A new look at the Empirical Mode Decomposition
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Abstract

In this paper a look into EMD from the application point of view is done. Two
important problems are faced and solutions proposed: a) the removal of false
components and b) the increase in number of IMFs and computational time
in long signals. To detect which IMF's are not presented in the original signal
we propose an algorithm based on the spectral inversion and correlation. For
decomposing very long signals a sequential sifting on segments of the signal
in a sliding window is proposed.

Keywords: Empirical mode decomposition, Intrinsic mode function, long
signal, spectral inversion

1. Introduction

The Empirical Mode Decomposition (EMD) as was proposed initially by
Huang et al [4] is a signal decomposition algorithm based on a successive
removal of elemental signals: the Intrinsic Mode Functions (IMF). These are
continuous functions such that at any point, the mean value of the envelope
defined by the local maxima and the envelope defined by the local minima
is zero. They are found through an iterative procedure called sifting that is
a way of removing the dissymmetry between the upper and lower envelopes
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in order to transform the original signal into an amplitude modulated (AM)
signal. Moreover, as the instantaneous frequency can change from instant
to instant, we can say that each IMF is a simmultaneously amplitude and
frequency modulated signal (AM/FM). So, the EMD is nothing else than a
decomposition into a set of AM/FM modulated signals [7, 8].

The original algorithm had some implicit difficulties [1, 7] that we tried to
alleviate in a previously proposed algorithm where we used a parabolic inter-
polation to estimate the extrema and their locations. To render less severe
the extremity effect we extrapolate the maxima and the minima. We inserted
also a new stopping criterion in the sifting procedure by introducing two res-
olution factors (These assumptions led us to obtain an EMD implementation
with better performances than previous algorithms?|7].).

In the last years several modifications have been proposed to increase the
performances of EMD, [2, 3, 5, 6, 9, 10, 11]. In some cases we wander if
the introduced complexity compensates the quality increase. We think that
in general we cannot say that they were really successful. So we are trying
to maintain the beauty simplicity of the original algorithm and increase the
reliability of the decomposition. On the other hand, we want to increase its
applicability.

We must emphasize that EMD is merely a computational decomposition al-
gorithm that expresses a given signal as a sum of simpler components. There
is nothing telling us that the obtained components are really part of the sig-
nal at hand. We will make a brief study of this problem.

In practical applications there are several tradeoffs among: resolution, signal
length, number of IMFs, and running time. In fact an increase in signal
length leads generally to a corresponding increase in the number of IMFs
and consequently in the running time that may become so high that the
algorithm may become useless. The decrease in the resolution, decreases in
general the number of IMFs and the running time but the quality of the
decomposition also decreases.

The increase in the number of IMFs is a very important drawback because it
may originate “false” components that are added to one IMF and subtracted
to another one or appear isolated. So in general we have no guarantee to
have IMFs that are really present in the original signal. This brings the need

2The routine can be found at http://www.mathworks.com /matlabcentral /fileexchange/21409-
empirical-mode-decomposition
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for an algorithm for detecting the extraneous components. Here we propose
an algorithm to do it. It is based on the spectral inversion. To perform a
spectral inversion, we assume that the signal is discrete-time and so ban-
dlimited. The change of the sign of alternate samples produces a spectral
inversion. With it we will devise a way of finding the real components.

In applications to long signals the number of components and the running
time would be so high that the algorithm would be almost useless. To avoid
it we propose here a reformulation of the procedure we proposed in [7] to deal
with long signals. Essentially the algorithms consistis in cutting the original
signal in overlapped segments and computing long IMFs one each time. This
keeps the number of IMF's at an useful level as we will see later.

The paper outlines as follows. In section 2 we study EMD thro some
simple examples. The problem of removing non interesting IMFgis consid-
ered in section 3 and in section 4 we present a modified sifting/to deal with
very long signals.

Aqui conecta con
2. Some reflections about EMD el algoritmo largo

It is iportant to refer the usefulness of EMD in practical applications. The
large number of papers published in the last years confirm the affirmation.
Its usefulness is in the ability to decompose a given complicated signal into a
finite set of narrowband signals without introducing any particular constraint
on its characteristics. This makes easy the spectral estimation and creation
of simple models.

Any way we must do some reflection about the questions posed by the algo-
rithm.

e Meaning of the IMF's
In general we are not able to establish any special connection between
a given IMF and the structure (eventually tied with the underlying
physics) of the original signal. This does not mean that we cannot do
it in some particular situation as it is the case illustrated in figure 1
where we depict a tidal signal and its EMD.

figure 1
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A close look seems to point out that the most important IMFs are the
two upper ones. The Fourier transform confirms such asumption since
the peak frequencies of such IMFs correspond to the frequencies of the
main components in the tidal signal: the positions of the Moon and the
Sun relative to Earth and the Earth’s rotation. The first has a period of
about 12 hours and 25 minutes and the second has a period of 24 hours.

figure 2

These are clearly identified in the pictures. Even with a careful study
it would be more difficult to give some meaning to some of the other
components.

Existence of false components in the IMF's
The above example calls the attention to the existence of false compo-
nents. This can be seen, for instance, in doing a comparison of strips
3 and 4 in figure 2 where we observe very similar spectra. This is a
consequence of the numerical errors in sifting: one component is added
in one IMF and subtracted in another one.

The number of IMF's depends on the length of the signal

In fact the number of components increases with the length of the sig-
nal. This is an unwanted feature of the algorithm that is connected
with the false component generation. On the other hand this brings
another drawback: the increase in the time required to do the decom-
position.

An example

In a search for long range processes we made an experiment with the
electric circuit of a heater fan. We acquired 2h of the signal with a
sampling interval of 10ms. With it we computed the EMD of increas-
ing length segments using the algorithm we described in [7] table 2 for
2 different resolutions [7]: 40, 45.

We made the computations on a current PC using MatLab. It is possi-
ble to decrease the computational time by implementing the algorithm
with a high level languade like C'#.



Table 1: IMF's and computational time for a heater fan signal

Resolution Length IMF’s Time
6,000 12 15
30,000 14 70
120,000 17 660
40 240,000 18 1409
360,000 18 1988
480,000 20 3308
600,000 20 4043
720,000 21 5534
5,000 12 21
10,000 16 156
120,000 18 757
45 240,000 20 9365 NO PUEDE SER
360,000 19 3405
480,000 21 6126
600,000 21 7173
720,000 23 12894

e The relation between the last IMF and the signal trend

One application of EMD is the extraction of the trend assumed to be
the last component. However this is valid only if the trend does not
have any oscillation in the sense of having more than one extremum. In
this case we could say that the last IMF was the trend, but the end ef-
fects distort it. We preffer to remove it because it must be quadratic. In
this case it is simple to remove it without end effects by a least squares
algorithm. In figure we illustrate this statement. We picked the last
IMF of the EMD of the above referred tidal signal and retained the
last IMF. We represent this IMF and the trend we got by a parabolic
lewast squares adjustment. The end effects are clearly evidenced.

figure 3

We can conclude that the main drawbacks of EMD are the false components
and the large computational time when the signal is long. In the following
we will propose solutions for these problems.



3. Which IMFs?

In this section we are going to address the issue of the false components.
On being “empirical” the algorithm does not allow a pre-fixing number of
IMFs. This implies the possibility of existing IMFs that are not “true”
components of the signal and it is not easy to know which are really present
in the original signal. In the following we will describe an algorithm for
detecting which IMFs are really present in the signal. To do it, we will use
the spectral inversion. This is very easy to obtain. For simplicity, assume
that the signal at hand, x(n), is discrete-time, with Fourier transform X (™).
[s is a simple task to show that the signal (—1)"x(n) has Fourier transform
X (e/™)). We conclude that the spectral inversion is obtained by changing
the sign of alternate samples.

With this we propose the following algorithm for detecting the IMFs really
present in the signal.

1. Obtain the EMD of z(n). Let X be the matrix of the M computed
IMF's.

2. Put y(n) = (—1)"z(n) and obtain the corresponding N IMFs.
3. Produce the spectral inversion of all these N IMFs.

4. Correlate M IMFs obtained above with the N signals (not IMFs) got
in 3. Those with correlations above a given threshold are considered
components of the original signal.

figure 5

To illustrate the application of this procedure consider the decomposition
of a signal that is a sum of two sinusoids with frequencies 4Hz and 23Hz and
sampling frequency equal to 100Hz. The decomposition is shown in figure 4

figure 6

figure 7

As stated above we computed the correslations between all the signals in

the two sets to obtain a correlation matrix C'. Most values are below 1073.
The main 3 x 3 submatrix was



0.9949 | 0.0022 | -0.0003
0.0026 | 0.0042 | 0.0004
-0.0001 | 0.0029 | 0.0006
This matrix allows us to conclude that only 1 IMF is really meaningful.

4. Decomposing long signals

4.1. The problem

Let z(t) be a given signal we want to decompose by EMD. As referred
above the number of IMF's is not known in advance and normally increases
with increasing the length of z(¢). This increments the computational bur-
den, leading in some situations to very large computational times making
the algorithm useless unless suitable actions are developped. One obvious
procedure is to cut the signal into segments. However this can lead to poor
results due to the following

e Different number of IMF's from segment to segment;
e The extremity effects introduce discontinuities at the junction points.

In the following we will introduce a solution for the problems having in mind
to develop an algorithm suitable for decomposing very long signals. This
situation is very common in mechanical, electrical, and bio-medical signal
processing.

4.2. The solution

The idea behind the algorithm we are going to describe is yet a cut of the
signal in segments. However, to avoid jumps in the spectral characteristics
of the IMF, we allow the segments to overlap at the beginning and at the
end. On the other hand, the procedure is applied to each IMF separately.
To understand the process, consider the signal at the top of 7. This is cut
in 4 segments. Each segment has 600 points and the overlap is 25%: 150
points. To see how the reconstruction works we are going to do it. The first
450 points come from the 1%* segment; the next 150 points constitute the
overlap zone and are a combination of the last 150 points of the first and
the beginning of the second. The next 300 points come from the middle of
segment 2, and so on. To avoid the end effects problem we apply a Tukey
window to all the inner segments. To the first and last we apply at the end
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in the first and at the beginning in the last.
figure 8

For a general formulation consider a signal of length L. Select the segment
length N and the overlap M points.

1. The N length first segment, z;, contributes directly with N — M
points.

2. The next M points come from the last M points in x; and the starting
Mpointsof xo. At the overlapp regions we add simply the two signals
since we have applied a window as referred above.

3. The next N — 2M come from segment 5.

The process continues till the end of the signal. This procedure is applied in
the computation of the EMD of long signals. The idea is to do it for each
IMF. Therefore,

1. Take the first segment of the signal and compute its first IMF. Count
the number of used iterations; let it be N;.

2. Take the second segment according to the pre-specified overlapping.
Apply the window as prescibed above.

3. Compute the first IMF using V; iterations. This must be done to have
some guarantee that the amplitude of the IMF does not differ greatly
from the amplitude of the first.

4. Combine the two IMF segments as we described above.

5. Continue with the process till the end of the signal; at this time and
after combining the succesive IMF segments, we have a long first IMF.

6. Subtract the long IMF from the original signal and repeat the process.

In the IMF computation we adopted the algorithm that we described in
7, 8] for dealing with the extrema detection, as well as the stopping criteria.
Concerning the extremity effects we proceed as in [7], since we used maxima



and minima outside the signal segment, but here we do not need to extrapo-
late them, since, excepting in the first and last segments, we have them. As
the number of extrema decreases with the sifting iteration number, we can
increment the window length in the last iterations.

In the following we illustrate the behaviour of the algorithm, mainly that it
does not introduce artifacts due to the cut/past process. We used the EMD
of an ECG signal obtained directly using the algorithm of [7] and new algo-
rithm proposed here.

figure 9

figure 10

5. Conclusions

The Empirical Mode Decomposition is a technique to decompose any

signal into a finite set of narrowband components, the Intrinsec Mode Func-
tions, that do not necessarily give any insight into the underlying structure
of the original signal. Besides the algorithm can supply “false” components
in the sense that do not correspond to any spectral component of the signal.
We proposed an algorithm based on the spectral inversion to identify those
components and remove them from the decomposition.
On the other hand, the number of components and computational time in-
crease dramatically when the length of the signal becomes large. A modified
sifting algorithm to deal with long signals was proposed. Some comparison
results were presented.
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Figure 1: EMD of a tidal signal (in the last strip).
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Figure 2: Absolute values of the Fourier transforms of the signals in 1.
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Figure 3: The trend of a tidal signal and the last IMF.
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Figure 4: Sinusoidal signal with frequencies 4, 23Hz (first strip) and its decomposition
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Figure 5: EMD of spectrally inverse of the sinusoidal signal with frequencies 4,23Hz
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Figure 6: Spectrally inverse of the decomposition of the signal in 5
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Figure 7: A signal and its corresponding segments.
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Figure 8: Decomposition of an ECG signal using the algorithm of [7]
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Figure 9: Decomposition of an ECG signal using the new algorithm
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