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Abstract

This work is an educated review of the article "Sourcing semiclassical grav-
ity from spontaneously localized quantum matter" by Antoine Tilloy and Lajos
Diósi [AT16]. A complete introduction to the mathematical formalism nec-
essary to understand the original article is given. Tools commonly used in
quantum measurement theory are developed and applied to the special case of
the continuous measurement of mass density which we then use to construct
a theory of semiclassical gravity. We then try to solve the resulting dynamics
by giving an analytical approximation which leads to important conclusions
about the dependence of the dynamics on the parameters of the theory. After-
wards we will visualize the complete dynamics of the equations by simulating
the time evolution of the density matrix elements for two concrete systems:
First for the simple case of a spin in a magnetic field with added decoherence
and feedback and then for a localized particle in a spatial superposition. In
this way we illustrate the gravitational interaction and decoherence predicted
by the theory.

Abstract (Español)

Este trabajo es una revisión educada del artículo "Sourcing semiclassi-
cal gravity from spontaneously localized quantum matter" de Antoine Tilloy
y Lajos Diósi [AT16]. Daremos una introducción completa al formalismo
matemático necesario para entender el artículo original. Se desarrollarán her-
ramientas comúnmente usadas en la teoría cuántica de la medida y se aplicarán
al caso especial de la medida continua de la densidad de masa que luego us-
aremos para construir una teoría semiclásica de la gravedad. A continuación
intentaremos resolver la dinámica resultante con una aproximación analítica
que nos llevará a conclusiones importantes sobre la dependencia de la dinámica
de los parámetros de la teoría. Luego visualizaremos la dinámica completa de
las ecuaciones simulando la evolución temporal del operador densidad para
dos sistemas concretos: Primero para el caso sencillo de un espín en un campo
magnético añadiendo decoherencia y realimentación y luego para el caso de
una partícula localizada en superposición espacial. De esta forma ilustraremos
la interacción gravitatoria y la decoherencia predicha por la teoría.
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1 Introduction
After nearly half a century of concentrated effort on marrying quantum mechan-
ics and gravity in a unified theory there is still no consistent and accepted theory
of quantum gravity. This problem has proven to be very hard to attack directly,
which leads to considering a semiclassical approximation to quantum gravity before
developing an eventually complete quantum-gravitational formalism. Such a semi-
classical approach has proven to be very useful historically as in the development of
ordinary quantum mechanics. The main objective of the article "Sourcing semiclassi-
cal gravity from spontaneously localized quantum matter" [AT16] is to provide such
a semiclassical approximation to full quantum gravity. It is semiclassical because
it considers the dynamics of quantum matter coupled to classical (non-quantized)
Newtonian (non-relativistic) gravity.
In this article I will give an educated review of the work of Tilloy and Diósi on
semiclassical gravity, explaining their procedures, elaborating on details that are
discussed very briefly in their work and testing their proposed formalism on con-
crete examples.
The main problem in semiclassical gravity is how to couple quantum matter and
classical spacetime. The standard approach is due to Møller [Mø62] and Rosenfeld
[Ros63] : use the quantum mechanical average to get a classical quantity out of the
energy-momentum tensor operator T̂µν of quantized matter:

Gµν = 8πG〈Ψ|T̂µν |Ψ〉 (1.1)

where Gµν = Rµν − 1
2
gµνR is the Einstein tensor which is used to source gravity

in the framework of general relativity. This formalism however has several serious
problems. First of all it completely ignores the quantum fluctuations of the energy-
momentum tensor operator T̂µν . Secondly, since we are not only interested in how
to source gravity from quantum matter, but also in the backaction of gravity on
quantum matter, the classical gravitational field has to enter in some way in the
evolution equation for the quantum mechanical state vector Ψ. If one tries to in-
corporate the classical gravitational field into the evolution of the quantum matter
in the form of 1.1, one faces several difficulties. Since having a quantum average
〈T̂µν〉 in any deterministic dynamics such as the Schrödinger equation spoils the
linearity of quantum mechanics, the resulting dynamics possess deep fundamental
anomalies, one of the most spectacular ones being faster-than-light communication:
As shown in [Gis89], if one wants to rule out superluminal signaling, this implies
a linear evolution at the statistical level. These anomalies already appear in the
Newtonian regime as they are essentially of quantum and not of relativistic na-
ture. The proposal of Tilloy and Diósi is that these anomalies can be resolved in
a specific framework called spontaneous collapse or continuous measurement mod-
els, which were originally developed in the context of the measurement problem in
quantum mechanics. These frameworks provide a consistent way to get classical
quantities out of quantum observables through the modelling of the measurement
act. Most spontaneous collapse models introduce a small nonlinear stochastic term
in the Schrödinger equation that produces a dynamical collapse of macroscopic su-
perpositions. Tilloy and Diósi introduce gravity into these models and propose that
it, among other things, is responsible for the absence of macroscopic superpositions.
In the following we will give an introduction to quantum measurement theory, spon-
taneous collapse models and feedback models and their application to semiclassical
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gravity. We will develop the full formalism of semiclassical gravity in the framework
of spontaneous collapse models as proposed by Tilloy and Diósi and then elaborate
its predictions by application to specific examples.

2 A Brief Introduction to Quantum Measurement
Theory

The contents of this section have been mostly compiled from the books "Quantum
Measurement and Control" by Howard M. Wiseman and Gerard J. Milburn [WM09]
and "The Theory of Open Quantum Systems" by Heinz-Peter Breuer and Francesco
Petruccione [BP02].

2.1 Projective Measurements

In the formalism of traditional quantum mechanics, the measurement of a generic
observable Λ̂ is described by so-called projective measurements. Any observable Λ̂
can be diagonalized as

Λ̂ =
∑
λ

λΠ̂λ (2.1)

where λ are the real eigenvalues of the observable which are assumed to be discrete
for simplicity and Π̂λ are the projection operators onto the subspace with eigenvalue
λ. If the spectrum of the eigenvalue λ is non degenerate, the projection operator is
simply |λ〉〈λ|, where |λ〉 is the eigenvector of Λ̂ with eigenvalue λ.

If we measure Λ̂ at a time t, during a measurement time T short enough such that
we can suppose that the evolution of the system is negligible during the duration T
of the measurement, the probability of obtaining a particular eigenvalue λ is

Pλ(t) = 〈Ψ|Π̂λ|Ψ〉 (2.2)

in the case of a pure state |Ψ〉, and

Pλ(t) = Tr[Π̂λρ(t)Π̂λ] (2.3)

in the general case of a mixed state where ρ is the density matrix that describes
the system. This is the von Neumann projection postulate of standard quantum
mechanics. For transparency first consider a pure state, where we can expand the
initial state as:

|Ψ(t)〉 =
∑
λ

cλ|λ〉. (2.4)

The state after a measurement with outcome λ is:

|Ψ(t+ T )〉 = |λ〉 =
Π̂λ|Ψ(t)〉

cλ
=

Π̂λ|Ψ(t)〉√
Pλ

(2.5)

in the general case of a mixed state, the conditional state of the system after the
measurement is:

ρλ(t+ T ) =
Π̂λρ(t)Π̂λ

Pλ
=

Π̂λρ(t)Π̂λ

Tr[Π̂λρ(t)Π̂λ]
. (2.6)
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If we want to consider the case of unconditional measurement, that is one per-
forms the measurement but ignores the result, the unconditional post-measurement
state of the system is a mixed state which is the sum of all possible resulting post-
measurement conditional states, weighted by the probability of each outcome:

ρ(t+ T ) =
∑
λ

Pλρλ(t+ T ) =
∑
λ

Π̂λρ(t)Π̂λ. (2.7)

This can also be interpreted as the density matrix describing a big number of in-
dividual equivalent systems, and the measurements are performed on each one of
them.

2.2 Generalized Quantum Measurements

Consider now, instead of making completely sharp measurements with perfect ac-
curacy, modelled by the sharp projection operators Π̂λ = |λ〉〈λ|, an imperfect mea-
surement which leaves some residual uncertainty about the state of the system,
modelled by a gaussian distribution. If the result of the measurement gives λ, due
to the unsharp nature of the measurement apparatus, the state has not collapsed
completely to the eigenfunction |λ〉. Instead, it has collapsed primarily to |λ〉 but
also to a series of eigenfunctions around it, weighted by the gaussian distribution:

|Ψ(t)〉 =
∑
µ

cµ|µ〉 → |Ψ(t+ T )〉 = N
∑
µ

cµe
−(µ−λ)2/4σ2|µ〉 (2.8)

where λ is the measurement outcome and N is a normalization constant. In the
limit case σ → 0, the gaussian becomes a delta-function and we recover the sharp
measurement outcome.
The projection operators in the unsharp measurement case, called smooth operator
effects are

Ω̂λ = N
∑
µ

e−(µ−λ)2/4σ2|µ〉〈µ| (2.9)

where λ is the measurement outcome, Ω̂λ are the smooth operator effects associated
to each measurement outcome λ , µ and |µ〉 are the eigenvalues and eigenstates of
the measured observable Λ̂ respectively and N is a normalization constant defined
for a continuous spectrum as

N 2

∫
dµe−(µ−λ)2/2σ2

= N 2
√

2πσ2 = 1

→N = (2πσ2)−1/4.

(2.10)

Using the expression for the observable Λ̂ in terms of its eigenstates

Λ̂ =
∑
λ

λ|λ〉〈λ| =
∑
µ

µ|µ〉〈µ| (2.11)

we can rewrite the smooth operator effects as

Ω̂λ = N e−(Λ̂−λ)2/4σ2

(2.12)
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The conditional post-measurement state in the selective case is (taking into account
that Ω̂λ is hermitian)

ρ→ Ω̂λρΩ̂λ

Pλ
(2.13)

where the probability Pλ is given by

Pλ = Tr[Ω̂λρΩ̂λ] (2.14)

In the non-selective case, the post-measurement state is given by

ρ→
∫

dλΩ̂λρΩ̂λ (2.15)

Consider now continuously performing measurements of Λ̂ on the system. This can
be conceived as making periodic measurements with period τ , and taking the limit
τ → 0. A dynamical equation for the state of the system ρ, independent of σ and
τ can be derived if one takes the measurement error σ proportional to τ−1/2 in the
limit τ → 0. Define in this limit

g ≡ lim
σ→∞,τ→0

1

τσ2
(2.16)

The evolution equation for the state of the system in the case in which no measure-
ment is performed, is the usual Schrödinger-von Neumann equation:

dρ

dt
= −i

[
Ĥ, ρ

]
(2.17)

In our considered limit of continuous measurement it is possible to derive a modified
Schrödinger-von Neumann equation that incorporates the dynamical consequences
of the measurement process. In this continuous limit we write the smooth operator
effects as [Dio88]:

Ω̂λ = N e−(Λ̂−λ)2/4σ2

= N e−g(
√
τ Λ̂−

√
τλ)2/4 (2.18)

and the post-measurement state in the non-selective case is

ρ→
∫

dλΩ̂λρΩ̂λ = N 2

∫
dλe−g(

√
τ Λ̂−

√
τλ)2/4ρe−g(

√
τ Λ̂−

√
τλ)2/4

=
N 2

√
τ

∫
dφe−g(

√
τ Λ̂−φ)2/4ρe−g(

√
τ Λ̂−φ)2/4

(2.19)

where we have performed a change of variable
√
τλ → φ. We now expand the

exponentials around
√
τ = 0:

e−g(
√
τ Λ̂−φ)2/4 = e−gφ

2/4 e−gτ Λ̂2/4 eg
√
τφΛ̂/2

= e−gφ
2/4

(
1− gτ Λ̂2

4
+O(τ 2)

)(
1 +

g
√
τφΛ̂

2
+
g2τφ2Λ̂2

8
+O(τ 3/2)

)

= e−gφ
2/4

(
1 +

g
√
τφΛ̂

2
+
g2τφ2Λ̂2

8
− gτ Λ̂2

4
+O(τ 3/2)

)
(2.20)
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inserting this in the formula for the post-measurement state we obtain (up to orders
O(τ 3/2)):

ρ→N
2

√
τ

∫
dφe

−gφ2
2

(
1 +

g
√
τφΛ̂

2
+
g2τφ2Λ̂2

8
− gτ Λ̂2

4

)
ρ

(
1 +

g
√
τφΛ̂

2
+
g2τφ2Λ̂2

8
− gτ Λ̂2

4

)

=
N 2

√
τ

∫
dφe

−gφ2
2

(
ρ+

gφ
√
τ

2
(Λ̂ρ+ ρΛ̂) +

(
g2φ2τ

8
− gτ

4

)
(Λ̂2ρ+ ρΛ̂2) +

g2φ2τ

4
Λ̂ρΛ̂

)
=
N 2

√
τ

[√
2π

g
ρ+

(
g2τ
√
π

16

(
2

g

)3/2

− gτ

4

√
2π

g

)
(Λ̂2ρ+ ρΛ̂2) +

g2τ
√
π

8
Λ̂ρΛ̂

]
(2.21)

substituting the value for N from 2.10, N = (2πσ2)−1/4 = (2π
gτ

)−1/4 we obtain:

ρ→ ρ+
(g

4
Λ̂ρΛ̂− g

8
(Λ̂2ρ+ ρΛ̂2)

)
τ = ρ− g

8

[
Λ̂, [Λ̂, ρ]

]
τ (2.22)

Where the term proportional to
√
τ has vanished due to the gaussian integration.

In the limit τ → 0 this expression can be rewritten as

dρ

dtMeasurement
= −g

8

[
Λ̂, [Λ̂, ρ]

]
(2.23)

and the equation describing the full evolution of the state incorporating the dynamics
caused by the measurement process is

dρ

dt
= −i

[
Ĥ, ρ

]
− g

8

[
Λ̂, [Λ̂, ρ]

]
(2.24)

An interesting point is that one expects the term proportional to
√
τ to be relevant

in the limit τ → 0, however it has vanished due to the gaussian integration. The
integration over φ in 2.21 can be interpreted as an average over all possible mea-
surement outcomes which are weighted with the gaussian around φ = 0, in the limit
case of infinitely many measurements. The outcome of a single measurement how-
ever is an inherently stochastic event, and we can introduce a stochastic "Wiener"
process W(t). The change of this process over a time interval τ is the Wiener incre-
ment ∆W =

√
τφ =

√
τ
g
w, where w is a random number with zero mean and unit

variance. In the continuous limit we can write

〈dW 〉 = 0

dW 2 =
dτ

g

(2.25)

In the case of a big, but finite number of measurements, the integral over the mea-
surement outcomes φ in 2.21 becomes a sum over each measurement outcome rep-
resented by the stochastic variable W . The term proportional to

√
τ now does not

vanish, but instead yields the stochastic term

g

2
(Λ̂ρ+ ρΛ̂)dW (2.26)
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which has zero mean as expected. The now stochastic dynamics caused by the
measurement process are then described by the equation

dρ = −i
[
H, ρ

]
dt− g

8

[
Λ̂, [Λ̂, ρ]

]
dt+

g

2
(Λ̂ρ+ ρΛ̂)dW (2.27)

However this equation is not trace-preserving. One has to subtract the change in
trace to keep the state normalized. This leads to the final stochastic master equation
(SME) describing the stochastic dynamics of the system affected by the measurement
process

dρ = −i
[
H, ρ

]
dt− g

8

[
Λ̂, [Λ̂, ρ]

]
dt+

g

2
(Λ̂ρ+ ρΛ̂− 2ρ〈Λ̂〉)dW (2.28)

Which is trace preserving as is easily checked. The outcome of the time-continuous
measurement of the observable Λ̂ is a time-dependent (classical) signal Λt which
fluctuates around the quantum-mechanical average due to the stochastic nature of
the measurements on the quantum system

Λt = 〈Λ̂〉t + δΛt (2.29)

we can relate the Wiener increment to the time-dependent signal writing heuristi-
cally

dW

dt
= δΛt (2.30)

which gives a correlation for δΛt as

〈δΛtδΛτ 〉 =
1

g
δ(t− τ) (2.31)

Defining
H
[
Λ̂
]
ρ =

{
Λ̂− 〈Λ̂〉, ρ

}
= Λ̂ρ+ ρΛ̂− 2ρ〈Λ̂〉 (2.32)

one can rewrite the SME 2.28, in Itô sense as

dρ

dt
= −i

[
H, ρ

]
− g

8

[
Λ̂, [Λ̂, ρ]

]
+
g

2
H
[
Λ̂
]
ρδΛt (2.33)

which describes the dynamics of the density operator, incorporating the effects of
the continuous measurement process.

2.3 Feedback

The time-dependent signal Λt obtained from the continuous measurement can be
used to control the subsequent evolution of the system through feedback [WM09].
In a Markovian feedback scheme, this is done by applying a potential proportional
to the signal:

V̂t = ΛtB̂ (2.34)

where B̂ is another observable that can be chosen freely. In the feedback scheme, the
feedback potential induces a unitary evolution exp (−iV̂tdt) an infinitesimal amount
of time dt after the free evolution:

ρ+ dρ→ e−iV̂tdt
(
ρ+ dρfree

)
eiV̂tdt (2.35)
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where dρfree is given by the SME 2.28. Inserting expression 2.29 for the signal Λt

and taking into account the relation 2.30 between the signal noise and the Wiener
increment gives

ρ+ dρ→ e−i(〈Λ̂〉t+δΛt)B̂dt(ρ+ dρfree)ei(〈Λ̂〉t+δΛt)B̂dt

= e−i〈Λ̂〉tB̂dte−iB̂dW (ρ+ dρfree)ei〈Λ̂〉tB̂dteiB̂dW
(2.36)

Expanding the exponentials up to first order in dt taking into account that the
square variance of the Wiener increment from 2.25 is dW 2 = dt/g:

ρ+ dρ→ (1− i〈Λ̂〉tB̂dt)(1− iB̂dW −
1

2g
B̂2dt)(ρ+ dρfree)

× (1 + i〈Λ̂〉tB̂dt)(1 + iB̂dW − 1

2g
B̂2dt)

= ρ− i
[
H, ρ

]
− g

8

[
Λ̂, [Λ̂, ρ]

]
dt+

g

2
H
[
Λ̂
]
ρdW − i〈Λ̂〉

[
B̂, ρ

]
dt− i

[
B̂, ρ

]
dW

− i

2

[
B̂,H

[
Λ̂
]
ρ
]
dt− 1

2g

{
B̂2, ρ

}
dt+

1

g
B̂ρB̂dt

= ρ− i
[
H, ρ

]
dt− g

8

[
Λ̂, [Λ̂, ρ]

]
dt+

g

2
H
[
Λ̂
]
ρδΛtdt− i

[
B̂, ρ

]
δΛtdt

− i

2

[
B̂,
{

Λ̂, ρ
}]
dt− 1

2g

[
B̂,
[
B̂, ρ

]]
dt

(2.37)

where in the last step we used the expression 2.32 for H
[
Λ̂
]
ρ. This gives the final

stochastic master equation incorporating the dynamics induced by the measurement
and the feedback:

dρ

dt
= −i

[
H + B̂δΛt, ρ

]
− g

8

[
Λ̂, [Λ̂, ρ]

]
− i

2

[
B̂,
{

Λ̂, ρ
}]
− 1

2g

[
B̂,
[
B̂, ρ

]]
+
g

2
H
[
Λ̂
]
ρδΛt

(2.38)

2.4 Generalization to multiple observables

The equations obtained in continuous measurement and feedback theory can be
generalized straightforwardly to multiple observables. In the case of the simultane-
ous continuous monitoring of a set of n observables {Λ̂µ}, indexed by the subscript
µ = 0, 1, ..., n, there are n time-dependent continuous classical signals, which fluc-
tuate around the quantum-mechanical average of the observable:

Λµ,t = 〈Λ̂µ〉t + δΛµ,t (2.39)

In general, the signals associated to different observables Λ̂µ can be correlated, and
the correlation is encoded in the correlation strength matrix g :

〈δΛµ,tδΛν,t〉 =
(
g−1
)
µν
δ(t− τ) (2.40)

where g−1 is the inverse of the matrix g. The stochastic master equation 2.33 reads
in this case of multiple monitored observables:

dρ

dt
= −i

[
H, ρ

]
− gµν

8

[
Λ̂µ, [Λ̂ν , ρ]

]
+
gµν
2
H
[
Λ̂µ

]
ρδΛν,t (2.41)
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where the Einstein summation convention over repeated indices is understood. The
feedback potential can be generalized in the case of multiple observables as

V̂ = ΛµB̂µ (2.42)

Using this potential generalizes the SME for the complete evolution including feed-
back 2.38 to

dρ

dt
=− i

[
H + B̂µδΛµ,t, ρ

]
− gµν

8

[
Λ̂µ, [Λ̂ν , ρ]

]
− i

2

[
B̂µ,

{
Λ̂µ, ρ

}]
− 1

2
(g−1)µν

[
B̂µ,

[
B̂ν , ρ

]]
+
gµν
2
H
[
Λ̂µ

]
ρδΛν,t

(2.43)

3 Application of quantum measurement theory to
semiclassical quantum gravity

3.1 General case

Let us now go back to the original problem: to develop a semiclassical theory of
quantum gravity which couples quantum matter to a classical gravitational field
and describes the combined dynamics. The question persists, how does one couple
a quantum system to a classical one? We have already seen in the introduction
that the simplest approach, namely getting a classical quantity out of a quantum
operator using the quantum mechanical expectation value is not satisfactory. The
approach proposed by Tilloy and Diósi is to make use of the previously developed
continuous monitoring models. This may seem ad hoc at first sight, however, by
construction, they are very useful for consistently getting the corresponding classi-
cal quantities out of quantum observables and thus for coupling quantum matter to
a classical spacetime, since they model the measurement process in which we get a
classical signal from the measurement on a quantum system.

To construct the model of semiclassical gravity using the previously developed con-
tinuous monitoring models, consider the continuous measurement of the mass den-
sity operators %̂σ at each point in space r in the case of N particles:

%̂σ(r) =
N∑
n=0

mngσ(r− x̂n) (3.1)

where x̂n is the position operator for the n-th particle. We use a normalized gaussian
gσ of width σ instead of delta-functions, to keep the theory finite. The monitoring
of these mass density operators amounts to a generalization of the monitoring of a
finite and discrete set of n observables developed in the last section. Now we have
an infinite set of observables {%̂σ(r)} and the previously discrete index µ becomes
the continuous variable r. The interpretation is also different: Although we use
the formalism of continuous monitoring models, the monitoring of the mass den-
sity operators is not to be thought of as performed by any physical detectors but
rather is postulated to be a fundamental feature of nature. Obviously, there are no
physical detectors constantly measuring throughout all of space, but we postulate
that somehow the continuous monitoring just "happens". This may as well be an
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emergent phenomenon, since we are only constructing a semiclassical approxima-
tion to quantum gravity, and this point may become clearer in later, more complete
theories. Thus, the continuous measurement of the mass density operator at each
point in space r gives the time-continuous signal

%t(r) = 〈%̂σ〉t + δ%t(r) (3.2)

This signal is analogous to the signal Λµ,t in the case of multiple observables in the
last section but instead of a discrete index µ we now have the continuous index r.
The generalization from a discrete index to a continuous one is straightforward. The
signal is correlated in an analogous way:

〈δ%t(r)δ%τ (s)〉 =
(
g−1
)
rs
δ(t− τ) (3.3)

where grs now instead of a matrix is a (continuous) non-negative integral kernel
that encodes the correlation between the outcomes of the measurements of the mass
density %̂σ at different points in space r and s. To generalize the SME 2.33 de-
scribing the evolution of the density matrix under the influence of the continuous
measurement we just replace the sums with integrals:

dρ

dt
= −i

[
H, ρ

]
−
∫

drds
grs
8

[
%̂σ(r), [%̂σ(s), ρ]

]
+

∫
drds

grs
2
H
[
%̂σ(r)

]
ρδ%t(s) (3.4)

This equation describes the effect that monitoring the mass density operators at each
point in space has on the evolution of the state ρ of the quantum system. Through
the monitoring we have now obtained a classical quantity, the signal %t(r) out of
the quantum operators %̂σ in a consistent way. Recall that in this interpretation
there are no actual detectors measuring the mass density, instead the monitoring of
the mass density operators is given as an inherently natural process. Following this
line of thought we promote the signal %t(r) to a real, physical quantity which is the
source of the classical Newtonian gravitational field Φt. We source the gravitational
field via the standard gravitational (classical) Poisson equation from the signal %t(r):

∇2Φt(r) = 4πG%t(r) (3.5)

This implements the backaction of quantum matter on gravity. We will often sup-
press the subindex t for magnitudes related to the signal %t(r). Notice that the
Newton gravitational field Φt, since it depends on the stochastic signal %t(r), is now
also a stochastic quantity. The Poisson equation can also be written as

Φt(r) = −G
∫

ds
%t(s)

|r− s|
(3.6)

To implement the backaction of gravity on quantum matter, we use the previously
developed feedback scheme. As the feedback potential proportional to the signal
%t(r) we use the stochastic semiclassical Newton interaction potential V̂Gscl:

V̂Gscl =

∫
dr%t(r)Φ̂σ(r) =

∫
drΦt(r)%̂σ(r) (3.7)

Where Φt is the classical gravitational field sourced from the signal, and Φ̂σ is the
gravitational field operator sourced from the mass density operator via the operator
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Poisson equation ∇2Φ̂σ(r) = 4πG%̂σ(r). With this feedback potential, following the
same steps as before in 2.37 and generalizing the SME 2.43 to continuous indices,
the SME that describes the complete evolution gives:

dρ

dt
=− i

[
H + V̂G,σ +

∫
drδ%t(r)Φ̂σ, ρ

]
+

∫
drds

grs
2
H
[
%̂σ(r)

]
ρδ%t(s)

−
∫

drds

(
grs
8

[
%̂σ(r),

[
%̂σ(s), ρ

]]
+

(g−1)rs
2

[
Φ̂σ(r),

[
Φ̂σ(s), ρ

]]) (3.8)

With this equation we have recovered the Newton interaction potential that con-
tributes to the deterministic Hamiltonian evolution of the system

V̂G,σ =
1

2

∫
dr%̂σ(r)Φ̂σ(r) (3.9)

meaning that the gravitational interaction energy operator just adds to the Hamil-
tonian, as expected. The terms proportional to the signal noise δ%t implement the
stochastic nature of the measurement process or analogously represent the quantum
nature of the system. The term with the mass density operator %̂σ in the double
commutator implements the decoherence caused by the continuous monitoring of
the mass density and the term with the gravitational field operator Φ̂σ in the double
commutator represents an additional decoherence caused by the gravitational back-
action. Notice that the two decoherence terms are competing since one depends
directly on the correlation strength grs and the other one on its inverse.
Let us summarize the model of stochastic semiclassical gravity that we have just de-
veloped (see figure 3.1): the mass density operators %̂σ are continuously monitored
(not by physical detectors, rather by a process of nature itself). This continuous
measurement of the mass density operators yields the classical stochastic signal %t
containing the stochastic fluctuations δ%t. This signal is promoted to a real physical
entity, and to the source of the classical gravitational field Φt. This implements
the backaction of the quantum matter, described by the quantum density matrix
ρ on the classical gravitational field Φt. The continuous measurement of the mass
density %̂σ(r) introduces a decoherence in the evolution of the density matrix, which
tends to become diagonal in the position basis. The classical gravitational field
Φt together with the quantum mass density operator %̂σ are then used to form the
semiclassical gravitational interaction potential V̂Gscl. This potential is then used in
a feedback scheme to contribute to the subsequent evolution of the quantum den-
sity matrix ρ. This implements the backaction of the classical gravitational field Φt

on the quantum matter. The gravitational backaction adds to the unitary evolu-
tion of the state in the form of additional Hamiltonian terms, and also introduces
an additional decoherence of the density matrix caused by the gravitational field.
The non-Hamiltonian terms are responsible for the collapse of the state and the
localization of the mass density, preventing large quantum fluctuations in mass and
macroscopic superpositions.
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Figure 3.1: Diagram that illustrates the conceptual dependences and links between
the four main objects in the previously developed theory of semiclassical gravity:
The quantum state matrix ρ, the mass density signal %t, the gravitational field Φt

and the semiclassical gravitational potential V̂Gscl.
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3.2 DP - Gravity-related spontaneous collapse

This model, named after Diósi and Penrose (DP) uses the general formalism de-
veloped in the previous section but specifies the form of the spatial correlator grs
as

grs =
κG

|r− s|
(3.10)

where G is the Newton gravitational constant and κ is a dimensionless parameter.
The localization strength is now directly linked to gravity and has a familiar form
showing the typical behaviour of the gravitational field that decreases with the
inverse of the distance. We will also need the inverse kernel (g−1)rs so let us calculate
it taking into account that it is an integral kernel which transforms a general function
f(r) into another function h(s):∫

drgrsf(r) = h(s)

inverse kernel :

∫
ds
(
g−1
)
rs
h(s) =

∫
dtds

(
g−1
)
rs
gtsf(t)

!
= f(r)

⇒
(
g−1
)
rs
gts =

(
g−1
)
rs

κG

|t− s|
!

= δ(r− s)δ(t− s)

(3.11)

using the identity ∇2 1
|r−s| = −4πδ(r− s) we can write the inverse kernel as(

g−1
)
rs

= − 1

4πκG
δ(r− s)∇2

s (3.12)

substituting this back into the integral and integrating twice by parts we get a nicer
form:∫

ds
(
g−1
)
rs
h(s) = − 1

4πκG

∫
dsδ(r− s)∇2

sh(s) = − 1

4πκG

∫
ds∇2

sδ(r− s)h(s)

⇒
(
g−1
)
rs

= − 1

4πκG
∇2

sδ(r− s)

(3.13)

where we have neglected the surface terms since the delta-function and its deriva-
tive are zero at infinity. With this inverse kernel, together with relation 3.3 the
correlation of the stochastic fluctuations in the signal yields

〈δ%t(r)δ%τ (s)〉 = − 1

4πκG
∇2

sδ(r− s)δ(t− τ) (3.14)

and substituting the gravity-related kernel and inverse kernel into the general SME
3.8 gives the SME in this particular case:

dρ

dt
=− i

[
H + V̂G,σ +

∫
drδ%t(r)Φ̂σ, ρ

]
+
κG

2

∫
drds

|r− s|
H
[
%̂σ(r)

]
ρδ%t(s)

−
∫

drds

(
1

8

κG

|r− s|
[
%̂σ(r),

[
%̂σ(s), ρ

]]
− 1

8πκG
∇2δ(r− s)

[
Φ̂σ(r),

[
Φ̂σ(s), ρ

]])
(3.15)

where the deterministic backaction Hamiltonian as before is

V̂G,σ =
1

2

∫
dr%̂σ(r)Φ̂σ(r) = −G

2

∫
drds

%̂σ(r)%̂σ(s)

|r− s|
(3.16)
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The kernel grs that has been chosen lets us rewrite and unite the last two terms in
the following form: the first one, taking into account the Poisson equation for the
gravitational field Φ̂σ and integrating by parts:

− κG

8

∫
drds

|r− s|
[
%̂σ(r),

[
%̂σ(s), ρ

]]
= −κG

8

(
1

4πG

)2 ∫
drds

|r− s|
[
∇2Φ̂σ(r),

[
∇2Φ̂σ(s), ρ

]]
= − κG

8

(
1

4πG

)2 ∫ (
∇2 drds

|r− s|

)[
Φ̂σ(r),

[
∇2Φ̂σ(s), ρ

]]
=

κ

32πG

∫
drdsδ(r− s)

[
Φ̂σ(r),

[
∇2Φ̂σ(s), ρ

]]
=

κ

32πG

∫
dr
[
Φ̂σ(r),

[
∇2Φ̂σ(r), ρ

]]
= − κ

32πG

∫
dr
[
∇Φ̂σ(r),

[
∇Φ̂σ(r), ρ

]]
(3.17)

and the second one also integrating by parts:

1

8πκG

∫
drds∇2δ(r− s)

[
Φ̂σ(r),

[
Φ̂σ(s), ρ

]]
=

1

8πκG

∫
drdsδ(r− s)

[
∇2Φ̂σ(r),

[
Φ̂σ(s), ρ

]]
=

1

8πκG

∫
dr
[
∇2Φ̂σ(r),

[
Φ̂σ(r), ρ

]]
= − 1

8πκG

∫
dr
[
∇Φ̂σ(r),

[
∇Φ̂σ(r), ρ

]]
(3.18)

the two terms can then be united as

− κG

8

∫
drds

|r− s|
[
%̂σ(r),

[
%̂σ(s), ρ

]]
+

1

8πκG

∫
drds∇2δ(r− s)

[
Φ̂σ(r),

[
Φ̂σ(s), ρ

]]
=− 1

8πG

(
κ

4
+

1

κ

)∫
dr
[
∇Φ̂σ(r),

[
∇Φ̂σ(r), ρ

]]
(3.19)

we can now fix the value of κ by requiring that the total decoherence be minimal in
the DP-model:

d

dκ

(
κ

4
+

1

κ

)
=

1

4
− 1

κ2
= 0 ⇒ κ = 2 (3.20)

where we have chosen the positive value for κ because the correlator grs is defined
non-negative. The non-Hamiltonian stochastic term in 3.15 with the noise δ%t can
also be rewritten with the same steps as before, using the Poisson equation and
integrating by parts:

κG

2

∫
drds

|r− s|
H
[
%̂σ(r)

]
ρδ%t(s) =

κG

2

∫
drds

|r− s|
(%̂σ(r)ρ+ ρ%̂σ(r)− 2ρ〈%̂σ(r)〉) δ%t(s)

=
κG

2

1

4πG

∫
drds

|r− s|

(
∇2Φ̂σ(r)ρ+ ρ∇2Φ̂σ(r)− 2ρ〈∇2Φ̂σ(r)〉

)
δ%t(s)

= − κ

2

∫
dr
(

Φ̂σ(r)ρ+ ρΦ̂σ(r)− 2ρ〈Φ̂σ(r)〉
)
δ%t(r) = −κ

2

∫
drH

[
Φ̂σ(r)

]
ρδ%t(r)

(3.21)
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with κ = 2 we finally get the complete SME for stochastic semiclassical gravity in
the DP-model:

dρ

dt
=− i

[
H + V̂G,σ +

∫
drδ%t(r)Φ̂σ, ρ

]
− 1

8πG

∫
dr
[
∇Φ̂σ(r),

[
∇Φ̂σ(r), ρ

]]
−
∫

drH
[
Φ̂σ(r)

]
ρδ%t(r)

(3.22)

This equation is the central object of interest in the article [AT16] that we are re-
viewing. Observe that the backaction of gravity in the feedback scheme has just
doubled the decoherence term with the double commutator of the initial continuous
monitoring model without feedback. Notice also that the whole SME has become
completely local in the final DP gravity-related model, in contrast with the general
SME 3.8.

One can also ask what is the mean evolution of a system described by this equation,
for example if one has a sample of many identical systems, each described by the
SME 3.22. To answer this it suffices to observe that the stochastic noise terms in
the SME have zero mean, so the master equation (ME) that describes the average
dynamics is obtained by just eliminating the noise terms:

dρ

dt
= −i

[
H + V̂G,σ, ρ

]
− 1

8πG

∫
dr
[
∇Φ̂σ(r),

[
∇Φ̂σ(r), ρ

]]
(3.23)

This is the master equation that describes the average evolution of the system. The
task now at hand is to interpret this equation and to visualize the dynamics it
produces.
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4 Dynamics of the Diósi-Penrose semiclassical grav-
ity model

4.1 An analytical approach

In this section an analytical approximation will be developed for the decoherence
term in the SME (2.62)

D̂ρ ≡ − 1

8πG

∫
dr
[
∇Φ̂σ(r),

[
∇Φ̂σ(r), ρ

]]
(4.1)

For the sake of simplicity consider the case of a single particle. The objects of
interest are the smoothened mass density operator

%̂σ(r− X̂) = (2πσ2)−3/2me−(r−X̂)2/2σ2 ≡ mgσ(r− X̂) (4.2)

where X̂ is the position operator for the particle and we use the notation gσ for a
gaussian of width σ. And the Newton gravitational potential operator, which for a
gaussian mass distribution is given by

Φ̂σ(r− X̂) = − Gm

|r− X̂|
erf
|r− X̂|

2σ2
(4.3)

where the error function erf(x) is defined as

erf(x) ≡ 2√
π

∫ x

0

e−t
2

dt (4.4)

the expression for Φ̂σ is obtained by integrating the Poisson equation for the grav-
itational potential (∇2Φ̂σ = 4πG%̂σ) in spherical coordinates and it can easily be
checked by explicitly evaluating the Laplacian.
Integrating by parts, the decoherence term 4.1 can be expanded as

D̂ρ ≡ − 1

8πG

∫
dr
[
∇Φ̂σ,

[
∇Φ̂σ, ρ

]]
=

1

8πG

∫
dr
[
∇2Φ̂σ,

[
Φ̂σ, ρ

]]
=

1

2

∫
dr
[
%̂σ,
[
Φ̂σ, ρ

]]
=

1

2

∫
dr
(
%̂σΦ̂σρ− %̂σρΦ̂σ − Φ̂σρ%̂σ + ρΦ̂σ%̂σ

) (4.5)

and the matrix elements of this operator in the position basis are given by

〈r| D̂ρ |s〉 = Dρ(r, s) = −1

2
Gm2ρ(r, s)

∫
du

(
gσ(u− r)

|u− r|
erf
|u− r|√

2σ2
+

− gσ(u− r)

|u− s|
erf
|u− s|√

2σ2
− gσ(u− s)

|u− r|
erf
|u− r|√

2σ2
+
gσ(u− s)

|u− s|
erf
|u− s|√

2σ2

) (4.6)

from symmetry considerations of the integrands this expression can be reduced to

Dρ(r, s) = −Gm2ρ(r, s) (I1 − I2) (4.7)

where

I1 =

∫
du
gσ(u)

|u|
erf

|u|√
2σ2

I2 =

∫
du
gσ(u− d)

|u|
erf

|u|√
2σ2

, d ≡ r− s

(4.8)
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the first integral has spherical symmetry and can be evaluated analytically. Writing
it in spherical coordinates gives

I1 =

∫
du
gσ(u)

|u|
erf

|u|√
2σ2

= 4π(2πσ2)−3/2(2σ2)

∫ ∞
0

dr r e−r
2

erf(r) (4.9)

the radial integral can be easily evaluated integrating by parts, and I1 yields

I1 =
1√
πσ

(4.10)

The second integral I2 can not be solved analytically, but one can find asymptotic
approximations. Noticing that I2 = I2(d) and that inside the integral d only appears
in the gaussian as

gσ(u− d) = (2πσ2)−3/2e−(u−d)2/2σ2

(4.11)

we can consider two limit cases: d� σ and d� σ, where d = |r− s| measures the
distance from the diagonal (r = s) of the density matrix in the position basis, and
σ is the resolution of the mass density operator %̂σ.

• Case 1: d� σ (far from the diagonal)

0 5 10 15 20 25
u, integration variable

0.0

0.2

0.4

0.6

0.8

1.0

1/u
erfσ(u)
gσ(u− d)

Figure 4.1: The three factors in the integrand of I2 in the case d � σ (simplified
to an unidimensional case). For concreteness we have set σ = 0.5 and d = 15 in
this plot. The dominant contribution to the integral comes from the region near the
center of the gaussian.

The dominant contributions to the integral I2 will come from the integrand in
the region near the center of the gaussian (figure 4.1) : u ∼ d. We then expand
the integrand around u = d up to second order, writing u ≡ |u|, d ≡ |d|, and
q ≡ u− d:

1

u
≈ 1

d
− 1

d3
q · d +

1

2d5

(
3(q · d)2 − q2d2

)
+O(q3) (4.12)
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erf
u√
2σ2
≈ erf

d√
2σ2

+
1√

2πσ2

1

d
e−d

2/2σ2

(
2q · d + q2 − d2 + σ2

d2σ2
(q · d)2

)
+O(q3)

(4.13)

We can then write the integral within this approximation as

I2 ≈
∫

dq gσ(q)

[
1

d
erf

d√
2σ2

+

(
2q · d
d2

+
q2

d2

)(
1√

2πσ2
e−d

2/2σ2 − 1

2d
erf

d√
2σ2

)
+

(q · d)2

d4

(
3

2d
erf

d√
2σ2
− 1√

2πσ2

(
d2 + 3σ2

σ2

)
e−d

2/2σ2

)
+O(q3)

]
(4.14)

Since the integrand only depends on the relative orientation of q and d through
the scalar product q ·d and not on the absolute orientation of q, we can choose
the z-axis of the q-integration parallel to d without any loss of generality. We
can then simply write q·d = qd cos θ, where θ is the polar angle of the spherical
coordinates. The integral I2 then yields

I2 ≈
1

d
erf

d√
2σ2
− 1√

2πσ2
e−d

2/2σ2

, for d = |r− s| � σ (4.15)

where the integrals proportional to q · d corresponding to the first order
terms vanish because of their angular symmetry. The total decoherence term
Dρ(r, s) = −Gm2ρ(r, s) (I1 − I2) far from the diagonal can then be written in
an asymptotic approximation as

Dρ(r, s) ≈ −Gm2

[
1√
πσ
− 1

d
erf

d√
2σ2

+
1√

2πσ2
e−d

2/2σ2

]
ρ(r, s) for d� σ

(4.16)

Thus, for d → ∞, the decoherence rate Dρ goes as −Gm2
√
πσ

which is constant
and becomes bigger for bigger masses m and for a smaller/higher resolution σ
of the mass density operator %̂σ. For smaller d but still much bigger than σ,
the decoherence rate gradually decreases.

• Case 2: d� σ (near the diagonal)

In this case the gaussian is centered very near the origin (figure 4.2). For
d = 0, the integral I2 becomes analytical and equal to I1. The decoherence
Dρ(r, s) = −Gm2ρ(r, s) (I1 − I2) in this case vanishes, meaning that decoher-
ence of diagonal elements is zero. For d non-zero but very small (d � σ) we
can expand the gaussian around d = 0:

gσ(u− d) = (2πσ2)−3/2e−(u−d)2/2σ2

= (2πσ2)−3/2e−u
2/2σ2

e−d
2/2σ2

eu·d/σ
2

≈ (2πσ2)−3/2e−u
2/2σ2

e−d
2/2σ2

(
1 +

u · d
σ2

+
(u · d)2

2σ4
+O(d3)

)
(4.17)
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Figure 4.2: The three factors in the integrand of I2 in the case d � σ. For
concreteness we have set σ = 0.5 and d = 0.01 in this plot. We can expand the
gaussian around d = 0.

With this approximation we can then write the integral I2 as

I2 ≈ (2πσ2)−3/2e−d
2/2σ2

∫
du

1

u
erf

u√
2σ2

e−u
2/2σ2

(
1 +

u · d
σ2

+
(u · d)2

2σ4
+O(d3)

)
(4.18)

In the same way as before, the integrand only depends on the relative orien-
tation of u and d and we can choose the z-axis of integration parallel to d.
We can then write u · d = ud cos θ, where θ is the polar angle of the spherical
coordinates. The integral I2 then yields

I2 ≈
1√
πσ

e−d
2/2σ2

(
1 +

5

12

d2

σ2

)
, for d = |r− s| � σ (4.19)

where again, the integrals proportional to u ·d vanish because of their angular
symmetry. The total decoherence term Dρ(r, s) = −Gm2ρ(r, s) (I1 − I2) near
the diagonal can then be written in an asymptotic approximation as

Dρ(r, s) ≈ −Gm2 1√
πσ

[
1− e−d2/2σ2

(
1 +

5

12

d2

σ2

)]
ρ(r, s) for d� σ

(4.20)

For d = 0, the decoherence rate is zero, meaning that decoherence of the
diagonal elements is zero as predicted before evaluating the integral. For
bigger d, but still much smaller than σ the decoherence rate rapidly increases.
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In these two limit cases, very near and very far from the diagonal, an asymptotic
analytical approximation can be given for the decoherence rate. In figure 4.3 the
two approximations for the absolute value of the decoherence rate, |D| (without the
factor ρ(r, s) ) have been represented against the distance from the diagonal d.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
d= |r − s|, Distance to the diagonal
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analytical approximation for d<<1

Figure 4.3: The two analytical approximations for the absolute value of the deco-
herence rate |D| in the two limit cases d� σ and d� σ. For simplicity we have set
Gm2 = σ = 1. The decoherence of the diagonal elements (at d = 0) vanishes and
grows steadily for larger values of d.

In figure 4.4 the analytical approximation for d� σ is represented for very big d
and it can be seen that the decoherence rate approaches the constant value 1/

√
πσ.

On the other hand, one can also solve the integrals in equation 4.6 for the de-
coherence rate numerically. In this way one can obtain an approximation for the
decoherence rate in the region d ∼ σ in which no analytical approximation is pos-
sible. We already know the exact result of the first integral I1 = 1/

√
πσ and we

only have to solve the second integral I2 numerically. To do this more efficiently we
notice that the three-dimensional integral can be reduced to one dimension in the
following way:

I2 =

∫
du
gσ(u− d)

|u|
erf

|u|√
2σ2

= (2πσ2)−3/2

∫
du

1

u
e−u

2/2σ2

e−d
2/2σ2

eu·d/σ
2

erf
u√
2σ2

(4.21)

As before, this integral only depends on the relative orientation of u and d and we
can thus choose the z-axis of integration parallel to d. We can then write u · d =
ud cos θ, where θ is the polar angle of the spherical coordinates. Separating the
radial and angular parts of the integral and integrating over the angular variables
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Figure 4.4: The analytical approximations for the absolute value of the decoherence
rate |D| in the case d � σ. For simplicity we have set Gm2 = σ = 1. The deco-
herence rate grows steadily with the distance from the diagonal d and approaches a
constant value for very big values of d, very far from the diagonal.

yields

I2 = (2πσ2)−3/2

∫
sin θdθdϕeud cos θ/σ2

∫
u2du

1

u
e−u

2/2σ2

e−d
2/2σ2

erf
u√
2σ2

= (2πσ2)−1/2 2

d
e−d

2/2σ2

∫ ∞
0

due−u
2/2σ2

sinh
ud

σ2
erf

u√
2σ2

(4.22)

The radial integral can readily be solved numerically. In figure 4.5, the numerical
approximation has been represented together with the analytical approximations in
the two limit cases. The analytical approximations match the numerical solution
very well, and in the intermediate region d ∼ σ the numerical solution smoothly con-
nects the analytical approximations in the two limit cases. The overall behaviour
of the decoherence rate is that it vanishes for the diagonal elements of the density
matrix (d = 0), then grows very rapidly with d as one moves away from the diagonal.
For very big values of d, very far from the diagonal, the decoherence rate continues
growing very slowly and asymptotically approaches a constant value of Gm2/

√
πσ.

Restoring the factors of h̄ in the decoherence term one finds that the asymp-
totic value of the decoherence rate for d → ∞ is Gm2/

√
πh̄σ. The resolution σ of

the mass density operator can be taken as ∼ 10−12cm in this model, which is about
nuclear size, although this value has not been fixed completely. Significantly smaller
values produce a faster decay of the coherences at microscopic levels which is not
observed, and significantly bigger values fail to reproduce the decay of macroscopic
coherences which was one of the original aims of this model. This means that "very
big d" means d � 10−12cm. These numerical values give an asymptotic decay rate
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Figure 4.5: The analytical approximations for the absolute value of the decoherence
rate |D| in the two limit cases d� σ and d� σ together with the numerical approx-
imation. For simplicity we have set Gm2 = σ = 1. The analytical and numerical
approximations match very well in the two limit regions, and in the intermediate
regions the numerical solution smoothly connects the two analytical approximations.

Gm2/
√
πh̄σ ≈ 3.571×1037m2 [kg−2s−1] which depends on the mass m of the object.

Here again, we can consider two limit cases, microscopic and macroscopic objects:

• Microscopic objects: As a microscopic case, consider two entangled ions
in a harmonic trap. For concreteness, we can take two Ca+ ions of mass
40u in a harmonic trap of frequency 1 MHz. Calcium ions are commonly
used because a big part of their electronic transitions lie in the visible range
[Sta04]. The ground state energy of one ion in this harmonic trap then is
E = 1

2
h̄ω = 3.29× 10−10eV and the corresponding magnitude of the Hamilto-

nian term in equation 3.23, − i
h̄
[H, ρ] is about 5× 105s−1.

Let us estimate the gravitational decoherence rate as a comparison: As shown
before, the relevant parameter that gives the approximate order of magnitude
of the gravitational decoherence rate is Gm2/h̄σ. In this case, for two Calcium
ions of mass 40 uma, the gravitational decoherence rate will be of the order
of Gm2/h̄σ ≈ 2.792× 10−13s−1 which is absolutely negligible in comparison to
the Hamiltonian evolution. We see thus that the motion of the entangled os-
cillators will stay coherent and that gravitational decoherence has a negligible
influence on microscopic systems.

• Macroscopic objects: On a macroscopic scale however, consider masses of
the order of 1 gram, the asymptotic decay rate is about 3.571 × 1031 s−1.
Consider that the particle is stationary and localized to about ∆x ∼ 1µm.
We can estimate the momentum dispersion with the uncertainty principle as
∆p ∼ h̄/2∆x ≈ 5.27×10−29kg ms−1. The Hamiltonian term for a free particle
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of mass m = 1 gram and momentum p = 5.27×10−29kg ms−1 is about 1.318×
10−20s−1, which is absolutely negligible in comparison to the gravitational
decoherence. We can thus, as an approximation, neglect the Hamiltonian term
in equation 3.23 together with the gravitational interaction energy VG,σ, since
we are considering only a single particle. (We will show later more in detail
that this theory does not predict any self-interaction). The mean evolution
equation for the density matrix in this case then becomes

dρ

dt
= D̂ρ (4.23)

which has a formal solution
ρ(t) = eD̂tρ0 (4.24)

We can evaluate this expression in the position basis, and taking the asymp-
totic value for the decoherence rate D ∼ −Gm2/

√
πh̄σ the solution for the

time evolution of the off-diagonal (!) density matrix elements can be written
as

ρ(r, s, t) = exp

(
− Gm2

√
πh̄σ

t

)
ρ(r, s, t = 0) , |r− s| � σ (4.25)

For the on-diagonal density matrix elements we do not have such a simple
expression. This gives an exponential decay of the coherences with a halflife
τ ≡

√
πh̄σ
Gm2 ≈ 2.801× 10−32s, for a mass of 1 gram.

4.2 A numerical approach

In this section I will try to visualize the dynamics caused by the proposed DP master
equation for semiclassical gravity with a simulation of a one-particle case. But first,
as an illustrative example, let us consider the simple and well known case of a spin
in a magnetic field but adding decoherence and feedback.

4.2.1 An illustration: A spin in a magnetic field

The Hamiltonian for a spin in an external magnetic field is:

H = −µ ·B (4.26)

for simplicity assume a particle of spin 1/2 with a gyromagnetic ratio of 1. Then
µ = S. For a magnetic field directed along the -x axis and of unit strength, B = −̂i.
Thus the Hamiltonian is simply:

H = Sx (4.27)

The master equation describing the dynamics of the density matrix of the state in
this case is

dρ

dt
= −i

[
H, ρ

]
= −i

[
Sx, ρ

]
(4.28)

This equation obviously can be solved analytically, however we will solve it numer-
ically and plot the time evolution of the matrix elements of the density operator.
If we place the inital state in an eigenstate of Sz,

|Ψ〉 = |+〉z , ρ =

(
1 0
0 0

)
(4.29)
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Figure 4.6: Time evolution of the matrix elements of the density operator in the
z-basis of a particle in a magnetic field, initially in a spin-up state. The x-axis
represents time in arbitrary units. The populations oscillate between 0 and 1, the
coherences between 0 and 1/2. For simplicity we work with a magnetic field of unit
strength, a particle with a unit gyromagnetic ratio and we have set h̄ = 1.

the matrix elements of the density operator in the z-basis will oscillate in time as can
be seen in figure 4.6. If we now perform a continuous measurement of the observable
Sz, the master equation is modified in the way developed in the previous sections.
If we are only interested in the mean evolution of the system we can neglect the
stochastic terms and the ME in this case is

dρ

dt
= −i

[
Sx, ρ

]
− g

8

[
Sz,
[
Sz, ρ

]]
(4.30)

where g is the strength of the measurement. With g = 1 and the same initial state
(spin-up in the z-basis), the populations in the z-basis perform a damped oscillation
around the value 1/2, and the coherences perform a decaying oscillation as can be
seen in figure 4.7. The measurement term in the ME thus introduces a decoherence
in the evolution, inducing the decay of the coherences. The fact that we only con-
sider the mean evolution amounts for the result that the populations are equally
distributed in the end, i.e. half of the particles of the sample end up in a spin-up
state and the other half in a spin-down state.

We can now introduce a feedback on the system. In the simplest way, this is
done by applying a potential proportional to the continuously measured value of Sz:

V̂ = sz,tB̂ (4.31)

where sz,t is the time-dependent signal obtained from the continuous measurement
of Sz and B̂ is another observable that can be chosen freely. Applying this potential
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Figure 4.7: Time evolution of the matrix elements of the density operator in
the z-basis of a particle in a magnetic field, initially in a spin-up state, with added
decoherence through the measurement of Sz. The x-axis represents time in arbitrary
units. The populations perform a damped oscillation around the value 1/2, . For
simplicity we work with a magnetic field of unit strength, a particle with a unit
gyromagnetic ratio and we have set h̄ = 1 and the measurement strength g = 1.

in a feedback scheme, an infinitesimal amount of time dt after the free evolution
in the same manner as developed in the last sections, the ME that governs the
evolution of the system is given by:

dρ

dt
= −i

[
Sx, ρ

]
− g

8

[
Sz,
[
Sz, ρ

]]
− i

2

[
B̂,
{
Sz, ρ

}]
− 1

2g

[
B̂,
[
B̂, ρ

]]
(4.32)

We can now choose the observable B̂ that enters in the feedback potential. Choosing
B̂ = Sz just increases the decoherence caused by the measurement of Sz as can be
seen in figure 4.8. The populations perform a damped oscillation that settles very
rapidly to the value 1/2 and the coherences oscillate decaying rapidly to 0. If instead
we choose B̂ = Sy, the result is similar, but now the coherences asymptotically reach
the value 0.4 instead of 0 (figure 4.9).

These examples should suffice to illustrate the effect of the previously introduced
decoherence and feedback terms on the dynamics of a very simple system.
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Figure 4.8: Time evolution of the matrix elements of the density operator in the
z-basis of a particle in a magnetic field, initially in a spin-up state, with added
decoherence through the measurement of Sz and with an applied feedback potential
proportional to Sz. The x-axis represents time in arbitrary units. The populations
perform a damped oscillation that settles very rapidly to the value 1/2 and the
coherences oscillate decaying rapidly to 0. For simplicity we work with a magnetic
field of unit strength, a particle with a unit gyromagnetic ratio and we have set
h̄ = 1 and the measurement strength g = 1.
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Figure 4.9: Time evolution of the matrix elements of the density operator in the
z-basis of a particle in a magnetic field, initially in a spin-up state, with added
decoherence through the measurement of Sz and with an applied feedback potential
proportional to Sy. The x-axis represents time in arbitrary units. The populations
perform a damped oscillation that settles very rapidly to the value 1/2 and the
coherences oscillate decaying rapidly to 0. For simplicity we work with a magnetic
field of unit strength, a particle with a unit gyromagnetic ratio and we have set
h̄ = 1 and the measurement strength g = 1.
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4.2.2 Semiclassical gravity and gravitational decoherence

The main objective of this section is to visualize the dynamics of the equation
proposed by Tilloy and Diósi [AT16] which we have developed in the last sections.
We will focus our attention on the mean evolution of the system, neglecting the
stochastic terms. The master equation which governs the system in this case is
given by:

dρ

dt
= −i

[
H + VG,σ, ρ

]
− 1

8πG

∫
dr
[
∇Φσ(r),

[
∇Φσ(r), ρ

]]
(4.33)

where Φσ is the gravitational potential field operator and VG,σ is the gravitational
pair potential operator given by

V̂G,σ =
1

2

∫
dr%̂σ(r)Φ̂σ(r) = −G

2

∫
drds

%̂σ(r)%̂σ(s)

|r− s|
(4.34)

We will consider only free particles, free meaning no interaction apart from gravity.
In this case the free Hamiltonian is given by

Ĥ =
p̂2

2m
(4.35)

The simplest case which gives interesting dynamics is the unidimensional case of a
single localized particle in a spatial superposition, i.e. an initial state given by two
gaussians centered at different positions:

Ψ(x) ∝ e−(x−µ)2/4ς2 + e−(x+µ)2/4ς2 (4.36)

Where we denote the width of the gaussian which describes the localization of the
particle by the letter ς to prevent confusion with the sharpness of the mass density
operator %̂σ which is denoted by σ. In this unidimensional case, the density operator
in the position basis will be a function of two continuous variables: ρ = ρ(x, y) and
will have two gaussian peaks in the diagonal elements, and two off-diagonal gaussian
peaks representing the coherences:

〈x|ρ|y〉 ≡ ρ(x, y) ∝
(
e−(x−µ)2/4ς2 + e−(x+µ)2/4ς2

)(
e−(y−µ)2/4ς2 + e−(y+µ)2/4ς2

)
(4.37)

In the free evolution of the system, the peaks will just spread out evenly but maintain
their relative heights as can be seen in figure 4.10. This behaviour of the wavefunc-
tion or density matrix of a localized free particle is widely known and can be proven
analytically but we will not entertain us with this problem here and will just give the
numerical simulation. Let us now add the gravity-related terms in equation 4.33.
Consider first the gravitational pair potential operator V̂G,σ. For the case of a single
particle, the mass density operator will be given by

%̂σ(r) = %̂σ(r− X̂) = mgσ(r− X̂) (4.38)

where we use again the compact notation gσ(x) for a normalized gaussian of width σ.
Let us evaluate the commutator of the gravitational pair potential with the density
matrix in the position basis:

〈x|
[
VG,σ, ρ

]
|y〉 = −1

2
Gm2

∫
drds

|r− s|
[
gσ(r− x)gσ(s− x)− gσ(r− y)gσ(s− y)

]
ρ(x,y)

= −1

2
Gm2

∫
drds

|r− s|
[
gσ(r)gσ(s)− gσ(r)gσ(s)

]
ρ(x,y) = 0

(4.39)
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Figure 4.10: Free evolution of a particle of mass m = 1 g in a spatial superposition. The
x and y axes are the two variables of the density matrix ρ in the position basis. The color
represents the probability density or the value of the density matrix for a given x and y.
The two peaks on the diagonal and the two off-diagonal peaks representing the coherences
just spread out evenly without any further relative deformation. Notice the timescale:
about 1025s!
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where we performed a simple change of variables in the last step. We see that the
commutator vanishes for the case of a single particle and thus this theory does not
predict any gravitational self-energy. If we now include the gravitational decoherence
term with the double commutator in equation 4.33, we expect the coherences to
decay, and that the density matrix will gradually become diagonal in the position
basis. As shown in the section 4.1, the asymptotic decoherence rate for matrix
elements far from the diagonal is given by (4.16):

Dρ(r, s) ≈ − Gm2

√
πh̄σ

ρ(r, s) for d� σ (4.40)

As commented before, this decoherence is absolutely negligible for microscopic ob-
jects so we will have to consider macroscopic situations to get an appreciable deco-
herence. Although the real proposed value for the mass density operator sharpness
is σ ≈ 10−12cm, for a better visualization we will set here the mass density operator
sharpness to σ = 5×10−2cm. Consider a macroscopic object of mass m = 1g with a
localization described by a gaussian of width ς = 0.3cm in a spatial superposition of
separation 2µ = 2cm. Such a situation is described by a density matrix of the same
form as in equation 4.37. In this case the two peaks that represent the coherences
will be very far from the diagonal since µ � σ and our approximation that the
decoherence is given by 4.40 holds. We thus expect the two off-diagonal peaks to
decay at a nearly constant rate.

For the two peaks on the diagonal the situation is quite different: since the
width of the peaks is much greater than the sharpness of the mass density operator
(ς � σ), the center of the peaks will be exactly on the diagonal satisfying the
condition d� σ (near the diagonal) while the tails of the gaussians will satisfy the
condition d� σ (far from the diagonal). Although we have no analytical expression
for the intermediate region d ∼ σ we can anticipate that the center of the peaks will
not suffer any decoherence while the rest of the gaussian which is not exactly on
the diagonal will certainly decay. The result of solving just the decoherence term
numerically can be seen in figure 4.11.
We can now solve the complete dynamics of the master equation 4.33 that describes
the mean evolution of the system numerically. We expect the off-diagonal peaks
to decay, together with the tails of the on-diagonal peaks which should only leave
behind a very narrow region localized exactly on the diagonal. The results of solving
the dynamics numerically and representing the density matrix elements at different
instants of time can be seen in figure 4.12.
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Figure 4.11: Decoherence rate density Dρ(r, s) (in absolute value) for a single
particle in a spatial superposition. One can clearly see that the decoherence rate
for the two off-diagonal peaks is constant, while for the peaks on the diagonal only
the parts which are significantly distant from the diagonal suffer decoherence. The
decoherence exactly on the diagonal is zero. In this example we have used a particle
of mass m = 1g with a gaussian localization of width ς = 0.3cm in a spatial super-
position of separation 2µ = 2cm. For a better visualization of the "diagonal cut"
through the peaks we have set the mass density operator sharpness σ = 0.05cm.
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Figure 4.12: Evolution of a particle in a spatial superposition with gravitational deco-
herence. We have used a particle of mass m = 1g with a gaussian localization of width
ς = 0.3cm in a spatial superposition of separation 2µ = 2cm. The mass density operator
sharpness is σ = 0.05cm. One can clearly see the off-diagonal peaks (coherences) decaying
and the on-diagonal peaks leaving only a narrow region behind, exactly on the diagonal,
where decoherence is zero. Notice the difference in the timescale in comparison with the
free evolution, which is now about 10−21s. This agrees with the estimated timescale from
equation 4.25: τ =

√
πh̄σ
Gm2 ≈ 1.4× 10−21s.
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5 Results and Conclusions
We have seen that the model proposed by Tilloy and Diósi provides a consistent
framework for semiclassical gravity. We have managed to source a classical gravita-
tional field from quantum matter and to compute its backaction on it. In doing so we
have made use of continuous monitoring or spontaneous localization models which
were originally developed in the context of the measurement problem in quantum
mechanics. In our context, it provides a consistent framework for a classical-quantum
coupling, specifically for coupling the classical gravitational field to quantum matter.
The formalism is analogous to continuously measuring the smoothened mass den-
sity operators at every point in space and using the resultant (classical) signal which
carries the information about the outcome of the measurement of the mass density
to source the gravitational field. The monitoring of the mass density however is not
interpreted as being performed by actual physical detectors and is rather seen as
a fundamental process of nature. This signal is inherently stochastic which reflects
the stochastic nature of the measurements of the quantum system, and consequently
the gravitational field sourced from the signal is stochastic too. Additionally, the
signal at different points in space can be correlated. In the Diósi-Penrose model the
correlator is directly related to gravity through the Newton gravitational constant
G and is proportional to the inverse of the distance of the two points in space. The
continuous measurement of the mass density leads to a decoherence and to a local-
ization of the matter.

To implement the backaction of gravity on the quantum matter, we apply a po-
tential proportional to the gravitational field in a feedback scheme. This feedback
potential is chosen to be the semiclassical Newton interaction potential. The back-
action of gravity leads to a doubling of the decoherence and introduces an additional
Hamiltonian term in the evolution which is just the Newton potential energy. In
this way we obtained a consistent stochastic master equation which describes the
dynamics of the density matrix of the system under the influence of gravity.

To solve the dynamics of this equation we have tried an analytical approach which
gave us the decoherence rates of the matrix elements very near and very far from
the diagonal. We obtained that the decoherence vanishes on the diagonal, as ex-
pected, and asymptotically approaches a constant value as you move away from the
diagonal. The asymptotic value of the decoherence rate at infinity is proportional to
the Newton gravitational constant G and to the square of the mass m and inversely
proportional to the sharpness σ with which the mass density is measured. This
decoherence rate is absolutely negligible for microscopic objects but produces a very
fast decoherence for macroscopic masses. We have also seen that the theory does
not predict any self interaction of the particles.

We have then performed a completely numerical approach to solve the master equa-
tion that describes the dynamics of the system. We have recovered the fact that
decoherence is zero on the diagonal and rapidly settles to a constant value as you
move farther away. We have then simulated the time evolution of the density matrix
elements for a macroscopic superposition and have observed that the coherences de-
cay while the populations leave behind only a narrow, localized strip exactly on the
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diagonal.

We can thus assert that Tilloy and Diósi have constructed a theory and formal-
ism that successfully couples classical gravity to quantum matter and describes the
resulting combined dynamics. An additional Hamiltonian term equal to the Newton
interaction energy emerges naturally from this theory and additionally it predicts a
decoherence term which produces a localization of the quantum matter and leads to
a rapid decay of any macroscopic superpositions.
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6 Resúmenes en español de cada capítulo

6.1 Capítulo 1: Introducción

Dado que después de medio siglo de esfuerzo en crear una teoría unificada de la
gravedad cuántica aún no se ha obtenido ningún resultado completamente satisfac-
torio, uno puede considerar la posibilidad de aproximarse a la teoría completa de la
gravedad cuántica mediante una teoría semiclásica. Discutimos previos intentos de
construir una teoría semiclásica de la gravedad y sus limitaciones. Introducimos la
idea de Tilloy y Diósi de utilizar los modelos de medida continua para construir un
nuevo formalismo de gravedad semiclásica.

6.2 Capítulo 2: Una breve introducción a la teoría cuántica
de la medida

Empezamos con un repaso del formalismo de medida y colapso de función de onda en
mecánica cuántica tradicional. A continuación lo generalizamos a medidas imperfec-
tas que dejan una incertidumbre residual sobre el estado post-medida del sistema.
Tomando el límite en el que las medidas se realizan continuamente en el tiempo
obtenemos una ecuación maestra para la evolución del operador densidad del sis-
tema que incorpora los efectos dinámicos de la medida continua. Extendemos el
formalismo añadiendo la posibilidad de incorporar una realimentación al sistema y
obtenemos otra ecuación maestra que describe la dinámica del operador densidad
bajo la influencia de la medida continua y de la realimentación. Finalmente gener-
alizamos todo el formalismo al caso en el que se mide continuamente un conjunto
de n observables.

6.3 Capítulo 3: Aplicación de la teoría cuántica de la medida
a la gravedad semiclásica

Se presenta la idea de Tilloy y Diósi de utilizar el modelo de medida continua y reali-
mentación previamente introducido para construir un nuevo formalismo de gravedad
semiclásica. En concreto, se particulariza el modelo previamente desarrollado al caso
en el que se mide continuamente la densidad de masa en todo el espacio. El resultado
de la medida es una señal clásica que contiene la información sobra la distribución
de la masa. Se emplea esta señal clásica para obtener el campo gravitatorio clásico.
A partir de este campo gravitatorio clásico obtenemos el potencial gravitatorio semi-
clásico que le aplicamos en el esquema de realimentación al sistema cuántico. De
esta forma se obtiene un formalismo que describe la influencia de la materia cuán-
tico sobre el campo gravitatorio clásico y la influencia del campo gravitatorio clásico
sobre la materia cuántica. El modelo Diósi-Penrose (DP) particulariza la forma en
la que las medidas de la densidad de masa en distintos puntos del espacio están
correlacionados y lo relaciona con la constante gravitatoria G. Con esta correlación
particular las ecuaciones se simplifican y se vuelven completamente locales.
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6.4 Capítulo 4: Dinámica del modelo Diósi-Penrose de la
gravedad semiclásica

Intentamos analizar la dinámica del modelo DP de la gravedad semiclásica previa-
mente desarrollado. Para ello empezamos con una aproximación analítica que nos
lleva a importantes conclusiones sobre la dependencia de la dinámica del sistema
de los parámetros de la teoría. Vemos que para sistemas microscópicos la deco-
herencia gravitatoria es despreciable frente a la evolución hamiltoniana, en cambio
para sistemas macroscópicos domina claramente la decoherencia gravitatoria. A
continuación optamos por una resolución completamente numérica de la dinámica
de las ecuaciones. Ilustramos primero los efectos de medida y realimentación en el
caso sencillo de un espín en un campo magnético externo. Después resolvemos las
ecuaciónes de Diósi-Penrose de la gravedad semiclásica para el caso concreto de una
partícula localizada y en superposición espacial. Comprobamos que para un caso
macroscópico domina la decoherencia gravitatoria que causa un decaimiento de las
coherencias, rompe la superposición inicial e induce una localización de la partícula.

6.5 Capítulo 5: Resultados y conclusiones

Discutimos el modelo de gravedad semiclásica previamente desarrollado y los re-
sultados obtenidos en los capítulos anteriores. El modelo se basa en modelos de
medida continua particularizados a la medida de la densidad de masa. La ecuación
final que obtuvimos describe la dinámica del sistema cuántico acoplado al campo
gravitatorio clásico y predice una decoherencia gravitatoria que es despreciable a
escalas microscópicas pero domina a escalas macroscópicas. Esto lo hemos com-
probado con una aproximación analítica y lo hemos visualizado con una simulación
numérica. Concluimos finalmente que Tilloy y Diósi han construido una teoría y un
formalismo que permite acoplar consistentemente el campo gravitatorio clásico y un
sistema cuántico.
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