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“- How’s your quantum computer prototype coming along?

- Great! The project exists in a simultaneous state of being both totally successful and

not even started.

- Can I observe it?

- That’s a tricky question.”

Dilbert. Scott Adams.
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Abstract

Facultad de F́ısica

Departamento de F́ısica

by Javier Rivera Deán

This end of degree project is an educated review of the texts Lecture notes for Ph219/CS219

done by John Preskill and Lecture notes on superconducting quantum circuits done by

Juan José Garćıa Ripoll and Borja Peropadre. The aim of it is to do a first approach to

some basic concepts of Quantum Information Theory and to see how can information

encrypted in a certain quantum system be extracted by performing measurements in

a prepared ensemble which is coupled to it. With this purpose, the specific kind of

systems that will be object of study are known as superconducting qubits so an intro-

duction to them is given within these pages, focusing mainly in the so-called charge

qubits. Thereby, with all these tools, a correlation between a controlled ensemble, i.e.,

one which shall be completely characterized, and another one that is unknown, will be

performed. For so, a particular sort of quantum logic gates known as CNOT gate is used

as it shows the main differences between Classical and Quantum Information Theory.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Este trabajo de fin de grado es una revisión de los textos Lecture notes for Ph219/CS219

de John Preskill y Lecture notes on superconducting quantum circuits de Juan José

Garćıa Ripoll y Borja Peropadre. Su objetivo es el de llevar a cabo una primera toma

de contacto con algunos conceptos de la Teoŕıa Cuántica de la Información y ver cómo

información encriptada en un determinado sistema cuántico puede ser extráıda real-

izando medidas en otro que está acoplado a él. Con este proposito, un tipo espećıfico

de sistemas conocidos como qubits superconductores serán empleados por lo que una

introducción a ellos se hará en estas páginas, centrando la atención básicamente en los

conocidos como charge qubits. Por lo tanto, con todas estas herramientas, una cor-

relación entre un sistema controlado, i.e., uno que está completamente caracterizado, y

otro que es desconocido, será llevada a cabo. Con este fin, se hará uso de un tipo con-

creto de puerta lógica cuántica denominada como CNOT gate pues representa uno de

los grandes contrastes existentes entre la Teoŕıa de la Información Clásica y Cuántica.
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Preface

This project is essentially an educated review of the texts Lecture notes for Ph219/CS219

done by John Preskill and Lecture notes on superconducting quantum circuits done by

Juan José Garćıa Ripoll and Borja Peropadre as well as from other books which are all

cited in the bibliography. Therefore, this document does not intend to be original as

its main purpose is to do an educated introduction to Quantum Measurement Theory

and superconducting quantum bits. Also, most of the pictures we are about to use are

extracted from those documents.
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Chapter 1

General introduction

“In this chapter, we will introduce some topics which we are going to discuss through-

out this dissertation. First of all, we will start by giving the definition of what is

a qubit according to the set of lecture notes by John Preskill ([Pre15]) and after

we will remember the main characteristics of closed quantum systems. In that way,

we can establish the differences with open quantum systems and incorporate the

definition of master equations, according to [Car99], which will be useful for our

purposes when describing the influence of the environment on our system. Finally,

we will give a brief explanation of what is a superconductor as they will be employed

later in our systems.”

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

“En este caṕıtulo, introduciremos algunos temas que serán tratados a lo largo del

trabajo. En primer lugar, comenzaremos dando la definición de lo que es un qubit

de acuerdo con las notas de John Preskill ([Pre15]) y posteriormente recordaremos

las principales caracteŕısitcas de los sistemas cuánticos aislados. En este sentido,

se podrán establecer las diferencias existentes con los sistemas cuánticos abiertos e

incorporar la definición de las ecuaciones maestras, de acuerdo con [Car99], las cuales

serán de especial importancia pues nos permitirán describir la influencia del entorno

en nuestro sistema. Finalmente, explicaremos brevemente qué es un superconductor

pues serán empleados en posteriores configuraciones.”

1.1 The Qubit

In Classical Information theory, we have that the indivisible unit of information is the

bit which takes one of two possible values {0, 1}. In Quantum Information theory, that

role is played by the quantum bit or commonly known as qubit which describes a state

in the simplest possible quantum system and it can be represented by a two-dimensional

Hilbert space so in general we can write those states as

a |0〉+ b |1〉 (1.1)

1
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A geometrical interpretation of these qubits can be given in terms of the spin state of an

object with s = 1
2 , so the kets {|0〉 , |1〉} now are written in terms of the states {|↑〉 , |↓〉}.

Another interpretation is provided by a photon thanks to their two independent polar-

izations but they differ from the spin 1
2 objects in two important ways: photons are

massless and they are spin 1 objects.

Basically what we can see is that, for classical bits, there are only two possible outcomes:

0 or 1. For the qubits we also have two possible outcomes but between the input and

the outcome there are infinite states whose general form is given by eq. (1.1). This last

statement has a very important consequence on the operations we can do with them

which are wide as it can be seen for instance in quantum circuit theory where they are

known as quantum logic gates. However, we have to first recall the main differences

between closed and open quantum systems as the set-up we will study is affected by a

greater system: the environment.

1.1.1 Closed quantum systems

As we have seen on previous courses of quantum mechanics, there are five postulates used

to develop a description of closed quantum systems. We define that kind of setups as

the ones which are perfectly isolated and, because of that, they will not exchange energy

and information with the environment. The valid axioms, that we quoted literally from

[Pre15], are the following:

1.- A state is a complete description of a physical system. In quantum mechanics, a

state is a ray in a Hilbert space. As a ray we understand an equivalent class of

vectors that differ by multiplication by a nonzero scalar.

2.- An observable is a property of a physical system that in principle can be measured.

In quantum mechanics, an observable is represented by a self-adjoint operator.

3.- A measurement is a process in which information about the state of a physical system

is acquired by an observer. In quantum mechanics, we apply an observable ÂI to

a quantum state |ψ〉 and the outcome of the computation is an eigenvalue an of Â.

The probability of that outcome is given by

Prob(an) =

gj∑
j

∥∥∥〈u(j)
n

∣∣∣ψ〉∥∥∥2
(1.2)

where u
(j)
n are the eigenstates that has an as an eigenvalue and where j indicates the

possible degeneration. After that measurement, the resulting state is given by

∣∣ψ′〉 =
M̂n |ui〉
〈ψ| M̂n |ψ〉

(1.3)

where we have defined M̂n =
∑gi

i

∣∣∣u(i)
n

〉〈
u

(i)
n

∣∣∣.
IThroughout this text, operators will be denoted by a hat.
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4.- Dynamics describes how a state evolves over time. In quantum mechanics, the time

evolution is described by an unitary operator.

ψ(t′) = U(t′, t)ψ(t), such that U(t, t) = 1. (1.4)

5.- Let us suppose that we have two systems A and B which are described, respectively,

by the Hilbert spaces HA and HB. The Hilbert space of the composite systems AB

is given by the tensor product HA ⊗ HB. Then, if |i〉A and |µ〉B form a basis for

the systems A and B respectively, then a basis for the composite system AB can be

written as {|iA〉 ⊗ |µB〉} such that any state |ψAB〉 is given by

|ψAB〉 =
∑
i,µ

ψiµ |iA〉 ⊗ |µB〉 . (1.5)

1.1.2 Open quantum systems

Open quantum systems interchange energy and information with the environment. So

basically, the main differences that open quantum systems have with respect to closed

ones are ([Pre15]):

• States are not rays.

• Measurements are not orthogonal projections.

• Evolution is not unitary.

From now on, in the following subsections, we shall analyze each of the points stated in

order to justify them. To do that, we will follow the prescriptions given by John Preskill

in [Pre15] with the exception of subsection 1.1.2.3 where we will follow [Car99].

1.1.2.1 Density matrices

As a first step, and with the purpose of understanding these systems, we can consider a

world which is composed by two systems where we only observe one of them called S.

The other one, which we denote by E, is prohibited to us, namely, is locked in a vault.

Note that for the whole system SE we can apply the axioms analyzed on section 1.1.1.

If we use {|iS〉} and {|µE〉} to denote orthonormal basis for parts S and E respectively,

then a general state is given by eq. (1.5). Suppose now that we want to measure the

mean value of an observable MS which is only defined in S. This is described by the

following operation

〈MS〉 = 〈ψSE |MS ⊗ 1E |ψSE〉 = tr(MSρS) (1.6)

where ρS is the density operator of subsystem S and which can be written like

ρS = trE(|ψSE〉 〈ψSE |) =
∑
i

pi |iS〉 〈iS | (1.7)
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so we may say that the density operator ρS is obtained by performing a partial trace

over subsystem E of the density operator for the combined system. From this we make

out that if we are looking at a subsystem of a larger quantum system whose state is

defined by a ray, the state associated to the subsystem does not need to be a ray, in

general is represented by a density operator. In the case that we have a ray, then we

will say that it is pure; otherwise we say that is mixed.

1.1.2.2 Measurements

According to what we have discussed for closed quantum systems, when we perform

measurements over an isolated system we employ for that a projective operator which

involves all the eigenvectors of the observable we are measuring. However, as we are

working now with composite systems we can think of performing measurements in one

of them in such a way that this measure affects the other ensemble, which we may call S,

so the resulting operation in such system does not need to be an orthogonal projection.

We can think of S to be a microscopic system that is inaccessible to us and the other

one as a macroscopic one on which we can do measurements. This last kind of systems

are called typically ancilla and we will denote it by letter A, take not confused with the

environment which we may call E. To fix ideas we shall consider this system to be a

massive particle that in its evolution suffers a wavepacket spread

∆x ≥
√

~t
m
. (1.8)

Hence, the Hamiltonian that describes this whole bipartite system can be written as

H = HS +
P̂ 2

2m
+ λ(t)Ô ⊗ P̂ , (1.9)

where the first term is the unperturbed Hamiltonian for S, P̂ is the linear momentum

operator so the second term represents the Hamiltonian for our free particle A and the

third term is the interaction between both systems, being λ(t) a constant that switches

on and off the coupling. Ô denotes the operator we want to measure over system S. If

we assume that the measurement is done in a very quick way so we can neglect the free

evolution of the system, in such case eq. (1.9) is reduced to

H ≈ λ(t)Ô ⊗ P̂ . (1.10)

Considering now that the coupling constant remains switched on during time T in which

the measurement takes place, then the time evolution operator will be given by

U(T ) = e−iλT Ô⊗P̂ . (1.11)
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Let us see another way in which this operator can be written, by using the spectral

representation of Ô as

U(T ) = e−iλT Ô⊗P̂ =
∑
n

(−iλT Ô ⊗ P̂
)n

n!
= 1+ (−iλT Ô ⊗ P̂ ) +

1

2
(−iλT Ô ⊗ P̂ )2 + ... =

=
∑
a

|a〉 〈a|+
(
− iλT

∑
a

Oa |a〉 〈a| ⊗ P̂
)

+
1

2

(
− iλT

∑
a

Oa |a〉 〈a| ⊗ P̂
)2

+ ... =

=
∑
a

|a〉 〈a|+
(
− iλT

∑
a

Oa |a〉 〈a| ⊗ P̂
)

+
1

2

(
− iλT ⊗ P̂

)2∑
a

O2
a |a〉 〈a|+ ... =

=
∑
a

|a〉 〈a|
[
1+ (−iλTOaP̂ ) +

1

2
(−iλTOaP̂ )2 + ...

]
=
∑
a

|a〉 〈a| e−iλTOaP̂ .

The exponential term located inside the sum has the general form e−ixoP̂ which generates

a translation of the initial wavepacket. However there is an important result in this

movement that the particle does and is the correlation with the eigenvalues of Ô, that

is, our massive particle will be displaced a quantity λTOa so if the initial state of the

whole composite system is

|ψa(x)〉 =
∑
a

αa |a〉 ⊗ |x〉

thus after the evolution the final state is

U(T ) |ψa(x)〉 =
[∑

a

|a〉 〈a| e−iλTOaP̂
]∑

a

αa |a〉 ⊗ |x〉 =

=
∑
a

αa |a〉 ⊗ |x− λTOa〉 .

Here we see explicitly that the position of the ancilla has been correlated with the value

of the observable, so performing a measurement on the position of the ancilla will lead us

to a given preparation of our quantum system S. To perform this measurement it must

be satisfied that the width of the wavepacket (eq. (1.8)) has to be very small compared

to λT∆Oa, that is, the minimal gap between the eigenvalues of Ô, so we are able to

distinguish them.

Another property of U(t) is that preserves the norm, i.e., is unitary.

UU † =
[∑

a

|a〉 〈a| e−iλTOaP̂
][∑

b

|b〉 〈b| eiλTObP̂
]

=
∑
a,b

|a〉 〈b| δbae(−iλTOaP̂+iλTObP̂ ) = 1.

The sort of measurements we have described until now corresponds to the Von Neu-

mann’s model of orthogonal measurement, according to [Pre15]. We see that performing

measurements in the fiducial basis of system A let us obtain orthogonal projections of

system S so after all it can be said that we are performing indirect orthogonal measure-

ments over our quantum system. Nevertheless we have commented at the beginning of

this section that measurements on composite quantum system do not need to be orthog-

onal. To see this let us consider another example in which systems S and A are two

qubits which might be called as target and control respectively. As the control system
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is the one we can give commands to, we will suppose that it is prepared on state |0〉 and

the correlation between both systems is such that after time T it satisfies the following

unitary map

U : (α |0〉+ β |1〉)S ⊗ |0A〉 −→ α |0S〉 ⊗ |0A〉+ β |1S〉 ⊗ |1A〉 . (1.12)

Now the fiducial basis of the ancilla is the {|0〉 , |1〉} so performing projections onto it

we will obtain orthogonal states of our quantum system S. Nevertheless, suppose now

that instead of doing projections in that basis we find a way in which we can execute

measurements in other basis, for instance {|+〉 , |−〉} where

|+〉 =
1√
2

[
|0〉+ |1〉

]
, |−〉 =

1√
2

[
|1〉 − |0〉

]
.

Thereby, measurements performed in the ancilla will not give back orthogonal projec-

tions of S and indeed we can write the map shown in eq. (1.12) with this new basis set

as follows

U : (α |0〉+β |1〉)S ⊗ |0A〉 −→ M̂+(α |0〉+β |1〉)⊗ |+〉+ M̂−(α |0〉+β |1〉)⊗ |−〉 . (1.13)

where

M+ =
1√
2

(
1 0

0 1

)
, M− =

1√
2

(
1 0

0 −1

)
.

This sort of measurements are called as generalized measurements. In fact, this result for

a qubit, i.e., a 2 dimensional basis, can be generalized for a n-dimensional one considering

the following map

U : |ξS〉 ⊗ |0A〉 −→
∑
a

Ma |ξS〉 ⊗ |aA〉 ,

so the probability of obtaining the eigenvalue a corresponding to state |aA〉 can be

written as

Prob(a) = 〈ξS |M̂ †aM̂a|ξS〉 = 〈ξS |Êa|ξS〉

where we have defined Êa = M̂ †aM̂a which satisfies the following properties

• Hermicity: Êa = Ê†a

• Positivity: 〈ψ|Êa|ψ〉 ≥ 0

• Completeness:
∑

a Êa = 1

These properties are demonstrated in appendix A and operators that satisfy them are

called as Positive Operator-Valued Measured (POVM).

1.1.2.3 Evolution of the density matrices. Master equations

As we have commented above, typically our system is composed by two parts: the

system itself, for instance a qubit circuit, and the environment. Therefore we can write
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the total Hamiltonian of our system as

H = HS +HE +HSE (1.14)

where HS is the Hamiltonian for the system, HE for the environment (which is also

called as reservoir) and HSE the one for the interaction between both. In general, the

reservoir is considered to be large enough and maintained in thermal equilibrium so, in

the interaction with the system, changes in it can be neglected. However, at t = 0 we

do not have correlations between both ensembles so the density matrix for the whole

system may be written as

χ(0) = ρ(0)R0 (1.15)

where ρ is the density matrix for S and R0 is the one for the reservoir. In interaction

representation we denote the operators with a tilde so the evolution for the density

matrix is given by ([Car99])

i~
dχ̃(t)

dt
= [H̃SE(t), χ̃(t)] (1.16)

being χ̃(t) the density matrix that represents the whole composite system.

Integrating now the expression shown above with respect to time between 0 and t, we

obtain

χ̃(t) = χ̃(0) +
1

i~

∫ t

0
[H̃SE(t′), χ̃(t′)]dt′. (1.17)

Then, substituting χ̃(t) inside the commutator that appears in eq. (1.16)

dχ̃(t)

dt
=

1

i~
[H̃SE(t), χ̃(0)]− 1

~2

∫ t

0
dt′
[
H̃SE(t), [H̃SE(t′), χ̃(t′)]

]
. (1.18)

The resultant equation describes the time evolution of the whole system. Nevertheless,

we are interested in what happens with our system, that is, in how ρ evolves. To obtain

that, we perform the partial trace over the environment of our equation, i.e., ρ = trE{χ̃}

dρ(t)

dt
=

1

i~
trE
{

[H̃SE(t), χ̃(0)]
}
− 1

~2

∫ t

0
dt′trE

{[
H̃SE(t), [H̃SE(t′), χ̃(t′)]

]}
. (1.19)

Let us start by analyzing the first term of the sum, taking into account eq. (1.15)

evaluated at t = 0. So as to do that, we will introduce the fact than any interaction

operator may be written as
∑

α,β Âα⊗ B̂β where Âα acts for instance on our system and

B̂β on the environment. Then, we can represent HSE as

HSE =
∑
α,β

Â(S)
α ⊗ B̂(E)

β .

Therefore, we have

trE
{

[H̃SE(t), χ̃(0)]
}

= trE
{
H̃SE(t)ρ̃0R̃0 − ρ̃0R̃0H̃SE(t)

}
=

= trE

{(∑
α,β

Ã(S)
α ⊗ B̃(E)

β

)(
ρ̃0 ⊗ R̃0

)}
− ρ̃0trE

{
R̃0H̃SE(t)

}
=
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=
∑
α,β

(Ã(S)
α ρ̃0)trE

{
B̃

(E)
β R̃0

}
− ρ̃0trE

{
R̃0H̃SE(t)

}
=

=
∑
α.β

[
Ã(S)
α , ρ̃0

]
trE
{
B̃

(E)
β R0

}

Indeed, the mean value we have obtained is equivalent to trE
{
HSER̃0

}
so taking it as

reference, that is, to be zero, then eq. (1.19) might be rewritten like

dρ(t)

dt
= − 1

~2

∫ t

0
dt′trE

{[
H̃SE(t), [H̃SE(t′), χ̃(t′)]

]}
. (1.20)

We have assumed that the coupling between both systems is very weak which means

that the reservoir is a large system so its state should be virtually unaffected by the

coupling to S. Thereby χ(t) should only show deviations of order HSE so at time t we

can write

χ̃(t) = ρ̃(t)R0 +O(HSE). (1.21)

Under this assumptions, we will make what is called as Born approximation neglecting

terms higher than second order in HSE in eq. (1.20). Therefore, we obtain

dρ(t)

dt
= − 1

~2

∫ t

0
dt′trE

{[
H̃SE(t), [H̃SE(t′), ρ̃(t′)R0]

]}
. (1.22)

A second approximation is to consider that the evolution is Markovian, i.e., the future

behaviour of our system depends only on its present state. In eq. (1.22) we see that the

evolution depends on all the past history of the system as we are integrating from t = 0

to actual values of that variable. Hence, the Markov approximation replaces ρ(t′) by

ρ(t) so for our configuration only matters what is happening in the present. Finally we

obtain a master equation in the Born-Markov approximation

dρ(t)

dt
= − 1

~2

∫ t

0
dt′trE

{[
H̃SE(t), [H̃SE(t′), ρ̃(t)R0]

]}
. (1.23)

1.2 Superconductivity

The first registered observation related to the phenomenon of superconductivity was

done by Heike Kamerlingh Onnes (1853-1926) in 1911 when he studied the resistance of

mercury at very low temperatures. He saw that, below a certain temperature that was

measured to be 4.2 K in a range of 0.01 K, the resistance dropped down in a very sharply

way achieving non-measurable values. Since then, superconductivity has been found in

25 elements of the periodic table and all of them verifies the following properties, that

were stated by N.W. Ashcroft and N.D. Mermin in [AM76] and which are reproduced

in the following points:

• A superconductor behaves as if it had no measurable DC electrical resistivity.
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• A superconductor can behave as a perfect diamagnetic, that is, when we apply

a magnetic field below a certain critical value, then inside the material the mag-

netic field is zero. In fact, this field decays exponentially when it gets into the

superconductor.

• A superconductor behaves as if there were a gap energy centered around Fermi

energy.

1.2.1 BCS theory and Cooper pairs

The purpose of this section is to introduce some basic concepts relative to BCS theory

and Cooper pairs that will be used in later developments.

Since 1911, a lot of theories arose trying to explain this response of the material but

none of them gave a complete characterization. In 1957, Bardeen, Cooper and Schrieffer

proposed the known as BCS theory ([BCS57]) which describes this phenomenon as a

microscopic effect caused by so-called Cooper pairs. Basically, a Cooper pair is con-

stituted by two electrons whose energy is really close to Fermi energy, which interacts

attractively one with the other by the exchange of a phonon. Then, we can say that this

new configuration for the electrons conforms the load carriers of superconductors.

One of the most important results that are obtained employing this theory is

~J(~r) =
ρq

m

(
~∇θ − q

c
~A
)

(1.24)

where q and m represents the charge and the mass of a Cooper pair, ~A is the vector

potential correspondent to an external field and θ is the phase of the wavefunction that

characterize the density of Cooper pairs in the superconductor. Instead of focusing on

the derivation of this expression, something that can be seen in [GP00], we are going

to perform now the rotational of this relationship taking into account the property

∇×
(
∇A

)
= 0

∇× ~J(~r) = −ρq
m

(
∇× ~A) (1.25)

which is commonly known as London equation.



Chapter 2

Qubit system. Charge qubit

“In this chapter, we are going to do a review of the lecture notes done by Juan

José Garćıa Ripoll and Borja Peropadre about superconducting quantum circuits

([GRP14]). We will start introducing which are the basic features that a qubit

system must have according to David DiVincenzo requirements ([DiV95]). Next,

we define the phase and number operators which will be especially useful in order

to incorporate the charge and flux operators that appear in the Hamiltonian of our

qubit system: the charge qubit. Lately we will do some approximations to our

system obtaining then a two-level ensemble and finally, we will see some operations

that can be done with it and consequences of the environment acting on it.”

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

“En este caṕıtulo, se llevará a cabo un análisis de las notas realizadas por Juan José

Garćıa Ripoll y Borja Peropadre relativas a circuitos cuánticos superconductores

([GRP14]). Comenzaremos introduciendo cuáles son las caracteŕısticas básicas que

debe tener un sistema de qubits de acuerdo con los requerimientos propuestos por

David DiVincenzo ([DiV95]). Seguidamente, definiremos los operadores número

y fase que serán de especial utilidad para incorporar los operadores de carga y

flujo los cuales aparecerán en el Hamiltoniano de nuestro sistema de qubits: el

charge qubit. Posteriormente se llevarán a cabo algunas aproximaciones a dicho

sistema obteniendo aśı un conjunto de dos niveles y finalmente, veremos algunas

operaciones que se pueden llevar a cabo con éste y las consecuencias que tiene el

entorno circundante sobre ellos.”

2.1 What do we require to a qubit system

As we have seen on section 1.1, a qubit is the basic unit of quantum information and,

therefore, a quantum computer is a device which is capable of implementing arbitrary

transformations on a set of them as commented by Juan José Garćıa Ripoll and Borja

Peropadre in [GRP14]. As we are going to study a specific system used in quantum

computation, it seems reasonable to introduce which are the requirements that this kind

of apparatus must satisfy ([DiV95]).

10
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• Perfectly distinguishable quantum bits. Ideally, this implies a physical sys-

tem with two states. Usually, as in our example, we use the two lowest energy

eigenstates of a physical system, ensuring that transitions to other states are sup-

pressed (typically the energy difference between those states is large enough).

• A procedure to set the qubits to a given zero state. In our case this can

be done by ordinary cooling as we will see later.

• An apparatus that measures the state of the qubits in some basis. Some-

times this is not a real apparatus but some mechanism as the action of a qubit on

some phasing laser beam that identifies uniquely the state of the qubit.

• Arbitrary local operations on each qubit. That is, applying unitary trans-

formations that let us modify the state of the qubit without altering its properties.

• Quantum gates. At least one universal quantum gate on each pair of qubits. An

example of this kind of gates is the CNOT gate.

• Error corrections. Sufficiently small decoherence or errors during the previous

operations so that error correction may be implemented.

In this chapter we focus mainly in the first, second and fourth points commented above

and in the following chapter we will introduce the CNOT gate and a way to measure the

state of a qubit, which covers the fifth and the third requirement respectively. Finally,

the last point is not going to be analyzed deeply but an error correction will be introduced

in section 2.4 when we talk about dephasing.

2.2 Phase and number operators

In the following sections we will introduce the Hamiltonian for our qubit system and to

do that we will use the known as phase and number operator ϕ̂ and n̂. In terms of this

last one, the charge operator is given by q̂ = −2en̂. They are defined from the relations

n̂ |m〉 = m |m〉 , m ∈ Z

φ̂ |ϕ〉 = ϕ |ϕ〉 , ϕ ∈ [0, 2π).

The closure relations for both basis are∑
m∈Z
|m〉 〈m| = 1,

∫ 2π

0
dϕ |ϕ〉 〈ϕ| = 1.

Additionally, in the phase representation, states |m〉 are given by

ψm(ϕ) = 〈ϕ|m〉 =
1√
2π
e−imϕ.
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Later, we will be interested in how the operator cos
(
φ̂
)

acts over a state |m〉 so in order

to obtain the correspondent expression, we start by obtaining the action of e−inφ̂ applied

to |m〉

e−inφ̂ |m〉 =

∫ 2π

0
dθe−inφ̂ |θ〉 〈θ|m〉 =

∫ 2π

0
dθ

1√
2π
e−i(n+m)θ |θ〉 =

∫ 2π

0
dθ |θ〉 〈θ| |n+m〉

= |n+m〉 .

Analogously we have einϕ̂ |m〉 = |m− n〉 and therefore, adding up both operators and

dividing that sum by 2, we obtain

cos
(
φ̂
)

=
eiϕ̂ + e−iϕ̂

2
=

1

2

∑
m

|m+ 1〉 〈m|+ |m〉 〈m+ 1| , (2.1)

where we have taken into account that using the basis set {|m〉} we can write the operator

e−inφ̂ as

e−inφ̂ =
∑
m

|m+ n〉 〈m| .

2.3 Charge qubit

A charge qubit consists on a simple superconducting island that is connected to a charge

reservoir through a tunneling element such as a Josephson junction ([GRP14]). This last

element consists of two superconductors coupled by a weak link which can be formed

by a short-section of non superconducting-metal according to the definition given by

[Con18] (indeed, a representation of this element is shown on figure 2.6 (b)). A picture

of a charge qubit is shown in figure 2.1 as well as it equivalent circuit.

(a) Superconducting island coupled to the ground state through
two Josephson junctions used in [LFB+07].

(b) Equivalent circuit for the Josephson
junction.

Figure 2.1: Josephson junction. Images extracted from [GRP14].

2.3.1 Quantization of the charge qubit

One of the conditions of DiVincenzo’s list mentioned in section 2.1 is to have a physical

system with two states. Then, in order to justify the use of charge qubits in quantum
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computation, we should quantize this system and therefore see which are the energy

levels.

In our analysis we will set the magnetic flux through the loop which contains the junction

and the capacitor to zero as this consideration does not affect significantly our final

results. Then, after distinguishing the nodes in our circuit we select a direction in which

we will pass through each node (figure 2.2) and hence define a flux associated to each

circuit element. For the case of the junction and the capacitor CJ we have δa = φa−φ0

and for Cg we have consequently δb = φb − φa.

Figure 2.2: Equivalent circuit where the different nodes has been identified. Here EJ

represents the Josephson Junction that allow Cooper pairs to get in and out the island
being CJ its capacity and, finally, Cg is a capacitor that describes the interaction with

the voltage source V . Image extracted from [GRP14] and slightly modified.

From the charge conservation the following expression must be satisfied

Ia = Ib

where Ia is the current associated to δa and Ib the correspondent to δb. We can relate

these currents with the fluxes on each branch by the relations for each circuital element

• Capacitors: I = Cδφ̈,

• Junctions: I = −LJϕ0 sin(δφ/ϕ0), where EJ = LJϕ
2
0.

Hence, the conservation of charge may be rewritten as it follows

CJδφ̈a −
EJ
ϕ0

sin(δφa/ϕ0) = Cgδφ̈b. (2.2)

From figure 2.2 we can extract some constrains that affect our circuit. In one hand, δ0

corresponds to the ground plane flux so we can set it to zero. On the other hand, the

second restriction comes from the voltage V which imposes that φ̇b = V . As consequence

we obtain

CΣ

(
φ̈a −

Cg
CΣ

V̇

)
=
EJ
ϕ0

sin(φa/ϕ0) (2.3)

where we have defined CΣ = Cg + CJ .
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The differential equations associated to 2.3 can be derived from an effective Lagrangian

L applying the Euler-Lagrange equations.

d

dt

(
∂L
∂φ̇i

)
=
∂L
∂φi

. (2.4)

We have written eq. (2.3) in that way on purpose because we can identify the first term

of that expression with the one in eq. (2.4) happening the same for the second part of

the equality. The main reason for doing this underlies on the fact that we only have

zero or second order time derivative terms.

d

dt

∂L
∂φ̇a

= CΣ

(
φ̈a −

Cg
CΣ

V

)
⇒ L = CΣ

(
φ̇2
a

2
− Cg
CΣ

V φ̇a

)
+O(φa),

dL
dφa

=
EJ
φ0

sin(φa/ϕ0)⇒ dO(φa)

dφa
=
EJ
φ0

sin(φa/ϕ0)⇒ O(φa) = −EJ cos(φa/ϕ0) + cte.

The Lagrangian corresponding to these equations, up to a constant term, will be

L = CΣ

(
φ̇2
a

2
− Cg
CΣ

V φ̇a

)
+ EJ cos(φa/ϕ0). (2.5)

From here we can obtain the charge variable as the canonically conjugate momenta for

the flux φa

qa
∂L
∂φ̇a

= CΣ

(
φ̇a −

Cg
CΣV

)
.

Performing now the Legendre transformation we can obtain thereby the Hamiltonian

for our system

H = qaφ̇a − L =
1

2CΣ
(qa − CgV )2 − EJ cos(φ/ϕ0),

Defining the quantity qg = CgV we finally conclude that the Hamiltonian that charac-

terizes this system is

H =
1

2CΣ
(q − qg)2 − EJ cos(φ/ϕ0), (2.6)

where the quantization follows immediately introducing the flux and charge operators

in the place of q and φ variables.

2.3.2 Approximations. Obtaining a two level system

The Hamiltonian given in eq. (2.6) can be substituted by another one which is much

more easier to analyze but, in order to justify this change, let us study each term of

eq. (2.6) separately. First of all, for this purpose, we will assume that EJ = 0 so it only

remains the first contribution. As the charge operator is defined as follows

q̂ |n〉 = 2en |n〉 , n ∈ Z
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where {|n〉} are defined in terms of the excess or defect of Cooper pairs and 2e is the

charge of a pair, then its eigenvalues can be written as

En = 4EC(n− ng)2 (2.7)

with EC = e2/2CΣ and ng = qg/2e. Notice that this last term written goes linearly

with the external potential V (as qg = CgV ) thus it can be controlled. Indeed, this

value will play a fundamental role controlling the fluctuations of the electromagnetic

field and also defining a qubit in our system, as we will see below. Plotting in terms of

ng eq. (2.7) we get figure 2.3 where we can see that the different values that ng takes are

almost sufficient to define a qubit. Specifically, at ng = 0.5 we get two states that are

degenerated (n = 0, 1) and the other one (n = 2) is well separated from those. Hence, we

have found a system that, under the conditions commented before (ng = 0.5), ensures us

having two levels isolated from the rest and that allows us to induce transitions among

them. However, we have commented in section 2.1 that we must have a zero state in

order to have transitions with another level, namely state one, but in this case both of

them have exactly the same energy. It is necessary, therefore, to find an element that

can make a split of the degeneracy obtained before. That role is played by the Josephson

Junction, which is represented by the second term of the Hamiltonian (eq. 2.6). The

effect of introducing this element into our circuit is shown on figure 2.4 and, as we can

see there, it achieves the effect we are looking for: splitting the energy of states |0〉 and

|1〉. In this manner we have found a system that, under certain conditions, let us isolate

two levels from the rest.

Figure 2.3: First two energy levels of the charge qubit without Josephson Junction
(EJ = 0) and with tunnelling amplitude EJ = 0.1EC .

Reached this point, we will try to rewrite our Hamiltonian so we can only work with

this two levels. For so, we will take into account relations (2.1) and (2.7) thus we can

rewrite eq. (2.6), in the number basis, as
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Figure 2.4: Energy levels of the charge qubit with Josephson junction and without it
(dashed line). Image extracted from [GRP14].

H =
∑
n

4EC(n− ng)2 |n〉 〈n|+ EJ
2

∑
n

|n+ 1〉 〈n|+ |n〉 〈n+ 1| . (2.8)

Restricting ourselves to the lowest levels from figure 2.4 we can truncate the summatories

of eq. (2.8) so it only appear states with n = 0, 1. This can be done because we are

not going to consider transitions to level |2〉 (note that this state does not correspond

to n = 2 but for a lineal combination where this number state will appear). Under this

assumptions, the effective Hamiltonian that describes our two-level system is, doing a

change of our basis set,

Heff =
∆

2
σz +

ε

2
σx (2.9)

where σi, i = x, y, z are the Pauli matrices and parameters ∆ and ε are defined by

ε = 8Ec

(
ng −

1

2

)
; ∆ = EJ(φ).

The matricial representation of Hamiltonian (2.9) is then

Heff =
1

2

(
∆ ε0
ε0 ∆

)
.

Diagonalizing this matrix we obtain the following eigenvalues

E1 =
1

2

√
ε2 + ∆2 ; E0 = −1

2

√
ε2 + ∆2. (2.10)

In figure 2.5 those energies are plotted where we see that at ε = 0 the gap difference is

minimal and this is what we call degeneracy point because ng = 0.5 and for that point

we saw in fig. 2.1 that we had degeneracy of the levels considered. This one is a really

important value because fluctuations of the electromagnetic field that affect our system

enter at second order as we see by considering the Taylor expansion of the energy gap

∆E = E1 − E0

∆E(εnoise) = ∆E(ε = 0) +
1

2∆
ε2noise +O(ε4noise).
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As it is stated by Juan José Garćıa Ripoll and Borja Peropadre in [GRP14], this real-

ization allowed experiments with charge qubits to improve significantly their operation

time keeping the qubit as close to the degeneracy point as possible while doing nothing

with it.

Figure 2.5: Representation of the eigenvalues for the effective Hamiltonian 2.9 with
∆ = 0.2.

2.3.3 Another example of a qubit system. Flux qubit

As we have commented, we are only going to employ in our realization a unique qubit

system which is the charge qubit. However, there are a lot of qubit systems realizations

and, particularly, we will talk a little bit about the flux qubit. The main difference

between both devices is that the former, as we have seen, depends on the number of

Cooper pairs while the later depends on the flux. In this second case states |0〉 and

|1〉 corresponds to two superconducting currents rotating without dissipation around

a certain loop. A typical configuration used as a flux qubit contains three junctions

coupled one to the other as it is shown on figure 2.6 (a) in which currents are tuned by

using a magnetic field. According to what we have commented in section 1.2 external

magnetic fields does not reach the inside part of a superconductor, considering that its

width is big enough, so it may seem odd that this magnetic field can induce effects

through the internal current.

The main reason why this behavior is obtained has its explanation in the presence of

a superconductor junction in our system. However, to analyze this more deeply we are

not going to consider the case of a three junction as shown in figure 2.6 (a) but a two

junction one as it can be seen in image 2.6 (b). First of all we will start by assuming that

if we have a current inside our system then, it should verify that I = IA+IB where IA is
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(a) Three junction flux qubit. Image extracted
from [BLP+07].

(b) Junction between two superconductors.

Figure 2.6: Flux qubit.

the supercurrent through path A and IB the corresponding to path B. According to the

expression we write for the current through a junction, then we have that IA = I0 sin(δA)

and IB = I0 sin(δB) where we included all the constants in I0 and δA and δB represents

the phase difference between going through one or another route.

If we do not apply an external flux through the superconductor, we will expect that

δA = δB = δ0 as there is no another circuital element that may generate a deviation for

those values. Suppose now that we switch on that magnetic field so, from what we have

said about superconductors, the field inside them is zero. As we are not applying any

kind of electric field, then from Ampere’s law we have that

∇× ~B = µo ~J
~B=~0−−−→ ~J = ~0

which means that inside the superconductor the density current is null and therefore,

from eq. (1.24) we get

∇θ =
q

c~
~A.

Integrating this last expression over the two different paths defined in figure 2.6 (b) we

get for each of them

δA =
q

c~

∫
A

~A · d~lA, δB =
q

c~

∫
B

~A · d~lB

where d~lA and d~lB are both differential elements for the path and which are defined

in such a way that they go from the lower junction to the upper one. It is suitable

to combine these two integrals so we can get the flux through our superconductor and

hence, we will take into account that d~lB = −d~lA = d~l so we can write

δB − δA =
q

c~

∮
~A · d~l =

q

c~

∫
S
∇× ~A · d~S =

q

c~

∫
S

~B · d~S =
qΦ

c~
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where S represents the surface of our junction and φ is the flux through that surface. In

short, we have found a relationship between the phase difference and the magnetic flux

through our superconductor.

As we have mentioned before, if we do not apply any magnetic field we will not expect

a difference between paths. Thereby, according to this, when we have the magnetic flux

turned on we can write each phase as{
δA = δ0 − qΦ/2c~
δB = δ0 + qΦ/2c~.

So we conclude that the total current I = IA + IB through our superconductor will be

given by [GP00]

I = I0

[
sin(δA) + sin(δB)

]
= I0

[
sin(δ0 − qΦ/2c~) + sin(δ0 + qΦ/2c~)

]
=

= 2I0 sin(δ0) cos(qΦ/2c~).

To put in briefly, we see that there is a way in which we can control the current inside

our superconductor employing the flux which goes through our two junction system.

Therefore, this magnitude is the one which plays the role of the voltage source we have

discussed in the charge qubit.

2.4 Operations with qubits

When one analyze different kind of qubits systems, as it is done in [GRP14], it can be

seen that, under the appropriate constrains that lead us to a two level system, all the

Hamiltonians that represents each circuit reduces to the one given in eq. (2.9) where the

parameters that appear there depends on each configuration. So, reached this point we

will see some operations that can be done with these systems.

2.4.1 Single-qubit operations

Let us consider that we are at the degeneracy point, i.e., ε = 0 so time-evolution is only

governed by σz. From now on we will work with the eigenstates of σz that we will call

{|0〉 , |1〉}. Under this representation we are able to write operators σz and σx as

σz = |1〉 〈1| − |0〉 〈0| , σx = |1〉 〈0|+ |0〉 〈1| .

The time-evolution of any state of the system is governed by the following operator

U(t; ∆, ε = 0) = e−it∆/2~ |0〉 〈0|+ eit∆/2~ |1〉 〈1| . (2.11)
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Assume now that we have prepared our system so the density matrix which characterizes

it is given at time t = 0 by

ρ(0) =

(
ρ11 0

0 ρ00

)
.

The correspondent evolution of our density matrix is such that ρ(t) = ρ(0), ∀t. Let us

consider now that we apply a very intense constant voltage ε = ε0 so that ε0 � ∆.

Under this assumption the gap can be neglected and the operator which governs the

time-evolution is

U(t; 0, ε0) = e−iε0σxt/2~ =

(
cos(ε0t/2~) −i sin(ε0t/2~)

−i sin(ε0t/2~) cos(ε0t/2~)

)
. (2.12)

If we now evolve our initial ensemble with this time operator, at time t = π~/ε0 we have

ρ(t) = U(π~/ε0; 0, ε0)ρ(0)U †(π~/ε0; 0, ε0) =

(
ρ00 0

0 ρ11

)
.

Notice that we have found a method which allows us to exchange population between

the |0〉 and |1〉 states coherently by performing a rotation of the state of the qubit.

Nevertheless, there is a disadvantage about this technique which is that we have to

apply intense voltages. In general we do not need to use this kind of values to achieve

that effects as there is another procedure which consists on applying a time-dependent

field of the form

ε(t) = Ω cos(ω0t+ ϕ) =
Ω

2

(
eiω0t+iϕ + e−iω0t−iϕ).

To analyze this procedure we rotate our Hamiltonian on a frame that moves at frequency

ω0 with a unitary operator U = e−iω0tσz/2. The original state can be written as |ψ(t)〉 =

U(t) |χ(t)〉 where |χ〉 evolves with an effective Hamiltonian of the form

H′eff = U †HeffU − i~U †U̇ .

Let us analyze each term of the last equation separately identifying H(1)
eff as (∆/2)σz and

H(2)
eff as (ε0/2)σx

U †H(1)
eff U = eiω0tσz/2 ∆

2

[
|1〉 〈1| − |0〉 〈0|

]
e−iω0tσz/2 =

=
∆

2

[
eiω0t/2 |1〉 〈1| e−iω0t/2 − e−iω0t/2 |0〉 〈0| eiω0t/2

]
=

=
∆

2
σz.

For the other term we have

U †H(2)
eff U =

~ε(t)
2

eiω0tσz/2
[
|1〉 〈0|+ |0〉 〈1|

]
e−iω0tσz/2 =

=
~ε(t)

2

[
eiω0t/2 |1〉 〈0| eiω0t/2 + e−iω0t/2 |0〉 〈1| e−iω0t/2

]
=
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=
~ε(t)

2

[
eiω0t |1〉 〈0|+ e−iω0t |0〉 〈1|

]
=

=
~Ω

4

[
eiω0t+iϕ + e−iω0t−iϕ][eiω0t |1〉 〈0|+ e−iω0t |0〉 〈1|

]
=

=
~Ω

4

[
ei2ω0t+iϕ |1〉 〈0|+ eiϕ |0〉 〈1|+ e−iϕ |1〉 〈0|+ e−i2ω0t−iϕ |0〉 〈1|

)
=

=
~Ω

4

[
ei(2ω0t+ϕ)σ− + eiϕσ+ + h.c.

]
.

where “h.c.” stands for the Hermitian conjugate. Finally, the last term give us

U−1U̇ = −σz
iω0

2
e−iω0tσz/2eiω0tσz/2 = −σz

iω0

2

so the transformed effective Hamiltonian is given by

H′eff =
∆− ~ω0

2
σz +

Ω

4

[
ei(2ω0t+ϕ)σ− + eiϕσ+ + h.c.

]
.

By considering that ω0 is big enough so that we can neglect the terms 2ω0 because they

rotate really fast and tuning ω0 so it is resonant with the two level transition (ω0 = ∆/~)

then we obtain for our Hamiltonian

H′eff =
Ω

4

[
eiϕσ− + eiϕσ+ + h.c.

]
=

Ω

2
cos(ϕ)σx.

Therefore, the time evolution operator for the state |ψ〉 is

Ũ = U(t;ω0)e−iH
′
efft/~U †(t;ω0) =

(
cos
(

Ω∆t
2 cosϕ

)
−ieiωt sin

(
Ω∆t

2 cosϕ
)

−ieiωt sin
(

Ω∆t
2 cosϕ

)
cos
(

Ω∆t
2 cosϕ

) )
≈ U(t; 0,Ω/2). (2.13)

Basically we rotate the propagator correspondent to H′eff to the frame of reference of the

laboratory, that is, that one which sees the Hamiltonian rotating and where the state

|ψ〉 is defined.

2.4.2 Dephasing

As it is said in [GRP14], dephasing is a phenomenon caused by perturbations which

affect the qubit Hamiltonian and that randomly changes the energies of the states |1〉
and |0〉, i.e., H → H + δextσz. When these fluctuations accumulate in time the main

effect that they produce on our density matrix is that its coherences decay exponentially

in a typical time T2 known as dephasing time.

In order to characterize these fluctuations we must take into account that this is a

random process so the physical state of our system might be represented as a statistical

average over different realizations of that noise. This is mathematically represented by

an operation known as quantum channel or positive map ([GRP14])

ε(ρ; t) =

∫ π

−π
eiϕσzρe−iϕσzp(ϕ; t)dϕ. (2.14)
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Here we can see that the initial state ρ evolves according to a random phase ϕ whose dis-

tribution p(ϕ; t) changes in time. On the other hand, under some conditions ([GRP14]),

dephasing can be treated using the following master equation

dρ

dt
= γ2(σzρσz − ρ) (2.15)

where γ2 = 1/T2. In matrix representation, eq. (2.15), we get a system of four differential

equations that give us

ρ(t) =

(
ρ11 ρ10e

−t/T2

ρ01e
−t/T2 ρ00

)
.

Nonetheless, dephasing is a type of noise for which exists methods to suppress it. One

of them is called as spin-echo in which the state of the qubit is reversed at the middle

of the experiment employing one of the operations shown on section 2.1, in particular

ρ(δt+ δt) = e−iϕδtσzσxe
−iϕδtσzρ(0)eiϕδtσzσxe

iϕδtσz = ρ(0).

Basically, what we are doing is firstly evolving our system according to the corresponding

Hamiltonian (that now has the dephase term), then at the middle of the experiment we

reverse it and finally let it evolve again with time. Even though these procedure is never

perfect because another sources of decoherence, it allow us to extend the lifetime of our

qubit state beyond the original one.

Specifically this operation does not give us exactly ρ0 but a density matrix where the

elements are interchanged. We can obtain ρ0 by applying another rotation around

the x axis but the reason why we are writing the expression in that way is because

the information that this density matrix contains has not been perturbed, that is, the

populations, which are now the coherences, has the same values that they had at the

beginning of the experiment.

2.4.3 Relaxation and heating

The dephasing shown above introduces terms to the coherences of our density matrix

so at large times they will disappear. On the other hand relaxation and heating are the

worst kind of decoherences because, unlike the other case studied above, entail the lost

of the qubit itself: the populations and their coherences are destroyed. For example, if

we only have heating in our system, at the end of the day our density matrix would be

a pure state |1〉 〈1| and if we only have cooling, then we would have a pure state |0〉 〈0|.
In general, this two processes can be treated uniformly through a single master equation

([GRP14])

dρ

dt
=[n(∆) + 1]

γ

2
(2σ−ρσ+ − σ+σ−ρ− ρσ+σ−)+

+ n(∆)
γ

2
(2σ+ρσ− − σ−σ+ρ− ρσ−σ+), (2.16)



Qubit system. Charge qubit 23

where the factor n(∆) represents the boson occupation number. In general, this equation

lead us to the following system of equations
ρ̇11 = γ[−(n(∆) + 1)ρ11 + n(∆)ρ00]

ρ̇00 = γ[(n(∆) + 1)ρ11 − n(∆)ρ00]

ρ̇10 = −γ
(
n+ 1

2

)
ρ10

ρ̇01 = −γ
(
n+ 1

2

)
ρ01

. (2.17)

As the circuits we are analyzing are composed by superconducting elements, they work

at very low temperatures so n(∆) ≈ 0 constitutes a very good approximation. Under

this conditions the system 2.17 lead us to the following density matrix

ρ(t) =

(
ρ11e

−t/T1 ρ10e
−t/2T1

ρ01e
−t/2T1 ρ00 + (1− e−t/T1)ρ11

)
.

Notice that, as we would expect, when t→∞ the system cools down and hence all the

population which is at the excited level pass to the zero level energy.

2.4.3.1 Thermal equilibrium

We said before that equation (2.17) give us the evolution of our system under processes of

cooling and heating. Let us now see the case corresponding to thermal equilibrium, i.e.,

ρ̇ij = 0. According to that expression it follows immediately, considering for instance

the first equation of the system, that

ρ11

ρ00
=
n(∆) + 1

n(∆)
= e−β∆. (2.18)

On the other hand, as we are studying a system at thermal equilibrium, then its density

matrix is characterized by the canonical ensemble. Thus, we can write as

ρ =
e−βH

tr{e−βH}
. (2.19)

In our case, as we are at the degeneracy point so ε = 0, the energies for levels |1〉 and

|0〉 are respectively ∆/2 and −∆/2. Applying this last expression to determine the

populations the result obtained is the Boltzmann factor shown in eq. (2.18) as expected

due to the conditions which we are are working with. Therefore, we see that master

equation (2.16) is well suited to describe thermal equilibrium situations.



Chapter 3

Measurements in a charge qubit.

CNOT gate

“In this chapter, we are going to employ the features we have seen for the charge

qubit in order to design a CNOT gate that allows us to generate a coupling between

two qubits so, preparing a certain state in one of them, we can obtain information

from the other one. In this way, we see an example of how measurements can be

done in a quantum system. For this purpose, we shall introduce what quantum

gates are, and then, we will start by analyzing the so-called Pauli’s gates. Once

defined a CNOT gate, we will present a design of this kind of gate done by charge

qubits and proceed to study how to prepare states and how to do measurements

employing for this goal superconducting transmission lines.”

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

“En este caṕıtulo, vamos a emplear las caracteŕısticas vistas para un charge qubit

con el fin de diseñar una puerta CNOT que nos permitirá generar un acoplamiento

entre dos qubits de manera que, configurando uno de ellos, se pueda obtener in-

formación del otro. De esta manera, vemos un ejemplo de cómo realizar medidas

sobre un sistema cuántico. Con este propósito, introduciremos lo que son las puertas

cuánticas y analizaremos para ello las conocidas como puertas de Pauli. Una vez

definida la puerta CNOT, presentaremos un diseño de ésta elaborado con charge

qubits y se procederá a estudiar cómo preparar estados y cómo realizar medidas

empleando para este fin ĺıneas de transmisión superconductoras.”

3.1 Quantum gates

In brief, a quantum gate is the equivalent, in quantum circuits, to the logic gates defined

in classical circuits. However, there is a very important difference between classical

and quantum gates: the latter ones are reversible unlikely most of the first ones. So

basically, they allow us to perform unitary operations in a multiple qubit system that

can be composed for instance by two charge qubits. In fact, we have seen before these

kinds of operations in section 2.4 when we analyzed single qubit operations. By waiting

24
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a suitable interval of time, expression (2.12) (or also eq. (2.13)) can give us the so-called

Pauli-X gate (which is the equivalent to the classical NOT gate).

Those quantum gates we have mentioned execute operations on a single qubit, but we

can also find other gates that can handle with multiple qubits as the CNOT gate which

deals with two qubits.

3.1.1 Pauli’s gates

The Pauli-X,Y,Z gates commented above, are quantum gates that operates only with

single qubits and that can be characterized by the following matrices

X =

(
0 1

1 0

)
, Y =

(
0 i

−i 0

)
, Z =

(
1 0

0 −1

)
.

Hence, if these gates acts over a general configuration |ψ〉 = α |0〉+ β |1〉 the result will

be for each of them

X |ψ〉 = β |0〉+ α |1〉 , Y |ψ〉 = iβ |0〉 − iα |1〉 , Z |ψ〉 = α |0〉 − β |1〉 .

In our case, the first and third operations can be done with our charge qubit as the

Hamiltonian of our system contains the Pauli matrices σx and σz so we can properly

omit one of those operators choosing accurately the voltage V . However this give us one

limitation: we cannot alter the phase of our initial state applying only charge qubits as

there is always an operator which we cannot introduce in our discussion, being in the

case considered σy.

3.1.2 CNOT gate

Controlled-NOT gate, commonly known as CNOT gate, are a different kind of logic

gates as it takes as input two qubits which we may call target and control qubits. The

operation that this logic quantum gate performs is shown on table 3.1 where we see that

if the target qubit is set to zero we do not do anything with it while if it is set to be

one then the control qubit is flipped. In this chapter we are going to generate this kind

Input Outcome

Target Control Target Control

|0〉 |0〉 |0〉 |0〉
|0〉 |1〉 |0〉 |1〉
|1〉 |0〉 |1〉 |1〉
|1〉 |1〉 |1〉 |0〉

Table 3.1: Truth table for the CNOT gate.

of quantum gates applying only charge qubits, superconducting transmission lines and

classical computers. It is important to remark that this setup has to be understood as a
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Figure 3.1: CNOT gate desgined with charge qubits and transmission lines.

mental exercise where we want to apply all the knowledge we have acquired about charge

qubits and also some new concepts about transmission lines, not as a real assembly that

can be done in a laboratory. The device designed, which is shown on figure 3.1, may be

improved if we find another gadget that can act as Pauli-Y gate so we can generate any

initial state, but this is something that will be commented within the conclusions.

Relating this to what we have said in section 1.1.2.2, here we have two charge qubits

but for us one of them is the relevant one and is the control qubit. In fact, the target

can be substituted by a previous connection to other parts of the circuit and we will

consider that it is, somehow, inaccessible to us. In consequence, we can understand the

control to play the role of the ancilla A and the target to play the role of system S.

Hence, to sum it all up, the main goal of this circuit is to generate a coupling between

target and control whose mapping is essentially described by table 3.1 so by performing

measurements on it we can alter and, if we have enough copies, gain information about

the quantum state of the target.

With respect to how this ensemble works, first of all we have two given states on target

and control which we might call as |ψT 〉 and |ψC〉. Here we will consider that both of

them come from two different qubits but as the transmission lines are usually used to

transport qubits, as we commented above, we can substitute the charge qubit of the

target by the transmission line that follows it. Regardless, we have that the elements

that define a state in a charge qubit are Cooper pairs so, for example, if we are in state

|1〉 we will have an excess of Cooper pairs compared with the ground state. Thereby,

this fact lets us differ between these two states by measuring the current something that

can be done, as we will see below, employing a superconducting transmission line. These

measurements are invasive because they are projective measurements that our classical

computer shall interpret and, depending on the value obtained, it has to switch on the
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connection to the new transmission line of one of both charge qubits located at the right

side of figure 3.1, which are prepared in states |1〉 and |0〉.

3.2 Preparing the initial state

The preparation of our initial state can be done, as we have mentioned above, with

the Pauli gates which in a charge qubit consists basically on finding the proper time

interval that we have to wait so the system evolves to a specific final state, employing

for that suitable values of the field ε applied. Notice that, by doing this, not all the

states are accessible because we need the Pauli-Y gate which cannot be performed with

our Hamiltonian (eq. (2.9)).

First of all, we will start by generating the simplest possible state, i.e., |0〉. To do that,

we will locate our system at the degeneracy point ng = 1/2 something that can be done

searching for an adequate value of the voltage which in general shall be given by V =

e/Cg. In this way, we can also guarantee that the fluctuations of the electromagnetic field

will be minimal. Under that conditions, we leave our system at ideal superconducting

conditions in such a way that we can ensure the preparation remains in that zero state.

From what we have said up to now, the reader may ask what happens if we have done

previous measurements with our system so there is a remaining state on it. By leaving

the charge qubit at superconducting conditions, that is, very low temperatures and for

long enough time (t → ∞ ideally), phenomenons of relaxation (see section 2.4.3) will

occur. Hence, if ρ denotes our initial state

ρ =

(
ρ11 ρ10

ρ01 ρ00

)
Relaxation−−−−−−→ρ(t) =

(
ρ11e

−t/T1 ρ10e
−t/2T1

ρ01e
−t/2T1 ρ00 + (1− e−t/T1)ρ11

)
t→∞−−−→

−→ ρ′ =

(
0 0

0 1

)

at the end of the process all the population will be located at the lowest energy config-

uration.

Having reached this point, we now can apply Pauli’s gates to obtain a particular state.

For example, if we want to obtain the excited level |1〉 with probability one we can apply

an intense or a sinusoidal field. If we take the first option, then the evolution of our

initial state may be given by

ρ(t) = U †(t; 0, ε0) |0〉 〈0|U(t; 0, ε0) =

=

(
sin2(ε0t/2~) i sin(ε0t/2~) cos(ε0t/2~)

−i sin(ε0t/2~) cos(ε0t/2~) cos2(ε0t/2~)

)
.

Therefore, proceeding like this, by waiting a time interval given by ∆t = ~π/ε0 we

obtain in our initial charge qubit the excited stated. For instance, if we wait a time

∆t = ~π/2ε0 the resultant state will correspond to |ψ〉 = 1/
√

2(|1〉 + i |0〉). So we can
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conclude that this is an appropriate method that allows us to generate a certain initial

state.

3.3 Measuring the state

Once obtained the initial state of our system, the next step as we see in figure 3.1 is to

make measurements on it. To do that, we will employ a transmission superconductor

line since we can do measurements of the current on it and also isolates very well the

system from the environment because of its structure. This device can be composed for

instance by a coplanar waveguide (figure 3.2) which consists on a thin superconducting

line surrounded by larger planes that are connected to ground or some fixed potential

so now the electromagnetic field tunes outside and inside the substrate. This last fact,

together with the big size of the ground planes, seems to isolate better the propagating

waves from external disturbances as it is stated in [GRP14].

Figure 3.2: Coplanar waveguide. Image extracted from [GRP14].

3.3.1 Transmission line’s Lagrangian

As we did for the charge qubit, we are going to quantize this kind of circuits and for

so we will follow the same steps introduced before. First of all, we have to seek for an

equivalent circuit which can describe the behaviour of a transmission line and this can

be done introducing an array of coupled LC resonators, as shown on figure 3.3, where

the capacitors C0 represent the electric energy stored between the cable and the ground

plane which surrounds it and the inductors L0 represent the natural impedance of the

cable against changes in the current.

In order to obtain the correspondent Hamiltonian to that circuit, we restrict ourselves

to a specific part of the circuit and once that fraction is well described, we will generalize

the result obtained to the whole equivalent circuit. This portion is shown on figure 3.4

where we have taken as well a direction in which flux flows through our system.

Denoting I1 and I2 the currents that enter to the node and I3 the one which is exiting

(see figure 3.4), from charge’s conservation we get

I1 + I2 = I3.
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Figure 3.3: Equivalent circuit for our transmission line. Image extracted from
[GRP14].

Figure 3.4: Portion considered of the equivalent circuit. Imaged extracted from
[GRP14] and slightly modified.

We saw in section 2.3.1 how is the relation between the current and the flux when

we have a capacitor as a circuital element. When we are introducing inductors, the

correspondent relationship may be written as follows

I =
δφ

L

being δφ the flux difference between its nodes.

Hence, for the currents written above we have

I1 =
φi − φi−1

L0
, I2 = φ̈iC0, I3 =

φi+1 − φi
L0

.

Substituting these values into the equation for the current we obtain

φi − φi−1

L0
+ φ̈iC0 =

φi+1 − φi
L0

⇒ φ̈iC0 =
φi+1 − φi

L0
+
φi−1 − φi

L0
.

As we have told in the previous chapter, this last relationship satisfies the Euler-Lagrange

equations so we can obtain the Lagrangian of our system as follows

d

dt

(
∂L
∂φ̇i

)
= φ̈iC0 ⇒ L =

1

2
Cφ̇2

i +O(φi),

∂L
∂φi

=
φi+1 − φi

L0
+
φi−1 − φi

L0
⇒ ∂O(φi)

∂φi
=
φi+1 − φi

L0
+
φi−1 − φi

L0
⇒
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⇒ O(φi) = −(φi+1 − φi)2

2L0
− (φi−1 − φi)2

2L0
.

Hence, we conclude that the Lagrangian which characterizes the portion of the system

considered is given by

L =
1

2
C0φ̇

2
i −

(φi+1 − φi)2

2L0
− (φi−1 − φi)2

2L0
. (3.1)

However, as we have told, the equivalent circuit consists on an infinite set of these

elements so we must generalize that Lagrangian but this is something that can be done

easily considering as fundamental unit one capacitor coupled to an inductor being these

configuration repeated all over the space, or rather the length of the transmission line

considered. Thereby, the generalization of eq. (3.1) is

L =

N∑
i=1

[
1

2
C0φ̇i

2 − 1

2L0
(φi+1 − φi)2

]
. (3.2)

For our CNOT gate we will employ a λ/2 transmission line which has a finite length d

and that is connected to the remaining elements of the circuit via two capacitors. What

is relevant to us in this configuration is that we have to incorporate length scales defining

capacitance and inductance densities c0 and l0 respectively

C0 = c0∆x, L0 = l0∆x,

where ∆x is the typical length between two consecutive nodes in our circuit (figure 3.3).

Thus, eq. (3.2) might be rewritten as

L =
∑
i

[
1

2
c0φ̇

2
i +

1

2l0

(
φi+1 − φi

∆x

)2]
∆x.

As we want our analysis to be valid in the λ/2 case, then ∆x→ 0 and the nodes will be

infinitely closed to each other. Thereby, in this continuous limit the Lagrangian shall be

written as

L =

∫ d

0
dx

[
1

2
c0φ̇

2 − 1

2l0

(
∂φ

∂x

)2]
, (3.3)

with Neumann boundary conditions for φ(x) coming from the fact that we have reflection

at the edges.
∂φ

∂x

∣∣∣∣
x=0

=
∂φ

∂x

∣∣∣∣
x=d

= 0.

Basically, inside our transmission line we have defined a scalar field φ(x, t) that represents

the flux trapped inside this element. Therefore the main task now is to quantize that field

and for doing so we will start by obtaining the equations of motion of that Lagrangian

by applying Hamilton’s action principle. In consequence, we define the functional S as

S =

∫ t2

t1

dt

∫ d

0
dx

[
1

2
c0φ̇

2 − 1

2l0

(
∂φ

∂x

)2]
. (3.4)
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Introducing a small perturbation η that verifies η(t1) = η(t2) = 0 to φ we get that,

neglecting second order terms in η, δS is given by

δS =

∫ t2

t1

dt

∫ d

0
dx

[
c0
∂φ

∂t

∂η

∂t
− 1

l0

∂φ

∂x

∂η

∂x

]
. (3.5)

Taking into account that for a general variable xi we have

∂

∂xi

[
∂φ

∂xi
η

]
=
∂2φ

∂x2
i

η +
∂η

∂xi

∂φ

∂t
⇒ ∂η

∂xi

∂φ

∂t
=

∂

∂xi

(
∂φ

∂xi
η

)
− ∂2φ

∂x2
i

η,

we can write eq. 3.5 as follows

δS =

∫ t2

t1

dt

∫ d

0
dx

{[
c0
∂

∂t

(
∂φ

∂t
η

)
− 1

l0

∂

∂x

(
∂φ

∂x
η

)]
−

−
[
c0
∂2φ

∂t2
− 1

l0

∂2φ

∂t2

]
η

}
.

The first part of the integral, the one which includes a derivation over η, turns out to

be zero. A way in which we can see that is because for the second term of that part,

if we integrate over x we have to evaluate the derivative of φ with respect to x in 0

and d which is zero because of the boundary conditions of our problem. On the other

hand, for the first term we can interchange the order of the derivations, that is, start by

integrating over time obtaining as consequence the evaluation of η in t2 and t1 which is

also zero. Therefore, we get

δS = −
∫ t2

t1

dt

∫ d

0
dx

[
c0
∂2φ

∂t2
− 1

l0

∂2φ

∂t2

]
η. (3.6)

From Hamilton’s action principle we have that δS = 0 and, since η is a general pertur-

bation, the term inside the integral should be zero

c0
∂2φ

∂t2
− 1

l0

∂2φ

∂x2
= 0. (3.7)

This last differential equation can be solved applying separation of variables method

assuming a solution of the form φ(x, t) =
∑

µ ψµ(t)χµ(x). Introducing this into eq. (3.7)

1

c0l0

1

χ

∂2χµ
∂x2

=
1

ψµ

∂2ψµ
∂t2

= −ω2
µ,

where we have chosen the constant to be ω2
µ because of the similarity of our Lagrangian

to the harmonic oscillator. For the spacial part of the expression given above we get the

known as Sturn-Lioville problem that, under the constrain of having l0, c0 > 0 which is

true in our case as both constants are the inductance and capacitive density respectively,

its eigenfunctions form an orthonormal basis which satisfies

1

Ω

∫ d

0
χn(x)χm(x)w(x)dx = δnm (3.8)
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where Ω is a normalization constant and w(x) > 0 is a weight function that in our case

coincide with the capacitive density c0. Indeed, if we continue developing the spacial

part we get that the normalized oscillating modes are given by

χµ(x) =

√
2

d
cos
(µπ
d
x
)
, ωµ

√
c0l0 =

µπ

d
(3.9)

with µ ∈ N. Introducing this into eq. (3.9) it follows immediately that Ω = c0.

Reached this point, we bring our solution φ(x, t) to the Lagrangian of eq. (3.3) having

then

L =

∫ d

0
dx

[
c0

2

(
∂

∂t

∑
µ

ψµ(t)χµ(x)

)2

− 1

2l0

(
∂

∂x

∑
µ

ψµ(t)χµ(x)

)2]
=

=
∑
µ

c0

2

dφ2
µ

dt
−
∑
µν

ψµψν
1

2l0

∫ d

0
dx

dχµ
dx

dχν
dx

where we have used in eq. (3.8) to solve the first part of the integral. On the other hand,

for the second one we integrate by parts obtaining finally

L =
c0

2

∑
µ

[
ψ̇2
µ − ω2

µψ
2
µ

]
. (3.10)

3.3.2 Transmission line’s Hamiltonian. Quantization

From eq. (3.10) we see that the conjugated momenta ϕµ is given by

ϕµ =
∂L
∂ψ̇µ

= c0ψ̇µ ⇒ ψ̇µ =
ϕµ
c0

so performing the Legendre transformation of our Lagrangian we conclude that the

Hamiltonian that characterizes our transmission line is given by

H =
∑
µ

[
ϕ2
µ

2c0
+

1

2
c0ω

2
µψ

2
µ

]
. (3.11)

This Hamiltonian is the one of a set of harmonic oscillators whose quantization can be

done substituting the variables ϕµ and ψµ by the corresponding operators ϕ̂µ and ψ̂µ.

H =
∑
µ

[
ϕ̂2
µ

2c0
+

1

2
c0ω

2
µψ̂

2
µ

]
. (3.12)

Equation (3.12) can be rewritten in terms of the creation and annihilation operators

using the following definitions and assuming ~ = 1 as

ϕ̂µ =
1√

2c0ωµ
(aµ + a†µ), ψ̂µ = i

√
c0ωµ

2
(a†µ − aµ).
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Figure 3.5: Configuration of a circuit which includes a λ/2 transmission line. Image
extracted from [GRP14].

Then, according to the solution we have considered for our problem, we obtain that the

flux in our transmission line is given by

φ̂(x, t) =
∑
µ

ψ̂µ(t)χµ(x) =
∑
µ

1√
2c0ωµ

χµ(x)(a†µ + aµ) (3.13)

where the functions χµ(x) are given by eq. (3.9). Deriving this expression with respect

to time, we obtain that the conjugated momenta, that is, the charge density is

ρ̂(x, t) = i
∑
µ

√
c0ωµ

2
χµ(x)(a†µ − aµ). (3.14)

This last result is really important for us because that means we can measure the density

charge, and for so the intensity, in our transmission line. Thereby, the implementation

we have considered in our design of the CNOT gate (figure 3.1) seems plausible.

On figure 3.5 we show a configuration of a λ/2 resonator which is coupled to one qubit

(point A in the image) and to another part of the circuit that is not shown here (point B

in the image). In this case, the connections are done through two capacitors located in

both points reaching in that way the λ/2 configuration that we have been talking about

along this section. This is a very important figure because shows us how the system we

have to quantize can be performed experimentally and establish a curious parallelism

between our idealization (figure 3.3) and what we face to in real life.

3.3.3 States for the transmission line

Typically, superconducting transmission lines are elements which allow the guided trans-

port of photons so we can select from a wide variety of states that can be transported

through our waveguide. Concretely, we will focus in the known as thermal states which

are states defined in a certain cavity that is in thermal equilibrium. The reason why
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we want to employ this kind of states is because the temperature of the thermal cav-

ity let us distinguish between states |0〉 and |1〉. For example, we can let our current

run through a certain resistor element, having in consequence a certain amount of heat

dissipated. As the main difference between the states |0〉 and |1〉 is in the number of

Cooper pairs that we have, the temperature of the cavity that encloses that resistor will

differ depending on if we have one state or the another.

So as to have a starting point, we will take into consideration the fact that the Hamilto-

nian which characterizes the electromagnetic field can be quantized as a set of harmonic

oscillators of the formI

Hem =
∑
µ

ωµa
†
µaµ. (3.15)

Concretely, we will suppose that we are applying a perfect monochromatic laser field.

In such a way, we will select only one possible mode being the expression written above

reduced to

Hem = ωa†a. (3.16)

As we have basically photons enclosed in a thermal cavity, we can employ to characterize

the density of states for these kind of systems a Bose-Einstein distribution whose parti-

tion function is given by Z = (1− e−βω)−1. Thereby, the density matrix that describes

our set of photons is

ρ =
∑
n

e−βnω(1− e−βω) |n〉 〈n| . (3.17)

Assuming that this frequency we have selected can habit inside our transmission line,

that is, it coincides with one of the possible modes given by eq. (3.9), then the charge

density operator of eq. (3.14) might be written in this case asII

ρ̂(x, t) = i

√
c0ω

2
χ(x)(a† − a). (3.18)

However, we can see immediately that if we try to perform the mean value of this

operator over the configuration given by eq. (3.17) the result will be zero so we are

not detecting anything. Nevertheless, as we are working with creation and annihilation

operators we can seek for another option which is employing a certain kind of coherent

states called as thermal coherent states, which can be obtained, according to [OVMR91],

displacing the thermal mixed state of eq. (3.17), having then

ρ(α) =
1

Z
D(α)e−βωa

†aD†(α) =
∑
n

e−βnω(1− e−βω)D(α) |n〉 〈n|D†(α), (3.19)

with D(α) = eαa
†−α∗a the so called displacement operator. Let us evaluate now the

mean value of the charge density operator under this kind of states

〈
ρ̂
〉

= tr

{
k(x)(a† − a)

∑
n

e−βnωZ−1D(α) |n〉 〈n|D†(α)

}
=

IRemember that we have considered ~ = 1.
IINote that we denote by ρ the density matrix operator and by ρ̂ the charge density operator.
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=
∑
n

κ(x, n, T ) tr
{

(a† − a)D(α) |n〉 〈n|D†(α)
}

where k(x) is a complex function of the position is κ(x, n, T ) is another one which

contains k(x) and whose main characteristic is the dependence it has with T and which

is given by

κ(x, n, T ) = i

√
c0ω

2
χ(x)e−βnωZ−1.

Taking out this term out of the trace, we can focus mainly on the other part of the

expression obtaining

tr
{

(a† − a)D(α) |n〉 〈n|D†(α)
}

=
∑
m

〈m| (a† − a)D(α) |n〉 〈n|D†(α) |m〉 =

= 〈n| (a† − a)D(α) |n〉 〈n|D†(α) |n〉︸ ︷︷ ︸
1

= 〈n| (a† − a)
∑
l=0

(αa† − α∗a)l

l!
|n〉 =

= 〈n| (a† − a)(|n〉+ α
√
n+ 1 |n+ 1〉 − α∗

√
n |n− 1〉+ ...) =

= −[α∗n+ α(n+ 1)].

So we conclude that the mean value of the charge density is〈
ρ̂
〉

= −κ(x, n, T )[α∗n+ α(n+ 1)]. (3.20)

This is result indicates a way in which we can measure the current through our trans-

mission line, taking into account that the charge density is related to that magnitude,

that let us distinguish between ground and excited states as we have a clear dependence

with the temperature of the thermal cavity. Therefore, we have found an ideal super-

conducting circuit arrangement which, in principle, can play the role of a CNOT gate

and act as a coupling between target and control.



Chapter 4

Conclusions

Summing it all up, we have started this project studying the main difference between

closed quantum systems and open quantum systems to see how can we perform mea-

surements on an inaccessible system by performing a coupling of another system that

we can control and to see how can we introduce the effects of greater systems like the

environment on it. Once characterized a qubit system like the charge qubit, we have

been allowed to see how the surroundings affect on it and to employ that disturbance as

an advantage to prepare certain states in our setup. With all this knowledge, we have

generated employing charge qubits, transmission lines and classical computers a certain

kind of coupling between two quantum systems (control and target) characterized by a

CNOT gate.

Nevertheless, there are some open fronts that we have not discussed. Taking advantage

of a controlled environment and employing charge qubits, we have seen a way in which

we can prepare certain configurations in it, but as we saw there is a limitation due to the

fact that the Hamiltonian presented in eq. (2.9) does not incorporate σy. However, as we

are working with microwave radiation in certain parts of our circuit, we can introduce an

interferometer in this setup that allows us to generate a phase. Typically we can control

only one qubit, namely the known as control, and from our mapping (table 3.1) we only

care about which is the state not on its phase but in order to do measurements on the

transmission line, the temperature of the waveguide has to be the same of the resistor

which converts Cooper pairs states into thermal-photon states. In this conversion maybe

we can lose information about the phase of the target but as we have commented, the

target does not need to be a qubit, it might come from other parts of the circuit through

a transmission line.

All this discussion lead us now in how can we infer the state of the target from the

measurements of the qubit. Taking into account that the initial state of the target shall

be written as

|ψ〉target = α |0〉+ β |1〉

where α and β are complex numbers, the module of those values can be obtained per-

forming a suitable number of measurements over our state so we can see how many times

a certain value is repeated, obtaining then the probability of having a certain state. On

36
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the other hand, suppose that |0〉 states correspond to a horizontally polarized wave and

|1〉 states to a vertical one. If at the beginning of our experiment we prepare indepen-

dently from the rest two charge qubits in those states and perform always for them some

optical operations so for every experiment those two states are prepared equally, we can

associate to each of them a given phase. Now, once we obtain states |0〉 and |1〉 coming

from the target and we have managed to isolate them, they can be compared with the

other ones mentioned above so a phase difference between them can be measured. Then,

if the state under study has been generated by another person who is trying to send a

message according to a previously established alphabet formed by phase differences and

probabilities (‖α‖2, ‖β‖2), we can decode it by this method. Notice that we have to

agree previously how those initial states must be prepared, in order to have the same

phase differences.

In conclusion, we consider that our main objective of studying how quantum measure-

ments can be done and how it affects our system has been achieved.



Appendix A

Demonstration of POVM

properties

Recalling the properties shown on section 1.1.2.2 for POVM operators, in this appendix

we are going now to prove them taking into account that these sort of operators are

generally given by Êa = M̂ †aM̂a.

• Hermicity. Êa = Ê†a

This property can be easily proved taking considering the following properties for

operators:

(AB)† = B†A†, (A†)† = A.

So applying this to our case we obtain:

Ê†a = (M̂ †aM̂a)
† = M̂ †a(M̂ †a)† = M̂ †aM̂a = Êa ⇒ Êa = Ê†a .

• Positivity. 〈ψ|Êa|ψ〉 ≥ 0

To prove this we will focus on the meaning of 〈ψ|Êa|ψ〉. As we commented in

1.1.2.2, the probability of obtaining eigenvalue a for system B is given by

Prob(a) = 〈ξ|Êa|ξ〉 (A.1)

where |phi〉S was the initial state for our quantum system. Therefore the quantity

〈ψ|Êa|ψ〉 defines a probability and for so it has to be greater or equal to zero, so

we conclude:

〈ψ|Êa|ψ〉 ≥ 0 .

• Completeness.
∑

a Êa = 1

To prove this last property we will take into account that the time evolution

operator U is unitary so it preserves the norm. That means that if the norm of

our initial state is 1 when the measure is finished, the norm of the final state has

38
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also to be one having then

1 =

∥∥∥∥∥∑
a

M̂a |ξ〉 ⊗ |a〉B

∥∥∥∥∥ =
∑
a,b

〈ξ|M̂ †aM̂a|ξ〉 δab =
∑
a

〈ξ|M̂ †aM̂a|ξ〉 =
∑
a

〈ξ|Êa|ξ〉 .

As this is valid for any initial state |ξ〉 we conclude∑
a

Êa = 1 .
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