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Abstract

This is an review, with educational purpose, of the article "A classical channel model
for gravitational decoherence [1]", where in order to understand the original article, it is
necessary to introduce some advanced level material. Based in an equivalent model first
proposed by Diosi, the original article proposes a gravitational decoherence model of two
mechanical resonators linked under gravitational interaction, which is treated as a classical
measurement channel. Using a previous result obtained by Kafri and Taylor [2], it implies
that gravitational interactions between two resonators cannot create entanglement in a classical
measurement channel. Following experimental tests implies the the gravitational rate is of the
order of the normal mode splitting of the resonators induced by gravity. Finally, the original
article sets a new research route, reconsidering the measurement channel as purely classical.
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Figure 1: A gravitationally coupled system of two harmonic oscillators comprising two suspended
masses m1,m2 [1].

1 Introduction

No one can shield against gravity. In the current state of quantum physics, we have a relative deep
understanding of the others three fundamental interactions in nature. Nowadays with that knowl-
edge, for example, it is possible to engineer and compute quantum ion traps which, with current
technology limitations, almost prevents unwanted Coulomb interactions. In others words, we can
engineering quantum states of opto-mechanical systems close to ground state for electromagnetic
interactions.

However this is not the case for gravitational interactions. Measurement methods of a gravi-
tational field of a large mass are well known. Even for weakest interactions, we can assume there
is always an open measurement channel, affecting from gravitational sources on space-time geom-
etry. While a measurement channel exits, necessarily remains a source of noise and decoherence,
knowing or not the measurement result.

In the assumption we had a quantum theory of gravity, the additional source of noise would be
bound to quantum fluctuations in the gravitational field, where the quantum mechanical degrees of
freedom would interact gravitationally [3]. Such effects are mostly important at the Planck scale,
and more unlikely to notice in opto-mechanical experiments at the range of Newtonian description
of gravity.

In this concern, Penrose [4] and Diósi [5] propose this is not the case with opto-mechanical
experiments, and with sufficient quantum control over macroscopic mechanical degrees of freedom,
these systems could show gravitational decoherence, which would provide a path to study the
meeting between gravitational and quantum physics.

The original article works under the proposal [2] for a two-way communication channel pic-
ture, where long range gravitational interactions are treated as a weak continuous measurement
of the position of each mass. Then they compare a conventional unitary treatment of the mutual
gravitational interaction of two masses with their classical measurement channel picture.

Classical measurement channel is an example of local operation with classical communication.
In essence, it carries the information to each mass of the other’s presence, position and the cor-
responding gravitational force, and cannot entangle the two masses. The continuous aspect of
the record allows to control the reciprocal classical force on each mass using a feedback control,
and with its reciprocity they achieve an equivalent result that Penrose and Diósi’s models: the
gravitational decoherence rate is completely determined by the gradient of the gravitational force
between the two masses.In the original article, they estimate the magnitude of these effects for an
two oscillators experiment, coupled by gravitational interactions (Figure 1).
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2 Theoretical Model and Formalisms

It is mandatory to introduce the theoretical model and formalisms used in the original article.
In the following subsections, we start setting the oscillators model presented in Figure 1, then a
brief introduction to Quantum Measurement Theory, and finally we use the introduced concepts
to consider gravity as a classical measurement channel in the two harmonic oscillators model,
obtaining the dynamic equation, averaged over all measurement records, as a goal. In the following
section, we discuss the results with a experimental test.

2.1 Two Harmonic Oscillators Model in Gravitational Coupled System

The main idea is setting a two harmonic oscillators model, as Figure 1 shows, drawing on QED
formalisms, with a gravitational potential instead of EM potentials. Consider two masses, m1,m2

freely suspended so as to move almost harmonically along the x-axis, where the two masses are
coupled by gravitational interaction. The displacement of mass mk from equilibrium is denoted
xk (k=1,2). The interaction potential energy between the masses, expanded to second order in the
relative displacement, may be written

V (x1, x2) =
2∑
k=1

1

2
mkw

2
kx

2
k −

Gm1m2

d2
(x1 − x2)− Gm1m2

d3
(x1 − x2)2

Analyzing the terms, the linear one represents a constant force between the masses that modifies
the equilibrium position of both masses to x̄1 = Gm2

d2w2
1

and x̄2 = −Gm2

d2w2
2
. Including this into

the displacement coordinate definition, the linear term is neglected. The quadratic term can
be incorporated into the definition of the harmonic frequency of each mass. Consider the total
mechanic Hamiltonian

H = T + V̄ , where T =

2∑
k=1

p2
k

2mk
, V̄ =

2∑
k=1

1

2
mkw

2
kx

2
k −

Gm1m2

d3
(x1 − x2)2

Considering K = 2Gm1m2/d
3

H =

2∑
k=1

[
p2
k

2mk
+

1

2
mkw

2
kx

2
k

]
− K

2

(
x2

1 + x2
2 − 2x1x2

)
=

=

2∑
k=1

[
p2
k

2mk
+

1

2
mkx

2
k

(
w2
k −

K

mk

)]
+Kx1x2 =

=

2∑
k=1

[
p2
k

2mk
+

1

2
mkx

2
kΩ2

k

]
+Kx1x2 =

= H0 +Kx1x2

We proceed to calculate the associated normal modes. Consider the Hamiltonian, the dynamic
equation is given by

mkẍk = − ∂H
∂xk

=>

{
m1ẍ1 = −m1Ω2

1x1 −Kx2

m2ẍ2 = −m2Ω2
1x2 −Kx1

As we expect oscillatory motion of a normal mode, in the particular case of same frequency for
both masses,

x1 = A1e
iwt , x2 = A2e

iwt
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Replacing and operating,{
m1A1(iw)2 = −m1Ω2

1A1 −KA2

m2A2(iw)2 = −m2Ω2
1A2 −KA1

=>

{
m1ẍ1 = −m1Ω2

1x1 −Kx2

m2ẍ2 = −m2Ω2
1x2 −Kx1

=>

=>

{ (
w2 − Ω2

1

)
A1 − K

m1
A2 = 0(

w2 − Ω2
2

)
A2 − K

m2
A1 = 0

Expressing as a matrix equation,[
w2 − Ω2

1 − K
m1

− K
m2

w2 − Ω2
2

] [
x1

x2

]
=

[
0
0

]

The resulting equations system has a solution when∣∣∣∣w2 − Ω2
1 − K

m1

− K
m2

w2 − Ω2
2

∣∣∣∣ = 0 =>
(
w2 − Ω2

1

) (
w2 − Ω2

2

)
− K2

m1m2
=

= w4 −
(
Ω2

1 + Ω2
2

)
w2 − K2

m1m2
+ Ω1Ω2 = 0

With variable change, the resolution is reduced to a second grade equation. Their solutions are
the two frequencies of the normal modes,

w2
± =

1

2

(
Ω2

1 + Ω2
2

)
± 1

2

[(
Ω2

1 − Ω2
2

)
+

4K2

m1m2

]1/2

We choose symmetric masses case: m1 = m2 = m => Ω1 = Ω2 = Ω

w2
+ = Ω2 +

1

2

[
4K2

m2

]1/2

= Ω2 +
K

m
= w2

w2
− = Ω2 − K

m
= w2 − 2K

m
= w2

(
1− 2K

mw2

)
In most situations of laboratory relevance, the gravitational coupling is weak and the difference

in frequency between the two normal modes, the normal mode splitting, can be written

∆ ≡ w+ − w− ≈
K

mw

Therefore, the resulting classical and quantum dynamics is then described as two indepen-
dent simple harmonic oscillators, the normal modes, which are linear combinations of the local
co-ordinates

q+ =
x1 + x2√

2
, q− =

x1 − x2√
2

where q+ is the center-of-mass mode, and q− is the breathing mode.

The ground state of two normal modes is a superposition state of the configuration space
variables of two centre-of-mass degrees of freedom (the local modes) and as such the ability to
prepare such a state through purely gravitational interactions would be a test of gravitational
decoherence. To determinate the wave function of the normal mode ground states, |0〉+

⊗
|0〉−,

we shall introduce first a few concepts about quantized electromagnetic field theory.
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2.2 Multimode Squeezed States

The contents of this subsection have been mostly compiled from the book "Quantum Optics" by
D.F. Walls and G.J. Milburn [6].

A coherent state is a minimum uncertainty state that the uncertainty of the canonical conjugates
(position and momentum) stays constant and contribute equally to he relation.They have dynamics
most closely resembling the oscillatory behavior of a classical harmonic oscillator. These states are
generated by the abstract unitary displacement operator

D(α) ≡ exp
(
αa+ − α∗a

)
with α an arbitrary complex number, and a+, a the creation and annihilation operators.

A coherent state is an normalized Eigenstate of annihilation operator and, in terms of the
ground Fock-state, is given by

|α〉 = D(α) |0〉

Squeezed states are general minimum-uncertainty states. The most general wave function that
satisfies the identity above is the squeezed coherent state (in units with h̄ = 1)

ψ(x) = C exp

(
− (x− xo)2

2w2
0

+ ipox

)

where C, xo, w0, p0 are constant (a normalization constant, the center of the wavepacket, its
width, and the expectation value of its momentum).The new feature relative to a coherent state
is the free value of the width w0, which is the reason why the state is called "squeezed".

In analogy to the coherent states, the squeeze operator

S(ε) ≡ exp
[

1

2
ε∗a2 − 1

2
ε(a+)2

]

where ε = re2iφ

The squeeze operator is unitary and obeys the relation

S+(ε) = S−1(ε) = S(−ε)

Therefore, the definition of a squeezed state is given by

|α, ε〉 = D(α)S(ε) |0〉

To generate a single mode squeezed state, it is necessary a unitary evolution of S(ε), which acts
on a vacuum state. This can be obtained,e.g by an Interaction Hamiltonian of the form

HI =
h̄

2

[
χ(a+)2 + χ∗a2

]
which describes simultaneous two-photon generation or absorption processes, as ca be realized

by second order nonlinear processes where a photon of energy 2h̄w generates two photons, each of
energy h̄w.

To generate a multi mode squeezed state, the previous concept shall be generalized to a case of
two photons created simultaneously with different energy. Consider a non degenerate parametric
amplifier,e.g the generation of two photons of frequencies w = w1+w2. The interaction Hamiltonian
reads

HI = ih̄
[
χ(a+

1 )2(a+
2 )2 + χ∗a2

1a
2
2

]
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The corresponding multi mode squeezed state is given by

|α, ε〉 = D1(α)D2(α)S(G) |0〉

with the generalized displacement operator Di(α) ≡ exp
(
αa+

i − α∗ai
)
and the two mode

squeezing operator
S(G) ≡ exp

[
G∗a2 −G(a+)2

]
with G = reiΘ

with the properties
S+(G) = S−1(G) = S(−G)

S+(G)a1,2S(G) = a1,2cosh(r)− a+
1,2sinh(r)eiΘ

For Θ = 0, that is G purely real, we find for the expansion of the two mode squeezed vacuum
state into Fock-states

|ϕ〉 = S(G) |0〉 =
1

cosh(r)

∑
n≥0

tanhn(r) |n, n〉

Now the concepts have been introduced and we proceed to determinate the wave function of the
normal mode ground states, |0〉+

⊗
|0〉−, which in the coordinate basis of the local center-of-mass

coordinates, is a Gaussian two-mode squeezed state [7],

|0〉+
⊗
|0〉− =

∫ ∫
dx1dx2ψ(x1, x2) |x1〉

⊗
|x2〉

where the wave function is

ψ(x1, x2) = Nexp (−H/h̄)

where N is a normalization constant. To determinate L, consider the two normal modes
Hamiltonian

H =
1

2
w+q

2
+ +

1

2
w−q

2
− =

1

4
mw+(x1 + x2)2 +

1

4
mw−(x1 − x2)2 =

=
1

4
mw+

(
x2

1 + x2
2

)
+

1

4
mw−

(
x2

1 + x2
2

)
+

1

2
mw+x1x2 −

1

2
w−x1x2 =

= x2
1

(
1

4
mw+ +

1

4
mw−

)
+ x2

2

(
1

4
mw+ +

1

4
mw−

)
+ x1x2

(
1

2
mw+ −

1

2
mw−

)
Considering the expressions of w+, w−, and β = 2K/mw2, we express as a matrix equation

H =
mw

4
(x1, x2)

[
1 +
√

1− β 1−
√

1− β
1−
√

1− β 1 +
√

1− β

](
x1

x2

)

Therefore,
ψ(x1, x2) = Nexp

[
−~xTL~x

]
where

L =
mw

4h̄

[
1 +
√

1− β 1−
√

1− β
1−
√

1− β 1 +
√

1− β

]
and ~xT = (x1, x2)

As we can appreciate, the Hamiltonian form correspond to the general form for squeezed states.
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2.3 A Brief Introduction to Quantum Measurement Theory

The contents of this subsection have been mostly compiled from the books "Mathematical foun-
dations of quantum mechanics" [8], "The theory of open quantum systems" [9],"Quantum compu-
tation and quantum information" [10] and "Quantum measurement and control" [11].

2.3.1 Ideal Quantum Measurements

The fundamental quantum measurement postulate gives a description of a quantum measurement.
We start by considering an observable characterized by a self-adjoint operator x̂ , that we assume
with discrete spectrum, with unit multiplicity. If Π(xn) defines the eigen-projector operators
associated with the spectral values xn, then

X̂Π(xn) = xnΠ(xn)

where Π(xn)Π(x′n) = δnn′Π(xn) and
∑
n Π(xn) = 1. During the measurement, the system

undergoes a non-unitary evolution such that

ρ 7−→ ρn′ =
Π(xn)ρΠ(xn)

TrΠ(xn)ρΠ(xn)
≡ Π(xn)ρΠ(xn)

TrΠ(xn)ρΠ(xn)
P (xn)

where Tr is the trace operation and P (xn) the probability of the outcome xn to occur. The
state ρ′ describes the sub-ensemble of systems for which xn have been found. This is the von-
Neumann-Lüders postulate. Notice that

∑
n P (xn) = 1.

The original ensemble ρ is divided in several sub-ensembles, each one being conditioned on
a concrete measurement outcome xn. In this sense we speak about a selective measurement.
However, it might be the case that the measurement outcomes are not known to us or that the
observer does not want to use that informations. In such cases the sub-ensembles are mixed again
to give

ρ′ =
∑
n

P (xn)ρ′n =
∑
n

Π(xn)ρΠ(xn)

We speak then of a non-selective measurement. The probability distribution P (xn) defines an
entropy as

S = −
∑
n

P (xn)logP (xn)

If the initial state is pure, then S is the entropy produced on the measurement. Notice that
the overall entropy produced in the process can be higher, for instance when dissipative processes
taking place in the interaction between a quantum system and the many degrees of freedom of a
detector [12].

2.3.2 Continuous Measurements

It is possible to considered continuous sets in non-ideal measurements. In addition, non-sharp
measurements can be studied introducing smooth operator effects as it is the case of Gaussian
measurements with

Ωf (A) = (2πσ2)1/4e−
(f−A)2

4σ2 with f ∈ (−∞,∞)

where f is a real number representing the measurement outcomes of the observable A with
error σ. The conditional post-measurement state is in this case, following the discrete case

ρ 7−→ P−1(f)ΩfρΩf

The probability P (f) is given by

P (f)) = TrΩfρΩf
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with is normalized accordingly ∫
dfP (f) = TrΩfρΩf = 1

At this point one can imagine measuring A continuously in time on a single quantum system.
Mathematically this can be conceived as performing measurements periodically in time each τ
units of time. The limit τ → 0 can be introduced if very smooth measurements are taken such
that the error σ is proportional τ−1/2 in such limit. Therefore, in the continuous limit

g = lim
σ→∞,τ→0

1

τσ2

In this limit it is possible to deduce a dynamical equation for the non-conditioned density
operator describing the continuous measurement problem [13]. For a given system whose dynamics
is ruled by a Hamiltonian H, the evolution of a state r when no measurement is performed is given
by

dρ = − i
h̄

[H, ρ]dt

This unitary, continuous and differentiable dynamics changes when a measurement is contin-
uously made. Hence, some correction is needed to describe the non-unitary evolution associated
with the measurement.

The measurement operator Ωf in the continuous limit has the form

Ωf (A) =
(gτ

2π

)1/4

e−
g
4 (
√
τf−
√
τA)

2

and the post-measurement state in the non-selective case is

ρ 7−→
∫
dfΩfρΩf =

(gτ
2π

)1/2
∫
dfe−

g
4 (
√
τf−
√
τA)

2

ρe−
g
4 (
√
τf−
√
τA)

2

Replacing
√
τf → φ∫

dfΩfρΩf =
( g

2π

)1/2
∫
dfe−

g
4 (φ−

√
τA)

2

ρe−
g
4 (φ−

√
τA)

2

To proceed further the exponentials in the post-state is expanded around
√
τ = 0

e−
g
4 (φ−

√
τA)

2

= e−gφ
2/4e−g

√
τA/4 =

= e−gφ
2/4

(
1 +

g
√
τφA

2
+
g2τφ2A2

8
− gτA2

4
+O(τ3/2)

)
Therefore ∫

dfΩfρΩf =

=
( g

2π

)1/2
∫
dφe−

gφ2

2

[
ρ+

g

2

√
τφ(Aρ+ ρA) +

(g
2

√
τφ
)2

AρA+ gτ

(
gφ2

8
− 1

4

)
(A2ρ+ ρA2) +O(τ3/2)

]
=

= ρ+
g

4
AρA− g

8
(A2ρ+ ρA2)

Then, it happens that the contribution of the measurement to the dynamics of the state is

dρ |Measurement= −
g

8
[A[A, ρ]]dt

that gives the dynamical equation of a quantum system evolving with Hamiltonian H and
continuously monitored by measurements of an observable A, which is

dρ = − i
h̄

[H, ρ]dt− g

8
[A[A, ρ]]dt

As it is expected, the measurement induced a non-unitary term in the dynamics [13]. The new
term defines a complete positive, trace preserving contracting quantum map.
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We can analyze further the resulting equation of the expansion. As we know by the resolution,
the term proportional to

√
τ is neglected, due to the Gaussian integration. One can consider a

Monte Carlo integration as strategy to solve the dynamics, that is, we can consider the integra-
tion over φ as an average over all possible measurement outcomes which are weighted with the
Gaussian around φ = 0, in the limit case of innately many measurements. The outcome of a single
measurement however is an inherently stochastic event, and we can introduce a stochastic Weiner
process W (t).

A Wiener process, or standard Brownian motion process, is a continuous-time stochastic process
which is characterized by Gaussian independent increments, continuous paths andW (0) = 0 almost
surely. Given an observable Â, the signal A(t) from the continuous measurement through a classical
channel has the form of a fluctuation around the quantum-mechanical average due to the stochastic
nature of the measurements on the quantum system

A(t) = 〈Â〉(t) + δA(t)

where we can relate the Wiener increment to the time-dependent signal writing heuristically

dW

dt
= δA(t)

which gives a correlation for δA(t) as

〈δA(t)δA(τ)〉 =
1

g
δ(t− τ)

An example of this is the stochastic process defined by

X(t) = µt+ σW (t)

which is called a Wiener process with drift µ and infinitesimal variance σ2.

For the term g
√
g

2

√
τφ(Aρ+ρA), consider the change of the Weiner process over a time interval,

the Wiener increment
∆W =

√
τφ =

√
τ

g
w̄

where w̄ ∈ N(0, 1) is a random number normally distributed with zero mean and unit variance.
In the continuous limit we can write the following conditions

〈dW 〉 = 0

dW 2 =
dτ

g

In the case of a huge, but finite number of measurements, the integral over the measurement
outcomes in the expansion becomes a sum over each measurement outcome represented by the
stochastic variable W (t). The term proportional to

√
τ now is not neglected by temporal average,

but replaces by the stochastic term
g

2
(Aρ+ ρA)dW

which has zero mean as expected. The dynamic equation, now caused by measurement process,
is described by

dρ = − i
h̄

[H, ρ]dt− g

8
[A, [A, ρ]]dt+

g

2
(Aρ+ ρA)dW

Moreover the dynamics must be trace preserving, and this new equation does not preserve trace.
One has to subtract the change in trace to keep the state normalized and leads to the stochastic
master equation that describes the selective measurement process

dρ = − i
h̄

[H, ρ]dt− g

8
[A, [A, ρ]]dt+

g

2
(Aρ+ ρA− 2〈A〉ρ)dW

which is trace preserving.
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2.4 Gravity as a Classical Measurement Channel

There are proposals, as the one by Kafri and Taylor’s [2], to test the type of channel, quantum or
classical, that mediates in long range coherent interactions between two particles. In the case of the
named proposal, they define a quantum channel by introducing an ancillary degree of freedom, a
harmonic oscillator, which leads, under appropriate circumstances, to an effective direct non-local
interaction between the two local systems. A classical channel can then be defined if we allow a
continuous measurement.

In the original paper, they take a different approach to defining a classical channel, using
methods from quantum stochastic control theory. Rather than a direct quantum interaction of the
form x̂1x̂2, the gravitational center of mass co-ordinate, x̂i, of each particle is continuously measured
in a classical stochastic measurement record, Jk(t), carrying this information acts reciprocally as a
classical control force on the other mass. The effect on the dynamics of the systems is to produce
a Hamiltonian term of the form,

Hgrav = χ1
dJ1(t)

dt
x̂2 + χ2

dJ2(t)

dt
x̂1

where χk has the same units of K. As we are considering a continuous weak measurement of
x̂k, the measurement record obeys a stochastic differential equation of the form [11]

dJk(t) = 〈x̂k〉cdt+

√
h̄

2Γk
dWk(t)

where Γk is a constant that determines the rate at which information is gained by the measure-
ment, dW1,2 are independent real valued Wiener increments and the average 〈x̂k〉c is a conditional
quantum mechanical average conditioned on the entire history of measurement records up to time
t. Note that the unit of Γk/h̄ are m−2s−1.

Consider the classical control Hamiltonian

Hc = H0 +Hgrav

As we introduce in the previous subsection, the conditional quantum dynamics of the coupled
oscillator system is given by the stochastic master equation

dρc = − i
h̄

[Hc, ρc]dt−
2∑
k=1

(
Γk
2h̄

[x̂k, [x̂k, ρc]]dt+

√
Γk
h̄

(x̂kρc + ρcx̂k − 2〈x̂k〉)dWk

)

where we consider the observable A as x̂k. Grouping the Weiner term in a single super-operator

x̂kρc + ρcx̂k − 2〈x̂k〉 = x̂kρc + ρcx̂k − 2Tr(ρcx̂k) = x̂kρc + ρcx̂k − Tr(x̂kρc + ρcx̂k) ≡ H[x̂k]ρc

The condensed version of the dynamical stochastic master equation is given by

dρc = − i
h̄

[Hc, ρc]dt−
2∑
k=1

(
Γk
2h̄

[x̂k, [x̂k, ρc]]dt+

√
Γk
h̄
H[x̂k]ρcdWk

)

where the form of equation defines a direct feedback model.

The steps to go from this dynamical stochastic master equation to the unconditional dynamic
equation, describing the dynamics averaged over all measurement records, are explained in the
Annex (see below, Section 5). Therefore, the corresponding equation

dρ

dt
= − i

h̄
[H0, ρ]− i

2h̄
(χ2[x̂1, x̂2ρ+ ρx̂2] + χ1[x̂2, x̂1ρ+ ρx̂1])−

2∑
k=1

Γk
2h̄

[x̂k, [x̂k, ρ]]−

− χ2
1

8h̄Γ1
[x̂2, [x̂2, ρ]]− χ2

2

8h̄Γ2
[x̂1, [x̂1, ρ]]
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The second terms is the systematic effect of the control protocol. The final two terms represent
the effect of feeding back the white noise on the measurement signals to control the dynamics of
the other mass.

In the case of highly asymmetric masses, for example the mass of the earth and the mass
of a neutron in the experiments on neutron interferometry [14], m1 � m2, so that the relative
contribution to the noise in the channel from the major mass to the minor mass is much smaller
than the other channel, which is expected, because for major mass the position of the center of
mass should be almost classical. Then we expect Γ1 � Γ2.

Then the carried information rate from the major mass to the minor mass is much greater than
the rate from the minor mass to the major mass, that is, the decoherence rate of the minor mass
is much less than the decoherence rate of the major mass, with the same idea as before, the major
mass acts more classical.

Let us now consider the symmetric case: m1 = m2 and χ1 = χ2 = K. In this case, we expect
Γ1 = Γ2 = Γ. The noise added by measurement and feedback is a minimum at Γ = χ/2 linking the
decoherence rate due to the continuous measurement to the scale of the gravitational interaction.

So the resulting unconditional dynamic equation is

dρ

dt
= − i

h̄
[H0, ρ]− iK

h̄
[x̂1x̂2, ρ]− K

2h̄

2∑
k=1

[x̂k, [x̂k, ρ]]

Using a recent result of Kafri and Taylor [2] we can show that, in the case when the two
systems are Gaussian, the resulting unconditional dynamic equation can never entangle them.
Further, the gravitational decoherence in the dynamics is minimal in the sense that, if it were
any smaller, evolution under this equation would immediately entangle the ground state of the
uncoupled Hamiltonian H0.

To be able to see this we write the unconditional dynamic equation in terms of the dimensionless
operators x̃k = x̂k(mw/h̄)1/2,

dρ

dt
= − i

h̄
[H0, ρ]− ig̃[ ˆ̃x1x̃2, ρ]− 1

4

2∑
k=1

Yij [x̃i, [x̃j , ρ]]

where g̃ = K/mw measures the strength of the gravitational interaction and Yij =
(

2K
mw δij

)
is

the decoherence matrix. From the Kafri and Taylor’s paper, we note that entanglement is never
generated if and only if the matrix Y − 2ig̃σ has no negative eigenvalues, where σ is the 2x2
symplectic matrix. Noting that Y − 2ig̃σ has eigenvalues 0 and 4g we see that a slightly less noisy
matrix Y − εδij produces entanglement for any positive ε.

3 Experimental Test

We now consider the prospects for an experimental observation of the model proposed here. In this
test we assume the symmetric case of two mechanical resonators with same mass and frequency. In
the unconditional dynamic equation without [2] considerations, the last term is driving a diffusion
process in momentum of each oscillators at rate h̄K, which is the gravitational heating rate Dgrav.

We define this rate in terms of the rate of change of the phonon number, such as, the average
mechanical energy divided by h̄w

Rgrav =
K

2mw

The last term also leads to the decay of off-diagonal coherence in the position basis of each
mechanical oscillator

d 〈x′k| ρ |xk〉
dt

= (...)− K

h̄3 (x′k − xk)
2

which shows the rate of decay of coherence quickly increases the greater the separation of
the superposed states. We can use the natural length scale proceeded by the zero-point position

12



fluctuations in the ground state of each resonator to rewrite the decoherence rate as

Λgrav =
K

h̄3 ∆x2
0 =

K

2h̄2mw

In natural units, these rates can be expressed in terms of the normal mode splitting for weak
gravitational interaction,

Rgrav = Λgrav =
∆

2

As we can see, thee two important parameters responsible for gravitational decoherence are
are of the order of the normal mode splitting between the two mechanical resonators due to their
gravitational coupling.

In order to test the detection of gravitational decoherence in this model, it is necessary to obtain
the normal mode splitting as larger as possible. Writing this in terms of the Newton constant, the
splitting has the form

∆ =
Gm

wd3

Assuming the case of two spheres of radius r, now the splitting is written in terms of the density
of the material,

∆ =
4πGρ

w

( r
d

)3

As d < 2r, this quantity is bounded

∆ ≤ πGρ

6w

We need to use a material with a large density and a mechanical frequency as small as possible
to raise the heating rates. The original article proposes as example depleted uranium spheres and
a mechanical frequency of one Hertz, so the splitting becomes ∆ ∼ 10−7s−1, a value so small that
a terrestrial experiment would be challenging.

Considering low frequency mechanical resonators in a realistic experiment, thermal noise and
frictional damping will be unavoidable. We can estimate the relative size of these effects using the
quantum Brownian motion master equation [15]

dρ

dt
= − i

h̄
[HR, ρ]−

2∑
j=1

(
i

h̄
γj [x̂j , {p̂j , ρ}] +

2γjmjkBT

h̄2 [x̂k, [x̂k, ρ]]

)

where γk is the dissipation rate for each of the mechanical resonators assumed to be interacting
with a common thermal environment at temperature T . If we compare the form of thermal noise
in this equation to the form of gravitational decoherence, in the symmetric case we can assign an
effective temperature to the gravitational decoherence rate given by

Tgrav =
h̄3K

2mγkB

If we write this in terms of the quality factor for mechanical resonators Q,

kBTgrav = h̄Q∆

Using the previous example with uranium spheres, for the relatively high value of Q = 109,
we find that Tgrav ∼ 10−9, then one would need an ambient temperature less than this to clearly
distinguish gravitational decoherence from environmental effects. The original article postulates
that gravitationally coupled Bose–Einstein condensates of atomic gases possibly could reach this
regime.
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4 Conclusions

The original article have presented a two resonators model with gravitational interaction mediated
by a purely classical channel with continuous weak measurements, which is equivalent to a gravita-
tional decoherence model first proposed by Diosi. It is also a concrete example of a general theory
of a classically mediated non entangling force law considered by Kafri and Taylor [2], which using
a result from this paper we find that this kind of channel based on continuous weak measurement
can never entangle Gaussian systems.

In a experimental test of two similar gravitationally coupled oscillators, this result is shown
as a direct scaling between the normal mode splitting induced by the gravitational force and the
gravitational decoherence rate. However an experimental test using two gravitationally coupled
opto-mechanical resonators would be difficult nowadays, because of the ladder of the results. Aside
the proposed coupled Bose–Einstein condensates of atomic gases system, the original article also
proposes laser cooling techniques to prepare harmonically trapped particles of large mass in the
ground state, which affects both effective temperature and quality factor, so their application
has to be discussed more. The advantage on these technologies will allow to clearly observe
gravitational decoherence from environmental effects, possibly rule out treating the interaction as
purely classical.

5 Annex: Obtaining the Unconditional Dynamic Equation

The following section describes a method to obtain the corresponding unconditional dynamic equa-
tion (that is, the dynamic equation averaged in time over all measurements records). The idea is
to apply the evolution operator feedback of measurement records to the post-measurement state
ρ + dρM . The demonstration could not be as rigorous as expected, such as terms diverging in
factor, however it servers the purpose of this review.

That is
ρ+ dρ −→ V (dt)ρ+ dρMV

+(dt)

where V (dt) is the evolution operator for the feedback of measurement records through the
classical channel, evolving infinitesimally.

Before that, we introduce the Wiseman-Hilburn feedback concept. Consider the continuous
measurement of x̂. Then the channel evolves

dJ

dt
= 〈x̂k〉+

1

8K
ξ(t)

where ξ(t) is noise. The feedback appears in the Hamiltonian as

H = H0 +

(
dJ

dt

)
A

where A is some hermitian operator.

A real J has finite width (differentiable and continuous), but it is idealized as white noise
approach in the Ito Calculus, that is, expanding until second order and then neglecting all terms
in the expansion for t, aside the zero and first order. We also consider for infinitesimal Weiner
increments the conditions in continuous limit, dW 2

k = dt/gk. Also, there are no crossing terms
between two different infinitesimal Weiner increments, dW1dW2 = 0.

In general, our Hamiltonian contains noise that is not suitable an independent Weiner Incre-
ment, that is, the equation is given in Stratonovich sense. However it is possible to construct an
Ito equation whose solutions match those of our Stratonovich Hamiltonian.

The process to do so is: replace the the signal by its white-noise limit dW/dt, then applies Ito
Calculus considerations, and finally transforms to Ito equation adding an additional term.
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Consider the evolution of the state due to the feedback Hamiltonian

dρFB = − i
h̄

(
dJ

dt

)
[A, ρ] =

1

h̄

(
〈x̂k〉+

1

8K
dW

)
H(−iA)ρ

To pass into Ito Calculus, we have to add an extra term which is equals half the square of the
stochastic one.

dρFB = − i
h̄

(
dJ

dt

)
[A, ρ] =

1

h̄

(
〈x̂k〉+

1

8K
dW

)
H(−iA)ρ+

1

16Kh̄2 [A, [A, ρ]]

Therefore, we proceed to obtain the form of the evolution operator. Consider the initial state
ρ which evolves infinitesimally to ρ + dρFB, strictly for the feedback. The evolution operator for
the feedback of the corresponding post-measurement system has the following proposed form

V (dt) = exp

(
− i
h̄
Adt− i

h̄
B1dW1 −

i

h̄
B2dW2

)

where A,B1, B2 are operators to determinate.

We assume two considerations: first, the exponential as a Taylor Expansion; second, in any
expansion we consider Ito Calculus. Note that these considerations are using across the section.

Given these considerations,

V (dt) = 1− i

h̄
Adt− i

h̄
B1dW1 −

i

h̄
B2dW2 +

1

2h̄2B1dt+
1

2h̄2B2dt

Therefore, the post-measurement

ρ+ dρ −→ V (dt)ρV +(t) =

=

[
ρ− i

h̄
Aρdt− i

h̄
B1ρdW1 −

i

h̄
B2ρdW2 −

g−1
1

2h̄2B
2
1ρdt−

g−1
2

2h̄2B
2
2ρdt

]
·

·
[
1 +

i

h̄
A+dt+

i

h̄
B+

1 dW1 +
i

h̄
B+

2 dW2 −
g−1

1

2h̄2B
+2
1 dt− g−1

2

2h̄2B
+2
2 dt

]
=

= ρ+dt

[
− i
h̄

(
Aρ− ρA+

)
− 1

2h̄2 g
−1
1

(
B2

1ρ+ ρB+2
1 − 2B1ρB

+
1

)
− 1

2h̄2 g
−1
2

(
B2

2ρ+ ρB+2
2 − 2B2ρB

+
2

)]
−

− i
h̄

(
B1ρ− ρB+

1

)
dW1 −

i

h̄

(
B2ρ− ρB+

2

)
dW2

where we recognize A = x̂1 + x̂2, B1 = χ1x̂2/
√

8Γ1 and B2χ2x̂1/
√

8Γ2.Then the actual form of
the evolution operator for the dynamics is given by

V (dt) = exp

(
− i
h̄

(x̂1 + x̂2)dt− i

h̄

χ1√
8Γ1

x̂2dW1 −
i

h̄

χ2√
8Γ2

x̂1dW2

)

Given these considerations
V (dt) =

= 1− i

h̄
(x̂1 + x̂2)− i

h̄

χ1√
8Γ1

x̂2dW1 −
i

h̄

χ2√
8Γ2

x̂1dW2+

+
χ2

1x̂2
2

16h̄Γ1
dt+

χ2
2x̂1

2

16h̄Γ2
dt
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Given dρM as

dρM = − i
h̄

[Hc, ρc]dt−
2∑
k=1

(
Γk
2h̄

[x̂k, [x̂k, ρc]]dt+

√
Γk
h̄

(x̂kρc + ρcx̂k − 2〈x̂k〉)dWk

)

Then the unconditional master equation is calculated by obtaining the post-measurement state

ρ+ dρ −→ V (dt)(ρ+ ρM )V +(dt)
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