with 296 records, APA0.25 and EPA0.25, with 592 records and finally
APA0.1 and EPA0.1 with 1480, where subindexes refer to the chosen prevalence for the
aleatory subsampling.

2.2.2. Environmental Variables

RS products and images are gaining relevance in the literature due to their proven
capacity to improve the capabilities of the seagrass model’s performance and applica-
tions [48–50]. In addition, topographic information [51] and dynamic oceanographic
variables [52–55] have been commonly used to model seagrass distribution. In this study,

https://podaac.jpl.nasa.gov/dataset/MUR-JPL-L4-GLOB-v4.1
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a total of 14 potential environmental predictors (Table 1) were taken from available RS
products and spatial datasets, considering their known influence on seagrass distribution.
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Table 1. Pre-selected environmental variables.

Spatial Data/RS Product Derived Variables Source

Digital Terrain Model (DTM)

Depth (m)

Spanish Ministry of Environment [56–61]
Slope (◦)

Aspect (Northness & Eastness)

Fetch Length (m)

Canarian benthic bionomic map Distance to soft substrate (m) [62]

NASA Level-3
MODIS-Aqua monthly

chlorophyll concentration

Mean Chlorophyll concentration of cold months (mg·m−3) https://oceancolor.gsfc.nasa.gov/cgi/l3,
accessed on 4 July 2022Mean Chlorophyll concentration of warm months (mg·m−3)

NASA GHRSST Level 4 MUR
Global Foundation Sea Surface

Temperature Analysis

Mean Sea Surface Temperature (SST) of cold months (◦C) https://podaac.jpl.nasa.gov/dataset/
MUR-JPL-L4-GLOB-v4.1, accessed on

4 July 2022Mean Sea Surface Temperature (SST) of warm months (◦C)

Atlantic-Iberian Biscay Irish-
Ocean Wave Analysis

and Forecast

Wave mean direction (◦) https://resources.marine.copernicus.eu/
product-detail/IBI_ANALYSIS_

FORECAST_WAV_005_005/DATA-
ACCESS, accessed on 4 July 2022

Wave period peak (s)
Wave energy (kW·m−1)

Maximum wave height (m)

Iberia-Biscay-Ireland Significant
Wave Height extreme variability 99th percentile of Significant wave height (m)

https://resources.marine.copernicus.eu/
product-detail/IBI_OMI_SEASTATE_

extreme_var_swh_mean_and_anomaly/
DATA-ACCESS, accessed on 4 July 2022

Depth (m) was obtained from a Digital Terrain Model (DTM) with a native resolution
of 5 m × 5 m, provided by the Spanish Ministry of Environment (Table 1). Slope (◦) and

https://oceancolor.gsfc.nasa.gov/cgi/l3
https://podaac.jpl.nasa.gov/dataset/MUR-JPL-L4-GLOB-v4.1
https://podaac.jpl.nasa.gov/dataset/MUR-JPL-L4-GLOB-v4.1
https://resources.marine.copernicus.eu/product-detail/IBI_ANALYSIS_FORECAST_WAV_005_005/DATA-ACCESS
https://resources.marine.copernicus.eu/product-detail/IBI_ANALYSIS_FORECAST_WAV_005_005/DATA-ACCESS
https://resources.marine.copernicus.eu/product-detail/IBI_ANALYSIS_FORECAST_WAV_005_005/DATA-ACCESS
https://resources.marine.copernicus.eu/product-detail/IBI_ANALYSIS_FORECAST_WAV_005_005/DATA-ACCESS
https://resources.marine.copernicus.eu/product-detail/IBI_OMI_SEASTATE_extreme_var_swh_mean_and_anomaly/DATA-ACCESS
https://resources.marine.copernicus.eu/product-detail/IBI_OMI_SEASTATE_extreme_var_swh_mean_and_anomaly/DATA-ACCESS
https://resources.marine.copernicus.eu/product-detail/IBI_OMI_SEASTATE_extreme_var_swh_mean_and_anomaly/DATA-ACCESS
https://resources.marine.copernicus.eu/product-detail/IBI_OMI_SEASTATE_extreme_var_swh_mean_and_anomaly/DATA-ACCESS
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Aspect (Radians) were taken from Depth data. Northness and Eastness (North and East
components of Aspect circular direction) were calculated by applying the cosine and the
sine to Aspect, respectively (being both dimensionless).

Euclidean distance to the soft substrate (m), indispensable for the species to root, was
retrieved from a Benthic bionomic map of the Canarian Archipelago [15]. The Fetch length
(m) (used as a proxy to measure the degree of seagrass protection against disturbances and
dislodgement) was processed from the DTM using R studio as in [63].

Chlorophyll-a Concentration (mg·m−3) was derived from NASA Level-3 MODIS-
Aqua monthly chlorophyll-a concentration. This product is processed using an empirical
relationship from in situ measurements and a specific sensor band reflectance ratio (blue-green)
with a spatial resolution of 4 km × 4 km (doi:10.5067/AQUA/MODIS/L3M/CHL/2018).
Mean values for warm months (September–October) and cold months (February–March)
were calculated for a period ranging from 2010 to 2019.

Sea Surface Temperature (SST) was processed from the NASA GHRSST Level 4 MUR
Global Foundation Sea Surface Temperature Analysis. This product relies on wavelet
functions, and it is based on night-time SST observations from several NASA and in situ
observations to provide a 1 km × 1 km product with global coverage with a time span
starting in 2002 (doi:10.5067/GHGMR-4FJ04). SST values were considered for a period
of time ranging from 2010 to 2019, calculating mean values of warm months (September–
October) and cold (February–March) months.

Sea surface wave significant height (SWH, expressed in meters), Sea surface wave
mean direction (◦) and Sea surface peak period (s) were obtained from the Atlantic-Iberian
Biscay Irish-Ocean (IBI) Wave Analysis and Forecast product (doi:10.48670/moi-00027).
This product provides modeled wave forecast information with ingested wind and sig-
nificant wave height altimeter data along with currents from the IBI ocean circulation
system. It provides with near real-time observation and forecasts with a spatial resolution
of 5 km × 5 km, with data availability starting in 2019 [64]. The maximum wave energy
flux (power of wave crest per meter, expressed in kW·m−1) was calculated using values of
maximum significant wave height and peak period with R studio 1.1.463 using the waver
package [65]. All variables were resampled to 100 m × 100 m resolution.

99th percentile of Significant Wave Height (SWH, expressed in m) was retrieved from
the Iberia-Biscay-Ireland Significant Wave Height extreme variability product [66]. This
product is constructed with the computation of the annual 99th percentile of SWH from
historical records, ranging from 1993 to 2019 with a spatial resolution of 1 km × 1 km.

Environmental predictors’ collinearity was assessed, accounting for non-independence.
Unfortunately, even when correlated, variables may not hold just redundant information.
To minimize the potential information loss, two steps were followed to ensure that all
environmental variables were considered for the later modeling process. First, variables
presenting collinearity were identified using a pairwise correlation analysis applying a
threshold of 0.8 [67]. All different combinations of correlated and uncorrelated variables
were considered, creating a total number of 12 predictor sets by rejecting the possibility of
any correlated variables being present in the same group (Table 2). Finally, the pre-selected
sets were tested using a Variance Inflation Factor (VIF) analysis, as this test may highlight
collinearities sometimes missed in the pairwise correlation analysis [68,69]. VIF analysis
showed variable uncorrelation in all 12 sets.

2.2.3. Model Fitting

A series of models were run following two parallel procedures. On the one hand,
we used MaxEnt [70], a widely used ML algorithm for modeling species distribution to
construct models. In this step, an automated calibration process was carried out using
kuenm R package, developed by [71]. This package allows for optimal MaxEnt parameter
optimization, creating and evaluating a series of candidate models while incorporating all
possible combinations of presence records, environmental pre-selected variable sets, and
user-defined algorithm settings. A total of 743 models were run, evaluating each output’s



Remote Sens. 2022, 14, 4334 6 of 20

statistical significance. All possible settings for user-defined algorithm parameters were
considered, relying on algorithm’s default background selection criterion. Beta multiplier
values were set to range from 0.5 to 1.5 with increasing additive steps of 0.1, and all possible
combinations of feature class selection were considered in the fitting procedure.

Table 2. Variable set selection. Green color describes uncorrelated variables, while red, yellow,
and blue encompass correlated variables within each color group. Crosses identify a variable’s
membership in each set.

Variable Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10 Set 11 Set 12
Depth X X X X X X X X X X X X
Slope X X X X X X X X X X X X

Aspect (Northness) X X X X X X X X X X X X
Aspect (Eastness) X X X X X X X X X X X X

Distance to soft substrate X X X X X X X X X X X X
Sea surface wave
mean direction X X X X X X X X X X X X

Fetch X X X X X X X X X X X X
99th percentile Significant

Wave Height X X X X X X X X X X X X

Mean Chlorophyll-a of
cold months X X X X X X

Mean Chlorophyll-a of
warm months X X X X X X

Mean SST of cold months X X X X X X
Mean SST of warm months X X X X X X

Period peak X X X X
Sea surface wave
significant height X X X X

Max. wave energy X X X X

On the other hand, algorithms such as Random Forest (RF), Generalized Additive
Models (GAM), Generalized Lineal Model (GLM), and Artificial Neural Networks (ANN)
were considered and run within biomod2 R package [72]. This package allows the im-
plementation of a wide range of algorithms, providing tools for model calibration and
evaluation while incorporating a series of assessments for model explanatory capabili-
ties and predictive performance. In this step, all combinations between the 4 selected
algorithms, 4 Pseudo-absence (EPA), and 4 Background (APA) generated sets led to the
implementation of 32 different models. All models were run using the environmental
variable sets presenting statistical significance in the previous step. An iterative process
was carried out in an empirical search for each algorithm’s user-defined optimal settings.

2.2.4. Model Evaluation

Two different processes were carried out: model validation, used to infer optimal
parameter settings and to compare different models’ robustness, and model testing, ac-
counting for predictive accuracy [73].

A 5-fold cross-validation technique with 25% test samples was used [74]. Model
validation criteria was based on: (i) Delta Akaike Information Criterion (dAIC) threshold
below 2, being this parameter the difference between a particular model’s AIC and the
lowest AIC of all candidate models, pointing to models with optimal trade-offs between
data fitting and complexity [75] and (ii) Omission rate threshold below 0.05, depicting the
proportion of test records incorrectly predicted by the model [76].

To test model predictive accuracy, we relied on (i) Area Under the Curve (AUC),
describing the degree of agreement between the model projection and actual occurrence
data [77], (ii) Model specificity and sensitivity (proportion of absences and presences
correctly predicted by the model, respectively) [78] and (iii) True Skill Statistics (TSS), used
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to evaluate the model’s predictive performance and accuracy [79], considering a selection
threshold value higher than 0.8.

2.2.5. Model Ensemble and Potential Habitat Suitability Mapping

An ensemble model was constructed by averaging the outputs of models selected
in the previous valuation step, accounting for robustness, statistical significance, and
predictive capabilities. Ensemble modeling is a process in which multiple models are used
to predict a single outcome, either by using many different modeling algorithms (such as
in our case) or using different training data sets [80]. This technique presents advantages
over single-model forecasts [34], and predictive power has been proved to improve when
used [81]. The single outcome model was projected to the Canarian archipelago to retrieve
a final potential Habitat Suitability Map (HSM) for C. nodosa.

2.3. Assessing Ecosystem Services (ES) Supply

The obtained ensembled model was used for the estimation of the potential ES sup-
ply of C. nodosa in the Canarian archipelago. The analysis was carried out with InVEST
3.8.1 software (Integrated Valuation of Ecosystem Services and Trade-offs), a free software
developed by the Natural Capital Project [82]. It is a tool for geographic, economic and
ecological accounting on ES, aiming to describe and characterize the ecosystem-based
goods provision, relying on geographic data describing the biophysical properties of any
given habitat/ecosystem [83]. As a first step, Carbon sequestration and the species’ role
as nursery grounds for commercially interesting fish species were estimated for the Ca-
narian seagrasses. Then, a degradation index was produced using the InVEST Habitat
Quality model. This tool feeds on spatial data depicting potential disturbances to assess
the conservation status of any given habitat/ecosystem. Anthropogenic variables affecting
seagrass distribution were retrieved from the cartographic service offered by GRAFCAN
S.A. (https://www.idecanarias.es/listado_servicios, accessed on 4 July 2022) in collabo-
ration with the Government of Canary Islands (https://datos.canarias.es/portal/datos/,
accessed on 4 July 2022). Spatial information regarding aquaculture activities, wastewater
discharges, and the presence of ports and coastal infrastructures was used to run the model
(Figure 3).
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Finally, the degradation index was applied to the ES assessment. This procedure was
used to first characterize the ES supply under a hypothetically pristine scenario (depicted
by the habitat suitability map). Secondly, it allowed us to compare and assess the potential
ES supply loss due to habitat degradation induced by coastal human pressures.

2.3.1. Carbon Stock Estimation

Following the procedure presented in [84], this tool accounts for carbon storage in
three “pools”: biomass, sediment, and dead matter (litter). Published C. nodosa’s carbon
stocks [40] were used as the main data source, along with the C. nodosa potential distribution
map and its related social cost [85], calculated at 48.65 € for 2021 [86], to estimate the amount
of CO2 stored and its economic value.

2.3.2. Nursery Grounds Estimation

This ES could be described as the species’ capabilities to sustain a viable population of
any particular species. The “fisheries” tool in inVEST uses different data on fish species’
life traits to construct a population dynamics model to assess the economic value of hy-
pothetical fishing activities. Data published by [4], along with databases in “fishbase.org”
were used to feed the model and assess the potential economic value of a series of com-
mercially interesting fish species, known to use C. nodosa meadows as nursery grounds.
Spatially explicit economic estimations were produced for 6 commercially relevant species
in the Canarian Archipelago: Sparisoma cretense, Mullus surmuletus, Pagellus erythrinus,
Spondyliosoma cantharus, Diplodus annularis and Dicentrarchus punctatus.

3. Results
3.1. Distribution Model’s Testing and Evaluation

Among 744 different MaxEnt models, 218 matched the omission rate criterion (<0.05),
while only one surpassed the dAIC complexity requirements (dAIC < 2). The selected model
presented an omission rate of 0.029, dAIC of 0.991, and AIC of 2858.445, showing excellent
predictive capabilities with an AUC value of 0.933. Selected features were “Quadratic”,
“Product” and “Threshold”, with a Beta multiplier value of 1 (Table 3). The selected MaxEnt
model was run with environmental set 5 (Table 2).

Table 3. MaxEnt parameter settings and evaluation metrics of the selected model.

User-defined parameter settings

Beta Multiplier 1
Selected features “Quadratic”, “Product” and “Threshold”

Regularization threshold 1.160
Feature regularization parameter 0.164

Evaluation metric

Omission rate 0.029
deltaAIC 0.991

AIC 2858.445
AUC 0.933

Six predictor variables held 90.6% of the predictive capabilities. Depth, with 59.4% of
variable permutation performance, was the variable best explaining C. nodosa’s potential
distribution. Distance to the soft substrate, SST, Northness, fetch length and wave mean
direction held 31.2% of importance together. The species’ Habitat Suitability response to
variability in predictor variables is presented in Figure 4.

A negative correlation was found between species’ habitat suitability and depth, dis-
tance to soft substrate, northness, fetch length, and wave direction. The species presents
two peaks of habitat suitability around SST values of 18 and 19 ◦C approximately. Permuta-
tion importance and variable’s values related to suitable areas for the species are presented
in Table 4.
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Table 4. MaxEnt predictor’s permutation importance and values range.

Variable Permutation Importance (%) Variables’ Values Range

Depth 59.4 5 to 25 m
Distance to Soft substrate 9.1 0 to 50 m

SST 6.6 (17.9–18.3) and (19–19.2) ◦C
Northness 5.9 −0.5 to 0

Fetch length 5.7 10 to 500 m
Wave mean direction 3.9 90 to 130◦

AUC and TSS values for the 32 models relying on user-generated APA and EPA sets
are presented in Figure 5.

A correlation between AUC and TSS values was found in both groups of models,
with higher values of TSS closely related to higher values of AUC. Overall, AUC values
describe good performance, while TSS values are generally lower. Models run with the APA
pseudo-absences group presented better performance, with slightly better AUC results.
Three different models surpassed the proposed TSS threshold selection criteria, in contrast
with the one model in the EPA group. A prevalence value of 1 was present in 3 out of
4 selected models, and 0.25 for the selected EPA model. The selected models were: (i) RF
model run with EPA1 (EPA pseudo-absence set with a prevalence of 1), (ii) RF model with
APA0.25 (APA pseudo-absence set with a prevalence of 0.25), (iii) GAM model with APA1
(APA pseudo-absence set with a prevalence of 1) and (iv) ANN model with APA1 (APA
pseudo-absence set with a prevalence of 1). All evaluation metrics of the selected models
are presented in Table 5.
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Table 5. Models’ evaluation metrics.

Pseudo-Absence/Background Prevalence TSS AUC Sensitivity Specificity

RF EPA 1 0.808 0.941 0.847 0.964
RF APA 0.25 0.881 0.932 0.918 0.941

GAM APA 1 0.853 0.946 0.914 0.944
ANN APA 1 0.828 0.977 0.953 0.896

Predictors’ importance was very similar across all selected models to those in the
MaxEnt model, pointing out a robust coherence in the results. Six predictor variables held
the majority of the predictive capabilities in each model. Mean values across all 4 selected
models for permutation importance and value ranges related to suitable areas are presented
in Table 6.

Table 6. Mean predictor’s permutation importance and optimal values range.

Variable Permutation Importance (%) Variables’ Values Range *

Depth 43.4 4 to 27 m
Distance to Soft substrate 12.38 0 to 43 m

SST 9.88 (18–18.5) and (19.1–19.4) ◦C
Fetch length 9.43 15 to 625 m
Northness 8.93 −0.3 to 0

Wave mean direction 7.18 90 to 138◦

* Range of values related to suitable areas for the species.

On average, 91.2% of variable importance was held by these 6 variables. In contrast to
the selected MaxEnt model, fetch length gained more weight (9.43%), surpassing northness
(8.93%). Overall, variable importance was more equilibrated, and optimal predictor range
values related to species suitability areas were similar to the MaxEnt model.

3.2. Ensemble Model and Potential Habitat Suitability Map

The averaged ensembled model was produced with all previously selected models
and projected onto the Canarian archipelago (Figure 6). This projection depicts the spa-
tial distribution of the potentially suitable areas for the species as a response to optimal
environmental conditions. Within the study area, 14,047 ha were identified as potentially
suitable for the species.
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A decreasing pattern in habitat suitability can be described as following an east-west
and a north-south trend. Suitable areas are present on the southern coasts, while lower
suitability values are found in the western islands, mainly on La Palma and El Hierro.

The species’ suitable areas are closely related to specific value ranges of critical en-
vironmental variables (Tables 4 and 6), constraining the distribution of C. nodosa to these
geographic locations. Species’ potentially suitable areas can be found in relatively shallow
waters on the south and south-east coasts of the islands, related to low values of northness,
with south-east dominant wave direction. Fetch length low values point to a preference
for sheltered areas, where the overall wave energy is lower, and occasional extreme events
are less likely to impact the species. Sandy bottoms are suitable for C. nodosa, and soft
substrate nearby areas are prone to the species’ establishment. The species presents a
habitat suitability peak around SST values of 18 ◦C and a relatively lower suitability peak
around 19 ◦C.

3.3. ES Supply Estimation

The degradation index produced (Figure 7) ranges from 0 in non-disturbed areas, to 1,
in most disturbed areas. A total of 4916 ha previously identified as suitable for the species
were directly affected by the presence of coastal infrastructures, representing 35% of the
total suitable area.
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Higher values of degradation appear to be mainly related to the presence of ports and
coastal infrastructures. Ports such as Santa Cruz de Tenerife, San Sebastián de La Gomera,
Las Palmas de Gran Canaria, Arrecife and Puerto del Rosario seem to have direct impacts
on the species’ habitat degradation (Figure 7). On a smaller scale, but visibly noticeable,
Santa Cruz de la Palma port also negatively affects C. nodosa’s suitability.

3.3.1. Blue Carbon Sequestration Assessment

The amount of potential carbon sequestration of C. nodosa was estimated, and a
spatially explicit assessment is presented in Figure 8.

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 21 
 

 

 
Figure 8. Cymodocea nodosa’s Carbon sequestration estimation for potential (A) and degraded (B) 
species’ distribution. Zoom in north-east of Tenerife Island. 

The average carbon sequestration was estimated as 282 Mg CO2·ha−1. The total 
amount of sequestered carbon and its social-economic value is presented in Table 7, both 
for pristine suitable areas and for the suitability degraded scenario. 

Table 7. Total amount of sequestered Carbon and its economic valuation at archipelago scale. 

 Sequestered Carbon 
Pristine scenario 3,961,254 Mg CO2 192,715,007€ 

Degraded scenario 2,574,942 Mg CO2 125,270,928€ 

The amount of potential sequestered carbon under a pristine scenario was estimated at 
3,961,254 Mg CO2, and its social cost was valued at 192,715,007€. These values dropped by 
approximately 35% after the degradation index was applied, with a potential loss of 
1,386,312 Mg of stored carbon resulting in an economic social value decline of 67,444,079€. 

3.3.2. Nursery Grounds Assessment 
Finally, the spatially explicit economic valuation of C. nodosa’s role as nursery 

grounds for commercially interesting fish species is presented in Figure 9, both for pristine 
potential suitable areas and for the degraded scenario. The total economic estimation is 
presented in Table 8. 

 
Figure 9. Cymodocea nodosa’s total nursery ground value estimation for potential (A) and degraded 
(B) species’ distribution. Zoom in south-east of Lanzarote Island. 

Figure 8. Cymodocea nodosa’s Carbon sequestration estimation for potential (A) and degraded
(B) species’ distribution. Zoom in north-east of Tenerife Island.

The average carbon sequestration was estimated as 282 Mg CO2·ha−1. The total
amount of sequestered carbon and its social-economic value is presented in Table 7, both
for pristine suitable areas and for the suitability degraded scenario.

Table 7. Total amount of sequestered Carbon and its economic valuation at archipelago scale.

Sequestered Carbon

Pristine scenario 3,961,254 Mg CO2 192,715,007€

Degraded scenario 2,574,942 Mg CO2 125,270,928€

The amount of potential sequestered carbon under a pristine scenario was estimated
at 3,961,254 Mg CO2, and its social cost was valued at 192,715,007€. These values dropped
by approximately 35% after the degradation index was applied, with a potential loss of
1,386,312 Mg of stored carbon resulting in an economic social value decline of 67,444,079€.

3.3.2. Nursery Grounds Assessment

Finally, the spatially explicit economic valuation of C. nodosa’s role as nursery grounds
for commercially interesting fish species is presented in Figure 9, both for pristine potential
suitable areas and for the degraded scenario. The total economic estimation is presented in
Table 8.

The total economic value of C. nodosa as nursery grounds under a pristine scenario was
estimated at 1,369,863 €. These values dropped to roughly 35% after the degradation index
was applied, with a potential loss of 479,408 €. Sparisoma cretense and Mullus surmuletus
were the two best-valued species, due to their relatively high market price, holding 88%
of the total economic value. On the other hand, the value of Dicentrarchus punctatus was
significantly lower, considering the overall average monetary value of all species (16.25€).
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Table 8. Total estimation of nursery grounds at archipelago scale. The species are in order of
monetary value.

Fish Species Monetary Value Per ha
(€·ha−1·year−1)

Pristine Scenario Monetary
Value (€·year−1)

Degraded Scenario
Monetary Value (€·year−1)

Sparisoma cretense 43.50 611,044 397,198
Mullus surmuletus 42.67 599,385 389,619
Pagellus erythrinus 5.30 74,449 48,394

Spondyliosoma cantharus 3.01 42,281 27,484
Diplodus annularis 2.09 29,358 19,083

Dicentrarchus punctatus 0.95 13,344 8674

total 97.52 1,369,863 890,455

4. Discussion

A distribution model of C. nodosa meadows was produced, being one of the first
attempts to apply this methodology in the Canarian Archipelago. Based on the modeled
potential distribution of this species, we assessed the ES provision while characterizing the
potential impacts of human coastal activities.

On the one hand, the proposed methodology focused on the Canarian Archipelago,
and better captured the species particularities in this geographic region than previous
modeling attempts, on much broader scales [18]. On the other hand, the modeled distri-
bution allowed us to overcome the intrinsic limitations of the previous cartographies of
C. nodosa in terms of technical infeasibility and temporal discrepancies due to the species’
high seasonal variability [17,87].

Only presence records were available for the study, with no true absence records,
and we relied on the generation of pseudo-absence data as an alternative. This kind of
data may improve model performance [23], while on the other hand allowing the use of
standard analysis methods for presence/absence data [19,88]. The generation of pseudo-
absence data is a critical process, as it dramatically affects the model’s performance [26].
An unbalanced design with more pseudo-absences than presence records has been found
to affect the performance of some models positively, and others negatively [24]. Some
studies suggest an optimal prevalence of 0.5 [89], while others lower that ratio down to
0.1 [90]. We considered different types of pseudo-absences and prevalence ratios to cope
with this lack of a clear consensus, and the final model selection criteria were based entirely
on model performance. For the present modeling procedure, an equilibrated ratio between
presences and pseudo-absences was found to yield better results. In one out of three
cases, 0.25 was the preferred prevalence, while the rest of the models were run with a
prevalence of 1, feeding the narrative of a lack of consensus in this matter. In contrast
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to some studies highlighting worse performances for models run with aleatory pseudo-
absences [91], the majority of the selected models identified as statistically significant
were constructed with randomly selected pseudo-absences. Nevertheless, these results are
completely in concordance with findings in [24], where better results were obtained when
randomly selected pseudo-absences were used with regression modeling techniques. On
the other hand, authors found better results when applying environmental-based criteria
for pseudo-absence selection with classification techniques, such is the case for the selected
RF model in this study, being the only model run with EPA pseudoabsence data.

The environmental variables correlation is another critical step in species distribution
modeling, as it negatively affects the model’s performance. VIF analysis was used in
addition to pairwise correlation, as it proved to highlight correlation sometimes missed
by pairwise analyses [92,93]. The approach followed, combined with the construction of
different sets of environmental variables, allowed us to minimize the information loss, a
method recognized as capable of improving the model’s performance [71] but still not
commonly used in species distribution models [94].

In general, evaluation metrics for MaxEnt models were very robust, and the selected
model outperformed all the other candidates, showing very consistent values of AUC, AIC,
and omission rates. The rest of the models based on pseudo-absence data presented robust
AUC, specificity, and sensitivity, pointing to a balanced trade-off between commission and
omission errors, while TSS was generally lower.

Traditional model evaluation approaches using metrics such as AUC have been crit-
icized for not being a strong metric on its own [95], so we considered a wide range of
evaluation metrics, aiming for scrupulous filtering of candidate models, highlighting the
role of dAIC as a strong metric [96,97], as well as omission rate [98]. Two out of four
selected models used RF algorithm, in concordance with recent findings [99,100], feeding
the narrative that RF models presented especially good performances when applied to
seagrass distribution models [53].

The results regarding predictors’ importance are robust and consistent in all selected
models. In all cases, the same six environmental variables held more than 90% of models’
predictive capabilities (Depth, distance to the soft substrate, mean SST of cold months,
northness, fetch length, and wave direction), although variable importance was generally
more equilibrated for models run with pseudo-absence data.

Depth and fetch length shaped the potential distribution area for the species to shallow
waters, relatively sheltered, while northness and wave direction delimited the potential suit-
able areas to the south-eastern coasts of the islands. The western region of the archipelago
presents lower suitability for the species, as island geological age, following an east-to-west
direction, is directly related to substrate availability. Variations in SST values also follow
an east-to-west increasing trend, with differences between western and eastern regions
up to 5 ◦C [101], mainly due to the influence of the upwelling of the African coast [45],
which may cause differences in the longitudinal distribution of some species. The first peak
of habitat suitability around lower values of SST could be explained by the proximity of
the eastern islands to the aforementioned upwelling of the African coast. These islands
present the lowest values of SST. The second peak of habitat suitability starts around 19 ◦C
and decreases when values of SST tend to increase, as these higher values are found in
the western regions of the archipelago. These results show that the SST does not seem to
be a key variable for the survival of the species in the Canary Islands, and contrast with
findings in [18], in which SST winter optimal values for the establishment of the species
seem to be lower (around 14 ◦C). Although it has been suggested that the global loss of
meadows has been partly caused by climate change [102], this phenomenon has mainly
concerned Mediterranean meadows formed by Posidonia and Zostera species. Caution is
advised when comparing the results between models, as different study scales are known
to lead to different variable importance [73,103]. There is still no evidence that it affects
C. nodosa in the same way, and it has even been suggested that C. nodosa may even benefit
from global warming due to its affinity for warm waters [104]. Nevertheless, there are other
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mechanisms linked to climate change, rather than temperature, that may have a significant
impact on C. nodosa meadows, such as the increasing frequency and intensity of extreme
weather events.

The consistency and robustness of the different models, regarding variables’ impor-
tance and predictive capabilities, allowed for the construction of an ensemble model. It is
known to have the potential of improving model robustness over attempts using single
algorithms [33,34], while enhancing our model’s prediction confidence [35]. Even though
the ensemble model was constructed with multiple base models, it performed as a single
species distribution model.

A total of 14,047 ha were identified as potentially suitable for the species, in contrast
with the 6709 ha in the Canary islands occupied by C. nodosa meadows as stated in the
Marine Phanerogams Atlas from Spain [105]. This is an expected discrepancy as these
14,047 ha refer to potential areas for the species to establish, considering no human presence
whatsoever. Coastal infrastructures such as ports are usually placed in naturally sheltered
areas, also preferred for the species to establish, and habitat suitability in areas surrounding
these infrastructures was especially jeopardized. After the degradation index was applied,
the total suitable area decreased to 9131 ha, much closer to the values found in the Ma-
rine Phanerogams Atlas from Spain. It is likely that the coastal activities dataset lacked
information about human impacts influencing the species distribution, mainly due to data
availability, but it still allowed us to better comprehend the scope of the potential habitat
loss due to these kinds of coastal impacts.

This study represents the first attempt to estimate the monetary value of both Blue
carbon and Nursery grounds at an archipelago scale in the Canary Islands. For the species
studied, we estimated the monetary value for C. nodosa’s role as nursery grounds at
97.52 €*ha−1, a slightly higher value compared to previous studies (89.13 €*ha−1) [4]. This
value was then estimated at 1,369,863 € for the whole archipelago considering a pristine
scenario, and 890,455 € after the degradation index was applied. The economic estimation
of C. nodosa’s role as nursery grounds is extremely difficult to compare with the known real
economic valuation of coastal fisheries (https://www.gobiernodecanarias.org/agp/sgt/
galerias/doc/estadisticas/pesca/2007_2021-especie_meses-valor.ods, accessed on 4 July
2022). These published values relate to the economic market profit of the extracted fish,
which represent a small fraction of the whole fish population. The economic estimation
presented in this study relates to the total potential economic value of the whole fish stocks
that use C. nodosa as nursery ground, and both assessments refer to different Ecosystem
Services. Nevertheless, the value of this work lies especially in highlighting the economic
loss of ES for Cymodocea meadows in the Canary Islands as a whole, which is a result to be
taken into account in future decision-making for the management of these communities.

The Blue Carbon estimations presented in this study are very consistent with previous
studies using similar methodologies [40], where they assessed the carbon stock related
to this species in 3,173,469 Mg. Our estimations resulted in 3,961,254 Mg CO2 and this
stock was then valued at 192,715,007€. When considering a degraded scenario, these values
dropped down to 2,574,942 Mg CO2, resulting in an economic assessment of 125,270,928€.
Overall, studies assessing the monetary social value of carbon stocks in different regions
and other seagrass species, present certain discrepancies. ES economic values carried
out for the Spanish territory [40] are lower than for the European region [106], which is
probably related to the use of different carbon prices, induced by carbon price instability
over time and the regional particularities of the species studied.

5. Conclusions

The analysis of the input parameters of the modeling, as well as the application of
different algorithms, allowed us to obtain a reliable and representative distribution model of
the potential habitat of Cymodocea nodosa. This model provides us with valuable information
not only about its distribution in pristine conditions but also about the relationship of the
species with the environmental variables analyzed.

https://www.gobiernodecanarias.org/agp/sgt/galerias/doc/estadisticas/pesca/2007_2021-especie_meses-valor.ods
https://www.gobiernodecanarias.org/agp/sgt/galerias/doc/estadisticas/pesca/2007_2021-especie_meses-valor.ods
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At the same time, the distribution model allowed us to quantify the impact of human
activities on this species and its ES provision. Our results, although based only on two ES,
demonstrate its great socio-economic importance, setting precedents and highlighting the
need for further studies of this kind.

The degraded habitat produced in this study, although approaching a realistic sce-
nario for the distribution of the species in the archipelago, needs to be further explored.
Many variables describing other types of human activities jeopardizing the distribution
of C. nodosa have not been taken into account and should be taken into consideration for
future studies. However, the proposed methodology helps us to understand in greater
depth the capabilities that this type of analysis offers.

This methodology allowed us to observe the decrease in habitat suitability in a spa-
tially explicit way, being a very useful tool for policy decision support, which has been
overlooked, especially in European ORs. One of the reasons for the lack of studies that
consider the spatially explicit dimension of ES assessments, as well as the geographical
distribution of the different human impacts on the coast, is the availability of data. In this
sense, the use of RS products and imagery is presented as a valuable tool to overcome
this limitation.
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