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Abstra
t

En este proye
to de �n de Grado, exploraremos el uso del efe
to lente gravitatoria en quásares


omo una herramienta para estudiar las velo
idades pe
uliares de las galaxias que a
túan 
omo

lente.

Este trabajo está dividido en dos partes: en primer lugar, trataremos el estudio de la mag-

ni�
a
ión indu
ida por el efe
to lente en los movimientos relativos de las imágenes múltiples de

un quasar; en segundo lugar, realizaremos simula
iones del número de pi
os generados por el

efe
to mi
rolente en las 
urvas de luz de las imágenes de un quásar.

En la primera parte, usaremos una serie de 
ódigos desarrollados en el lenguaje Python para

simular los movimientos relativos de las imágenes resultantes de los sistemas quásar 
on efe
to

lente, 
uanti�
ando los desplazamientos entre las imágenes y dis
utiendo su posible dete

ión.

Por otro lado, los prin
ipales objetivos de la segunda parte son la simula
ión de las 
urvas

de luz de las imágenes de un quasar a partir de sus mapas de magni�
a
ión indu
ida por el

efe
to mi
rolente y el re
uento de los máximos relativos que apare
en en las 
urvas de luz. La

fre
uen
ia de estos máximos estará rela
ionada 
on la velo
idad pe
uliar de la galaxia.

Finalmente, dos resultados interesantes de este trabajo son las expe
tativas de desplaza-

miento de de
enas de µas/año en 
asos favorables (lentes de alta magni�
a
ión) y que el error

en la medida del número de 
uentas de máximos relativos en 
urvas de luz, es similar o ligera-

mente inferior al error Poissoniano.
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1 Introdu
tion

Gravitational Lenses (GL) are very useful tools in Astrophysi
s and Cosmology nowadays. They

are an essential part of the theoreti
al and experimental basis of the General Theory of Relativ-

ity. In the 
ontext of the present work, they are also interesting be
ause of the mathemati
al and


omputational properties related to their study. The s
ienti�
 
ommunity uses Gravitational

Lenses as invaluable tools for drawing and studying the mass distribution in di�erent s
ales in

a Universe where the majority of the matter has an unknown nature. In addition, it is known

that GL also magnify spa
e (and, hen
e, �uxes) a
ting as a natural opti
al magnifying system.

Even though the term of Gravitational Lens is the most used one by astronomers to des
ribe

this kind of phenomenon, the expression of Gravitational Mirage approa
hes better to its own

nature. The atmospheri
 mirages o

ur when there is a modi�
ation in the dire
tion of the light,


aused by a variation in the refra
tive index. If we attend to the Fermat's prin
iple, it says that

the light tends to look for the faster way of moving between two points. Nevertheless, the faster

way in the atmosphere don't use to be a straight line. As the velo
ity is higher in the 
old

air, the light will follow a 
urved traje
tory sear
hing the 
oldest layers in the atmosphere. In


ertain 
ir
umstan
es, when the temperature 
hanges strongly and the obje
t and the observer

are very far away, then the light is able to �nd more than one way to 
onne
t the obje
t and

the observer. In that 
ase, we 
ould see more than one image from a distant obje
t whi
h is a

result of this spe
ta
ular phenomenon of the 
urvature of the light rays.

Gravity 
an also de�e
t light rays. In a Gravitational Mirage, the gravity is the responsible of

bending the light rays. In fa
t, one of the most outstanding results of the General Theory of

Relativity is the de�e
tion of the light rays. This e�e
t and the dilation of time in presen
e of a

gravitational �eld are two of the essential predi
tions of the General Theory of Relativity, whi
h

set the basi
 phenomenology of the GL. However, long before the developing of this theory, it

was suspe
ted that gravity in�uen
es the behavior of light.

In order to delve into the history of the GL, we must take a look to the past and in par-

ti
ular, to the early 1704, when Newton had already supposed the existen
e of a bending of the

starlight due to the gravitational �eld 
oming from a massive obje
t when the light rays pass
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near it. This idea was in
luded in the Corpus
ular Theory of Light, spe
i�
ally in his book

'Optiks'. All the same, Einstein was the �rst s
ientist who 
al
ulated the 
orre
t value for light

bending in his General Theory of Relativity in the 20th 
entury. However, Einstein expressed

the low probability of dis
overing two stars enough aligned as to generate a lens system. In

1919, Eddington and Dyson went to an expedition to take advantage of a solar e
lipse in order

to measure the displa
ement of the apparent positions of the stars indu
ed by the gravitational

�eld of the Sun. The results a
hieved there, made Einstein and his theory of general relativity

world-famous. Furthermore, gravitational lensing is dis
ussed by Eddington in his book "Spa
e,

Time, and Gravitation", whi
h was published in 1920. In 1937, Fritz Zwi
ky proposed galaxies

as better lenses than stars, be
ause they are more likely to be gravitationally lensed. That

is, the ne
essary near-alignment of a distant obje
t (a sour
e), a 
loser obje
t (a lens) and an

observer on Earth is mu
h more probable for galaxies than for stars.

In 1964 Sjur Refsdal proposes to use Gravitational Lenses for measuring masses and 
al
ulating

Hubble's 
onstant. Also, he and Kyongae Chang predi
ted the mi
rolensing e�e
t by stars in

the gravitational lens in 1979 and took the �rst step for the study of quasar mi
rolensing. In

the same year and 60 years after the famous Eddington expedition, the astronomers dis
overed

a double image from a distant quasar 
alled Q0957+561, 
aused by the gravitational �eld of an

intervening galaxy whi
h a
ts as a gravitational lens. This �rst identi�
ation of a gravitational

lens was soon followed by others: in 1985 a 
uadruple system 
alled QSO 2237+0305 was dis
ov-

ered. It be
ame one of the most famous gravitational lenses and its popular name is Einstein's


ross. These dis
overies were su
essfully a
hieved be
ause bright and remote quasars are ideal

sour
es to be imaged by an intervening lens galaxy. Today, more than 100 lensed quasars are

known.

It is 
ustomary to 
onsider three di�erent types of lens e�e
t: Strong Lens E�e
t, Weak Lens

E�e
t and Mi
rolensing E�e
t. In this work we want to fo
us on quasar mi
rolensing, whi
h is

a 
ombination of Strong Lensing and Mi
rolensing. On the one hand, we are interested in the

images of a quasar separated a few ar
se
s by the large mass (1010 Mò) of the intervening galaxy

(when the sour
e and the lens are well aligned we would not see a dis
rete group of images, but

a 
ontinuous ring or a broken ring 
omposed by a few ar
s).

On the other hand, we are also interested in the e�e
t in ea
h of these images of the gran-

ulation of the lens galaxy mass distribution in stars (about 1Mò). This mi
rolensing e�e
t will

not generate observable multiple images, but it 
an 
hange the brightness of ea
h one of the

images of the lensed quasar.
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1.1 The lens equation

In this se
tion we are going to present the basi
 mathemati
al des
ription of the phenomenon

of gravitational lensing.

In the s
heme below we have represented: the distant sour
e (S), the obje
t whi
h 
reates

the gravitational �eld (i.e., the lens, L), and the observer (O). The plane that 
ontains the lens

is the lens plane and the other plane whi
h 
ontains the sour
e is the sour
e plane. If our obje
t

(a galaxy, for instan
e) does not generate a gravitational �eld, the light would follow a straight

line from S to O (dashed line). This traje
tory would form an angle β with the opti
al axis

(OL). However, in presen
e of the galaxy's gravitational �eld (L), the light rays will feel an

atra
tion to the galaxy and then, they will not follow a straight line anymore. Instead of it,

they will be bent approa
hing to L. This traje
tory 
an be approximated by two straight lines

(SM and MO). The observer will see that the light 
omes from the dire
tion MO with an angle

θ wth respe
t to OL and he will give a position S1 to the sour
e. The angle α is the de�e
tion

angle between SM (initial traye
tory) and MO (�nal traje
tory).

In the sour
e plane we will have,

η = WS1 − SS1 (1.1)

and taking into a

ount that there is a similarity in the triangles,
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WS1

DS
=

ξ

DL
(1.2)

and 
onsidering that the de�e
tion angle is very small, from the triangle MSS1 we 
an write:

α =
SS1

DLS
, (1.3)

therefore, if we substitude (1.2) and (1.3) in the equation (1.1), we have:

η =
DS

DL
ξ −DLSα (1.4)

We 
an rewrite this expression using: η = βDS , ξ = θDL,

θDS = βDS + αDLS (1.5)

The lens equation 
an also be written in a ve
torial form as:

−→y = −→x −−→α (−→x ) (1.6)

where

−→y ≡
−→η
η0

, −→x ≡
−→
ξ

ξ0

and η0 ≡ ξ0
DS

DL
. ξ0 is a 
hara
teristi
 distan
e s
ale in the lens plane whi
h is 
hosen a

ording

to the type of lens, in order to obtain an adimensional equation.

1.2 Magni�
ation

It is important to introdu
e now the magni�
ation e�e
t of lensing. Lensing 
an magnify and

distort the image of the ba
kground sour
e. We de�ne magni�
ation as the parameter whi
h

indi
ates how mu
h the �ux of an obje
t in
reases due to the lens e�e
t. The �ux depends

on the produ
t of the intensity and the solid angle, ∆F = I∆Ω, and a

ording to Liouville's

theorem, the lens e�e
t does not a�e
t to the intensity. Thus all the magni�
ation is related

to the solid angle, ∆Ω ∝ ∆S/R2
. Consequently, the magni�
ation arises from the variation
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of the di�erential element of area indu
ed by the gravitational lens e�e
t. We 
an write the

magni�
ation as:

µ =
dx1dx2

dy1dy2
(1.7)

if we 
onsider the transformation between surfa
e diferentials, we will get:

dy1dy2 = dx1dx2

∣

∣

∣

∣

∂yi

∂xj

∣

∣

∣

∣

(1.8)

where

∣

∣∂yi/∂xj
∣

∣

is the Ja
obian determinant of the transformation.

Then, the magni�
ation will be:

µ =

∣

∣

∣

∣

∂yi

∂xj

∣

∣

∣

∣

−1

≡
∣

∣Aij
∣

∣

−1
(1.9)

It is very 
ommon to write the matrix A in terms of two parameters: the 
onvergen
e, κ , and

the shear, γ. A

ording to the lens equation, the matrix A 
an be de�ned as:

Aij =
∂yi

∂xj
= δij −

∂αi

∂xj
=

(

1− κ− γ1 γ2

γ2 1− κ+ γ1

)

(1.10)

The points where |A| = 0 have, theoreti
ally, in�nite magni�
ation. There will be a singular-

ity there and the transformation

−→y = −→y (−→x ) will not be invertible (its Ja
obian determinant

vanishes). In the lens plane we will have one dimensional regions 
alled 
riti
al 
urves whose

transformed in the sour
e plane are the regions 
alled 
austi
 
urves. Then, sour
es on a 
austi


region, will have a magni�
ation formally in�nite. Thus, when a pointlike sour
e 
rosses a 
aus-

ti
, we will observe a very sharp event of high magni�
ation. However, if the sour
e is extended,

we will see a peak whi
h 
an be rather smooth when the sour
e is large.
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2 Gravitational lensing simulations

The �rst step in our study of GL is to write a 
omputer 
ode in order to simulate a gravitational

lens system. The generation of the images for a given sour
e and lens pair will be our �rst goal.

The 
ode was written using the Python programming language and the algorithm is based on

the inverse ray shooting method (IRS method).

2.1 Images

If we want to determine the position of the images (

−→x ) from the position of the sour
e (

−→y )

we would have to solve equation (1.6), in general tras
endent and multi-valued. The de�e
-

tion angle,−→α (−→x ), given in the adimensional equation (1.6) depends on the kind of lens and

it 
an be very 
ompli
ated (in this work we are going to 
onsider the point like lens to rep-

resent stars and the singular isothermal sphere plus an external perturbation lens, SIS+γ, to

represent galaxies). However, using eq. (1.6) we 
an inmediately obtain a point in the sour
e

plane,

−→y , given a point in the image plane, −→x . In what follows, we will make use of this inversion.

To start with the 
ode of the program, we assign the 
oordinates of the sour
e and the lens,

respe
tively, to the ve
tors:

−→y = (y1, y2) ;
−→x = (x1, x2). As 
ommented above, depending on

the expli
it relationship between the de�e
tion angle α and

−→x ,−→α (−→x ), and also on the sour
e

position,

−→y , the lens equation would have one or many solutions:

−→x (−→y ) (images). In gen-

eral, this equation is not analiti
ally invertible and the pro
edure to obtain the solutions or

images,

−→x (−→y ), 
an be a di�
ult problem of numeri
al 
al
ulation. However, we 
an simulate

the gravitational lens e�e
t by using the inverse ray shooting method. In �rst pla
e, we set

the pixels matrix whi
h de�nes the image : I(x1, x2). The lens equation allows us to obtain

univo
ally the 
oordinates of ea
h point (x1, x2) in the sour
e plane, (y1(x1, x2), y2(x1, x2)),

tra
ing ba
kwards the path followed by the light rays (IRS method).

On
e we have this, in order to obtain the value of the image in that point we make:

I(x1, x2) = F (y1(x1, x2), y2(x1, x2)), where F (y1, y2) is the matrix whi
h represents our sour
e.

In summary, we follow this pro
edure be
ause the mapping y ← x is single-valued whereas the

y → x is multi-valued. We have to keep in mind that this 
orresponden
e is only an approxi-

mation, be
ause the inverse image of a pixel of the lens plane would not mat
h exa
tly to any

pixel in the sour
e plane.

The 
ode has auxiliar pro
edures to 
hange pixels into 
oordinates,

−→x = (x1, x2), and later

to 
onvert 
oordinates into pixels, j1(
−→y ), j2(

−→y ), for the plot. The 
hange is 
al
ulated by as-

signing 
oordinates to our pixelated matrix (n x n) at the verti
es of the square ((−l,−l ),(−l, l
), (l,−l ), (l, l )) and setting a linear transformation to transform pixels into 
oordinates and

vi
eversa. In the s
heme below we 
an see a des
ription of the 
ode:
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In the following pi
tures, we show the e�e
t of a theoreti
al SIS+γ lens model on a disk-like

sour
e. We present a series of images obtained for di�erent positions of the sour
e along the x

axis, in order to see how the images 
hange with a moving sour
e. The de�e
tion angle of this

type of lens is written as:

α =

(

κ+ γ 0

0 κ− γ

)

x+ θE
(x− xd)

|x− xd|2
(2.1)

To understand this formulae, it is important to know what is the main di�eren
e between the

terms 
onvergen
e and shear (see eq. 1.10) and the way they a�e
t to the �nal result. On

the one hand, 
onvergen
e is de�ned as a term whi
h a�e
ts equally every possible angular

orientation, that is, it would transform a 
ertain 
ir
le in a larger or smaller one but leaving

una�e
ted the shape of the 
ir
le. On the other hand, the shear will magnify preferably in a


ertain dire
tion, that is to say, it is able to transform a 
ir
le in an ellipse with the larger axis

along a privileged angle. We adopt the following values for the lens parameters: 
onvergen
e

(κ) equal to 0, Einstein's radius (θE) equal to 1 and shear (γ) equal to 0.2 (a
tually, it is de�ned

as the squared root of γ1and γ2 whi
h are two already �xed parameters).
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Fig 1. From the top left to the bottom right it is shown the 
hange of the images (
olumns 2 and 4)

originated by a SIS+γ lens when the sour
e (
olumns 1 and 3) is moving towards the right. Sour
e

and lens are initially lo
ated at (0,0) with κ = 0, θE = 1, γ = 0.2
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2.2 Magni�
ation maps

Magni�
ation maps are an essential tool in lensing studies. Their 
al
ulation is parti
ularly

important to study quasar mi
rolensing.

As we have seen before, the magni�
ation measures the variation of a diferential element of

area indu
ed by gravitational lensing. In order to apply the inverse ray shooting pro
edure

here, we 
an divide the lens plane in diferential elements (pixels) of area ∆x1∆x2(x1, x2). If we


onsider now pixels of area ∆y1∆y2(y1, y2) in the lens plane, the magni�
ation in the m-pixel

in the sour
e plane will be:

µm =

N
∑

k=1

(∆x1∆x2)k

(∆y1∆y2)m
(2.2)

where (∆x1∆x2)k is the area of the k-pixel in the lens plane whose origin is inside the m-pixel

in the sour
e plane. This equation is valid in the approximation of tiny pixels in the lens plane

where the lens inverse transformation make that ea
h pixel of the lens plane �ts within a single

pixel in the sour
e plane. If we take all the pixels of the lens plane with the same size, we 
an

rewrite the previous equation as:

µm =

N
∑

k=1

(∆x1∆x2)k

(∆y1∆y2)m
=

N
∑

k=1

k

(∆y1∆y2)m
∆x1∆x2

=
N

N0
(2.3)

where N0 is the ratio of areas between the pixel in the sour
e plane and the pixel in the lens

plane. The magni�
ation will be proportional to the number of light rays that would rea
h

a 
ertain pixel under the a
tion of the inverse ray shooting. To sum up, we will 
ompute the

magni�
ation as the ratio between the number of rays that hit in a 
ertain pixel and the number

of rays that would have re
eived this pixel in absen
e of lensing.

In Figure 2, it 
an be seen the magni�
ation map of the same SIS+γ lens exposed in the

previous se
tion. Now the axis indi
ate us pixels, instead of 
oordinates.
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Fig 2. Magni�
ation map 
orresponding to a SIS+γ lens with a ba
kground potential 
hara
terized

by the same κ, γ and θE of the example of Figure 1.

3 Magni�
ation of gravitational lenses proper motions

In this 
hapter, we use the Python based 
odes developed in se
tion 2. in order to simulate the

relative motions of the images of lensed quasars. In se
tion 3.1. we introdu
e the 
on
ept of

pe
uliar motion and motivate the obje
tives of our work. In se
tion 3.2. we des
ribe the e�e
ts

of lensing magni�
ation in the quasar images motion. These e�e
ts are quanti�ed in se
tion 3.3.

and �nally dis
ussed in the 
ontext of future instrumentation in se
tion 4.4.

3.1 Motivation and des
ription of the phenomenon. Main obje
tives.

It is a well known fa
t that the entire Universe is expanding and galaxies should be re
eding

from the Earth a

ording to Hubble's law. However, the 'Hubble Flow' is alterated by the at-

tra
tion between galaxies and larger stru
tures. The universe is not 
omposed of a smooth and

homogenous matter, but of huge a

umulations of matter (granulations) and va
uum between

these a

umulations.

Thus, all the galaxies are feeling this attra
tion and that's why they will have a velo
ity di�erent

from the expe
ted. Then, these deviations with respe
t to what we 
all 'Hubble Flow', pe
uliar

velo
ities, are really interesting to study the distribution of matter in the universe, as well as
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the existen
e of dark matter and how it is related to these motions.

Consequently, pe
uliar velo
ities are useful to test the large-s
ale stru
ture of the universe

as they allow us to study the variations of the gravitational �eld indu
ed by the 
lustering of

galaxies and even greater stru
tures. We will not go into further details of this be
ause they are

beyond the s
ope of this work.

Pe
uliar velo
ities are not easily measured. Let's take the example of a galaxy with a redshift

z=0.3 and with a transverse pe
uliar velo
ity of 1000 km/s. The angular velo
ity measured by

us is given by:

vt
DOL

⋍

vpec(zl)

1 + zl

1

DOL
(3.1)

where zl is the redshift of the galaxy, DOL is the angular distan
e between the galaxy (lens)

and the observer in Mp
 and vpec(zl) is the transverse pe
uliar velo
ity. The (1 + zl)
−1

fa
tor

transforms the time from the galaxy to the observer.

In order to determine angular distan
es, we used a 
osmologi
al 
al
ulator (Ned Wright's

Javas
ript Cosmology Cal
ulator - UCLA, http://www.astro.u
la.edu/∼wright/CosmoCal
.html)

and set the parameters of: �at universe with Ωm = 0.286 and Ωn = 0.714, redshift z=0.3 and

the Hubble 
onstant as H0 = 69.6 (default parameter), and �nally we got: DOL = 926.9Mpc.

If now, we substitude all these parameters in (3.1) and then, we 
onvert this quantity into

mi
roar
se
 per year, we will �nd that the sour
e has an apparent motion of: 0.18 µas/year.

This quantity is very di�
ult to measure; in fa
t, the maximum astrometri
 a

ura
y that 
an

be rea
hed (using Very Long Baseline Interferometry, VLBI) is about 10 µas . However, we

know that gravitational lenses 
an magnify the spa
e by a fa
tor of several tens, and thanks to

this property we would be able to measure relative movements between lens galaxy and imaged

quasar whi
h seemed to be impossible to see, otherwise.

Gravitational lenses magnify the spa
e and, as a 
onsequen
e of this, the velo
ity will be also

magni�ed. Consequently, the �rst obje
tive of the present work is to simulate the relative mo-

tion of lensed quasar images in order to study if it is possible to use them to determine pe
uliar

velo
ities.
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3.2 Animated motions of the lensed images in the 
ases of the quadru-

ple lens systems: SDSS0924+0219, RXJ1131-1231, Q2237+0305

In this se
tion, we are going to give a qualitative des
ription of the movements of the lensed

images for these 3 quadruple lens systems. We have sele
ted these systems be
ause of their

high magni�
ation. To do that, we will 
hange the dire
tion of our sour
e along the x axis and

after this, we will 
al
ulate the movement of the resultant images. In order to study the relative

movements between pairs of images we will determine their positions and the di�eren
e between

their displa
ements.

In the 
ase of SDSS0924+0219 we have 
al
ulated the 
entroids of the images for ea
h posi-

tion of the sour
e on the x axis. In order to do this, we developed a spe
i�
 
ode in Python

language whi
h reads the matrix of the resulting image plane from our gravitational lensing

simulation program and de�nes a fun
tion whi
h �nds any region with a di�eren
e in intensity

with respe
t to the ba
kground (we sele
t a referen
e parameter to establish the rate of this

di�eren
e). When the 
ode identi�es those regions, it 
al
ulates the 
entroid of ea
h image and

then, it assigns to them a pair of 
oordinates (x,y). This pro
ess shoud be repeated as many

times as the sour
e 
hanges its position. On
e we obtain the position of these four images (x,y)

for ea
h displa
ement of the sour
e, we 
an plot the proper motion of the four quasar images.

These proper motions are dominated by the proper motions of the lens galaxy (more than

those of the observer or the quasar) be
ause it is estimated that pe
uliar velo
ities on galax-

ies are quite larger than our motion relative to the CMB (Cosmi
 Mi
rowave Ba
kground) frame.

Figure 3 shows the displa
ement of the images of SDSS0924+0219 when the sour
e is mov-

ing along the x axis towards the right. In Figure 4, we show the 
entroids 
orresponding to

the four images for ea
h position of the sour
e. We 
an see that the motion is qualitatively the

same in both Figures but in Figure 4, it is shown the exa
t position of these images (x,y) and

thus we 
an estimate the displa
ements between any pair of images. From both Figures we 
an


on
lude that the relative movement between 
omponents A and D would be easier to measure

and images B and C 
ould be used as referen
es.
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Fig 3. From the top left to the bottom right it is shown the evolution of the lens system

SDSS0924+0219 when the sour
e (
olumns 1 and 3) is moving to the right. The sour
e is initially lo
ated

at (0.0225829,-0.0386368) and the lens at (0,0). The parameters of the lens are: κ = 0, θE = 0.87329,

γ1 = −0.0593357, γ2 = −0.0154813.
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Fig 4. Proper motions of the 
entroids of ea
h one of the four images. Images {1, 2, 3, 4} 
orre-

spond to the real images {C, B, D, A} of the system SDSS0924+0219. Images A and D are the faster

ones and it 
an be seen that they are approa
hing to ea
h other while the sour
e is moving to the right.

Images C and B have tiny movements and its motion is 
omparatively negligible.

In the 
ases of the lens systems RXJ1131-1231 and Q2237+0305 we have not obtained the


entroids (it is a time 
onsuming 
al
ulation) but we have just done the animation when the

sour
e is now, moving to the x negative axis (to the left). The result of the simulations is

presented in Figures 5 and 6.
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Fig 5. From the top left to the bottom right it is shown the evolution of the lens system RXJ1131-

1231 when the sour
e (
olumns 1 and 3) is moving to the left. The sour
e is initially lo
ated at

(0.387712,-0.102272) and the lens at (0,0). The parameters of the lens are: κ = 0, θE = 1.81752,

γ1 = −0.107849, γ2 = 0.0511613.

Fig 6. From the top left to the bottom right it is shown the evolution of the lens system

Q2237+0305 when the sour
e (
olumns 1 and 3) is moving to the left. The sour
e is initially lo
ated

at (0.043616,-0.0142296) and the lens at (0,0). The parameters of the lens are: κ = 0, θE = 0.882841,

γ1 = −0.0523543, γ2 = −0.0527841.

15



This last obje
t is also known as The Einstein Cross. Owing to the singularly low redshift

of its lens galaxy, it is a really interesting 
ase to study pe
uliar velo
ities.

3.3 Expe
ted apparent motions for several high magni�
ation systems

The obje
tive of this se
tion is to determine quantitatively the displa
ements between images

when the relative motion between the lens galaxy and the sour
e takes a realisti
 value. We


hoose the lens galaxy is motionless and that the sour
e 
an be moved in any radial dire
tion,

that is to say, not only over the x axis but also with a 
ertain angle to this axis.

Instead of the inverse ray shooting method, whi
h does not work very well with tiny distan
es,

we are going to apply a linear approximation to the equation (1.9):

−→
∆x = [A]

−1−→
∆y (3.2)

where the form of the matrix A is given by the equation (1.10)

If we 
al
ulate the inverse of this matrix, it will take the form:

[A]
−1

=
1

|A|

(

1− κ+ γ1 −γ2

−γ2 1− κ− γ1

)

(3.3)

where |A| = (1− κ)2 − γ2
1 − γ2

2

Our in
rements are ve
tors in two dimensions as the dimensions of the 
oordinates (̂i, ĵ). The

fa
tor

−→
∆x 
orresponds to the motion of the image in the lens plane and

−→
∆y is the tiny motion

of the sour
e. The fa
tor

−→
∆y is given by the expression:

−→
∆y = (

∣

∣

∣

−→
∆y
∣

∣

∣
cos(θ)̂i,

∣

∣

∣

−→
∆y
∣

∣

∣
sen(θ)ĵ ) (3.4)

where the modulus of

−→
∆y,

∣

∣

∣

−→
∆y
∣

∣

∣
, is the relative motion of the sour
e in µas/year for ea
h system


omputed following the same pro
edure of the example in se
tion 3.1 and θ is the angle of the

movement of the sour
e with respe
t to the x axis.

We apply a straightforward 
ode written in Python, with a loop for time and other for orienta-

16



tion, to 
al
ulate the displa
ements between two images (of a quadruple lens system) during 10

years with steps of 1 year, and for 24 di�erent dire
tions of the sour
e traje
tory from 0° to 360°.

Ea
h image {A, B, C, D} will have its own set of parameters {κ,γ1,γ2} from whi
h we 
al
ulate

the di�erent in
rements,

−→
∆x. The distan
e between two images will be the substra
tion between

the in
rements 
orresponding to ea
h of the images. For instan
e, in the 
ase of images A and

B we will have:

−−→
∆xA = (∆x1

A,∆x2
A) (3.5)

−−→
∆xB = (∆x1

B ,∆x2
B) (3.6)

−−→
ΘAB =

−−→
∆xA −

−−→
∆xB = (Θ1

AB, Θ
2
AB) (3.7)

And, �nally, the modulus of the distan
e will be,

∣

∣

∣

−−→
ΘAB

∣

∣

∣
=

√

(Θ1
AB)

2 + (Θ2
AB)

2 ≡
∣

∣

∣
Θ̂(t)

∣

∣

∣
(3.8)

The systems 
hosen for the 
al
ulation are the same quadruple lens systems presented in the

previous se
tion. We have plotted for ea
h system, a graph showing the displa
ements between

two images during 10 years and another graph, only for 1 year, to see 
learly the dependen
e of

the displa
ements with the angle. The angles vary from 0° to 360° with intervals of 15°.

� SDSS0924+0219

For this system we have adopted the following relevant parameters,

z = 0.39

DOS = 1775.1Mpc

DOL = 1101.7Mpc
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|∆y| = 0.1428µas/year

Fig 7. Graph of the displa
ements between images A and D of the system SDSS0924+0219 for 10

years . Ea
h 
olour represents an angle and ea
h point on the same angular position is the displa
ement

for one of these 10 years.

Fig. 8. Radial plot of the displa
ements between images A and D of the system SDSS0924+0219

for 1 year. It is represented with data from 24 angles, whi
h starts and ends in 0°. Ea
h radial step


orresponds to 0.1 µas.
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� RXJ1131-1231

For this system we have adopted the following relevant parameters,

z = 0.295

DOS = 1536.3Mpc

DOL = 916.1Mpc

|∆y| = 0.1843µas/year

Fig 9. Graph of the displa
ements between images B and C of the system RXJ1131-1231 for 10

years. Ea
h 
olour represents an angle and ea
h point on the same angular position is the displa
ement

for one of these 10 years.
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Fig 10. Radial plot of the displa
ements between images B and C of the system RXJ1131-1231

for 1 year. It is represented with data from 24 angles, whi
h starts and ends in 0°. Ea
h radial step


orresponds to 0.1 µas.

� Q2237+0305

For this system we have adopted the following relevant parameters,

z = 0.04

DOS = 177.6Mpc

DOL = 164.2Mpc

|∆y| = 0.7038µas/year
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Fig 11. On the left (right) side is shown the graph of the displa
ements between images A and C

(A and D) of the system Q2237+0305 for 10 years.

Fig 12. On the left (right) side is shown the graph of the displa
ements between images B and C

(B and D) of the system Q2237+0305 for 10 years.
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Fig 13. On the left (right) side is shown the radial plot of the displa
ements between images A

and C (A and D) of the system Q2237+0305 for 1 year. Ea
h radial step 
orresponds to 0.1 µas.

Fig 14. On the left (right) side is shown the radial plot of the displa
ements between images B and

C (B and D) of the system Q2237+0305 for 1 year. Ea
h radial step 
orresponds to 0.1 µas.

It is interesting to show the maximum displa
ements for 5 and 10 year 
orresponding to ea
h

of the 
onsidered lenses and pairs of images (see Table 1). In order to do that, we look for the

angle with the maximum displa
ements in µas units:

Lens Systems 0924 (A-D) 1131 (B-C) 2237 (A-C) 2237 (A-D) 2237 (B-C) 2237 (B-D)

5 years (µas) 18.776 21.901 30.228 65.417 26.237 60.447

10 years (µas) 37.552 43.802 60.456 130.834 52.474 120.894

Table 1. Maximum displa
ements in µas between images of the quadruple lens systems 
hosen.
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3.4 Experimental perspe
tives (dire
t or statisti
al dete
tion): Gaia,

HARMONI�E-ELT

Gaia is a spa
e observatory of the European Spa
e Agen
y (ESA), laun
hed on 19

th
De
ember

2013, and designed for astrometry whose aim is to 
reate an a

urate 3D map or spa
e 
atalog

of astronomi
al obje
ts and their motions. Its lo
ation is around the Sun-Earth L2 Lagragian

point. Gaia is going to dis
over and monitor ∼2000 new gravitational lens systems with a fre-

quen
y greater than on
e per month (i.e. one order of magnitude improvement with respe
t to

the already known lenses).

Fig 15. Sample of two systems dete
ted by Gaia and its astrometry. In this preliminar data, the a
-


ura
y is quite far away from the nominal one. The dete
tions 
orrespond to the 
entroids (bla
k points).

We have seen in se
tion 3.1 and Table 1, that gravitational lenses magnify the spa
e trans-

forming an apparent motion of a few µas in the sour
e to dozens of µas in the lens plane. Can

Gaia measure these displa
ements? The a

ura
y of the astrometry of Gaia depends on the

brightness or magnitude (V) and on the 
olour (V-I) of the sour
e. Brightness 
an be a problem

as the lensed quasar images we know are relatively weak (V>16 mag).
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Fig 16. Proper motion standard error in µas a

ording to the magnitude G (almost the same as

V) for 5 years of astrometry in Gaia mission.

We 
an see in Figure 16 that for a system with a magnitude of the order of G = 16, the

standard error would be between 30 and 50 µas , whi
h is the same order of magnitude than

our results. The 
on
lusion then, is that it would not be easy to measure the displa
ements

predi
ted for the present lens systems. Nevertheless, the use of Gaia 
an be still interesting in

two di�erent 
ases:

On the one hand, with the new 2000 lens systems we 
an expe
t some of them to have a

higher brightness (V<16) and/or greater velo
ities so, in this way, we would be able to measure

the displa
ements of individual systems.

On the other hand, we 
an attempt a statisti
al study even if the displa
ements are smaller

than the standard error in the astrometry of Gaia. To do that, we would 
hoose as referen
e a

sample of ba
kground quasars whi
h are not a�e
ted by lensing. We would measure the typi
al

deviation in the positions along the years of monitoring of this sample and assume that they


orrespond to the error in the astrometry of Gaia. After that, we would also measure the dis-

pla
ements of our sample of lensed quasars and 
ompare the rms (root mean square) proper

motions of both samples.

The typi
al pe
uliar velo
ity deviation will be:

σpec =
√

σ2
TOT − σ2

err (3.9)
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where σerr is the typi
al deviation of the sample of unlensed quasars and σTOT is the typi
al

deviation of the lensed quasar images.

We 
an suppose that the value of σerr is the standard error of Gaia, 50µas. Then, we 
an

estimate σTOT from:

σTOT =
√

σ2
pec(sim) + σ2

err (3.10)

where σpec(sim) are the values 
al
ulated in the simulations of se
tion 3.3.

Now, we want to 
al
ulate the relative error of σpec. From equation (3.9) and the standard

error in the typi
al deviation formula, we obtain:

∆σpec

σpec
=

(

σ2
TOT

σ2
pec

)[

1

2(n− 1)

]1/2

(3.11)

where n is the number of possible images of whi
h we 
an obtain measurements. The value of

σTOT 
an be known by applying the formula (3.10).

We are going to suppose that, at least, 1 of 10 lenses dis
overed by Gaia (they are in total

2000) will have pair of images with a displa
ement of about 30 µas. Then, the number we must

apply to the equation (3.11) will be n = 200, and in that 
ase, we would obtain
∆σpec

σpec
= 0.19µas.

In Table 2, it is shown the maximum displa
ement in µas of ea
h system for 5 years, σpec(sim),

and the result of the relative error of σpec.

Lens Systems 0924 (A-D) 1131 (B-C) 2237 (A-C) 2237 (A-D) 2237 (B-C) 2237 (B-D)

σpec(sim)(µas) 18.776 21.901 30.228 65.417 26.237 60.447

∆σpec

σpec
(µas) 0.405 0.311 0.187 0.079 0.232 0.084

Table 2. Maximum displa
ements for 5 years and their relative error, everything in µas.

Even though the measurement 
an be statisti
ally a
hieved, the best way to su

essfully ap-

proa
h this study is to extend the period of observation with Gaia. An enlarged mission will

also signi�
antly in
rease the number of individual astrometri
 measurements.

On the other hand, HARMONI�E-ELT is an instrument whi
h 
onsists of a visible and near-

infrared integral �eld spe
trograph that will be able to work 
lose to the difra
tion limit of the

teles
ope E-ELT (European Extremely Large Teles
ope) and it is expe
ted to start operating in

2024. HARMONI will provide us an astrometry with an a

ura
y between 10 and 50 µas, even

for V>19. It means that it will allow us to measure our lens systems more 
omfortably than Gaia.
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4 Extreme events (
austi
s as peaks with very high thresh-

old) statisti
s

The simulation of the light-
urves of a quasar and the 
ount of their relative maxima is the

main goal of this 
hapter. In se
tion 4.1. we explain how this 
an be used to estimate pe
uliar

velo
ities. Then we 
ompute, for the lensed system Q2237+0305, magni�
ation maps (se
tion

4.2.) and extra
t sli
es from these maps whi
h simulate mi
rolensing light 
urves (se
tion 4.3.).

Finally, in se
tion 4.4., we study the number of maxima in those light 
urves.

4.1 Motivation and des
ription. Obje
tives.

The basi
 idea of this 
hapter is that a sli
e of a magni�
ation map 
orresponds to a light 
urve

(how the brightness of an obje
t 
an 
hange with mi
rolensing). The light 
urve 
hanges with

a fundamental frequen
y whi
h 
omes from the spatial variations indu
ed by mi
rolensing. The

idea to measure pe
uliar velo
ities is to 
ompare the frequen
y of the temporal variability of

mi
rolensed quasar images (inferred from observed light 
urves) with this fundamental spatial

frequen
y (inferred from magni�
ation maps). Both frequen
ies should be related by the relative

velo
ity between the lens, the sour
e and the observer. Here we are going to analyze several

simulated light 
urves in order to study their variability.

In order to a
hieve this purpose as simpler as possible, the most favourable option 
an be

done by 
ounting 
austi
 
rossings on the light 
urves. The 
rossing of a 
austi
 by the lensed

sour
e due to its relative motion with respe
t to the lens (galaxy) is the most outstanding event

that 
an be seen in mi
rolensing light 
urves.

Causti
s are lo
ated randomly and we asume that, even though the distan
es between them

are not the same, in the average there are the same number of 
austi
s per unit spa
e. Then,


austi
s 
an be treated as randomly distributed milestones of known mean separation. When

the sour
e is travelling a 
ertain distan
e, this will be proportional to the number of 
rossed


austi
s, and the typi
al deviation will be proportional to the square root of this number, �

√
N

(assuming a Poissonian statisti
s).

However, we have to take into a

ount that 
austi
s 
ould be smoothed by the sour
e size.

If the sour
e is large, it will be di�
ult to distinguish 
austi
s and we 
ould 
onfuse them with

another type of mi
rolensing phenomenology. On the other hand, if the sour
e is small (like an

X-ray emitting region) we will be able to 
ount 
austi
s, so this would be the optimal 
hoi
e.

Unfortunately, the X ray light 
urves are not available for doing measurements and instead, we
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need to use the more a

esible wavelengths (opti
al) where the sour
es are large. Thus,we are

going to use an obvious generalization: the 
ount of all the peaks of the light 
urve. These peaks

in
lude 
austi
 
rossings and other mi
rolensing phenomenology. To avoid problems with any

kind of noise we are going to 
onsider only the peaks over a 
ertain threshold (Peaks Over a

Threshold, POT).

In a few words, the aim of this 
hapter is to simulate light-
urves from magni�
ation maps

and design a pro
edure to 
ount POTs.

4.2 Magni�
ation maps of the quadruple lens system Q2237+0305

In this se
tion we want to des
ribe the 
omputation of mi
rolensing magni�
ation maps for the

system Q2237+0305 , using a 
ode written in Python programming language. First of all, it is

needed to set a few parameters as κ, γ, α (the mass fra
tion of the mi
rolenses, whi
h is 0.999),

the number of pixels (ny), the number of rays per pixel in absen
e of lensing e�e
t and the half

size of the magni�
ation map in units of the Einstein radius (yl).

The program generates the number and the positions of mi
rolenses 
onsidering a random

distribution of stars. The rays were de�e
ted a

ording to the lens equation. This de�e
tion


ontains an inner loop over all the de�e
tors. With the 
oordinates of the de�e
ted rays at the

sour
e plane, then we 
al
ulate the 
oordinates of the pixel on whi
h ea
h ray hits and, if it is

whithin our region of interest, the program adds 1 to the value of that pixel. Finally, when the

loop over rows of rays ends, we normalize the magni�
ation map by dividing the array by the

number of rays per pixel in absen
e of lensing.

The program generates two di�erent maps: the �rst one whi
h shows the re
tangular shooting

region of the light rays and the position of the stars in the ba
kground, and the se
ond one

whi
h is the matrix representing the magni�
ation map. We have generated magni�
ation maps

for the A and D images of the system Q2237+0305. Ea
h of the images have di�erent values of

shear (γ ) and 
onvergen
e (κ ) and that is why the result of applying this program is di�erent

from ea
h other. We have to take into a

ount that the total 
onvergen
e is splitted into a part


oming from a smooth distribution of matter, κC = (1− α)κ, and a part 
oming from 
ompa
t

obje
ts, κS = ακ, whi
h is able to produ
e mi
rolensing.

In Figures 17 and 18, we 
an see the quasar mi
rolensing magni�
ation maps for the images A

and D of the system Q2237+0305 (Einstein Cross):
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Fig 17. Magni�
ation map for image A of Q2237+0305. The size of the map is 20θE and it has

400x400 pixels. The parameters for the 
al
ulation are κ = 0.47, γ = 0.41. On the left, the lens plane

with the position of the 14436 stars. The ray-shooting region is marked by the green square and the

mapped region by the red square.

Fig 18. Magni�
ation map for image D of Q2237+0305. The size of the map is 20θE and it has

400x400 pixels. The parameters for the 
al
ulation are κ = 0.50, γ = 0.57. On the left, the lens plane

with the position of the 48082 stars. The ray-shooting region is marked by the green square and the

mapped region by the red square.

4.3 Light-
urves POT 
ounts

On
e we have the quasar mi
rolensing magni�
ation maps for ea
h image {A, D} of the system

Q2237+0305, our program extra
ts an horizontal sli
e on these magni�
ation maps (a simulated

light 
urve) and sear
hes the 
orresponding maxima in the light 
urves.
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In order to qualify a maximum as POT, it is required that, in a window of side 2·dx, the

maximum is greater than a given threshold; formally it is:

f [i]

f [i+ dx]
> threshold (4.1)

f [i]

f [i− dx]
> threshold (4.2)

We have made some estimates of the window size with the idea that the window were broader

than a typi
al peak but also, smaller than the separation between two 
onse
utive peaks. We

found that values in the range of dx ∼ 5 − 10 pixels 
ould be reasonable. At the end, we have


onsidered both values in the 
omputation.

Finally, the program gives us the x 
oordinates (lo
ation in pixels) of ea
h POT found. We

have done this pro
edure for 7 horizontal sli
es, sin
e the pixels go from 0 to 400, the horizontal

sli
es are lo
ated at 50, 100, 150, 200, 250, 300, 350. In addition to that, we have 
onsidered 6

di�erent thresholds in order to delve deeper into the study. At the end, we have a graph for ea
h

horizontal sli
e (and for ea
h image of the system) and a 
ertain number of POTs 
al
ulated for

ea
h threshold as many times as horizontal sli
es we have.

In Figures 19 to 25, we show the graphs for ea
h sli
e and for ea
h image of the system {A, D}

in the 
ase of the window dx = 10 (as an example). We have plotted on the graphs the POTs

found in the form of 
oloured dots, 
hoosing for this purpose the 1.5 and the 2.4 thresholds.

Our thresholds (see equations 4.1 and 4.2) were 1.1, 1.2, 1.5, 1.8, 2.1 and 2.4. Obviously, for a

relative maximum of 1.5 we will �nd more POTs than in the 
ase of 2.4. In Tables 3 and 4 we

present the number of POTs found, the mean value of this number for ea
h threshold and the

standard deviation, everything 
al
ulated for both images.
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Fig 19. Light-
urves for a horizontal sli
e lo
ated at the pixel 50 in the verti
al axis of ea
h

magni�
ation map. On the left (right) we have the light 
urve for the image A (D). The x axis


orresponds to the pixels of the magni�
ation maps and the y axis is the magni�
ation.

Fig 20. Light-
urves for a horizontal sli
e lo
ated at the pixel 100 in the verti
al axis of ea
h

magni�
ation map. On the left (right) we have the light 
urve for the image A (D). The x axis


orresponds to the pixels of the magni�
ation maps and the y axis is the magni�
ation.

Fig 21. Light-
urves for a horizontal sli
e lo
ated at the pixel 150 in the verti
al axis of ea
h

magni�
ation map. On the left (right) we have the light 
urve for the image A (D). The x axis


orresponds to the pixels of the magni�
ation maps and the y axis is the magni�
ation.
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Fig 22. Light-
urves for a horizontal sli
e lo
ated at the pixel 200 in the verti
al axis of ea
h

magni�
ation map. On the left (right) we have the light 
urve for the image A (D). The x axis


orresponds to the pixels of the magni�
ation maps and the y axis is the magni�
ation.

Fig 23. Light-
urves for a horizontal sli
e lo
ated at the pixel 250 in the verti
al axis of ea
h

magni�
ation map. On the left (right) we have the light 
urve for the image A (D). The x axis


orresponds to the pixels of the magni�
ation maps and the y axis is the magni�
ation.
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Fig 24. Light-
urves for a horizontal sli
e lo
ated at the pixel 300 in the verti
al axis of ea
h

magni�
ation map. On the left (right) we have the light 
urve for the image A (D). The x axis


orresponds to the pixels of the magni�
ation maps and the y axis is the magni�
ation.

Fig 25. Light-
urves for a horizontal sli
e lo
ated at the pixel 350 in the verti
al axis of ea
h mag-

ni�
ation map. On the left (right) we have the light 
urve for the image A (D). The x axis 
orresponds

to the pixels of the magni�
ation maps and the y axis is the magni�
ation.

In the Figures, we 
an appre
iate that some of the green dots (threshold 2.4) 
oin
ide with

the 
orresponding red dots in the same graph (threshold 1.5). This demonstrates that the pro-

gram dete
ts the POTs in a 
onsistent way.
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� Case of the image A (dx=10, dx=5):

Thresholds 1.1 1.2 1.5 1.8 2.1 2.4

Sli
e 50 20 17 9 6 4 4

Sli
e 100 23 21 17 13 5 3

Sli
e 150 19 19 12 9 4 3

Sli
e 200 21 20 15 9 8 1

Sli
e 250 19 16 11 6 3 2

Sli
e 300 21 20 12 8 5 3

Sli
e 350 24 22 11 7 4 4

< N > 21 19.29 12.43 8.29 4.71 2.86

σN 1.91 2.14 2.70 2.43 1.60 1.07

√

< N > 4.58 4.39 3.53 2.88 2.17 1.69

1.1 1.2 1.5 1.8 2.1 2.4

27 25 13 5 2 2

34 29 16 10 7 4

32 22 9 6 4 2

32 31 20 15 8 1

36 30 18 8 4 4

30 26 16 7 5 3

30 25 13 8 6 6

31.57 26.86 15 8.43 5.14 3.14

2.94 3.24 3.65 3.31 2.03 1.68

5.62 5.18 3.87 2.90 2.27 1.77

Table 3. Number of POT for the image A of the system Q2237+0305, for ea
h of the sli
es and

for both windows (dx = 10, dx = 5). It is also shown the mean value, the standard deviation and the

square root of the mean number.

� Case of the image D (dx=10, dx=5):

Thresholds 1.1 1.2 1.5 1.8 2.1 2.4

Sli
e 50 21 18 11 8 6 3

Sli
e 100 23 19 13 8 4 2

Sli
e 150 24 22 11 6 4 2

Sli
e 200 20 18 15 11 10 8

Sli
e 250 19 18 10 7 3 3

Sli
e 300 20 19 12 7 3 1

Sli
e 350 19 16 14 12 6 3

< N > 20.86 18.57 12.29 8.43 5.14 3.14

σN 1.95 1.81 1.80 2.22 2.48 2.27

√

< N > 4.57 4.31 3.51 2.90 2.27 1.77

1.1 1.2 1.5 1.8 2.1 2.4

31 28 14 7 4 1

35 30 16 11 6 4

35 29 20 8 4 2

33 29 20 15 9 4

32 27 11 5 3 2

34 29 17 10 2 2

32 27 14 6 2 1

33.14 28.43 16 8.86 4.29 2.29

1.57 1.13 3.32 3.44 2.50 1.25

5.76 5.33 4 2.98 2.07 1.51

Table 4. Number of POT for the image D of the system Q2237+0305, for ea
h of the sli
es and

for both windows (dx = 10, dx = 5). It is also shown the mean value, the standard deviation and the

square root of the mean number.

An interesting result is that the estimated error, σN , is similar or below the Poissonian one,

√

< N >. To end with this se
tion, we 
ompare the mean value of the number of POTs found

with respe
t to the thresholds we sele
ted (see Figures 26 and 27). It 
an be appre
iated that

the number of POTs de
rease monotoni
ally with the threshold. We 
an also see that the �ts

to a se
ond order polynomial give similar values for the 
oe�
ients of images A and D.
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Fig 26. Relationship between the threshold and the mean number of POTs for a window of dx=10.

The values for the images A and D of the system Q2237+0305 have been �tted to a se
ond order

polynomial.

Fig 27. Relationship between the threshold and the mean number of POTs for a window of dx=5.

The values for the images A and D of the system Q2237+0305 have been �tted to a se
ond order poly-

nomial.
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5 Con
lusions and future perspe
tives

In the �rst part of this work, we have developed several Python based 
odes to simulate the

proper motions of multiple imaged quasars in order to study the possibility of measuring the

pe
uliar velo
ities of lensed galaxies. The main 
on
lusions are the following:

� The displa
ements we have obtained, depend on the orientation of the sour
e motion and

also on the magni�
ation of the image.

� For a velo
ity of the order of 1000 km/s, whi
h is the one we are 
onsidering in our exam-

ples, apparent displa
ements of tens of µas 
an be expe
ted in several years of monitoring.

� Some favourable 
ases of high magni�
ation events may be measured with Gaia. But

many of these systems 
ould be studied with HARMONI�E-ELT and Theia. This last

proje
t, Theia, is an instrument whose goal is to observe the Universe in motion with an

unpre
edented astrometri
 pre
ision. It is thought to be laun
hed around the year 2030.

In the se
ond part of this work, we have explored the possibility of using the 
ount of maxima

in light-
urves for high magni�
ation systems in order to try to relate this to the lens galaxy

pe
uliar velo
ity. For this purpose, we have written a 
ode whi
h allows us to 
ount POTs. We

have applied this 
ode to the system Q2237+0305 (Einstein Cross), and the main 
on
lusions

are:

� We found that the error in the mean number of POT, obtained from the simulations, is


omparable or smaller than the Poissonian value.

� We �nd a 
lear anti-
ovarian
e of the number of POT with the threshold; it 
an be well

�tted with a se
ond order polynomial.

In the near future it will be important to analyze the �rst release of the data of Gaia this

autumn to be able to explore the astrometri
 pre
ision and to study the real possibilities of

measuring the lensed quasar proper motions. In this moment, there are less than 200 known

lenses. After the Gaia release, around 2000 lenses will be known and some of them may have

large magni�
ation in brightness and velo
ity.

On the other hand, in a more distant future it would be interesting to simulate the obser-

vations with HARMONI�E-ELT and Theia, in order to analyze the limits of the astrometry

with these instruments.

35



A
knowledgments

I want to spe
ially thank my tutor who has been guiding me throughout this work, Even
io

Mediavilla, and also, I would like to thank Jorge Jiménez-Vi
ente, for tea
hing me the method-

ology I had to follow to be able to do the simulations. Finally, I want to mention my 
lassmate,

Roberto Díaz Pérez, for his help in the 
omputer matter and his patien
e when I asked him

about the pro
edure of the 
odes.

Referen
es

[1℄ S
hneider, P., Ehlers, J., Fal
o, E.E. (1992). Gravitational Lenses (Astronomy and Astro-

physi
s Library, 1st Study Edition). Germany: Springer-Verlag Berlin Heidelberg.

[2℄ Mediavilla, E., Muñoz, J.A., Garzón, F., Mahoney, T.J. (2012, XXIV Canary Islands Win-

ter S
hool of Astrophysi
s). Astrophysi
al Appli
ations of Gravitational Lensing. Jiménez-

Vi
ente, J. (dir.). Tutorial on inverse ray shooting, University of Granada (Spain).

[3℄ Ko
hanek, C.S., Kolatt, T.S., Bartelmann, M. (1996). Proper motions of VLBI lenses,

inertial frames, and the evolution of pe
uliar velo
ities. The Astrophysi
al Journal (473),

610-619.

[4℄ Morgan, C.W., Ko
hanek, C.S., Morgan, N.D., Fal
o, E.E. (2006). Mi
rolensing of the

lensed quasar SDSS 0924+0219. The Astrophysi
al Journal (647), 874-885.

[5℄ Anglada-Es
udé, G., Brandeker, A., Léger, A., Sozzetti, A. (2015). Theia - Observing the

Universe in Motion: Letter of Intent - ESA 
all for M4 mission - Cosmi
 Vision 2015-2025.

[6℄ Mediavilla, E. (2016). Pe
uliar Transverse Velo
ities of Galaxies from Quasar Mi
rolensing.

Pilot Study at z ~ 0.5. Tenerife, Spain: Canary Islands Institute of Astrophysi
s (IAC).

[7℄ Mediavilla, E. (2010). Gravitational Lensing tea
hing in the Master of Astrophysi
s of the

ULL. Tea
hing Proje
t, University of La Laguna.

[8℄ Wright, E.L. (2006, PASP, 118, 1711). Ned Wright's Javas
ript Cosmology Cal
ulator. Re-

trieved from: http://www.astro.u
la.edu/~wright/CosmoCal
.html

[9℄ Ko
hanek, C.S., Fal
o, E.E., Impey, C., Lehar, J., M
Leod, B., Rix,

H.-W. (n.d.). CASTLES Survey of gravitational lenses. Retrieved from:

https://www.
fa.harvard.edu/
astles/

[10℄ Sauer, T. (Einstein Online Vol. 04, 2010). A brief history of gravitational lensing. Retrieved

from: http://www.einstein-online.info/spotlights/grav_lensing_history#se
tion-4

36




