TRABAJO DE FIN DE GRADO:

Statistical analysis of microlensing light curves

Ana Esteban Gutiérrez

Tutorized by : FEvencio Mediavilla Gradolph

September, 2016

e UNIVERSITY OF LA LAGUNA. SCIENCE FACULTY, PHYSICS SECTION e

- DEPARTMENT OF ASTROPHYSICS -

Wm%ﬁs@%
B

I

Universidad de La Laguna






Abstract

En este proyecto de fin de Grado, exploraremos el uso del efecto lente gravitatoria en qudsares
como una herramienta para estudiar las velocidades peculiares de las galaxias que actian como

lente.

Este trabajo estd dividido en dos partes: en primer lugar, trataremos el estudio de la mag-
nificaciéon inducida por el efecto lente en los movimientos relativos de las imagenes multiples de
un quasar; en segundo lugar, realizaremos simulaciones del niimero de picos generados por el

efecto microlente en las curvas de luz de las imagenes de un quésar.

En la primera parte, usaremos una serie de c6digos desarrollados en el lenguaje Python para
simular los movimientos relativos de las iméagenes resultantes de los sistemas quésar con efecto

lente, cuantificando los desplazamientos entre las imagenes y discutiendo su posible deteccion.

Por otro lado, los principales objetivos de la segunda parte son la simulacién de las curvas
de luz de las imagenes de un quasar a partir de sus mapas de magnificacién inducida por el
efecto microlente y el recuento de los maximos relativos que aparecen en las curvas de luz. La

frecuencia de estos maximos estara relacionada con la velocidad peculiar de la galaxia.

Finalmente, dos resultados interesantes de este trabajo son las expectativas de desplaza-
miento de decenas de pas/ano en casos favorables (lentes de alta magnificacion) y que el error
en la medida del nimero de cuentas de maximos relativos en curvas de luz, es similar o ligera-

mente inferior al error Poissoniano.
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1 Introduction

Gravitational Lenses (GL) are very useful tools in Astrophysics and Cosmology nowadays. They
are an essential part of the theoretical and experimental basis of the General Theory of Relativ-
ity. In the context of the present work, they are also interesting because of the mathematical and
computational properties related to their study. The scientific community uses Gravitational
Lenses as invaluable tools for drawing and studying the mass distribution in different scales in
a Universe where the majority of the matter has an unknown nature. In addition, it is known

that GL also magnify space (and, hence, fluxes) acting as a natural optical magnifying system.

Even though the term of Gravitational Lens is the most used one by astronomers to describe
this kind of phenomenon, the expression of Gravitational Mirage approaches better to its own
nature. The atmospheric mirages occur when there is a modification in the direction of the light,
caused by a variation in the refractive index. If we attend to the Fermat’s principle, it says that
the light tends to look for the faster way of moving between two points. Nevertheless, the faster
way in the atmosphere don’t use to be a straight line. As the velocity is higher in the cold
air, the light will follow a curved trajectory searching the coldest layers in the atmosphere. In
certain circumstances, when the temperature changes strongly and the object and the observer
are very far away, then the light is able to find more than one way to connect the object and
the observer. In that case, we could see more than one image from a distant object which is a
result of this spectacular phenomenon of the curvature of the light rays.
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Gravity can also deflect light rays. In a Gravitational Mirage, the gravity is the responsible of
bending the light rays. In fact, one of the most outstanding results of the General Theory of
Relativity is the deflection of the light rays. This effect and the dilation of time in presence of a
gravitational field are two of the essential predictions of the General Theory of Relativity, which
set the basic phenomenology of the GL. However, long before the developing of this theory, it

was suspected that gravity influences the behavior of light.

In order to delve into the history of the GL, we must take a look to the past and in par-
ticular, to the early 1704, when Newton had already supposed the existence of a bending of the

starlight due to the gravitational field coming from a massive object when the light rays pass



near it. This idea was included in the Corpuscular Theory of Light, specifically in his book
"Optiks’. All the same, Einstein was the first scientist who calculated the correct value for light
bending in his General Theory of Relativity in the 20th century. However, Einstein expressed
the low probability of discovering two stars enough aligned as to generate a lens system. In
1919, Eddington and Dyson went to an expedition to take advantage of a solar eclipse in order
to measure the displacement of the apparent positions of the stars induced by the gravitational
field of the Sun. The results achieved there, made Einstein and his theory of general relativity
world-famous. Furthermore, gravitational lensing is discussed by Eddington in his book "Space,
Time, and Gravitation", which was published in 1920. In 1937, Fritz Zwicky proposed galaxies
as better lenses than stars, because they are more likely to be gravitationally lensed. That
is, the necessary near-alignment of a distant object (a source), a closer object (a lens) and an

observer on Earth is much more probable for galaxies than for stars.

In 1964 Sjur Refsdal proposes to use Gravitational Lenses for measuring masses and calculating
Hubble’s constant. Also, he and Kyongae Chang predicted the microlensing effect by stars in
the gravitational lens in 1979 and took the first step for the study of quasar microlensing. In
the same year and 60 years after the famous Eddington expedition, the astronomers discovered
a double image from a distant quasar called Q0957+561, caused by the gravitational field of an
intervening galaxy which acts as a gravitational lens. This first identification of a gravitational
lens was soon followed by others: in 1985 a cuadruple system called QSO 223740305 was discov-
ered. It became one of the most famous gravitational lenses and its popular name is Einstein’s
cross. These discoveries were sucessfully achieved because bright and remote quasars are ideal
sources to be imaged by an intervening lens galaxy. Today, more than 100 lensed quasars are

known.

It is customary to consider three different types of lens effect: Strong Lens Effect, Weak Lens
Effect and Microlensing Effect. In this work we want to focus on quasar microlensing, which is
a combination of Strong Lensing and Microlensing. On the one hand, we are interested in the
images of a quasar separated a few arcsecs by the large mass (10'° Mg) of the intervening galaxy
(when the source and the lens are well aligned we would not see a discrete group of images, but

a continuous ring or a broken ring composed by a few arcs).

On the other hand, we are also interested in the effect in each of these images of the gran-
ulation of the lens galaxy mass distribution in stars (about 1 Me). This microlensing effect will
not generate observable multiple images, but it can change the brightness of each one of the

images of the lensed quasar.



1.1 The lens equation

In this section we are going to present the basic mathematical description of the phenomenon

of gravitational lensing.

In the scheme below we have represented: the distant source (S), the object which creates
the gravitational field (i.e., the lens, L), and the observer (O). The plane that contains the lens
is the lens plane and the other plane which contains the source is the source plane. If our object
(a galaxy, for instance) does not generate a gravitational field, the light would follow a straight
line from S to O (dashed line). This trajectory would form an angle 8 with the optical axis
(OL). However, in presence of the galaxy’s gravitational field (L), the light rays will feel an
atraction to the galaxy and then, they will not follow a straight line anymore. Instead of it,
they will be bent approaching to L. This trajectory can be approximated by two straight lines
(SM and MO). The observer will see that the light comes from the direction MO with an angle
0 wth respect to OL and he will give a position S1 to the source. The angle « is the deflection
angle between SM (initial trayectory) and MO (final trajectory).

In the source plane we will have,

n = WS1*SSl (].].)

and taking into account that there is a similarity in the triangles,



- = (1.2)

and considering that the deflection angle is very small, from the triangle M .SS; we can write:

S5
a = , 1.3
Dis (1.3)

therefore, if we substitude (1.2) and (1.3) in the equation (1.1), we have:
D
n = D—S§ — Drsa (1.4)
L

We can rewrite this expression using: n = 8Dg, £ = 60Dy,

0Ds = pBDg+ aDrg (15)

The lens equation can also be written in a vectorial form as:

Y = 7 -7d() (1.6)

where

7= L3

No

ofm

and 7y = §og—f . &o is a characteristic distance scale in the lens plane which is chosen according
to the type of lens, in order to obtain an adimensional equation.

1.2 Magnification

It is important to introduce now the magnification effect of lensing. Lensing can magnify and
distort the image of the background source. We define magnification as the parameter which
indicates how much the flux of an object increases due to the lens effect. The flux depends
on the product of the intensity and the solid angle, AF = IA), and according to Liouville’s
theorem, the lens effect does not affect to the intensity. Thus all the magnification is related

to the solid angle, AQ « AS/R?. Consequently, the magnification arises from the variation



of the differential element of area induced by the gravitational lens effect. We can write the

magnification as:

dxtdz?
e (L.7)

if we consider the transformation between surface diferentials, we will get:

oyt
dy'dy® = da'da® | == 1.8
y dy” = doda® |5 (1.8)
where |9y’ /927 is the Jacobian determinant of the transformation.
Then, the magnification will be:
i 1—1
oy’ o aai—1
=55 = | A%| (1.9)

It is very common to write the matrix A in terms of two parameters: the convergence, x , and

the shear, v. According to the lens equation, the matrix A can be defined as:

ii 0y’ ; oo l—-rk—m Y2
AT = o= = ( . (1.10)
Y2 K+7

The points where |A| = 0 have, theoretically, infinite magnification. There will be a singular-
ity there and the transformation 5/ = 3’ (Z) will not be invertible (its Jacobian determinant
vanishes). In the lens plane we will have one dimensional regions called critical curves whose
transformed in the source plane are the regions called caustic curves. Then, sources on a caustic
region, will have a magnification formally infinite. Thus, when a pointlike source crosses a caus-
tic, we will observe a very sharp event of high magnification. However, if the source is extended,

we will see a peak which can be rather smooth when the source is large.



2 Gravitational lensing simulations

The first step in our study of GL is to write a computer code in order to simulate a gravitational
lens system. The generation of the images for a given source and lens pair will be our first goal.
The code was written using the Python programming language and the algorithm is based on
the inverse ray shooting method (IRS method).

2.1 Images

If we want to determine the position of the images (') from the position of the source (/)
we would have to solve equation (1.6), in general trascendent and multi-valued. The deflec-
tion angle, @ ('), given in the adimensional equation (1.6) depends on the kind of lens and
it can be very complicated (in this work we are going to consider the point like lens to rep-
resent stars and the singular isothermal sphere plus an external perturbation lens, SIS+, to
represent galaxies). However, using eq. (1.6) we can inmediately obtain a point in the source

plane, 7, given a point in the image plane, 7. In what follows, we will make use of this inversion.

To start with the code of the program, we assign the coordinates of the source and the lens,
respectively, to the vectors: ¥ = (y1, y2) ; @ = (1, z2). As commented above, depending on
the explicit relationship between the deflection angle o and ?, 3(7), and also on the source
position, ¥/, the lens equation would have one or many solutions: 7’ (7) (images). In gen-
eral, this equation is not analitically invertible and the procedure to obtain the solutions or
images, 7 (7), can be a difficult problem of numerical calculation. However, we can simulate
the gravitational lens effect by using the inverse ray shooting method. In first place, we set
the pixels matrix which defines the image : I(x1, 22). The lens equation allows us to obtain
univocally the coordinates of each point (z1, x2) in the source plane, (yi(z1, 2), y2(z1, x2)),
tracing backwards the path followed by the light rays (IRS method).

Once we have this, in order to obtain the value of the image in that point we make:

I(x1, x2) = F(y1(x1, x2), y2(x1, x2)), where F(y1, y2) is the matrix which represents our source.
In summary, we follow this procedure because the mapping y < «x is single-valued whereas the
y — x is multi-valued. We have to keep in mind that this correspondence is only an approxi-
mation, because the inverse image of a pixel of the lens plane would not match exactly to any

pixel in the source plane.

The code has auxiliar procedures to change pixels into coordinates, 7 = (21, 22), and later
to convert coordinates into pixels, j1(7/), j2(¥/), for the plot. The change is calculated by as-
signing coordinates to our pixelated matrix (n x n) at the vertices of the square ((—I, -1 ),(—{, [
), (I,=1), (I, 1)) and setting a linear transformation to transform pixels into coordinates and

viceversa. In the scheme below we can see a description of the code:
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In the following pictures, we show the effect of a theoretical SIS+~ lens model on a disk-like
source. We present a series of images obtained for different positions of the source along the x
axis, in order to see how the images change with a moving source. The deflection angle of this

type of lens is written as:

0 _
o = [ "7 x+oELxd)2 (2.1)
0 K=" |z — x4]

To understand this formulae, it is important to know what is the main difference between the
terms convergence and shear (see eq. 1.10) and the way they affect to the final result. On
the one hand, convergence is defined as a term which affects equally every possible angular
orientation, that is, it would transform a certain circle in a larger or smaller one but leaving
unaffected the shape of the circle. On the other hand, the shear will magnify preferably in a
certain direction, that is to say, it is able to transform a circle in an ellipse with the larger axis
along a privileged angle. We adopt the following values for the lens parameters: convergence
(k) equal to 0, Einstein’s radius () equal to 1 and shear () equal to 0.2 (actually, it is defined

as the squared root of y;and «o which are two already fixed parameters).



2.0

15
10
0.5
0.0
=0.5
-1.0
=15
-2.0

2.0

15
10
0.5
0.0
=0.5
-1.0
=15
-2.0

20

15
1.0
0.5
0.0
=0.5
-1.0
=15
-2.0

20

15
1.0
0.5
0.0
=0.5
-1.0
=15
-2.0

=2.0-1.5-1.0-0.50.0 05 1.0 15 2.0

=2.0-1.5-1.0-0.50.0 0.5 1.0 1.5 2.0

=2.0-1.5-1.0-0.50.0 05 1.0 15 2.0

=2.0-1.5-1.0-0.50.0 05 1.0 15 2.0

.0
=2.0-1.5-1.0-0.50.0 0.5 1.0 1.5 2.0

-2.0
=2.0-1.5-1.0-0.50.0 0.5 1.0 1.5 2.0

.0
=2.0-1.5-1.0-0.50.0 0.5 1.0 1.5 2.0

-2.0
=2.0-1.5-1.0-0.50.0 0.5 1.0 1.5 2.0

2.0
15
1.0
0.5 0.5

0.0 0.0
-0.5

-1.0
=15

-2.0

. —2.0
—-2.0-1.5-1.0-0.50.0 0.5 1.0 1.5 20 -2.0-1.5-1.0-0.50.0 0.5 1.0 1.5 2.0

- .0
=2.0-1.5-1.0-0.50.0 05 1.0 15 2.0 ~=2.0-1.5-1.0-0.50.0 0.5 1.0 15 2.0

20

=0.5 =0.5
-1.0 -1.0
=1.5 =15

—20

-2.0
2.0-1.5-1.0-0.50.0 0.5 1.0 1.5 2.0 =2.0-1.5-1.0-0.50.0 0.5 1.0 1.5 2.0

2.0

15
10
0.5
0.0
-0.5
-1.0
-15

-2.0 -2.0
—-2.0-1.5-1.0-0.50.0 0.5 1.0 1.5 20 -2.0-1.5-1.0-0.50.0 0.5 1.0 1.5 2.0

Fig 1. From the top left to the bottom right it is shown the change of the images (columns 2 and 4)

originated by a SIS+~ lens when the source (columns 1 and 3) is moving towards the right. Source

and lens are initially located at (0,0) with xk =0, 0g =1, v = 0.2



2.2 Magnification maps

Magnification maps are an essential tool in lensing studies. Their calculation is particularly

important to study quasar microlensing.

As we have seen before, the magnification measures the variation of a diferential element of
area induced by gravitational lensing. In order to apply the inverse ray shooting procedure
here, we can divide the lens plane in diferential elements (pixels) of area Ax!Az?(x!, 22). If we
consider now pixels of area Ay'Ay?(y', y?) in the lens plane, the magnification in the m-pixel

in the source plane will be:

N
3 (AztAx?),

k=1
= ATA), (22)

where (Az*Ax?);, is the area of the k-pixel in the lens plane whose origin is inside the m-pixel
in the source plane. This equation is valid in the approximation of tiny pixels in the lens plane
where the lens inverse transformation make that each pixel of the lens plane fits within a single
pixel in the source plane. If we take all the pixels of the lens plane with the same size, we can

rewrite the previous equation as:

N N
S (AcAD). Sk
=1 k=1 N

/_j/ = = T = —
" (AylAy?),, — Brdds N,

(2.3)

where Ny is the ratio of areas between the pixel in the source plane and the pixel in the lens
plane. The magnification will be proportional to the number of light rays that would reach
a certain pixel under the action of the inverse ray shooting. To sum up, we will compute the
magnification as the ratio between the number of rays that hit in a certain pixel and the number

of rays that would have received this pixel in absence of lensing.

In Figure 2, it can be seen the magnification map of the same SIS+ lens exposed in the

previous section. Now the axis indicate us pixels, instead of coordinates.
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Fig 2. Magnification map corresponding to a SIS+~ lens with a background potential characterized
by the same k,~ and 0g of the example of Figure 1.

3 DMagnification of gravitational lenses proper motions

In this chapter, we use the Python based codes developed in section 2. in order to simulate the
relative motions of the images of lensed quasars. In section 3.1. we introduce the concept of
peculiar motion and motivate the objectives of our work. In section 3.2. we describe the effects
of lensing magnification in the quasar images motion. These effects are quantified in section 3.3.
and finally discussed in the context of future instrumentation in section 4.4.

3.1 Motivation and description of the phenomenon. Main objectives.

It is a well known fact that the entire Universe is expanding and galaxies should be receding
from the Earth according to Hubble’s law. However, the "Hubble Flow’ is alterated by the at-
traction between galaxies and larger structures. The universe is not composed of a smooth and
homogenous matter, but of huge accumulations of matter (granulations) and vacuum between

these accumulations.
Thus, all the galaxies are feeling this attraction and that’s why they will have a velocity different

from the expected. Then, these deviations with respect to what we call "Hubble Flow’, peculiar

velocities, are really interesting to study the distribution of matter in the universe, as well as
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the existence of dark matter and how it is related to these motions.

Consequently, peculiar velocities are useful to test the large-scale structure of the universe
as they allow us to study the variations of the gravitational field induced by the clustering of
galaxies and even greater structures. We will not go into further details of this because they are
beyond the scope of this work.

Peculiar velocities are not easily measured. Let’s take the example of a galaxy with a redshift
7z=0.3 and with a transverse peculiar velocity of 1000 km/s. The angular velocity measured by

us is given by:

ve o Upec(z) 1
Do, 142z Doy

(3.1)

where z; is the redshift of the galaxy, Doy, is the angular distance between the galaxy (lens)
and the observer in Mpc and vpec(2) is the transverse peculiar velocity. The (1 + z)~" factor
transforms the time from the galaxy to the observer.

In order to determine angular distances, we used a cosmological calculator (Ned Wright’s
Javascript Cosmology Calculator - UCLA, hitp://www.astro.ucla.edu/~wright/Cosmo Calc.html)
and set the parameters of: flat universe with €,, = 0.286 and 2,, = 0.714, redshift z=0.3 and
the Hubble constant as Hy = 69.6 (default parameter), and finally we got: Doy, = 926.9 Mpc.
If now, we substitude all these parameters in (3.1) and then, we convert this quantity into
microarcsec per year, we will find that the source has an apparent motion of: 0.18 pas/year.
This quantity is very difficult to measure; in fact, the maximum astrometric accuracy that can
be reached (using Very Long Baseline Interferometry, VLBI) is about 10 pas . However, we
know that gravitational lenses can magnify the space by a factor of several tens, and thanks to
this property we would be able to measure relative movements between lens galaxy and imaged

quasar which seemed to be impossible to see, otherwise.

Gravitational lenses magnify the space and, as a consequence of this, the velocity will be also
magnified. Consequently, the first objective of the present work is to simulate the relative mo-
tion of lensed quasar images in order to study if it is possible to use them to determine peculiar

velocities.
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3.2 Animated motions of the lensed images in the cases of the quadru-
ple lens systems: SDSS0924+0219, RXJ1131-1231, Q223740305

In this section, we are going to give a qualitative description of the movements of the lensed
images for these 3 quadruple lens systems. We have selected these systems because of their
high magnification. To do that, we will change the direction of our source along the x axis and
after this, we will calculate the movement of the resultant images. In order to study the relative
movements between pairs of images we will determine their positions and the difference between

their displacements.

In the case of SDSS0924+4-0219 we have calculated the centroids of the images for each posi-
tion of the source on the x axis. In order to do this, we developed a specific code in Python
language which reads the matrix of the resulting image plane from our gravitational lensing
simulation program and defines a function which finds any region with a difference in intensity
with respect to the background (we select a reference parameter to establish the rate of this
difference). When the code identifies those regions, it calculates the centroid of each image and
then, it assigns to them a pair of coordinates (x,y). This process shoud be repeated as many
times as the source changes its position. Once we obtain the position of these four images (x,y)

for each displacement of the source, we can plot the proper motion of the four quasar images.

These proper motions are dominated by the proper motions of the lens galaxy (more than
those of the observer or the quasar) because it is estimated that peculiar velocities on galax-

ies are quite larger than our motion relative to the CMB (Cosmic Microwave Background) frame.

Figure 3 shows the displacement of the images of SDSS0924-+0219 when the source is mov-
ing along the x axis towards the right. In Figure 4, we show the centroids corresponding to
the four images for each position of the source. We can see that the motion is qualitatively the
same in both Figures but in Figure 4, it is shown the exact position of these images (x,y) and
thus we can estimate the displacements between any pair of images. From both Figures we can
conclude that the relative movement between components A and D would be easier to measure

and images B and C could be used as references.
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Fig 3. From the top left to the bottom right it is shown the evolution of the lens system

SDSS0924+0219 when the source (columns 1 and 3) is moving to the right. The source is initially located

t (0.0225829,-0.0386368) and the lens at (0,0). The parameters of the lens are: x = 0, 65 = 0.87329,
1 = —0.0593357, v2 = —0.0154813.
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10 Proper Motion of SDS50924+0219
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Fig 4. Proper motions of the centroids of each one of the four images. Images {1, 2, 3, 4} corre-
spond to the real images {C, B, D, A} of the system SDSS0924+0219. Images A and D are the faster
ones and it can be seen that they are approaching to each other while the source is moving to the right.

Images C and B have tiny movements and its motion is comparatively negligible.

In the cases of the lens systems RXJ1131-1231 and Q223740305 we have not obtained the
centroids (it is a time consuming calculation) but we have just done the animation when the
source is now, moving to the x negative axis (to the left). The result of the simulations is

presented in Figures 5 and 6.
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Fig 5. From the top left to the bottom right it is shown the evolution of the lens system RXJ1131-
1231 when the source (columns 1 and 3) is moving to the left. The source is initially located at
(0.387712,-0.102272) and the lens at (0,0). The parameters of the lens are: x = 0, g = 1.81752,
v1 = —0.107849, 72 = 0.0511613.
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Fig 6. From the top left to the bottom right it is shown the evolution of the lens system
Q223740305 when the source (columns 1 and 3) is moving to the left. The source is initially located
at (0.043616,-0.0142296) and the lens at (0,0). The parameters of the lens are: k = 0, 6 = 0.882841,
v1 = —0.0523543, 2 = —0.0527841.



This last object is also known as The Einstein Cross. Owing to the singularly low redshift

of its lens galaxy, it is a really interesting case to study peculiar velocities.

3.3 Expected apparent motions for several high magnification systems

The objective of this section is to determine quantitatively the displacements between images
when the relative motion between the lens galaxy and the source takes a realistic value. We
choose the lens galaxy is motionless and that the source can be moved in any radial direction,
that is to say, not only over the x axis but also with a certain angle to this axis.

Instead of the inverse ray shooting method, which does not work very well with tiny distances,

we are going to apply a linear approximation to the equation (1.9):
— -
Az = [A]'Ay (3.2)

where the form of the matrix A is given by the equation (1.10)

If we calculate the inverse of this matrix, it will take the form:

_ 1 1- —
[A] 1 b K+m Y2 (3.3)
4] —72 l—Kk—m

where |A| = (1 —k)* — 7§ =13

Our increments are vectors in two dimensions as the dimensions of the coordinates (z, 7). The
factor Az corresponds to the motion of the image in the lens plane and Ay is the tiny motion
of the source. The factor Ay is given by the expression:

Ay = (|ag|cos0)i, |ag|sen0)]) (3.4)

— |
where the modulus of Ay,‘Ay , is the relative motion of the source in pas/year for each system

computed following the same procedure of the example in section 3.1 and € is the angle of the

movement of the source with respect to the x axis.

We apply a straightforward code written in Python, with a loop for time and other for orienta-
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tion, to calculate the displacements between two images (of a quadruple lens system) during 10
years with steps of 1 year, and for 24 different directions of the source trajectory from 0° to 360°.
Each image {A, B, C, D} will have its own set of parameters {x,v1,72} from which we calculate
the different increments, E The distance between two images will be the substraction between
the increments corresponding to each of the images. For instance, in the case of images A and
B we will have:

Az, = (Azly, AzY) (3.5)
Azrp = (Azk, Az%) (3.6)
@AB:AxA—AmB:(@iB, @?43) (3.7)

And, finally, the modulus of the distance will be,

= /(0hp)? + (072

(;)(t)‘ (3.8)

The systems chosen for the calculation are the same quadruple lens systems presented in the
previous section. We have plotted for each system, a graph showing the displacements between
two images during 10 years and another graph, only for 1 year, to see clearly the dependence of

the displacements with the angle. The angles vary from 0° to 360° with intervals of 15°.

e SDSS0924+4-0219

CASTLES

For this system we have adopted the following relevant parameters,
z=0.39

DOS =1775.1 Mpc

Dor = 1101.7 Mpc
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|Ay| = 0.1428 pas/year
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Fig 7. Graph of the displacements between images A and D of the system SDSS0924+-0219 for 10
years . Each colour represents an angle and each point on the same angular position is the displacement

for one of these 10 years.

90° uas

270°

Fig. 8. Radial plot of the displacements between images A and D of the system SDSS0924+-0219
for 1 year. It is represented with data from 24 angles, which starts and ends in 0°. Each radial step

corresponds to 0.1 pas.

18



e RXJ1131-1231

CASTLES

For this system we have adopted the following relevant parameters,

z=10.295

DOS = 1536.3 Mpc
Dor = 916.1 Mpc

|Ay| = 0.1843 pas/year

0.00004 |-

0.00002 -

0.00000
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-0.00004 -0.00003 -0.00002 -0.00001 0.00000 0.00001  0.00002 0.00003
18(t) [*cos(a)

Fig 9. Graph of the displacements between images B and C of the system RXJ1131-1231 for 10

years. Each colour represents an angle and each point on the same angular position is the displacement
for one of these 10 years.
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270°

Fig 10. Radial plot of the displacements between images B and C of the system RXJ1131-1231

for 1 year. It is represented with data from 24 angles, which starts and ends in 0°. Each radial step
corresponds to 0.1 pas.

e Q2237+0305

For this system we have adopted the following relevant parameters,

z=0.04

Dos = 177.6 Mpc

Dor = 164.2 Mpc

|Ay| = 0.7038 pas/year
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Fig 11. On the left (right) side is shown the graph of the displacements between images A and C
(A and D) of the system Q223740305 for 10 years.
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Fig 12. On the left (right) side is shown the graph of the displacements between images B and C
(B and D) of the system Q2237+0305 for 10 years.
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90° yas

Fig 13. On the left (right) side is shown the radial plot of the displacements between images A
and C (A and D) of the system Q223740305 for 1 year. Each radial step corresponds to 0.1 pas.

90° yas 90° pas

Fig 14. On the left (right) side is shown the radial plot of the displacements between images B and
C (B and D) of the system Q2237-+0305 for 1 year. Each radial step corresponds to 0.1 pas.

It is interesting to show the maximum displacements for 5 and 10 year corresponding to each
of the considered lenses and pairs of images (see Table 1). In order to do that, we look for the
angle with the maximum displacements in pas units:

| Lens Systems | 0924 (A-D) | 1131 (B-C) | 2237 (A-C) | 2237 (A-D) | 2237 (B-C) | 2237 (B-D) |

5 years (uas) 18.776 21.901 30.228 65.417 26.237 60.447
10 years (pas) 37.552 43.802 60.456 130.834 52.474 120.894

Table 1. Maximum displacements in pas between images of the quadruple lens systems chosen.
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3.4 Experimental perspectives (direct or statistical detection): Gaia,
HARMONIQE-ELT

Gaia is a space observatory of the European Space Agency (ESA), launched on 19** December
2013, and designed for astrometry whose aim is to create an accurate 3D map or space catalog
of astronomical objects and their motions. Its location is around the Sun-Earth L2 Lagragian
point. Gaia is going to discover and monitor ~2000 new gravitational lens systems with a fre-
quency greater than once per month (i.e. one order of magnitude improvement with respect to

the already known lenses).

Detections of gravitational lenses

Einstein’s Cross and HE0435-1223 with Gaia detections overplotted.

Fig 15. Sample of two systems detected by Gaia and its astrometry. In this preliminar data, the ac-

curacy is quite far away from the nominal one. The detections correspond to the centroids (black points).

We have seen in section 3.1 and Table 1, that gravitational lenses magnify the space trans-
forming an apparent motion of a few pas in the source to dozens of pas in the lens plane. Can
Gaia measure these displacements? The accuracy of the astrometry of Gaia depends on the
brightness or magnitude (V) and on the colour (V-I) of the source. Brightness can be a problem

as the lensed quasar images we know are relatively weak (V>16 mag).
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Fig 16. Proper motion standard error in pas according to the magnitude G (almost the same as

V) for 5 years of astrometry in Gaia mission.

We can see in Figure 16 that for a system with a magnitude of the order of G = 16, the
standard error would be between 30 and 50 pas , which is the same order of magnitude than
our results. The conclusion then, is that it would not be easy to measure the displacements
predicted for the present lens systems. Nevertheless, the use of Gaia can be still interesting in

two different cases:

On the one hand, with the new 2000 lens systems we can expect some of them to have a
higher brightness (V<16) and/or greater velocities so, in this way, we would be able to measure

the displacements of individual systems.

On the other hand, we can attempt a statistical study even if the displacements are smaller
than the standard error in the astrometry of Gaia. To do that, we would choose as reference a
sample of background quasars which are not affected by lensing. We would measure the typical
deviation in the positions along the years of monitoring of this sample and assume that they
correspond to the error in the astrometry of Gaia. After that, we would also measure the dis-
placements of our sample of lensed quasars and compare the rms (root mean square) proper
motions of both samples.

The typical peculiar velocity deviation will be:
Opec = O—%OT - O—grr (39)
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where o, is the typical deviation of the sample of unlensed quasars and oror is the typical
deviation of the lensed quasar images.

We can suppose that the value of o, is the standard error of Gaia, 50 pas. Then, we can

estimate oror from:

9TO0T = U;Q)ec(sim) + o—gr'r (310)

where o pec(sim) are the values calculated in the simulations of section 3.3.

Now, we want to calculate the relative error of ope.. From equation (3.9) and the standard

error in the typical deviation formula, we obtain:

Aopec o2 or 1 1/2
- (2 (3.11)
Opec g 2(71 — ].)

pec

where n is the number of possible images of which we can obtain measurements. The value of

oror can be known by applying the formula (3.10).

We are going to suppose that, at least, 1 of 10 lenses discovered by Gaia (they are in total
2000) will have pair of images with a displacement of about 30 pas. Then, the number we must

Opec

apply to the equation (3.11) will be n = 200, and in that case, we would obtain = 0.19 pas.

pec

In Table 2, it is shown the maximum displacement in pas of each system for 5 years, opec(sim),

and the result of the relative error of opec.

| Lens Systems | 0024 (A-D) | 1131 (B-C) | 2237 (A-C) | 2237 (A-D) | 2237 (B-C) | 2237 (B-D) |

O pec(sim) (nas) 18.776 21.901 30.228 65.417 26.237 60.447
Adpec
p (nas) 0.405 0.311 0.187 0.079 0.232 0.084
pec

Table 2. Maximum displacements for 5 years and their relative error, everything in uas.

Even though the measurement can be statistically achieved, the best way to successfully ap-
proach this study is to extend the period of observation with Gaia. An enlarged mission will

also significantly increase the number of individual astrometric measurements.

On the other hand, HARMONIQE-ELT is an instrument which consists of a visible and near-
infrared integral field spectrograph that will be able to work close to the difraction limit of the
telescope E-ELT (European Extremely Large Telescope) and it is expected to start operating in
2024. HARMONT will provide us an astrometry with an accuracy between 10 and 50 pas, even

for V>>19. It means that it will allow us to measure our lens systems more comfortably than Gaia.

25



4 Extreme events (caustics as peaks with very high thresh-
old) statistics

The simulation of the light-curves of a quasar and the count of their relative maxima is the
main goal of this chapter. In section 4.1. we explain how this can be used to estimate peculiar
velocities. Then we compute, for the lensed system Q2237+0305, magnification maps (section
4.2.) and extract slices from these maps which simulate microlensing light curves (section 4.3.).

Finally, in section 4.4., we study the number of maxima in those light curves.

4.1 Motivation and description. Objectives.

The basic idea of this chapter is that a slice of a magnification map corresponds to a light curve
(how the brightness of an object can change with microlensing). The light curve changes with
a fundamental frequency which comes from the spatial variations induced by microlensing. The
idea to measure peculiar velocities is to compare the frequency of the temporal variability of
microlensed quasar images (inferred from observed light curves) with this fundamental spatial
frequency (inferred from magnification maps). Both frequencies should be related by the relative
velocity between the lens, the source and the observer. Here we are going to analyze several

simulated light curves in order to study their variability.

In order to achieve this purpose as simpler as possible, the most favourable option can be
done by counting caustic crossings on the light curves. The crossing of a caustic by the lensed
source due to its relative motion with respect to the lens (galaxy) is the most outstanding event

that can be seen in microlensing light curves.

Caustics are located randomly and we asume that, even though the distances between them
are not the same, in the average there are the same number of caustics per unit space. Then,
caustics can be treated as randomly distributed milestones of known mean separation. When
the source is travelling a certain distance, this will be proportional to the number of crossed
caustics, and the typical deviation will be proportional to the square root of this number, o< N

(assuming a Poissonian statistics).

However, we have to take into account that caustics could be smoothed by the source size.
If the source is large, it will be difficult to distinguish caustics and we could confuse them with
another type of microlensing phenomenology. On the other hand, if the source is small (like an
X-ray emitting region) we will be able to count caustics, so this would be the optimal choice.
Unfortunately, the X ray light curves are not available for doing measurements and instead, we
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need to use the more accesible wavelengths (optical) where the sources are large. Thus,we are
going to use an obvious generalization: the count of all the peaks of the light curve. These peaks
include caustic crossings and other microlensing phenomenology. To avoid problems with any
kind of noise we are going to consider only the peaks over a certain threshold (Peaks Over a
Threshold, POT).

In a few words, the aim of this chapter is to simulate light-curves from magnification maps

and design a procedure to count POTs.

4.2 Magnification maps of the quadruple lens system Q2237-+0305

In this section we want to describe the computation of microlensing magnification maps for the
system Q2237+0305 , using a code written in Python programming language. First of all, it is
needed to set a few parameters as , v, « (the mass fraction of the microlenses, which is 0.999),
the number of pixels (ny), the number of rays per pixel in absence of lensing effect and the half

size of the magnification map in units of the Einstein radius (y;).

The program generates the number and the positions of microlenses considering a random
distribution of stars. The rays were deflected according to the lens equation. This deflection
contains an inner loop over all the deflectors. With the coordinates of the deflected rays at the
source plane, then we calculate the coordinates of the pixel on which each ray hits and, if it is
whithin our region of interest, the program adds 1 to the value of that pixel. Finally, when the
loop over rows of rays ends, we normalize the magnification map by dividing the array by the

number of rays per pixel in absence of lensing.

The program generates two different maps: the first one which shows the rectangular shooting
region of the light rays and the position of the stars in the background, and the second one
which is the matrix representing the magnification map. We have generated magnification maps
for the A and D images of the system Q2237+0305. Each of the images have different values of
shear (v ) and convergence (k ) and that is why the result of applying this program is different
from each other. We have to take into account that the total convergence is splitted into a part
coming from a smooth distribution of matter, ko = (1 — a)x, and a part coming from compact

objects, kg = ak, which is able to produce microlensing.

In Figures 17 and 18, we can see the quasar microlensing magnification maps for the images A
and D of the system Q223740305 (Einstein Cross):
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Fig 17. Magnification map for image A of Q2237+0305. The size of the map is 200 and it has
400x400 pixels. The parameters for the calculation are k = 0.47, v = 0.41. On the left, the lens plane
with the position of the 14436 stars. The ray-shooting region is marked by the green square and the
mapped region by the red square.
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Fig 18. Magnification map for image D of Q22374-0305. The size of the map is 200g and it has
400x400 pixels. The parameters for the calculation are k = 0.50, v = 0.57. On the left, the lens plane
with the position of the 48082 stars. The ray-shooting region is marked by the green square and the
mapped region by the red square.

4.3 Light-curves POT counts

Once we have the quasar microlensing magnification maps for each image {A, D} of the system
Q2237+0305, our program extracts an horizontal slice on these magnification maps (a simulated

light curve) and searches the corresponding maxima in the light curves.
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In order to qualify a maximum as POT, it is required that, in a window of side 2-dx, the
maximum is greater than a given threshold; formally it is:

]‘[;T[i]clav] > threshold (4.1)
f[ifi[i]dx] > threshold (4.2)

We have made some estimates of the window size with the idea that the window were broader
than a typical peak but also, smaller than the separation between two consecutive peaks. We
found that values in the range of dx ~ 5 — 10 pixels could be reasonable. At the end, we have

considered both values in the computation.

Finally, the program gives us the x coordinates (location in pixels) of each POT found. We
have done this procedure for 7 horizontal slices, since the pixels go from 0 to 400, the horizontal
slices are located at 50, 100, 150, 200, 250, 300, 350. In addition to that, we have considered 6
different thresholds in order to delve deeper into the study. At the end, we have a graph for each
horizontal slice (and for each image of the system) and a certain number of POTs calculated for

each threshold as many times as horizontal slices we have.

In Figures 19 to 25, we show the graphs for each slice and for each image of the system {A, D}
in the case of the window dz = 10 (as an example). We have plotted on the graphs the POTs
found in the form of coloured dots, choosing for this purpose the 1.5 and the 2.4 thresholds.
Our thresholds (see equations 4.1 and 4.2) were 1.1, 1.2, 1.5, 1.8, 2.1 and 2.4. Obviously, for a
relative maximum of 1.5 we will find more POTs than in the case of 2.4. In Tables 3 and 4 we
present the number of POTs found, the mean value of this number for each threshold and the

standard deviation, everything calculated for both images.
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Fig 19. Light-curves for a horizontal slice located at the pixel 50 in the vertical axis of each
magnification map. On the left (right) we have the light curve for the image A (D). The x axis

corresponds to the pixels of the magnification maps and the y axis is the magnification.
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Fig 20. Light-curves for a horizontal slice located at the pixel 100 in the vertical axis of each
magnification map. On the left (right) we have the light curve for the image A (D). The x axis

corresponds to the pixels of the magnification maps and the y axis is the magnification.
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Fig 21. Light-curves for a horizontal slice located at the pixel 150 in the vertical axis of each

magnification map. On the left (right) we have the light curve for the image A (D). The x axis

corresponds to the pixels of the magnification maps and the y axis is the magnification.
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Fig 22. Light-curves for a horizontal slice located at the pixel 200 in the vertical axis of each

magnification map. On the left (right) we have the light curve for the image A (D). The x axis

corresponds to the pixels of the magnification maps and the y axis is the magnification.
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Fig 23. Light-curves for a horizontal slice located at the pixel 250 in the vertical axis of each

magnification map. On the left (right) we have the light curve for the image A (D). The x axis

corresponds to the pixels of the magnification maps and the y axis is the magnification.
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Fig 24. Light-curves for a horizontal slice located at the pixel 300 in the vertical axis of each
magnification map. On the left (right) we have the light curve for the image A (D). The x axis

corresponds to the pixels of the magnification maps and the y axis is the magnification.
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Fig 25. Light-curves for a horizontal slice located at the pixel 350 in the vertical axis of each mag-
nification map. On the left (right) we have the light curve for the image A (D). The x axis corresponds

to the pixels of the magnification maps and the y axis is the magnification.
In the Figures, we can appreciate that some of the green dots (threshold 2.4) coincide with

the corresponding red dots in the same graph (threshold 1.5). This demonstrates that the pro-

gram detects the POTs in a consistent way.
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e Case of the image A (dx=10, dx=5):

Thresholds | 1.1 | 1.2 | 15 |18 [ 20 |24 || 11 | 12 |15 | 18 [ 21 ] 24 |
Slice 50 | 20 | 17 9 6 | 4 | 4 27 | 25 |13 ] 5 | 2 | 2
Slice 100 | 23 | 21 | 17 | 13 | 5 | 3 34 | 20 |16 ] 10] 7 | 4
Slice 150 | 19 | 19 | 12 | 9 | 4 | 3 32 | 22 [ 9| 6 | 4 | 2
Slice200 | 21 | 20 | 15 | 9 | 8 | 1 32 | 31 [ 2] 15| 8 |1
Slice250 | 19 | 16 | 11 | 6 | 3 | 2 36 | 30 | 18] 8 | 4 | 4
Slice300 | 21 | 20 | 12 | 8 | 5 | 3 30 | 26 | 16] 7| 5 | 3
Slice350 | 24 | 22 | 11 | 7 | 4 | 4 30 | 25 | 13] 8| 6 | s
N> | 21 | 1929|1243 | 820 | 471|286 || 3157 | 26.86 | 15 | 843|514 | 3.14

on 191 | 24 | 270 | 243 | 160 | 1.07 || 2.94 | 3.24 | 365 | 3.31 | 2.03 | 1.68
N> | 458] 439 | 353 | 288 | 217 | 1.60 || 5.62 | 518 | 3.87 | 2,00 | 2.27 | 177

Table 3. Number of POT for the image A of the system Q2237+0305, for each of the slices and
for both windows (dx = 10, dz = 5). It is also shown the mean value, the standard deviation and the

square root of the mean number.

¢ Case of the image D (dx=10, dx=5):

Thresholds | 1.1 [ 12 | 15 [ 18 |21 [ 24 || 11 | 12 |15 [ 18] 21 | 24 |
Slice 50 21 18 | 11 | 8 | 6 | 3 31 | 28 |14 | 7| 4 | 1
Slice 00 | 23 | 19 | 13 | 8 2 35 | 30 | 16| 11| 6 | 4
Slice 150 | 24 | 22 | 11 | 6 | 4 | 2 35 | 29 | 20 | 8 | 4 | 2
Slice200 | 20 | 18 | 15 | 11 | 10 | 8 33 | 20 [ 20 15| 9 | 4
Slice250 | 19 | 18 | 10 | 7 | 3 | 3 32 | 27 [ 11| 5 | 3 ] 2
Slice300 | 20 | 19 | 12 | 7 | 3 | 1 34 | 29 |17 | 1w0] 2 | 2
Slice350 | 19 | 16 | 14 | 12 | 6 | 3 2 | 27 [ 14| 6 | 2 | 1
N> | 2086 | 1857 | 1220 | 843 | 5.14 | 3.14 || 33.14 | 2843 | 16 | 8.86 | 4.20 | 2.29

o 1.95 | 1.81 | 1.80 | 222 | 248 | 2.27 || 157 | 1.13 | 3.32 | 3.44 | 2.50 | 1.25

<N > 4.57 431 3.51 | 290 | 2.27 | 1.77 5.76 5.33 4 2.98 | 2.07 | 1.51

Table 4. Number of POT for the image D of the system Q2237+0305, for each of the slices and
for both windows (dx = 10, dz = 5). It is also shown the mean value, the standard deviation and the

square root of the mean number.

An interesting result is that the estimated error, oy, is similar or below the Poissonian one,
V< N >. To end with this section, we compare the mean value of the number of POTs found
with respect to the thresholds we selected (see Figures 26 and 27). It can be appreciated that
the number of POTs decrease monotonically with the threshold. We can also see that the fits

to a second order polynomial give similar values for the coefficients of images A and D.
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Dependence of <N > on the threshold

25 . : :
: « + Dataof the image A
« » Dataof the image D
—— Fitto a 2nd degree polynomial (A) : y(z) —T7.78z% +—41.35x +57.30
20 ——  Fitto a 2nd degree polynomial (D): y(x) =749z +—39.70z +55.38
15+
A
=
v
10+
51
0 i i i i i i

12 14 1.6 18 2.0 2.2 2.4
threshold

Fig 26. Relationship between the threshold and the mean number of POTSs for a window of dx=10.
The values for the images A and D of the system Q223740305 have been fitted to a second order

polynomial.

35 Dependence of <N > on the threshold
. i * + Dataof the image A
. « + Data of the image D
30} : . L] — Fittoa2nd degree polynomial (A): y(x) =19.13z> +—88.20x +105.13 ||
+ ; —  Fitto a 2nd degree polynomial (D) : y(x) —19.0927 +—90.20z +109.08
25}
20
a
=
v
15}
10+
5k
0 H H H H H H H
12 14 1.6 18 2.0 2.2 24
threshold

Fig 27. Relationship between the threshold and the mean number of POTs for a window of dx=5.
The values for the images A and D of the system Q223740305 have been fitted to a second order poly-

nomial.
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5 Conclusions and future perspectives

In the first part of this work, we have developed several Python based codes to simulate the
proper motions of multiple imaged quasars in order to study the possibility of measuring the

peculiar velocities of lensed galaxies. The main conclusions are the following;:

e The displacements we have obtained, depend on the orientation of the source motion and

also on the magnification of the image.

e For a velocity of the order of 1000 km/s, which is the one we are considering in our exam-

ples, apparent displacements of tens of pas can be expected in several years of monitoring.

e Some favourable cases of high magnification events may be measured with Gaia. But
many of these systems could be studied with HARMONIQE-ELT and Theia. This last
project, Theia, is an instrument whose goal is to observe the Universe in motion with an

unprecedented astrometric precision. It is thought to be launched around the year 2030.

In the second part of this work, we have explored the possibility of using the count of maxima
in light-curves for high magnification systems in order to try to relate this to the lens galaxy
peculiar velocity. For this purpose, we have written a code which allows us to count POTs. We
have applied this code to the system Q223740305 (Einstein Cross), and the main conclusions

are:

e We found that the error in the mean number of POT, obtained from the simulations, is

comparable or smaller than the Poissonian value.

e We find a clear anti-covariance of the number of POT with the threshold; it can be well

fitted with a second order polynomial.

In the near future it will be important to analyze the first release of the data of Gaia this
autumn to be able to explore the astrometric precision and to study the real possibilities of
measuring the lensed quasar proper motions. In this moment, there are less than 200 known
lenses. After the Gaia release, around 2000 lenses will be known and some of them may have

large magnification in brightness and velocity.
On the other hand, in a more distant future it would be interesting to simulate the obser-

vations with HARMONIQE-ELT and Theia, in order to analyze the limits of the astrometry

with these instruments.
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