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Abstract We are facing a global loss of biodiversity

due to climate change. This will lead to unpre-

dictable changes in ecosystems, affecting the goods

and services they provide introduction of non-indige-

nous marine species. This represents one of the major

threats to marine biodiversity and therefore, there is a

strong need to assess, map and monitor these alien

species. The appearance of non-indigenous species is

especially dangerous in fragile ecosystems and it is of

great importance to better understand the invasion

mechanisms of these invasive species. This is the case

for invasive alga Asparagopsis armata, present in the

Azores Archipelago. In this study we propose a

methodology to define the realized ecological niche

of this invasive alga, alongside the native Asparagop-

sis taxiformis, to understand better its distribution and

potential impact on native communities and ecosys-

tem services. These objectives comply with the EU

Biodiversity strategy for 2020 goals and the need to

map and assess ecosystems and their services. The

lack of reliable high-resolution data makes this a

challenging task. Within this scope, we propose a

combination of Remote Sensing, Unmanned Aerial

Vehicle based imagery together with in-situ field data

to build ecological niche modelling approaches as a

cost-effective methodology to identify and character-

ize vulnerable marine ecosystems. Our results show

that this combination can help achieve monitoring,

leading to a better understanding of ecological niches

and the consequences of non-indigenous species

invasion in fragile ecosystems, like small islands,

when faced with limited data.
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Introduction

The global decline in marine biodiversity coupled with

the rapidly changing climate leads to shifts in marine

organisms’ distributions (Poloczanska et al. 2013;

Sunday et al. 2012). This may lead to unpre-

dictable changes in the provision of associated

ecosystem services, with potentially severe impacts

on society and the economy, such as reducing fisheries

or loss of recreational opportunities (Beaumont et al.

2008) and the apparition of non-indigenous-marine-

species (NIMS). Macroalgae are amongst the most

invasive NIMS (Schaffelke et al. 2006). They are

considered one of the greatest threats to native marine

biodiversity and the ocean’s resource value (Nor-

se1993, M. Vitousek et al. 1997).

The NE Atlantic is a hot spot of ocean warming,

with temperature increases measured between 0.38
and 0.88 C per decade (MCCIP 2010). The Azores

Archipelago, located in this region, composes nine

volcanic islands along with many islets, positioned in

three main groups on the mid-Atlantic ridge (França

et al. 2003). The geologically recent formation of the

islands, coupled with its isolated location make the

marine and coastal environment of the Azorean

Archipelago of high interest, particularly given its

biodiversity-rich coastal ecosystems (Santos et al.

1995). However, small islands are known to be

vulnerable to climate change (Veron et al. 2019),

and the threat of alien species invasion for small

islands is well documented (Nurse et al. 2014; IPCC

1995).

This is the case of the invasive Asparagopsis

armata. A. armata was introduced to the Azores in the

early twentieth century in the Atlantic and Mediter-

ranean. It is widely distributed in the eastern North

Atlantic Ocean, including Canaries and Macaronesia

(Dijoux et al. 2014), where it is also considered

invasive (Martins et al. 2019). It shows a tropical-to

warm-temperate distribution, presenting biomass

peaks in spring and summer (Andreakis et al. 2004).

NIMS have been linked to the reduction of ES

provision, which is often termed Ecosystem

Disservices (EDS), functions or properties of ecosys-

tems that cause effects that are perceived as harmful,

unpleasant or unwanted (Von Döhren and Haase

2015). The relation between the NIM A. armata and its

related ES and EDS has only been recently studied, but

it is known to affect natural ecosystem functioning and

to provide EDS (Katsanevakis et al.2014). One

disservice could be the potential impact on other

native seaweeds, such Asparagopsis taxiformis.A. tax-

iformis is considered a cosmopolitan species in warm-

temperate to tropical waters (Nı́ Chualáin et al. 2004).

However, distinct geographical lineages indicate

regional differentiation within this species (Nı́ Chua-

láin et al. 2004; Andreakis et al. 2004).

There is a strong need to monitor native and

invasive seaweeds’ distribution, but this can be time-

consuming, resource intensive, and often limited to

small areas (Werdell and Roesler 2003). Moreover, in

NE Atlantic, we can find a lack of regional-scale

distribution data resulting in a more challenging

detection of ecological impacts over local communi-

ties (Smale et al. 2013; Rodrigues, 2015). Knowledge

of the socio-economic effects of invasive seaweed is

poor, and economic impacts derived from seaweed

invasion are mainly based on mitigation costs, rather

than long term socio-economic impacts (Schaffelke

and Hewitt 2007).

Methods such as remote sensing (RS) could be the

answer to achieve cost-effective methodologies to

map and monitor seaweed distribution at regional and

global scales (Green et al. 1996; Topouzelis et al.

2018; Wabnitz et al. 2008; Traganos and Reinartz,

2017). RS has been used to map seaweeds (Dogan

et al. 2013; Casal et al. 2013; Hoang et al. 2016),

although studying heterogeneous coasts constitutes a

much more difficult task because of the lack of

suitable satellite imagery with adequate spectral and

spatial resolutions (Brodie et al. 2018). Previous

studies have attempted to map the coastline of São

Miguel with low-cost Unmanned Aerial Vehicle

(UAV) imagery, to obtain red–green–blue (RGB or

‘‘real colour’’) images with very high resolution

(Kellaris et al. 2019).

An alternative approach to direct monitoring is the

characterization of sspecies’ (realized) niches, which

can help assess invasion capabilities of NIMS. Given a

set of environmental variables known to influence

directly a certain species physiology, the environmen-

tal fundamental niche can be understood as the
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physiological responses of that species to those

environmental variables, where its growth rate is

identified as positive.

Assuming all environmental drivers are identified,

we can predict geographic areas where the species of

interest could establish and thrive, (assuming no

significant competitive interactions (Clark et al.

2007), and no dispersal limitations (Barve et al.

2011)). Assessing a species’ fundamental niche based

on field observations is virtually impossible, but the

realized niche can be retrieved with in-situ data.

Realized niche can be described as the fundamental

niche after a series of constraints are applied. These

constraints can be identified as (i) the accessibility to

geographic locations and (ii) the interactions between

species (biotic interactions) in that area. Furthermore,

the geographic scope of the study area can influence

our interpretations if the full environmental range of

the species is not seen in the area of study. However,

the realized niche of a species, assessed for a certain

geographic area with different accessibility character-

istics and biotic interactions, can be used to determine

the invasiveness capabilities for any NIMS in a given

geographic area.

Our goal is to infer the realized ecological niche of

the invasive red alga Asparagopsis armata, and its

native co-generic species Asparagopsis taxiformis

around São Miguel Island using presence records

from all over Azores Archipelago. This will allow a

better understanding of this species’ potential geo-

graphic spread and its socio-economic consequences.

For this purpose, we use a combination of RS, UAV

imagery and in-situ field data together with ecological

niche modelling approaches to monitor and forecast

the potential distribution of these important seaweeds.

This will help take the first step towards a deeper

comprehension of the ES loss and ecosystem disser-

vices related to NIMS establishment within local

communities.

Methods

Study area

The study area (Fig. 1) comprise Pico, Flores, Terceira

and São Miguel islands within the Azores Archipe-

lago. They are located in west (Flores) and the central

Azores (Terceira and Pico), which are affected by the

Gulf stream. São Miguel island belongs to the eastern

region, where the Azores current has the most

substantial influence over the whole archipelago.

The Azores Archipelago is a confluence zone with

notable influence over the oceanographic and biolog-

ical characterization of the North Atlantic region

(Caldeira and Reis 2017). It is considered a highly

productive marine region with highly seasonal varia-

tions of nutrient cycles (Amorim et al. 2017). In

concordance with global climate change patterns (Karl

et al. 2000), temperature and precipitation levels in the

Azores have been measurably on the rise (Santos et al.

2004).

Environmental variables

Two sets of environmental variables were produced

for this study, along with two different modelling

approaches. An initial set of 6 environmental variables

characterizing the abiotic conditions of São Miguel

island were considered. These variables were derived

from a DEM, taken from the EMODnet Bathymetry

portal. We generated: Aspect, Depth, Fetch, Rough-

ness, Slope and Topographic Position Index (TPI),

restricted to a 3 km buffer from the shoreline. Aspect,

roughness, slope and TPI were processed using

Aspect, Roughness, Slope and Topographic Position

Index Raster tools inQGIS 3.4.1 Madeira, at an output

spatial resolution of 100 m x 100 m. Depth values

were obtained directly from the DEM at a resolution of

100 m x 100 m The Fetch (a measure of coastal

exposure derived from spatial proximity to shorelines)

was calculated using R studio 1.1.463B (Yesson et al.

2015).

The second set of environmental variables used in a

presence/absence approach contained photoperiod,

depth and temperature values. Depth and temperature

values were obtained via in situ measures recorded

with aMARESMission Puck 3 dive computer by scuba

divers in 2016, 2017 and 2018 in Pico, Terceira, Flores

and São Miguel islands. Photoperiod values corre-

sponding to these survey’s day were calculated using

the daylength function in the geosphere R package

(Forsythe et al. 1995). Table 1 shows both sets of

variables.

We undertook a Variance Inflation Factor (VIF)

analysis to test for spatial correlation of the environ-

mental variables, to set aside those predictors spatially

correlated. We ran the analysis using the VIF function
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implemented in the R sdm package (Naimi et al. 2014).

This analysis showed that roughness and TPI were

highly correlated (with VIF values greater than 10), so

TPI was removed from subsequent analysis.

Species occurrence data

Distribution models are based on statistical

approaches that study the linkage of occurrence data

and environmental variables (Marcelino and Ver-

bruggen 2015).

Occurrence data can be considered as georefer-

enced locations where the species have been found,

while absence data are georeferenced points where the

species has been surveyed and not found. Absence

data are rarely available (Loiselle et al. 2003) but

pseudo-absence or background data can be used as an

alternative (Marcelino and Verbruggen 2015). Due to

the characteristics of the data acquisition, while

undertaking Ecological Niche Modelling (ENM) for

invasive species, it is a common procedure to use only

presence data (Marcelino and Verbruggen 2015). For

our modeling approaches, we constructed two differ-

ent occurrence datasets. (i) Presence-only data derived

from remote sensing imagery classification to run

Presence/background models with our first set of

environmental variables to be used with MAXENT

and (ii) Presence/absence dataset obtained from a

sampling survey in 2016, 2017 and 2018 in 4 islands of

Azores Archipelago. A series of spots were revisited

during those years to assess the presence of the species

and the abiotic conditions (Table 1). This dataset was

used to run the generalized linear models (GLM)

detailed below.

Remote sensing derived presence data

Occurrence data was supplemented by data inferred

from a UAV survey (Kellaris et al. 2019). Images were

taken with an unmanned aerial vehicle (UAV) in three

Fig. 1 Azores Archipelago
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São Miguel island regions, using a DJI Phantom 3

Professional quadcopter drone that carries a visible

light camera. The survey was carried out at low tide,

considering optimal conditions (low cloud coverage

and low wave speed) at 114 m altitude, achieving a

spatial resolution of 4.93 cm*pixel-1. Surveys were

carried out in May and June 2018, in Caloura,

Mosteiros and Lagoa coasts (Fig. 2), along with

ground-truth surveys by kayak and scuba divers to

test the image classification. Support Vector Machine

(SVM) image classification was used as our source of

occurrence data. The DroneDeploy software

(DroneDeploy, San Francisco, CA, USA) was used

to design the flight plan with image overlaps set to

85% frontlap, 80% sidelap and Pix4Dmapper (Pix4D

SA, Lausanne, Switzerland) was used to construct

photomosaics.

This classification presented an accuracy of 0.998

with a standard deviation of 6.42e-4 in Kappa

statistics (Kellaris et al. 2019). We used the Point

Sampling Tool plugin in QGIS 3.4.1 to extract

presence sites from these classified UAV images.

First, we constructed a 100 m x 100 m square

rectangle grid and the UAV survey areas with Create

Grid tool and then used Centroids to obtain a point

grid consisting of those squares’ centroids. With these

centroids, we extracted the UAV classification output

to obtain presence and absence of the target algae. We

selected 100 m x 100 m resolution for our sample

point grid to match the spatial resolution of our

environmental variables and our presence records.

A random subset selection of presence points for A.

armata and A. taxiformis using the Subset Features

geostatistical Analysis tool in ArcGIS 10.4, to avoid

spatial correlation between presence records. This

resulted in 29 and 30 presence records for A. armata

and A. taxiformis, respectively (Fig. 2).

Survey sampling data

Four islands (from 65 to 513 km apart) were selected

among the three island groups (eastern, central, and

western) of the archipelago, chosen to be representa-

tive of the three groups and span the entire length of

the archipelago. Sampling surveys were carried out in

2016, 2017 and 2018 (Fig. 3). Within each island, 3

sites were randomly selected, with no prior identifi-

cation of the algae’s presence, with surveys conducted

depths of 5-, 10- and 15-m depth. Within each site,

three 50 9 50 cm quadrats were placed on the seabed

and visually sampled by scuba divers using the method

of Dethier et al. (1993), recording depth and

Table 1 Environmental variables

Variables Source Spatial

resolution

Model

Aspect (8) Processed from EMODnet Digital Elevation Model with Aspect Raster Tool in QGIS
3.4.1 Madeira

100 m x

100 m

Presence/

Background

Depth_1 (m) Extracted directly from Digital Elevation Model available in EMODnet Bathymetry

portal Digital Elevation Model (http://emodnet-bathymetry.edu)

100 m x

100 m

Presence/

Background

Fetch (m) Calculated using R studio 1.1.463 as implemented in (Yesson et al. 2015) 100 m x

100 m

Presence/

Background

Roughness

(m)

Processed from EMODnet Digital Elevation Model with Roughness Raster Tool in
QGIS 3.4.1 Madeira

100 m x

100 m

Presence/

Background

Slope (8) Processed from EMODnet Digital Elevation Model with Slope Raster Tool in QGIS

3.4.1 Madeira

100 m x

100 m

Presence/

Background

TPI (m) Processed from EMODnet Digital Elevation Model with Topographic Position Index
Raster Tool in QGIS 3.4.1 Madeira

100 m x

100 m

Presence/

Background

Depth_2 (m) In situ measures N/A Presence/

Absence

Temperature

(8C)
In situ measures N/A Presence/

Absence

Photoperiod

(hours)

Calculated using daylength function in geosphere R package (Forsythe et al. 1995) N/A Presence/

Absence
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temperature values with a MARES Mission Puck 3

dive computer.

Each location was surveyed repeatedly for a total of

73 different sampling days over three years. Quadrant

position was randomly chosen in each survey and by

the end of the process, 1265 observations were

recorded. The species presence/absence data set

consisted of 70 records in 2016, 955 records in 2017

and 240 records in 2018 (Table 2). This set of presence

data was constructed considering photoperiod and

sampling sites’ values along with sampled tempera-

ture and depth (categorized as deeper or shallower

than 10 m) and used to run three different kinds of

presence/absence models.

Ecological niche modelling approacheS

Species distribution models (SDMs) are widely used

in ecology and conservation with a vast variety of

methodologies and approaches (Elith et al. 2006). An

SDM algorithm is a mathematical expression that can

be used to estimate species distribution using envi-

ronmental predictor variables. Among the most com-

monly used methods, we can find regression

algorithms that make use of absence and presence

data, such as: Generalized linear models (GLM),

Generalized additive models (GAM), multivariate

adaptative regression splines and boosted regression

trees; or algorithms that only use presence data

together with background data such as SVMs (Drake

et al. 2006) and MAXENT (Kearney et al. 2008).

In this context, we propose a two-step approach to

characterize the species ecological niche. A ‘‘geo-

graphic approach’’ focuses on how species distribution

is affected by topographical variables and an ‘‘envi-

ronmental approach’’ to understand the species’

temporal dynamics.

On the one hand, in-situ observations provide a

robust dataset of the species’ presence and absence

over time, with extensive temporal coverage but

limited geographic extent. This continuous monitoring

of the species allowed us to study how changes in

Fig. 2 Presence data derived from UAV classification images in Caloura, Lagoa and Mosteiros bays (São Miguel island)
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dynamic variables, such as SST or photoperiod, affect

species distribution, although providing little infor-

mation regarding the species’ response to different

abiotic environmental characteristics. On the other

hand, a remote sensing-based dataset lacks temporal

coverage, but its geographic extent, with surveys in

three different bays of the island, allows us to

characterize how species distribution is affected by

terrain variables changes.

Presence/background approach

First, to characterize the algae distribution response,

we worked with MAXENT, using the first set of 6

topographic variables with presence data derived

solely from remote sensing. These variables were

used to assess the response of A. armata and A.

Asparagopsis to different topographic characteristics.

Environmental variables were not used for this model

as their spatial resolution was too coarse in compar-

ison to the topographic data. As presence records were

retrieved from three different coasts limited to São

Miguel island, the extent for model validation was

limited to this island as well. This analysis will provide

estimates of the species’ topographic preferences, to

be then used along with results of presence/absence

models.

MAXENT has been broadly used to model species

distribution. It is based on a maximum entropy

approach, predicting the species occurrence by min-

imizing the estimated relative entropy from presence

data only (Phillips et al. 2006) which has been shown

to perform well with limited datasets. Samples With

Data (SWD) tables were constructed using the Point

Sampling Tool plugin in QGIS 3.4.1 Madeira, extract-

ing environmental variables corresponding to each

presence record. Localities where the algae were not

Fig. 3 Sampling sites (red triangles) in different islands of the Azores Archipelago during 2016, 2017 and 2018

Table 2 Presence records per surveyed year

2016 2017 2018

January 0 60 0

February 0 60 0

March 0 60 0

April 0 60 0

May 0 160 60

June 0 315 60

July 0 60 60

August 0 60 60

September 0 60 0

October 0 50 0

November 60 10 0

December 10 0 0
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present in the UAV classification maps were selected

as background (or pseudo absence) data. The KUENM

package (Cobos et al. 2019) with R studio 1.1.463 was

used to undertake an automated calibration process

usingMAXENT software creating a certain number of

candidate models, taking into consideration all possi-

ble combinations of setting parameters. A single set of

variables was used, comprising all six topographic

variables, Beta multiplier range values were selected

from 0.1 to 9.7 (with increasing steps of 0.4) and all

possible combinations of setting parameters were used

in the automated process. Then, partial ROC, omission

rates and Akaike’s Information Criterion (AIC) were

assessed to find statistically significant models (Cobos

et al. 2019).

Presence/absence approach

Secondly, we undertook a species habitat suitability

characterization using the presence/absence dataset to

study how these species’ distributions respond to

dynamic environmental variables. Before final model

selection, GAM, RF and GLM algorithms were

constructed, and performances compared, based on

this initial assessment the GLM algorithm was

selected to undertake the presence/absence approach.

The extent considered for model validation should

be set according to geographic areas where the species

had accessibility. In this particular case, a more

limited extent was taken into consideration (Barve

et al. 2011).

The relatively recent arrival of A. armata, would

point to a more limited extent being considered, in

keeping with its short term expansion capabilities

(Barve et al. 2011). However, resource availability

limited the study area to 4 islands of the archipelago

(Fig. 3).

To study the different responses to changes in

temperature, photoperiod and depth, the sites were

revisited over three years to characterize the physio-

logical response to annual variability of those abiotic

factors, along with potential preferences over any

particular location.

Four variables were used to calibrate the models:

(i) Temperature, (ii) Photoperiod, (iii) Depth and (iv)

Sampling site. Recorded temperatures reached mini-

mum levels of 15 and 238 C for the 3-year period, with

photoperiod values ranging between 9.53 and 14.76 h

and registered depths of 5, 10 and 15 m, then classified

in two classes (\ 10 m and[ 10 m).

Model evaluation

Both models’ performance was evaluated using Area

Under the Curve (AUC) values and by assessing how

predictors contribute to explain and determine the

species distribution.

For the MAXENT model (Presence/background),

variable contributions were calculated using a Jack-

knife approach implemented inMAXENT 3.4.1 and 40

models were run using a 20% bootstrap random

subsample selection test.

After assessing and evaluating our models, two

suitability maps were constructed graphically explain-

ing how A. armata and A. taxiformis geographic

distribution is affected and explained by topographic

environmental variables, and spatial explicit species

geographic distribution maps were constructed. Then,

species response to environmental variables was

characterized and species realized ecological niche

was inferred with the combination of both outputs.

Results

Direct observations of Asparagopsis armata span 426

sites totalling 1265 observations. The native As-

paragopsis taxiformis was seen in 793 sites within

the same 1265 observations (Fig. 3). Presence/back-

ground data was also generated from classified drone

imagery 29/30 presence records for A. armata/A.

taxiformis respectively and 2355/2356 background

records.

Presence/background approach

A total of 493MAXENTmodels were generated for A.

armata and A. taxiformis for parameter optimization.

Model selection criteria were based on: (i) Partial

Receiver Operating Characteristic (ROC), with values

lower than 1 showing statistical significance, (ii)

Omission rates, with values lower than 5% related to

the best performance and (iii) Lowest delta AIC

pointing to the single best model finding the best trade-

off between data fitting and model complexity,

avoiding both overfitting and underfitting (Peterson
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et al. 2008; Snipes and Taylor 2014; Cobos et al.

2019). Model parameters are presented in Table 3.

Depth was the most crucial variable for the A.

taxiformis model, followed by Roughness, and all

other variables were excluded after Jacknife analysis.

The species was associated with 5 and 20 m of depth

and low values of roughness, suggesting a preference

for smoother bottoms. In contrast, for A. armata,

Depth, and Fetch were the variables with a higher

relative contribution to habitat prediction, with Depth

the most important again (Table 4). For A. armata, we

found response to depth similar to A. taxiformis, with

preferences for shelter and shoreward areas (lower

Fetch). The maximum preference appears to values

closer to 100 m, dramatically decreasing when fetch

reaches values greater than 10,000 m. All other

variables were discarded for modeling processes as

they were negatively impacting model performance.

When optimal parameter settings were character-

ized, we run the MAXENT model 40 times. Both A.

taxiformis and A. armata models had an excellent

Table 3 MAXENT parameter settings

A. armata A. taxiformis

Beta Multiplier 1.1 1.2

Hinge features threshold 0.45 0.5

Beta threshold 1.63 1.86

L/Q/Pa features 1.4 1.5

aLinear, quadratic and product features*

Table 4 MAXENT

variable contributions
Variable contribution (%) Variable permutation importance (%)

A. armata Depth 72.1 55.3

Fetch 27.9 44.7

A. taxiformis Depth 62.5 63.75

Roughness 37.5 36.25

Fig. 4 MAXENT predicted potential geographic distribution in São Miguel island

Table 5 AUC results for A. Armata and A. taxiformis pres-

ence/absence models

Species Model Mean value Standard deviation

A. armata GAM 0.89 0.01

A. armata GLM 0.88 0.02

A. armata RF 0.91 0.02

A. taxiformis GAM 0.74 0.02

A. taxiformis GLM 0.74 0.02

A. taxiformis RF 0.76 0.01
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performance, with a mean AUC value of 0.806 and

0.823.

The model prediction estimates show a more

homogeneous geographic distribution for A. armata

without a clear preference in any region with lower

habitat suitability values in São Miguel island. For A.

taxiformis, we can observe higher suitability values

over the north-northeast part of the Island (Fig. 4).

Presence/absence approach

Model performance for the presence/absence

approach was relatively similar across all methods

(Table 5). Simpler models should be preferred over

complex ones (Guisan et al. 2002) therefore, based on

models’ similar performance and taking into consid-

eration GLM more straightforward explanation and

results in interpretation, we focus on the GLMs to

present variable species response. Model evaluation

was carried out with a cross-validation method

implemented in the Biomod R package, with ten

different runs.

Photoperiod and temperature have the greatest

influence on the A. armata model. At the same time,

Depth barely affects the species response and sam-

pling site slightly affecting A. taxiformis distribution

but has negligible influence over A. armata (Figs. 5

and 6). Maximum suitability is expected when

medium–high values of photoperiod (starting at 13 h

per day) meet low to medium temperature values

(around 15.5–18.5 8C). High values of temperature

are unsuitable for A. armata. The results are less clear

for A. taxiformis (Figs. 5 and 6), which shows a

relative weak response to photoperiod.

Discussion

In NE Atlantic, Asparagopsis armata’s known north-

ern and southern distribution boundaries can be found

in UK and Senegal, respectively. Along with this

known geographic distribution, we can find optimal

growth temperatures between 10 and 21 8C, with

lethal limits at 5 and 27 8C (Mata et al. 2006). In the

Azores Archipelago, these limits are very unlikely to

be reached. Photoperiod values range from 9.5 to

14.76 h, with the temperature reaching its minimum at

15 8C with an annual maximum at 24 8C. All possible
fundamental abiotic environmental requirements for

the species to be present are not met in the Azorean

archipelago. As expected from mechanistic modeling

approaches, the species’ fundamental niche is extre-

mely unlikely to be captured by a modeling effort

based only on Azores distribution data.

On the contrary, our approach aimed to understand

better and characterize the realized niche of the

species within the archipelago. Aside from the abiotic

environmental requirements present in any given

geographic area, other particularities such as biotic

interactions and species accessibility play an essential

role when shaping the realized niche of a species. Such

particularities are not explicitly captured by the model

itself (Barve et al. 2011). However, the species’

inferred realized niche identifies its suitability to the

abiotic environmental variables available in a given

geographic area.

For the specific set of variables considered in the

model, A. armata’s distribution is best explained by

two key variables: (i) Photoperiod and (ii) Tempera-

ture. The realized niche of the species, given the

variables considered, can be found when specific

values of photoperiod (13 h) meet temperatures

between 15.5 and 18.5 8C.
Compared to its co-generic species, A. armata’s

niche is much narrower than the A. taxiformis’. A.

taxiformis is far less affected by changes in depth

than A. armata and shows a generalist profile, in

concordance with findings from the southern coast of

Spain (Zanolla et al. 2018), where they found different

cohorts overlapping in time. A. taxiformis distribution

cannot be explained with confidence by any of the

environmental variables considered. However, there

appears to be a geographic preference to locations

such as Caloura beach. A. armata’s optimal temper-

atures and photoperiod values are expected to be met

earlier in the year in latitudes closer to the equator, and

later as we get farther north as Kraan and Barrington

(2005) results show for the Irish coast.

A. armata’s optimal environmental conditions in

Azores Archipelago can be expected to be achieved in

the early summer with explosive blooms when optimal

conditions are met, and starting to decay after summer

(Mata et al. 2006). Therefore, we could predict intense

bFig. 5 Species response to depth, photoperiod and temperature

environmental predictors for 10 different runs for GLM model
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blooms when the water stays relatively cold in early-

summer period (with high photoperiod values). When

these criteria are met, we can expect suitable areas

for A. armata’s gametophytic stage to overlap with A.

taxiformis’. However niche preferences of the two

species are quite different to allow for a significant

overlap. Nevertheless, other algal blooms may occur

at various times over the year, not necessarily

overlapping year on year, pointing out that photope-

riod alone may not be a reliable predictor of blooms by

itself (Martins et al. 2019).

A. armata does not show distribution preferences

over any region of the São Miguel coast and this is

something we might expect from a geographically

wide-ranging invasive species. This feeds the narra-

tive that A. armata shows opportunistic characteris-

tics with explosive blooms when climatic conditions

are met in late spring-early summer, growing all over

the coast regardless of the environment’s geographical

characteristics. Conversely, A. taxiformis shows a

specific preference over the north-northeast coast

when analyzing its geographic distribution. A. taxi-

formis models are not very robust, and we may be

lacking essential predictor variables. Other studies

have shown the importance of variables such as

primary productivity, surface salinity, nutrient con-

centrations, Chlorophyll-a, and pH for invasive sea-

weeds (Karl et al. 2000; Miller et al. 2019; Guerra-

Garcı́a et al. 2012). Variables such as SST or sea

surface salinity are freely available from remote

sensing datasets but at a much broader spatial reso-

lution than the data used in this study. Spatial

resolution strongly affects model predictive capabil-

ities (Guisan et al. 2007).

The relationship between the spatial resolution of

species occurrence data and environmental variables

is a crucial aspect for consideration. For instance,

coarse resolution environmental variables may fail to

identify the habitat where the species occurs, and

changes in spatial resolution of environmental vari-

ables can alter our understanding of presence patterns

(Guisan et al. 2007), especially when considering

highly dynamic oceanographic processes.

On the contrary, when considering coarse-scale

occurrence datasets, such as historical collections with

inherent spatial uncertainties, the use of finer-scale

environmental data is not advised (Graham et al.

2004).

Our case study worked with two datasets of two

different natures, with presence records of high spatial

resolution and low location uncertainties. The spatial

resolution of our remote-sensing derived occurrences

made this dataset unfit to be used with coarser freely

available environmental variables (Guisan et al.

2007). However, it proved to be important when

undertaking ecological modeling of invasive algae.

Considering this limitation, along with its poor

temporal resolution (our records being limited to a

Fig. 6 A. taxiformis and A. armata response to photoperiod and temperature environmental predictors
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small window of time where abundance peaks were

expected), we decided to model our species response

to solely topographic variables, at a convenient native

resolution of 100 m x 100 m. UAV imagery allowed

us to get a wide ‘‘screenshot’’ where representative

values of the species’ topographic preferences could

be easily and cost-effectively retrieved, compared to

the logistic and human resources demanded for an

extensive sampling field survey.

On the other hand, while lacking the capacity to

assess topographic preferences, the in-situ dataset al-

lowed us to determine species preferences for specific

conditions of photoperiod and temperature, indepen-

dent of the topographic characteristics, (which

remained constant over the 3 years of sampling). In

contrast to the remote-sensing dataset, the in-situ

dataset provide the temporal resolution needed to

study dynamic variables. The in-situ dataset was unfit

to be used with coarse resolution environmental data

(Guisan et al. 2007) but convenient to characterize

species response to abiotic dynamic factors. Due to the

limitations of environmental variable availability

(outlined above), two different models were run in

two separate steps of a sole modeling approach Firstly,

we assessed the species physiological response to

dynamic variables, characterizing the realized niche

related to those abiotic factors, in an attempt to

empirically locate the time of potential peaks of

abundance in the archipelago. In a second step, we

sought to characterize species response to topographic

variables, which is intrinsically linked to expected

abundance peaks.

With the outputs of these two modeling steps, we

inferred the realized niche of the species, identifying,

on the one hand, the periods of the year where

invasive A. armata could pose a real threat to

native A. taxiformis. On the other hand, studying the

species’ topographic preferences where this peak of

abundance is expected, providing spatially explicit

assessments of its invasion mechanics. This spatially

explicit information aims to be a convenient tool to

better understand the species’ invasiveness capabili-

ties and anticipate the expected locations where

explosive blooms may occur.

It is essential to consider that the presence/back-

ground model was constructed with observations from

the South and West Coasts of São Miguel island, with

no data in the North or East coast of São Miguel (due

to weather constraints limiting survey sampling

capabilities). This sampling procedure may have

introduced a bias in the presence records. For this

reason, the presence/background model was not

projected to other islands of the archipelago (Stolar

and Nielsen 2015).

Also image classifications used in the present study

indicated overfitting in the training data. Nevertheless,

remote sensing-based occurrence data proved a con-

venient tool to predict potential geographic distribu-

tion, allowing us to infer species niche when working

in parallel with in situ datasets.

While not explicitly captured in the model, the

biotic interactions affecting species’ establishment

can be considered an intrinsic characteristic of any

given geographic area. This local competition will

ultimately effect species’ realized niche. This study

aimed to assess the invasiveness trait of A. taxiformis

in the Azores Archipelago by defining and studying its

realized niche. Given the nature and the purpose of this

modeling approach itself, caution is advised when

considering extending these results to the whole

species potential distribution (Malanson et al. 1992).

While the two-step approach modeling with differ-

ent datasets provided good results, demonstrating its

potential application when facing data scarcity sce-

narios, other approaches might be helpful in the

present study. For example, it could be interesting to

broaden study areas, even attempting to undertake a

complete UAV image classification of the whole

island, considering different times of the year. This

will permit construction of a species niche model

based entirely on remote sensing-based data sets

although depending on the time of the year this

approach may not be feasible due to weather con-

straints (Kellaris et al. 2019). Nonetheless, although

solely relying on UAV imagery may not be possible, it

remains an excellent complementary tool.

Furthermore, once the realized niche of the invasive

species is identified and possible locations for the

species to appear anticipated, UAV imagery could

represent a ready-to-use tool to reaffirm and validate

the hypothetical locations more likely to be invaded,

and so be used as an early alarm system.

As stated, our results may lack the capabilities to

drive firm conclusions about the geographic distribu-

tion of the species outside the Azorean archipelago.

For these purposes, historical presence datasets, with a

much broader spatial resolution (and location uncer-

tainties) could be used with other sets of freely
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available remote-sensing derived environmental vari-

ables, in an attempt to assess the potential distribution

of these species in a wider geographic area, with

coarser resolutions. This approach would allow us to

get closer to the fundamental niche of the species.

However, some problematic issues would need to be

considered, such as the presence of potential different

genetic lines of the species, that could be included in

the same occurrence dataset. Other genetic lines of the

species may represent different adaptations to various

environments and hence, dissimilarities in niche

characteristics. This issue may affect not only the

model performance but the proper identification of its

niche. Nonetheless, this approach would allow us to

compare the potential distribution of the species with

the assessed realized niche in the Azores Archipelago,

and help better understand the invasive capabilities

of A. armata.

Eventually, as a consequence of ocean warming,

optimal day lengths (photoperiod) will no longer

match optimal temperatures for the species to thrive.

Optimal photoperiod values will occur along with less

suitable SST values (warmer sea surface). These

conclusions are in concordance with the leading

results in (Martı́nez et al. 2018), showing that rising

values of Sea Surface Temperature (SST) are related

to the ecological niche narrowing of temperate

seaweeds, with solid distribution range contractions

and shifts in distributions. While that may appear

positive, as an invasive species may no longer find

suitable habitat in the Azores with the consequent

apparition of ecosystem disservices, it should be noted

that many natives will suffer the same fate with severe

socio-economic impacts. This is further evidence of

the vital need to monitor not only invasive but native

species in coastal ecosystems as a tool to inform

policymakers and provide proof evidence of socio-

economic advantages derived from natural ecosystem

protection and restoration.

Conclusions

Further steps need then to be taken, and explicit spatial

maps of both ES and EDS provided by A. armata and

A. taxiformis should be produced as a critical tool for

marine and coastal conservation, following the EU

Biodiversity strategy for 2020. The Outermost

Regions (ORs) of Europe, such as Azores

Archipelago, are expected to undertake this MAES

procedure, but a lack of reliable and high-resolution

data usually makes this kind of assessment and

valuation infeasible.

In this context, ecological niche modeling charac-

terization represents one of the first steps of MAES in

the region, helping to identify and characterize

impacts and losses of ES related to Coastal ecosystems

in remote and data-scarce scenarios. Future MAES

procedures and spatially explicit ES assessments will

strongly depend on ecological and socio-economic

data, which in combination with ecological niche

modeling methodologies will set a feasible scenario

for MAES in the Macaronesian bioregion.
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