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1 Introduction

1.1 Summary

1.1.1 Abstract

One of the most important considerations in the field of cosmology is the homogeneity and isotropy
of our Universe. However, the existence of inhomogeneities is undeniable. To understand, then,
how galaxies, clusters, superclusters, etc, appeared and formed, we have to study the evolution
of the small primeval overdensities and underdensities present just after inflation. We will focus
specifically on the evolution of those proto-scales (departures from the mean density, lets call them
δ) in the specific time from before those scales enter the horizon until the time of decoupling.
A purely gravitational approach is the one usually presented in textbooks, but here we will add
two key elements to study: the radiation pressure, that affects baryonic matter until the time
of decoupling, keeping this δ oscillating and efectivelly stalling its evolution; and the diffusion of
photons, which will damp the oscillations and even erase small scales. We will study the three
different evolutions that result of the introduction of these three elements in the case of a purely
baryonic Universe. After this, we will introduce another ingredient, the Dark Matter, that will
modify the behaviour of the scale factor a and contribute to the gravitational term of the equations,
but will be always decoupled from radiation. The same study done before will be carried out again
with this new element introduced. Finally we will obtain the power spectrum by probing different
scales and obtaining the values of δ at the time of decoupling for each of these masses. This
power spectrum contains all the relevant statistical information to characterize the distribution of
structures in the Universe.

1.1.2 Resumen

Una de las consideraciones más importantes en el campo de la cosmoloǵıa es la homogeneidad e
isotroṕıa de nuestro Universo. Sin embargo, es imposible negar la existencia de inhomogeneidades
una vez nos vamos a escalas menores de 100Mpc. Para entender cómo aparecen y se desarrollan las
galaxias, cúmulos, supercúmulos, voids, etc nos vemos en la necesidad de estudiar la evolución de
aquellas sobre y sub densidades presentes en los momentos inmediatamente posteriores al final de
la inflación. Nos centraremos en la evolución de estas protoescalas (desviaciones sobre la densidad
media del Universo) espećıficamente en el intervalo de tiempo desde que empezó a dominar la
radiación (o más correctamente, desde que dichas escalas entran en el horizonte) hasta el momento
del desacoplamiento de la radiación y la materia bariónica. Muchas veces nos encontramos con un
tratamiento puramente gravitatorio de estas desviaciones (llamémoslas δ) al realizarse en peŕıodos
donde la radiación ha dejado de dominar y ser manejables anaĺıticamente. Aqúı śı que trataremos
expĺıcitamente los efectos producidos al añadir dos elementos cruciales a nuestro estudio: la presión
de radiación, que afecta a la materia bariónica hasta que esta deja de estar acoplada a la radiación,
lo que mantiene a la δ asociada a esta especie oscilando y que logra pausar su crecimiento de
manera efectiva; y la difusión de fotones, fenómeno que amortiguará estas oscilaciones, llegando a
borrar las δ asociadas a escalas suficientemente pequeñas (fenómeno conocido como Silk damping).
Estudiaremos la diferentes evoluciones que conllevan la consideración de cada uno de estos factores
en un universo puramente bariónico (esto es, un universo donde la única forma de materia sea
la que conocemos, la bariónica). Lo que esperamos obtener es, en el primer caso en el que solo
tenemos en cuenta la gravedad sin presión de radiación o difusión, un crecimiento estable con el
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factor de escala (a) al cuadrado (dado que, sin la contribución de la materia oscura, DM de ahora
en adelante, la radiación dominará hasta tiempos muy posteriores al desacople). En el segundo
caso, la presión hará que nuestros δs vayan rápidamente hasta una situación oscilatoria estable
alrededor de una posición de equilibrio (δ = 0), oscilaciones de amplitud relativamente constante
una vez estabilizadas. Estas oscilaciones se verán detenidas abruptamente en el momento en el que
la expansión del universo impide que se produzcan más interacciones (scattering) entre fotones
y electrones, fenómeno (ya mencionado) que se conoce como desacople y ocurre en t = tdec. A
partir de este momento, la materia y la radiación ya no forman un fluido conjunto y evolucionan
de manera independiente. La introducción de la difusión de fotones tendrá como resultado el
amortiguamiento de las oscilaciones inducidas por la presión de radiación, proceso que trataremos
de manera muy aproximada pero que intentaremos justificar. Para escalas pequeñas el desacople
llega demasiado tarde, y el efecto de amortiguación será tan importante que δ será borrado. Este
proceso es conocido como Silk damping y aquellas escalas de masa menor que la de la llamada
masa de Silk no sobrevivirán.

Tras analizar la evolución de δB , δr en un universo puramente bariónico, el siguiente paso
consiste en añadir a la receta la materia oscura. La primera consecuencia de esta acción es la
modificación del comportamiento del factor de escala a(t). Por un lado cambia el valor del parámetro
asociado a la materia en la ecuación de Friedmann que usamos para describir ȧ: tenemos un nuevo
y mayor valor de Ωm, siendo Ωm el parámetro de densidad de la materia, resultado de dividir la
densidad de materia entre la densidad cŕıtica del Universo en el presente. Por otro lado, este cambio
no debeŕıa tener un gran impacto para las épocas dominadas por radiación. Pero, en un universo
con Ωm = 0,3 en lugar del 0,04 que aporta la materia bariónica, el momento en el que la influencia
en la expansión del universo de la materia y la radiación se igualan ocurre mucho antes, antes que
el desacoplamiento. Por tanto, nuestro factor de escala se comportará de manera diferente en este
nuevo cosmos. La segunda consecuencia, más importante, es que tenemos ahora un segundo fluido
que añadir al fluido radiación-bariones, el de la DM. Este componente no interactuará con el resto
sino es gravitatoriamente, pero influenciará su evolución a partir del momento en que el Universo
deja de estar dominado por la radiación, t = teq. Continúa creciendo mientras los bariones y la
radiación oscilan alrededor de δ = 0. Bajo determinadas circunstancias contribuirá a reactivar el
crecimiento de las inhomogeneidades bariónicas, pero el estudio de la evolución de δDM tiene más
interés para saber cómo afecta la materia oscura a los bariones una vez estos se han desacoplado
de la radiación: respecto a una evolución puramente gravitatoria, el crecimiento de las escalas de
DM también se ha estancado, pero si lo comparamos con el sufrido por los bariones, se puede
considerar que las escalas de materia oscura han continuado creciendo. En cuanto los bariones no
estén ligados a la radiación la principal influencia en su desarrollo será la de la materia oscura,
y el valor de δDM que se tiene en el momento del desacoplamiento. Para intentar obtener los
comportamientos descritos en este resumen resolveremos una serie de ecuaciones. Obtener dichas
ecuaciones no es parte del trabajo; todas ellas han sido dadas por el tutor de este trabajo, el
doctor Juan Betancort Rijo, en comunicación personal. Lo que se ha hecho es comprobar si los
comportamientos de las soluciones de estas ecuaciones se ajustan a lo esperado y justificar su
validez, cuanto menos cualitativa, y por tanto la idoneidad de las mismas con objeto de ser usadas
como herramienta pedagógica o incluso como test para posibles propuestas de valores para los
ingredientes del universo, dependiendo de la fidelidad que guarden los resultados obtenidos con el
conocimiento que tenemos de estos fenómenos.
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1.2 Theoretical considerations

En esta sección presentaremos las bases del tratamiento que se suele hacer del comienzo de las
desviaciones de la densidad media del Universo que dieron lugar a las estructuras que vemos hoy
en d́ıa. Empezaremos decribiendo brevemente cómo se trata al cosmos como un todo homogéneo
y la principal solución a las ecuaciones de Einstein que deriva de la consideración del principio
cosmológico. Acto seguido, introduciremos un primer tratamiento para la obtención de pequeñas
fluctuaciones lineales.

1.2.1 An homogeneous Universe

The field of cosmology has always been one of utmost difficulty for a number of factors. First and
foremost, we don’t have an easy way of accessing the necessary data to test hypothesis and derive
properties from. Even today, experimental projects proposed from this field are expensive and
cannot be reproduced at a small scale. But, as everything that heavily depends on technological
proficiency, this thick veil that covers the coveted empiric data has been being thinned year by
year. However, there is another layer of complication when dealing with the study of the cosmos,
and it is that the cosmos is, inherently, extremely vast. Years after the publishing of Einstein’s
article in which his Field Equations were introduced we still were not sure whether or not other
galaxies existed or if our star counts were in fact describing the entirety of the Universe (we can
remember the famous Great Debate held on 1920). After the acceptance of nebulae as other
galaxies outside our own, there were continuous efforts to count and place those structures. These
observations, mainly due to the work of Hubble (1926-1934) and Shapley, pointed to a somewhat
uniform distribution of galaxies, but with some reservations. Amid this new debate lied the famous
Einstein Field Equations (EFE for now on)

Rαβ − 1

2
gαβR =

8πG

c4
Tαβ (1)

the angular stone upon which all orthodox cosmological research should be sustained, and the one
with more interest for both theoretical investigators and contemporaneous students looking for a
fundamental comprehension of our world. While, as has been said, the search of an order for the
structures of the Universe was taking place, an exact, non-trivial solution for these equations was
found, one that would eventually prove itself to be the best approach to EFE from a pedagogical
point of view. Uncountable physic students from around the world have taken their first steps in
cosmology held by the helpful hand of the Robertson-Walker metric and the Friedmann model of
the Universe. We can define the scale factor of the Universe as a, with

x(t) = a(t)r (2)

and r the comoving coordinates of a point in the space. This factor describes the expansion of the
Universe. The metric mentioned before, in its general form, would be:

ds2 = −dt2 + a2
(t)(

dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2) (3)

And from it we can obtain the following Friedmann equations:

ȧ2 + kc2

a2
=

8πGρ+ Λc2

3
(4)
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a
= −4πG

3
(ρ+

3p

c2
) +

Λc2

3

The reader is probably familiar with these equations, or at least with some different way
of presenting them. Every undergrad student has worked with them, and this model was used
extensively for 30 years. The reason? For us students it is a clear one: it drastically simplifies
our work. And these equations are based in two fundamental assumptions, summed up in the
cosmological principle: that, in large scales, the Universe is homogeneous and isotropic. We won’t
dwell on the validity of this statement. Let us say that it works perfectly as a very accurate first
approximation to our Universe. But there is an evident truth: at some scale this principle is
not correct. To beging with, we are no more that punctual overdensities in the Universe, albeit
small ones. But there certainly are larger structures out there. Galaxies, yes, but even them are
small. Clusters, superclusters, voids, etc, are the object of study of the large scale structure of the
Universe, a field that has been growing since we have been able to extract data that departs from
the first approximations that Friedmann’s equations are. Departing from the homogeneity is not a
trivial issue, but there is a silver lining: as long as the deviations from the mean are small, we can
treat them as first-order perturbations and, more importantly, we can make use of a newtonian
approximation within the horizon.

1.2.2 Small perturbations

Picture the Universe at its earliest stages. If we take the Big Bang as happening at t = 0, we will
have a Universe affected by the complexities of quantum mechanics until around t = 0.7tPlanck (see
chapter 5 in [3] for a justification of this rough estimate). This implies the existence of quantum
fluctuations in regions of the cosmos that, after inflation, would lose causal contact. We are
interested in how these fluctuations evolve throught time, from the moment the inflation stopped
until they can be observed. Specifically, we will focus on a specific time interval from the start of
the radiation-dominated Universe (inmediately after inflation) until the time of decoupling. What
happens during this time has observable repercussions in the Universe, but it is difficult to find texts
that focus too much on this era, some of them even glossing over the evolution of inhomogeneities
during the radiation-dominated epoch and only studying the growth of structure when matter is
already the main component of the Universe. This is due to the difficulty of an analytical treatment
of this radiation-dominated epoch, so the results are presented almost qualitatively.

In general, the equations that rule these cosmological fluctuations are extremely complicated.
Few physicist try to approach them numerically, and even less would dare to treat them analitically.
Most cosmologist have resolved to computational simulations (perhaps the most famous would be
CMBFAST) and it is extremely difficult to truly understand the physics that hide behind such
computational behemots. However, there are certain approximations, not valid for the entire
history of those fluctuations but appropiate for some regimes, that could open these equations to
a simple numerical treatment. The results are not expected to be extremely accurate, but will
provide some insight in the behaviour of the components of the universe during the obscure times
that preceded the time of decoupling.

The main consideration that we will take (besides the small size of the perturbations) is the
aforementioned Newtonian approximation. We can can follow chapter II in [2] for justifying the
validity of this approximation.We cannot assure that we will work in a completely flat space, at
least when we compute the values of a(t), but we can always find coordinates that will make the
metric tensor and its first derivatives take the form gij = ηi,j , gij,k = 0, that is, the Minkowski form,
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at least locally. Remeber, the metric tensor determines the proper spacetime distance between two

events: ds2 = gijdx
idxj . We can change our coordinates (yi = yi(xi), dy

i = ∂yi

∂xj dx
j) to make the

observer, who we assume is freely falling following a geodesic, to stay at yα = 0. We can describe
the acceleration suffered by a particle at a distance r from the world line along which an observer
is moving by perturbing this metric (gij = ηij + hij), hij being small and proportional to r2. We
then can apply the standard weak field approximation and find (Landau and Lifshitz, 1979):

R00 = −1

2
(hij,00 − hi0,j0 − hj0,i0 + h00,ij) = ∇2

rΦ (5)

g00 ≡ c2 + 2Φ (6)

An ideal fluid of pressure p, density ρ and with a velocity much smaller than the velocity of light,
the zero-zero comoponent of the EFE is then

∇2
rΦ = 4πG(ρ+ 3

p

c2
)− Λ (7)

(we will set Λ to 0), and we will have a geodesic equation

d2rα

dt2
= −Φ,α (8)

The previous two equations are pure Newtonian equations (if there is no Λ nor strong radiation
background). But we were trying to see where these considerations are valid. If both the observer
and the observee have v � c, and Φ� c2, Λ is almost 0 and Ω = 1, then

R� cH−1

For H0 ' 1.023 · 10−10y, this means R � 1028cm ∼ 103Mpc. For the lower limit we can
take supermassive black holes with a Schwarzschild radious of 1014cm. Then, this Newtonian
approximation would work in scales 10−8Mpc � r � 103Mpc. Virgo’s supercluster has a mass
of ∼ 1015M�, that corresponds to a r ∼ 35Mpc. Therefore, and as we won’t treat scales signi-
ficatively larger than this supercluster, and we won’t deal with relativistic matter, the newtonian
approximation is a good one.

There is another consideration to make. We will consider all the species to study to behave as
ideal fluids. In one case we will have a radiation-matter fluid, in the other situation considered
we will add to this fluid another, independent one, formed of cold dark matter (CDM). This
hydrodynamic limit is justified if we have not reached tdec. Since the end of inflation and until this
time, the photon-electron scattering rate is larger than the expansion rate of the Universe. This
implies that baryonic matter and radiation are tighly coupled, and radiation is in local thermal
eqilibrium with the baryonic fluid (8.1 in [1]). We start with the equations for the baryonic ideal
fluid , being x ≡proper distance and u ≡proper velocity:

∂ρ

∂t
+∇x · (ρu) = 0 (9)

∂u

∂t
+ (u · ∇)u = −∇Ψtot −

1

ρ
∇p

∇2Ψtot = 4πGρtot
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Here we have ρtot as the sum of the relevant gravitational elements: in this case, ρB and ρr. If
we had DM, it would appear here too. The term 1

ρ 5 p comes from the coupling of radiation with
baryons and describes radiation pressure. Radiation pressure appears much earlier than the gas
pressure the baryons would have were they alone. We will see how this term affects the evolution
of the fluid.

So far we haven’t introduced true perturbations. At this point, we can define the density
contrast of baryons. If ρ̄b is the mean density of baryons, we have that

ρ(x,t) = ρ̄b[1 + δb,(x,t)] (10)

with δb being this dimensionless density contrast. We can apply the same definition to find δr
and δDM . We are going to apply a perturbation to the ecuations fo the baryon fluid, using δb and
the perturbed potential and velocity φ, v:

φ = Ψ− φFRW , v = u−Hx (11)

δb =
ρ− ρ̄b
ρ̄b

, δp = c2sδρ (12)

φFRW is the potential for background expansion (φFRW = − ä
2ax

2).
We change from proper to comoving coordinates (r = x

a(t)
). Using

(
∂

∂t
)x = (

∂

∂t
)r −Hr

∂

∂r
; (
∂

∂x
)t =

1

a
(
∂

∂r
)t;H =

ȧ

a
(13)

and the velocity v�u = ȧr + v. With these relations we can convert the previous equations to
the new comoving coordinates (r, t). We now linearize (7) and get

δ̈B,k + 2
ȧ

a
δ̇B,k = 4πG(ρ̄αδα)− c2sk

2

a2
δB,k (14)

ρ̄αδα is the sum of this product for α = B, r,DM ; cs is the speed of the propagation; and k is
the wavenumber associated to a certain scale. The reader can find a more detailed calculation in
[4]. Since matter and radiation are tighly coupled, we can establish a relation between δB and δr
for the adiabatic mode (the one we are interested in) (Zel’dovich, 1965):

δr =
4

3
δB

It is convenient to perform a fourier transform on δ:

δB → δB,k

If we start from the equations just obtained, assuming a Universe with only radiation and
baryonic matter, we could reach the following expression:

δ̈B,k + 2
ȧ

a
δ̈B,k = 4πG(ρ̄BδB,k + ρ̄rδr,k)− 1

3

ρ̄r
ρ̄B + ρ̄r

c2

a2
k2δr,k (15)

We will not detail the obtention of said expression, as it is not the aim of this text, but we will
check if it produces the expected solutions. We will use the relation between ˙δr,k and ˙δB,k. We
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can add a new term to this expression if we take into account photons diffusion due to the changes
on the local entropy o the Universe caused by the oscillations of inhomogeneities of baryons and
radiation. This diffusive analysis is extremely complicated, but if we assume the photon flux to
follow a Fourier type law, an approximate expression can be found (personal communication, [6]):

δ̇r,k =
4

3
δ̇B,k(

2√
1 + 4(1.493 · 106[Mpc]ka2)2

)0.9 − µk2

a2
δr,k (16)

which will modify the solution obtained for δB,k. We have also defined µ as

µ =
1

3

1

ne(t)σT
c (17)

ne is the number density of electrons, and σT the Thomson cross-section. We have assumed
conservation of photons and considered the photon flux intensity ~Jγ as

~Jγ = −µ~∇nγ (18)

An important aspect to compute the power spectrum P(k) is that each mode δk is an independent
variable. This means that:

〈δk(ti)δ
∗
p(ti)
〉 = (2π)3P(k,ti)δDirac(k−p) (19)

We have to note that we have assumed a constant ionization fraction for the obtention of the
equations. This consideration may be problematic for times near decoupling, when the ionization
fraction changes rapidly during a brief time interval. One last consideration that we will take in
order to compute the power spectrum P(k) is the dimensionless relation

∆2
(k) = P(k),∆

2
(k) = δ2

(k)

2π2

k3
(20)

1.3 Objectives

Presentamos las ecuaciones a resolver y los resultados que esperamos encontrar. In the previous
section we ended up with a series of equations to solve.

1.-Purely baryonic Universe without radiation pressure:

δ̈B,k + 2
ȧ

a
δ̈B,k = 4πG(ρ̄BδB,k + ρ̄rδr,k) (21)

δ̇r,k =
4

3
δ̇B,k

2.-Purely baryonic Universe with radiation pressure:

δ̈B,k + 2
ȧ

a
δ̈B,k = 4πG(ρ̄BδB,k + ρ̄rδr,k)− 1

3

ρ̄r
ρ̄B + ρ̄r

c2

a2
k2δr,k (22)

δ̇r,k =
4

3
δ̇B,k
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3.-Purely baryonic Universe with radiation pressure and photon diffusion:

δ̈B,k + 2
ȧ

a
δ̈B,k = 4πG(ρ̄BδB,k + ρ̄rδr,k)− 1

3

ρ̄r
ρ̄B + ρ̄r

c2

a2
k2δr,k (23)

δ̇r,k =
4

3
δ̇B,k(

2√
1 + 4(1.493 · 106ka2)2

)0.9 − µk2

a2
δr,k

If we add dark matter (DM from now on), we will have the same set of equations for δB,k
adding to the gravitational term (4πG(· · · )) the DM inhomogeneity ρ̄DM,kδDM,k, but we will also
have the equations that govern the evolution of these δDM,k:

δ̈DM,k + 2
ȧ

a
δ̇DM,k = 4πG(ρ̄BδB,k + ρ̄DM,kδDM,k + ρ̄rδr,k) (24)

with δB,k, δr,k behaving differently in each of the previously mentioned cases (only gravity, with
radiation pressure and with photon diffusion).

We will try and solve these equations keeping in mind that some crude approximations have
been made. For starters, we don’t take into account Λ (althought it is highly justified, as its dom-
inance won’t start until much later than the time of decoupling); we consider the hydrodinamical
limit for radiation; we assume a fixed ionization fraction and photon-to-electron ratio (one of the
most important approximations for the treatment of photon diffusion); we treat the Universe as
newtonian, as justified before; we only treat the limit of small fluctuations... However, we expect
the results to be at least good indicatives of the behaviour of the irregularities in the timeframe
studied. We hope to be able to visualize these fluctuations in a manner rarely seen in most texts,
as this part of the evolution of irregularities is commonly dismissed in order to jump straight
ahead into the realm of matter-domination (even when the study of the highest amplitude for the
fluctuations of the baryon-photon fluid can provide a useful insight into the baryon density of the
Universe).

We will then solve the aforementioned equations and obtain the evolution of δB,k, δr,k and δDK,k
when applicable. We will justify then the common statements broad-stroked by many lecturers on
large-scale courses regarding this issue, and, if the results are in accordance with what we know
already on the subjet, we will have a light, easy-to-use test for new proposals of Universes. Finally,
we will obtain the power spectrum of baryons and DM in different epochs (the observable quantity
more readily accesible).

2 Solving the equations

En esta parte procederemos a detallar y evaluar los resultados de la resolución numérica de las
ecuaciones presentadas previamente. Comenzaremos representando la evolución de los parámetros
δ de bariones y DM en cada uno de los universos estudiados (puramente bariónico sin presión,
con presión, con difusión de fotones, etc), detallando algunos aspectos cŕıticos de las mismas,
como el momento en el que comienzan las oscilaciones bariónicas. Representaremos el espectro de
potencias de la materia oscura y la bariónica, que contiene la mayor parte de la información sobre
la distribución de estructura a gran escala del universo.
Finalmente, haremos un último análisis de los resultados obtenidos, su validez, utilidad y posible
cursos de acción a tomar partiendo de ellos.
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2.1 Methodology

Cosmology is a delicate subject. It does not matter how simple or complicated the expressions
we are going to work with are, they are very sensitive to changes in the definition of the different
constants (sometimes not so constant here). We have a great number of inter-relations between
formulae, and one small change can propagate with nefarious consequences for the rest of the work
carried out. This is why it is convenient to tread carefully and methodically when translating
our paper-based equations to the realm of actual numerical values in our program. Let us begin
writing again the equations to solve in the first part of our work:

δ̈B,k + 2
ȧ

a
δ̈B,k = 4πG(ρ̄BδB,k + ρ̄rδr,k)− 1

3

ρ̄r
ρ̄B + ρ̄r

c2

a2
k2δr,k (25)

δ̇r,k =
4

3
δ̇B,k(

2√
1 + 4(1.493 · 106ka2)2

)0.9 − µk2

a2
δr,k

We are probably familiar with many of the elements of these equations, their physics not being
very complicated, as the scale factor, the wavenumber k, the speed of light, the densities (that, from
now on, will be writen as ρα instead of ρ̄α)... But, if we are to work with them, we can find that
the actual values of these quantities are very fickle. We can start with the main variable in most
relations in cosmology: the scale factor a. At undergrad courses, it is the norm to use the scale
factor of certain epochs to ease its obtention. Therefore, we would work with an a ∝ t1/2 in the
radiation-dominated epoch, a ∝ t2/3 in the matter-dominated one, etc. However, it is convenient
to find a proper value for a, as it is not very tasking and extremely rewarding. We will use

ȧ

a
= H0

√
Ω0,ma−3 + Ω0,rada−4 + ΩΛ + Ω0,Ka−2 (26)

For a purely baryonic Universe, Ω0,m = Ω0,b, with a value set as Ω0,b = 0.04 (in corcondance
with the results of WMAP); Ω0,rad = 1.59 · 10−4 (we have taken into account the contribution of
three species of neutrinos, not only the contribution of photons), and ΩΛ will be 0. The values of
these Ω are not very important: one of the desired results of this work is to be able to modify these
kind of quantities and study the results of such change. Since we want (1−Ω) = 0, (Ω =

∑
α Ωα),

we introduce a curvature density, Ω0,K = 1−Ω0,m−Ω0,rad, that will eventually be irrelevant, as in
the stages studied its contribution will be absolutely dwarfed by both radiation and matter, even
if Ω0,K is significatively larger than the other density parameters.

We have to solve the differential equation

ȧ = aH0

√
0.04a−3 + 1.59 · 10−4a−4 + 0.9598a−2

where we have taken H0 to be H0 = 1.023 · 10−10y−1. We will finish our integration at the time
of decoupling, approximating this time to the time of recombination. In many texts it is taken as
happening at z = 1300, a = 1

1+z ; until this time, we asume the comoving electron density to be
constant. As choosing a bad value of ai could propagate to the rest of equations, and because this
method is easier to implement by being able to control the timestep for the values of a obtained,
first we are going to integrate since a very early time with a very small scale factor (for example,
t = 3s ⇒ a ∼ 3 · 10−10) until a later time that is still small enough compared to the time at
which the scales we are going to study are deep outside the horizon (1 year), where we start the
integration again with the obtained initial value of a until the time of decoupling. What we get is
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Figure 1: We will take the solutions of our equations for the fluctuations up until we reach adec

With tdec = 215607y. We can compare this result with the one we would get if we had a

radiation-only Universe. In this case, a =
√

2H0

√
Ω0,radtt, so we can plot this quantity and the

previous result for a against
√
t
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Evolution of a(t) in a Universe of pure radiation against one with baryonic matter.

Universe with baryonic matter
Universe with radiation only

Figure 2: We do not depart from the evolution of a radiation-only Universe until times neartdec
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We now have a set of values for a(t) from t = 1y to t = tdec. From equation (26) we can also
obtain ȧ(t). Once we have a satisfactory value for the scale factor at all important t, now we must
make a little bit of work on the equations to make them manageable. Let us present one of the
most important equations in cosmology, the Friedmann equation, in one of its many forms

3

2
(
ȧ

a
)2 = 4πG(ρ) (27)

with ρ = ρB + ρr and we have disregarded the curvature term. We can see that, if we multiply
and divide the gravitational term in equation (25) by (ρB + ρr), and using the previous equation,
we have

δ̈B,k + 2
ȧ

a
δ̈B,k =

3

2
(
ȧ

a
)2(

ρB
ρB + ρr

δB,k +
ρr

ρB + ρr
δr,k)− 1

3

ρr
ρB + ρr

c2

a2
k2δr,k (28)

We still have the same problematic ρ terms . To get rid of them we can use the known Ωs:

ρB
ρB + ρr

=
1

1 + (ρr/ρB)
,
ρr
ρB

=
Ω0,r

Ω0,B

1

a
⇒ ρB

ρB + ρr
=

1

1 + 1
a (Ω0,r/Ω0,B)

(29)

In the same fashion
ρr

ρB + ρr
=

1

a(Ω0,B/Ω0,r) + 1

The ratios 1
1+ 1

a (Ω0,r/Ω0,B)
and 1

a(Ω0,B/Ω0,r)+1 will be named ΩB and Ωr respectively for convenience,

but we must not confuse them with the canonically named ΩB,rad =
ρB,rad

ρcrit
. Having a(t) we can

plot the values of these quantities
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Evolution of the densities of baryons and radiation in a purely baryonic Universe
ρB

ρB + ρr

ρr
ρB + ρr

Figure 3: Baryonic density is much smaller than the radiation density, but the former falls with
a−3, while the later does so with a−4
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We can see that even going beyond the time of decoupling, the two ratios do not cross. This
is a consequence of not having considered the DM, 6.5 times more aboundant that the baryonic
matter. This result implies that, for the entire time of our integrations, radiation will dominate
the evolution of the Universe and its inhomogeneities. Equation (28) becomes

δ̈B,k + 2
ȧ

a
δ̈B,k =

3

2
(
ȧ

a
)2(ΩBδB,k + Ωrδr,k)− 1

3
Ωr

c2

a2
k2δr,k (30)

Now, for this equation only two quantities remain undefined: c and k. For the first one, one of the
most famous constants in Physics, we only have to put it in the correct units:

c = 3 · 108[
m

s
] = 3.066 · 10−7[

Mpc

y
]

where we used 1m = 3.24078 · 10−23Mpc and 1y = 3.1536 · 107s. k will prove to be more resistant
to proper determination. The wavenumber k is related to the radius R of a sphere than comprises
a scale by the relation

k =
2π

R

but, how can we determine the comoving distance R associated to a scale of mass M? We can
see a derivation of this relation in chapter V in [2], but we will write it here in a slightly different,
albeit equivalent, manner

M(R) = 1.16 · 1012ΩmM�h
−1(

R

h−1Mpc
)

in units of h−1Mpc. For convenience, we will take h = 0.7 and use Mpc as our units.
All elements in equation (30) are now defined. For the cases of only gravity and radiation

presure, the relation

δ̇r,k =
4

3
δ̇B,k ⇒ δr,k =

4

3
δB,k

and we can put eq. (30) as:

δ̈B,k + 2
ȧ

a
δ̈B,k = [

3

2
(
ȧ

a
)2(ΩB +

4

3
Ωr)−

4

9
Ωr

c2

a2
k2]δB,k (31)

expression where the sign of [ 3
2 ( ȧa )2(ΩB + 4

3Ωr) − 1
3Ωr

c2

a2 k
2] will define whether or not we have

oscillations. But we will dwell in this issue later on.
If we introduce photon diffusion we no longer have a simple relation between δ̇rk, δ̇B,k and

δr,k, δB,k, but this following formula

δ̇r,k =
4

3
δ̇B,k(

2√
1 + 4(1.493 · 106[Mpc]ka2)2

)0.9 − µk2

a2
δr,k

Remember the definition of µ = µ(a)

µ(a) =
1

3

1

ne(a)σT
c (32)
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with ne(a) the number density of electrons at a given a

ne =
0.218

a3

1

m3
=

6.40531 · 1066

a3

1

Mpc3

and σT the Thomson scattering cross-section for electrons

σT = 0.665 · 10−28m2 = 6.9863 · 10−74Mpc2

And with that we have defined the set of equations to solve and all the necessary parameters
to do so.

δ̈B,k + 2
ȧ

a
δ̈B,k =

3

2
(
ȧ

a
)2(ΩBδB,k + Ωrδr,k)− 1

3
Ωr

c2

a2
k2δr,k (33)

δ̇r,k =
4

3
δ̇B,k(

2√
1 + 4(1.493 · 106ka2)2

)0.9 − µk2

a2
δr,k (34)

If necessary, we will modify the value of σT manually to exhacerbate or diminish the effect of
photon diffusion (σ ↑⇒ µ ↓, and viceversa).

After doing this, we will proceed to add DM to the mix. This only implies that now ρB + ρrad
is ρB + ρrad + ρDM = ρm + ρrad, having Ω0,DM = 0.26 and now Ω0,m = Ω0,DM + Ω0,b = 0.3, and
the equations governing baryonic density fluctuations will be

δ̈B,k + 2
ȧ

a
δ̈B,k =

3

2
(
ȧ

a
)2(ΩBδB,k + ΩDMδDM,k + Ωrδr,k)− 1

3
Ωr

c2

a2
k2δr,k (35)

the relation that gives us δ̇r,k in relation to δ̇B,k does not change, and we have a new equation that
governs the fluctuations of dark matter:

δ̈DM,k + 2
ȧ

a
δ̈DM,k =

3

2
(
ȧ

a
)2(ΩBδB,k + ΩDMδDM,k + Ωrδr,k) (36)

where the evolution of δDM,k will be affected by the behaviour of δB,k and δr,k.
Apart from the changes on the equations, we will also have to pay attention to the change of

values of a(t) and Ωs, the former being a consequence of the later. Eq. (26) remains valid, but
Ω0,DM is now 6= 0, thus changing Ω0,m and, therefore, a(t).
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Figure 4: At first sight, the form of a(t) remains more or less unchanged
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Figure 5: But if we compare it with a for a radiation-dominated Universe, the departure is more
evident than in the case without DM

With decoupling taking place at tdec = 165494. More important is the change on the ratios of
matter and radiation against the background density. We now also have the quantity ρDM

ρB+ρDM+ρrad
.
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If we plot the three density ratios and the sum of the ones from baryonic matter and DM (ρM ):
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Evolution of the densities of matter and radiation in a Universe with DM
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Figure 6: Unlike the previous case, radiation stops dominating during the studied time.

we can see that, at t = 85280 = teq the radiations stops dominating and now matter dictates
the evolution of the expansion.

Finally, we will take the values of δ for the desired species (baryons, DM, etc) at specific times
for different scales to build the power spectrum.
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2.2 Results

2.2.1 Purely baryonic Universe

We have detailed the obtention of the values of a(t) for a baryonic Universe in the previous section.
We will probe each different case with two scales, M1 = 1013M� and M2 = 1014M�. For these
scales, we have an R of

R1 = 6.90Mpc

R2 = 14.88Mpc

and corresponding values of k

k(M1) = 0.91Mpc−1

k(M2) = 0.42Mpc−1

The equation resulted from disregarding the effect of radiation pressure upon the baryon-radiation
fluid describes a simple, gravitation-directed evolution

δ̈B,k =
3

2
(
ȧ

a
)2(ΩB +

4

3
Ωr)δB,k − 2

ȧ

a
δ̇B,k

that, when solved, produces the following results for M1 and M2:
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Comparison between the two scales. Only gravity

M= 1013M¯

M= 1014M¯

Figure 7: The general shape of the evolution of different scales is the same when there is not
radiation pressure

The main implication of the kind of Universe proposed on the evolution of δB,k can easily be
seen in the graphic when we compare both scales. What is happening there, then? If we take a
closer look at the equation solved, we can see that there is no dependence on the masses or scales
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implicated in the inhomogeneities at all, only if we have different initial conditions for different
scales (which happens, we took the initial spectrum to be the one of Harrison-Zel’dovich). δ is
after all a dimensionless parameter, and it really does not contain information on the size of the
inhomogeneity, only on the departure from the mean density of the specified species in the Universe.
Therefore, every δ will evolve in exactly the same way, but parting from different initial values.
This means that when plotting the power spectrum at the time of decoupling we will recover the
Harrison-Zel’dovich spectrum, as we will see further down this section (remember that we will use
the dimensionless ∆2

(k), that is ∝ k4 instead of k1). We can represent the evolution of δB,k respect
the scale factor, instead of t
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Growth of δBk for the scale M= 1013M¯. No pressure term.

Figure 8: Now we see how δB,k grows with a instead of t

and see that δ ∝ a2, something to be expected as we are in a radiation-dominated Universe for
the entirety of the integration interval.

A scale-independent evolution, albeit easy to treat, is not a good aproximation at all to the
real behaviour of δ (at least after our scales enter the horizon .We will focus on this statement in
a moment). We will now introduce one of the two main complications (or allures, from a different
point of view) of our treatment of inhomogeneities: the pressure due to the radiation part of our
baryon-radiation fluid. We can remember equation 31

δ̈B,k + 2
ȧ

a
δ̈B,k = [

3

2
(
ȧ

a
)2(ΩB +

4

3
Ωr)−

4

9
Ωr

c2

a2
k2]δB,k

in which we now have the extra term − 4
9Ωr

c2

a2 k
2. At a certain moment, this term will make the

sign of the parenthesis accompanying δ to be < 0, which will make the equation one describing an
oscillatory evolution. The pressure of the baryon-radiation fluid starts building up until a point is
reached where this pressure is strong enough to oppose the compression due to gravity, deacceler-
ating it and eventually starting a process of decompression when δ̇B,k = 0. This process does not
stop at the point of equilibrium because our fluid has inertia, and continues decompressing beyond
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once reached equilibrium. This creates an underdense region with smaller associated pressure that
will make the fluid to recompress again, thus creating the observed oscillation. We can visualize it
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Growth of δBk for the scale M= 1013M¯, taking into account radiation pressure.

Figure 9: There is a clear sinusoidal shape in the evolution of δB,k
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Figure 10: The larger the scale, the bigger the amplitude and the smaller the frequency of the
oscillation

The change from the previous case is inmediately apparent. We now have an oscillation around
an equilibrium that happens to be δB,k = 0, with an absolute maximum at tmax = 0.32tHor in both
cases. What does this imply? In the previous case, a small δ would keep growing, meaning than
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an overdense region would be more and more overdense as time comes. But with this results, we
see that the growing of these δ is halted by the fact that baryons and photons are tighly coupled,
and the pressure due to this last component is several orders of magnitude greater than the gas
pressure of baryons (before recombination). Therefore, once the oscillations start until the point
when they eventually stop, we have scales that have their growth frozen. Note that the peaks of
amplitude are also significatively smaller that the values reached in the case of pure gravitational
growth. We can see the two cases, pure gravitational growth and growth halted by pressure, to
note how dramatic this effect is
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Figure 11: δB,k gets effectively frozen whe radiation pressure acts
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We can compare now both structures
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Figure 12: Plotting against log t[y] it is easier to see the complete evolution of inhomogeneities

And we see more clearly now that we do not have the same behaviour for both: for a bigger
scale we have a higher amplitude, and oscillations with smaller periods. This means that when
the oscillation stops and the structures commence to grow again, they will do so starting from
different initial conditions for δ than the ones given by the primordial Harrison-Zel’dovich spectrum
and therefore the shape of this spectrum will not be maintained throughout time. We now can
establish limits on different parameters by observing the values of δ for different scales (or related
quantities, such as the power spectrum). It is also interesting to note the relation between δB,k,max
with pressure and δB,k,Hor in the case of only gravity. δmax/grav,M1 = 0.235; δmax/grav,M2 = 0.237:
fairly constant. The fall between δB,k,max and δB,k in the last peak is, for M1, 0.143, and for M2,
0.216. This quantities can be useful for the analytical treatment of the equations, for which it
is necessary to assume the adiabatic approximation and where it can be applied. We have seen
the general evolution of δB,k when subjected to radiation pressure, and we can see what happens
to δB,k for times near tdec but lets focus on the initial stages of its evolution. We can take as a
significant time to study the early stages of this δB,k the time when each of the scales are inside
the horizon. To compute said time we have two equivalent approachs: using the value of RHor or
the value of aHor

aHor =
2ctHor
RHor

Say that we use the value of RHor. We know the size of each scale, R1 and R2, and we have a(t).
It is trivial then to find:
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tHorM1
= 328y

tHor,M2 = 1525y

(In the case with DM, those times will be tHorM1
= 86y, tHor,M2 = 404y). It is commonly

stated that only when a scale enters the horizon it starts oscillating, because before that moment
it cannot evolve as a whole, but if we study the earlier stages of our solution

we see that in fact the oscillations start before, at around 0.24tHor for each scale. We can write
the equations being solved in a different way:

δ̈B,k + 2
ȧ

a
δ̇B,k = 4πGρB(1− 1

3

k2c2

4πGρB
)δB,k

where

k2
J =

4πGρB
c2

λJ =
2π

kJ

MJ = ρb
4π

3
(
λJ
2

)3

and this equation starts having an oscillating behaviour once the term multiplying δB,k is negative.
This happens for the observed time 0.24tHor. In fact, the δB,k keeps on growing for a little bit

after this time, until , the same moment when δ̇B,k becomes 0, at t ' 0.32tdec. Remember that
this is the moment when the pressure gradient is ”stronger” than the gravitational potential, but
the fluid was already growing before this moment. The compression then starts to decelerate,
which translates into the observed ondulatory behaviour. Finally we are going to introduce the
last ingredient on our mix for this Universe: photon diffusion. Photons, althought having a high
scattering rate with electrons, still have a relatively long mean free path compared to electrons.
When we have a compression, we are in a sense generating entropy, because we can expect photons
to travel from the most overdense (”hot”) regions to the colder ones (those outside the fluctuation).
They can do so because of their longer mean free path. Remember the equation describing this
phenomenon

δ̇r,k =
4

3
δ̇B,k(

2√
1 + 4(1.493 · 106[Mpc]ka2)2

)0.9 − µk2

a2
δr,k (37)

and compare it to the one we have without diffusion, δ̇r,k = 4
3 δ̇B,k. The new term depends on µ,

defined in eq. (32), that at the same time is inversely proportional to the value of σT . The higher
the value for the Thomson scattering cross-section, the softer the effect of photon diffusion: the
photons wouldn’t be able to escape the baryon-radiation fluid. But we do not have an arbitrarily
high value of σT and some photons do get out of the baryon-radiation fluid. This produces a
damping effect on the oscillations, named Silk damping after Joseph Ivor Silk (1968).The damping
of oscillations due to diffusion is often explained as the scaping photons ”dragging” the baryons
with them, but this goes against the original argument that the photons that are able to scape
are those that happen to not interact with baryons in the first place. We can explain the effect in
a simpler way: when photons escape, the direct result is that we have fewer photons in the fluid.
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Radiation being the dominant component of this Universe at the studied times, we are losing the
main contributor to the radiation pressure (which dominates the oscillatory evolution) and also
the gravitational evolution of δB,k and therefore damping both the radiation pressure and the
gravitational evolution of the baryon-radiation fluid. We can observe how δB,k is going to behave
under this newly introduced effect:
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Figure 13: δB,k for M = 1013M� has practically vanished at the time of decoupling
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Figure 14: The bigger scale is still present, but is almost negligible compared to the δ we would
have without diffusion
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Also, it can be interesting to plot the values obtained for δr,k in this case, to see that when we
approach the time of decoupling, this δr,k is no longer 4

3δB,k, but smaller. If we had not fixed the
ionization ratio this effect would be even stronger approaching tdec.
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Figure 15: As photon diffusion occurs, δr,k is no longer 4
3 of its baryonic counterpat

Comparing the evolution we have to the one obtained in the case of pressure without diffusion
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Figure 16: We can appreciate the difference respect the case with only radiation pressure

We can clearly note the damping of oscillations caused by diffusion. It is dependant on the size
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of the scale. Note that eq. (37) has a factor k2. The higher the mass of the scale, the smaller k(m)

and therefore the lower the damping. We can calculate the damping upon a scale: in the case of
M2 = 1014M�, we can expect the amplitude of the oscillation to be more or less 0.06 times the
amplitude reached in the previous case where we did not take into account the photon diffusion,

using the Silk approximate damping factor e−(
MS
M )2 ,MS ' 1.67 · 1014M� ≡ Silk Mass, defined

below. In this case, our solution gives us a damping of 0.07 for this scale.
With scales smaller than a certain mass, named Silk mass or MS (for which the amplitude

of oscillations is reduced by a factor 1/e by the time of decoupling), we will have a stronger
damping effect. This also supports the argument presented before that said that the reason for
the damping is just the reduced density of photons: as we saw earlier, smaller scales have higher
oscillation frequencies: for each cycle of oscillation we will lose photons, and the higher the number
of cycles before decoupling, the higher the loss of photons. Another important factor that makes
the damping of smaller scales to be greater is that they enter the horizon earlier, so they froze
with an smaller size. As the mean free path of the photons would not change just because we are
in less extense scale, it will be bigger in relation to the size of the lesser scales and the diffusion
process will be stronger. We can compare both scales
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Figure 17: The smaller scale, with smaller amplitude and higher frequency, gets wiped out earlier

Photon diffusion affects primarly to radiation pressure, and this implies that, as happened
before, they will start acting at the same time briefly before the scale enters the horizon. In
addition, the damping has its strenght increased with time, but starts being almost negligible; as
we saw comparing the cases with and without diffusion, at early times both cases are extremely
similar. In any case, this behaviour will soon be dwarfed in comparison to the growth expected
from the action of gravity alone.

Now that we have all the data, we can compute the power spectrum. For this we will consider
δ2. To do so, we only have to take the value of δB,k at the time of decoupling for various scales.
Specifically, we will cover a range from M = 1013M� to M = 1016M� (value that may be larger
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than necessary: as mentioned before, structures as large as the Virgo supercluster are estimated
to be one order of magnitude smaller than our biggest scale here). This corresponds to k ∈
[0.18, 1.78]. Remember that for bigger masses, k is smaller. We already noted that, in the case
of just gravitational growth, all scales would grow in exactly the same fashion and keep the shape
of the primordial power spectrum found at the end of the inflationary epoch. It is not surprising,
then, that if we compute P(k) = ∆2

(k) (from eq. (20)) it will have:
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Figure 18: Spectrum with the shape of Harrison-Zel’dovich

But if we obtain the spectrum observationally, it does not maintain the primordial shape at
all, indicating that there are more factors at play in the evolution of δB,k than gravity.

If we introduce pressure, we will have the following values
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Figure 19: The larger the scale, the earlier the time they ”froze”. Smaller scales did not grow
and this translates to P(k)

The smaller scales entered the horizon earlier: that is, their growth froze at an earlier time,
with a smaller amplitude of δB and consequently reached the time of decoupling with a smaller
amplitude. If we now introduce photon diffusion, the scales smaller than MS ' 6.93 · 1014M� had
their amplitude wiped out and disappeared from the spectrum
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Figure 20: On top of being frozen, smaller scales are wiped out due to photon diffusion
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We can overlap both spectrums to observe the actual effect of diffusion on smaller scales
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Figure 21: Diffusion dampens the growth of all scales, and erases the ones smaller than MS

2.2.2 Universe with DM

We will now introduce one more ingredient to the mix. So far, the only components in our Universe
have been baryonic matter, radiation (in the form of photons) and curvature (this last element
being only introduced for completeness, it will be negligible for all t). This treatment can be
convenient to work with, but it lies far away from the observed parametres of the Universe. Not
taking into account, for example, Λ is not that big of a problem, since it will be negligible for t < tdec
and beyond, but, if we recall the results of computing the density ratios of our components, the
introduction of DM implies that the time of radiation-matter equality comes much sooner than in
a baryonic Universe, where teq ' 578258y instead of teq ' 85280 in the case of DM. If we had a
radiation-dominated Universe for all t < tdec before, now a big chunk f time will be spent in a
matter-dominated Universe. The particular aspects of the evolution treated in the previous section
arise from the behaviour of δr,k. If this component of the Universe is now non-dominant for some
t we can expect the evolution of the different δ’s to adapt to the new situation. Not only that,
but the main contributor to the matter density, the DM (6.5 times more aboundant than baryonic
matter) does not interact with radiation other than gravitationally. We will have two decoupled
fluids, one consistent on baryonic matter and photons, and the other of dark matter (specifically,
CDM: we consider the DM non-relativistic).

Having said this, we still have a situation that does not change significatively: the growth due
purely to gravitation. The addition of DM does not carry any new dependence on the size of the
scale for the gravity term, and we will find again that there is no difference in the evolution of
inhomogeneities for different scales.
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Figure 22: The change from a radiation-dominated Universe to a matter-dominated one can be
appreciated in the growth of δ

We find again a simple and not very interesting evolution, although we have to note that the
values of δ for both baryonic and Dark matter are the same for each scale: same inital conditions
for the two matter components of a scale, coupled with the independence of the evolution of said
initial condition with the scale or species we are dealing with, explains this situation. We can also
appreciate how the evolution of the scale factor a affects the growth of δ: we are not in the realm
of radiation-domination for the entirety of the studied time anymore, and this translates into the
solutions of the equation. It is when we introduce the pressure term that we have in eq. (35),
where we still have δr,k = 4

3δB,k, when things get more interesting. Solving the equation produces
the following results:
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Figure 23: Evolution very similar to the one without DM
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Figure 24: DM appears to keep growing even with δB,k and δr,k oscillating

The first figure shows the evolution of δB,k, very similar to the previous case, and the second
one show the evolution of δDM,k. The dark matter behaves differently due to its non-interactive
nature with radiation, and it does not get stuck in an oscillation as the other components. However,
we can see some very small oscillating features in its evoution. Why? The DM is not coupled with
photons, but it is still affected gravitationally by them. The term (ΩBδB,k + ΩDMδDM,k + Ωrδr,k)
in eq. (36) has the contribution to the gravitational potential of all species, including radiation,
which dominates for a long while. Even after teq its contribution is large, being also exhacerbated
by the addition of ΩB,kδB,k, with δB,k coupled with δr,k. DM will see its evolution repressed by
the fact that both the radiation and the baryonic matter are ”frozen” around δ = 0. We will see
this behaviour in the next images; what we see in fig. (24) is another effect of this oscillation
of baryons and photons: if δB,k, δr,k are oscillating, the potential depending on them will do the
same. The gravitational potential affecting DM should oscillate, very very lightly, but oscillate
nonetheless. This translates into this minor oscillation that will not halt the slight growing shape
of the evolution of δDM,k.

Let us compare the evolution of δDM,k with and without the influence of radiation pressure:
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Figure 25: Coincident at early times, around tHor for each scale, the growth of δDM,k freezes com-
pared to the one in the pure gravitational case, but starts growing again under its own gravitation
after teq

The growth of δDM,k is seriously affected by radiation pressure (better said, by the lack of
growth of δB,k, δr,k, consequence of the oscillations caused by radiation pressure) but, is it as
”frozen” as δB,k? The answer is no
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Figure 26: δDM,k grows when compared to δB,k
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Figure 27: DM exhibitis the same behaviour for both scales

δDM,k grows more than δB,k (in accordance with the calculations carried in section 4.5 in [5],
δDM,k grows by a factor ' 5

2 during this stalled expansion), but still much less than what it would
grow under the exclusive influence of gravity. As happened in the analysis of a purely baryonic
Universe, the oscillation does not start inmediately but after some time near tHor for each scale.
Now we introduce photon diffusion. The effects of radiation pressure upon δB,k will lose importance
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due to this phenomenon, exactly like in a purely baryonic Universe. There is a difference: now
we have a DM component that kept growing, albeit very slowly, during the baryonic oscillations,
coupled with the fact that after teq radiation no longer is the dominant element of the Universe,
but matter, which is mainly comprised of the ever-growing DM. It is then not a surprise to see the
following evolution of δB,k:
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Figure 28: Both scales are not oscillating around δB,k = 0 for times near teq, even earlier in the
smaller scale

We can appreciate that around teq, δB,k starts growing again under the influence of DM, that
has both a bigger Ω and a bigger δDM,k, as we can see when we plot both species at the same time
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Figure 29: With diffusion, δDM,k has a very similar behaviour to the one without it
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And essentially the same result for M = 1014M�
Basically, this means that photon diffusion accelerates the domination of DM in the evolution

of inhomogeneities, apart from erasing small scales. The evolution of δB,k will be different from
the one we had in the case of no diffusion, but it is still possible to state that until decoupling,
the inhomogeneities are frozen when we compare them to the ones we would have if there was no
pressure or photon diffusion. Again, we can study the time tHor for both baryons and DM and see
that DM grows the same way up until the point when baryon-radiation oscillations starts, moment
when said growth stagnates without a clear-cut difference between the cases with and without
diffusion.

We now are in position to compute the power spectrum at tdec in the same fashion as done
for a baryonic Universe. We will see that, just as before, the gravitational evolution conserves the
primordial shape of the spectrum for both DM and baryons
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Figure 30: Again, when we only have gravity, the shape of the primordial spectrum is conserved

And, with same initial conditions of δ for the two kinds of matter, they end up with the same
power spectrum. Now, if we add pressure, the baryonic power spectrum will be drastically changed,
as a consequence of the coupling between radiation and baryonic matter:
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Figure 31: The shape of this spectrum is essentially the same of the one of a Universe without
DM, but with slightly higer values of ∆2

(k) in general

We have different behaviours for different scales. The smaller scales went into the horizon
before, so it is expected for them to reach tdec with smaller amplitudes.
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Figure 32: Bigger scales behave as they would do without pressure, as they did not have time to
freeze. Smaller ones are almost negligible compared to those

Even if it does not oscillate, DM sees its growth interrupted by the baryonic oscillations. They
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start at different times, which means that δDM for bigger scales would have more time to grow
before being interrupted. More importantly, the rest of the contributors to the gravitational poten-
tial (baryonic matter and radiation) are frozen. However, DM is not directly affected by radiation
pressure, and its evolution is still defined by the gravitational potential: therefore, we will maintain
the general shape of the primordial spectrum. The smoothness of this spectrum is consequence of
the lightness of the transference of oscillations from δB to δDM : the dark matter power spectrum is
much more smoother that the one for baryonic matter, something that contributes to the formation
of structures that otherwise would not have had the time to form from decoupling until now.

If we add photon diffusion, what will happen is that smaller scales (higher k) will be wiped
out. However, unlike in a purely baryonic Universe, δB will start growing again under the influence
of the DM, so the power spectrum will not go to 0 in the wiped out scales as rapidly as in the
baryonic case.
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Figure 33: We lose again the smaller scales
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Comparing the cases with and without diffusion

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

kM[Mpc−1]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

∆
2 (k

)

Differences in the power spectrum of baryons wheter or not we have photon diffusion

δ 2
Bk

2π2

k 3
 at t= tdec

δ 2
Bk

2π2

k 3
 at t= tdec, with diffusion

Figure 34: Fewer and smaller peaks

The peaks corresponding to the smaller scales are lost.
The DM power spectrum won’t be significatively altered We can also compare the obtained
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Figure 35: Essentially, the same P(k) than in fig. (32)

power spectrum at tdec with the one we get when we go to bigger redshifts. We assumed that
decoupling happened around z = 1300, now we are going to go beyond that, to z = 1500. It is
not necessary to illustrate the differences in P(k) for DM: it has the exact same shape, only with
slightly lower absolute values, given that the inhomogeneities would have had less time to grow.
The most interesting case is the one of baryonic matter under the influence of radiation pressure
and photon diffusion
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Figure 36: At times earlier than tDec there has been less damping of small scales, and also the
still present peaks have not grown so much under DM’s influence

Where we see that, apart from a general reduction of the values of P(k) for the same reason of
having less time to grow (remember that before decoupling the presence of DM is already starting
to force δB,k to grow), there is also less smoothness for medium scales, that are not yet completely
wiped out by Silk damping.
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2.3 Conclusions

The objective of this work was one of pedagogical nature. It was not expected to find some
new groundbreaking descriptions of the evolution of inhomogeneities in the Universe, but to be
able to reproduce known behaviours of these inhomogeneities without the need of expensive and
tasking numerical simulations. Using the wide range of approximations mentioned in this text we
reached a set of solvable equations that we hoped would remain faithful to the actual evolution
of δk. In general, this objective has been fulfilled. In the case of a purely baryonic Universe we
hoped that the coupling of baryons and photons would mean that structures stop growing and
start oscillating some time before their entry into the Horizon defined by their KJ and in fact we
got this behaviour. By introducing photon diffusion, where the most important assumptions were
taken, the fluctuations of smaller scales were damped and eventually wiped out, as was expected.

When we made the jump to a Universe with DM we recovered the results that δDM,k would
stop growing when baryonic acoustic oscillations kicked in. Since there is no radiation-DM cou-
pling, δDM,k kept growing, but at a much slower rate than before, as the dominant term for the
gravitational potential, ΩBδB,k + Ωrδr,k, was stalling around 0.We expected δDM,k to present a
small oscillation due to the mentioned dominant term in the gravitational potential oscillating,
but this tranfered oscillation was perhaps too subtle. This oscillation is expected not only because
previous results in literature, but because a qualitative analysis of the equation governing DM

δ̈DM,k + 2
ȧ

a
δ̈DM,k =

3

2
(
ȧ

a
)2(ΩBδB,k + ΩDMδDM,k + Ωrδr,k) (38)

and having obtained a oscillatory solution for δB,k, δr,k which at some times will be negative,
we should assume that some degre of oscillatory perturbations would translate into the evolution
of DM structures. It is possible that the small size of these DM oscillations is a consequence of
fails in the numerical treatment of the equations, althought it seems unlikely, given that the rest
of wanted aspects of the solutions are obtained. A more extended analysis of both the numerical
solution and the analytical process to reach the solved equations is needed to understand the source
of this divergence from the known growth of DM. Taking into account photon diffusion does not
solve this problem, but is satisfactory in the rest of aspects of the different solutions. The lightness
of oscillations of DM means that its evolution won’t be substantially different from the one result
of adding radiation pressure, but we do observe a change in the evolution of δB,k. Apart from
suffering a process of Silk damping, as matter dominates the Universe the influence of the larger,
still growing δDM,k makes δB,k start growing again. All the mentioned behaviours affect the shape
of the power spectrum of each component. Its form has been already discussed, and it agrees
with the observed sprectrums for values of k smaller than the one given by the Doppler effect (the
main peak). Values of P(k) for k greater than where this peak is located are determined by the
Sachs-Wolfe effect, not treated here.We can conclude that the equations solved are a good first
approximation to linear evolution of small fluctuations for times between the end of inflation and
the epoch of decoupling, and the approximations used to obtain them can be taken into account
when performing an analytical treatment of this problem.
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