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Abstract

En este trabajo presentamos una revisión bibliográfica del Efecto Casimir. Este

fénomeno se produce debido a las fluctuaciones cuánticas del vaćıo. Se puede rep-

resentar como una fuerza, atractiva o repulsiva. Estudiaremos una intoducción

al origen de este efecto descubierto por H.B.G. Casimir. A continuación, hare-

mos un cálculo del Efecto Casimir para unas placas plano-paralelas, dándose una

corrección térmica. También, reproduciremos el cálculo en el caso de una placa

frente a una esfera y una esfera entre dos placas plano-paralelas. En el siguiente

apartado, daremos una introducción a la Teoŕıa Cuántica de Campos para determi-

nar el Efecto Casimir en un campo escalar real. Después, comentaremos el primer

experimento, hecho por Lamoreaux en 1996, que consiguió medir con suficiente

precisión el Efecto Casimir. Para acabar, haremos un análisis de la magnitud del

Efecto Casimir en los casos que hemos estudiado.
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Chapter 1

Introduction

En este caṕıtulo, presentaremos los objetivos principales del trabajo.

Posteriormente, dedicaremos una introducción al origen Efecto Casimir

desde el punto de vista f́ısico e histórico. Para terminar, comentaremos

el origen de la enerǵıa del vaćıo cuántico.

1.1 Objectives and Methodology

This work is a review on the Casimir Effect. The main purpose of this work is

understand the Casimir Effect theoretically and experimentally. Also, we want

to see the magnitude of Casimir Effect and compare the different forces in some

simple geometries.

From the theoretical point of view the key point is to relate vacuum fluctuations

with forces appearing between objects. At this respect we shall introduced some

mathematical tools which are relevant. In addition, we shall see how the vacuum

forces where measured in the well known experiment carried out by Lamoreaux.

1.2 The origin of the Casimir Effect

The Casimir Effect is related to the Quantum Vacuum. The uncertainly principle

establishes that, in a quantum system, the lower energy is different from zero. This

calculus was derived for first time in 1948 by Dutch scientist H.B.G Casimir[1].
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The Casimir effect has been generally taken as proof of the reality of the zero-point

electromagnetic vacuum field energy.

This effect was predicted by Casimir when he was investigating with Polder the Van

der Waals interaction between two atoms[2]. There was a problem with Van der

Waals interaction at large distances highlighted by London’s result which did not

agreed with experiments. Casimir and Polder addressed the problem calculating

the Van der Waals force between two atoms and the force between an atom and

a perfectly conducting wall, considering the influence of retardation effects using

perturbative quantum electrodynamics.

Following a suggestion by Bohr [3], Casimir studied the role of vacumm fluctu-

ations. He found a way to derive his result by computing the shift in the elec-

tromagnetic zero-point energy due to the presence of the atoms and the walls

[1].

1.2.1 Quantum Vacuum

From Classical Electrodynamics, it is known that the free electromagnetic field is

described by a infinite collection of harmonic oscillators that in going to a quantum

description can be properly quantized.

Therefore, we have at each point in space a quantum harmonic oscillator which

have a energy different from zero in its ground state. Each mode of the electro-

magnetic field oscillates with a different frequency and makes a contribution of ~ω
2

to the zero-point energy. So, we can view the quantum vacuum as the the com-

bination of all zero-point fields. Summing all modes we get a divergent quantity

that can be renormalized subtracting that infinity. We will show how deal with

these type of infinities in next chapter.

Also, as we said before, the uncertainly principle forbids the vacuum energy of

the harmonic oscillator of being zero. We can start from the Hamiltonian of

the harmonic oscillator, use the uncertainly principle and minimize the energy to

obtain ∆x or ∆p to obtaine the minimum in energy given by ~ω/2.

The vacuum energy could be represented as virtual particles. These are particles

that exist during a short time determined by the uncertainly relation ∆E∆t ≥ ~
2
.

Virtual particles are created as particle-antiparticle pairs that are annihilated given
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an amount of energy, vacuum energy. For this reason, virtual particles are call

vacuum fluctuations.



Chapter 2

Casimir Effect

En este caṕıtulo estudiaremos el efecto Casimir en diferentes geometŕıas.

Primero derivaremos el efecto Casimir para una configuración de unas

placas plano paralelas con conductividad infinita. Teniendo cuenta de que

tenemos infinitos modos de oscilación, es decir, enerǵıa infinita, aplicare-

mos un método para eliminarlo y obtener un resultado finito. Repetire-

mos el cálculo anterior considerando una de las placas con permeabili-

dad infinita. A continuación, hallaremos la corrección térmica al efecto

Casimir en la configuración placa-placa. Posteriormente, se estudiará

el efecto Casimir para la configuración placa-esfera. Usaremos este re-

sultado para analizar el caso de que la esfera se encuentre en medio de

dos placas plano paralelas. Finalmente, nos fijaremos en un campo real

escalar y la aparición de fuerzas de tipo Casimir. Usaremos diferentes

métodos para restar la enerǵıa infinita.

In the present chapter we are going to calculate Casimir Effect in different topolo-

gies. First we will derive the Casimir plate-plate attractive force in such config-

uration, then we will give an example of a Casimir repulsive force. Next we will

obtain the thermal correction to the Casimir force in the plate-plate configuration.

After that we will demonstrate a helpful theorem that allows us to calculate the

Casimir Effect in a plate-sphere configuration. We shall use this result to obtain

the Casimir’s forces acting on a sphere between two parallel plates. Finally, we

shall consider a scalar field theory where Casimir Effect in a Klein-Gordon field

can be computed by mean of different methods to regularized the expressions and

obtain a physically meaningful quantity.

4



5

2.1 Plate-Plate configuration.

2.1.1 Attractive Force

Now we are going to calculate the zero point energy of two parallel plates following

the procedure described in [4].

Consider two parallel square plates of length L separated by a distance a, as shown

in Figure 2.1. Moreover, the plates are such that they have infinite conductivity

and uncharged. Each mode of electromagnetic field is associated with a mode of

an harmonic oscillator. Hence we can write the zero-point energy as

H0 =
∑
l

1

2
~Ωl. (2.1)

The dispersion relation for each mode is written as

Ωl = c‖~kl‖ = c(k2
x + k2

y + k2
z)

1/2. (2.2)

The wave vector k must satisfied certain boundary conditions, that in our case are

such that the parallel component of the electric field is zero at the surfaces of the

Figure 2.1: Parallel condenser plates.
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plates. This condition implies that

kx =
lxπ

a
ky =

lyπ

L
kz =

lzπ

L
. (2.3)

Applying the boundary conditions to equation 2.2, we rewrite the energy for a

rectangular resonator as

Hbox
0 =

∑
l

1

2
~Ωl =

~c
2

∑
pol

∞∑
lx,ly ,lz=0

√(
lxπ

a

)2

+

(
lyπ

L

)2

+

(
lzπ

L

)2

. (2.4)

Notice that we add a sum over the polarization of the photons. We assume that

the distance between the plates, a, is much smaller than the plates length, L i.e.

a� L =⇒ L −→∞.

Consequently, lx and ly can be considered to be continuous variables and we can

use Riemann integral definition to obtain:

Hbox
0 =

~c
2

∑
pol

∞∑
lx=0

∫ ∞
0

dly

∫ ∞
0

dlz

√(
lxπ

a

)2

+

(
lyπ

L

)2

+

(
lzπ

L

)2

=
~cπ
2a

∑
pol

∞∑
lx=0

∫ ∞
0

dly

∫ ∞
0

dlz

√
l2x +

(
lya

L

)2

+

(
lza

L

)2

.

(2.5)

It is convenient to perform a change of variables α = lya

L
, β = lza

L
and use polar

coordinates α =
√
u cos(ϕ) , β =

√
u sin(ϕ). The Jacobian of the transformation

is denoted as J(u, ϕ). It follows then

Hbox
0 =

~cπL2

2a3

∑
pol

∞∑
lx=0

1

2

∫ ∞
0

du

∫ π
2

0

dϕ
√
l2x + u

=
~cπ2L2

8a3

∑
pol

∞∑
lx=0

∫ ∞
0

du
√
l2x + u.

(2.6)
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Separating the term lx = 0 (that has only one direction of polarization) and

summing over the polarization it follows

Hbox
0 =

~cπ2L2

8a3

∫ ∞
0

du
√
u+ 2

∞∑
lx=1

∫ ∞
0

du
√
l2x + u. (2.7)

The next step is to calculate the energy without plates, i.e, a −→ ∞ and as we

did before L −→ ∞, then lx, ly and lz are continuum variables. From 2.3 we can

write:

Hvac
0 =

~c
2

∑
pol

∫ ∞
0

dlx

∫ ∞
0

dly

∫ ∞
0

dlz

√(
lxπ

a

)2

+

(
lyπ

L

)2

+

(
lzπ

L

)2

. (2.8)

Following the same steps as we did above , with the same variables α, β, using

polar coordinates and summing over polarizations we get

Hvac
0 =

~cπ2L2

8a3
2

∫ ∞
0

dlx

∫ ∞
0

du
√
l2x + u. (2.9)

The equations 2.7 and 2.9 are divergent quantities. To remove the infinity and get

some physically meaningful quantity, we can calculate the difference between the

two infinite energies defined by

Υ =
1

L2
[Hbox

0 −Hvac
0 ] =

~cπ2

4a3
Ĩ , (2.10)

where we introduce Ĩ given by

Ĩ =
1

2

∫ ∞
0

du
√
u+

∞∑
lx=1

∫ ∞
0

du
√
l2x + u−

∫ ∞
0

dlx

∫ ∞
0

du
√
l2x + u. (2.11)

If I(lx) =
∫∞

0
du
√
l2x + u we can write

Ĩ =
1

2
I(0) +

∞∑
lx=1

I(lx)−
∫ ∞

0

dlxI(lx) =
1

2
I(0) +

∞∑
lx=0

I(lx)−
∫ ∞

0

dlxI(lx)− I(0).

(2.12)

In order to get a finite result we use the Euler-Maclaurin formula

∞∑
n=0

f(n) =

∫ ∞
0

dx f(x) +
1

2
f(0)− 1

12
f ′(0) +

1

720
f ′′′(0) + ... (2.13)
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in the last equation and substituting into 2.11 to obtain

Ĩ = − 1

12
I ′(lx) +

1

720
I ′′′(lx) + ... (2.14)

With the change v = l2 + u we can easily evaluate the derivatives and obtain:

I ′(0) = 0 and I ′′′(0) = −4, (The higher orders are 0).

We can substitute the results into equation 2.10 and write the energy per area as

Υ(a) = − 1

720

~cπ2

a3
. (2.15)

From this last equation we can compute the force per area between the plates

given by F = −dΥ
da

to finally write:

F (a) = − 1

240

~cπ2

a4
, (2.16)

which is the result obtained by Casimir. Note that, this force is attributed to

the change in the zero point energy of the vacuum in presence of the plates and

without them. The Casimir effect is a quantum phenomenon (because it depends

on ~) and relativistic (because it depends on c).

The result is an attractive force but generally depends on the geometry of the

system. It could also depend on the composition of the plates.

2.1.2 Repulsive Force

The Casimir force can be repulsive if we consider the interaction between an ideal

conducting plate and an infinite permeable plate[5].

So, suppose the same configuration of Figure 2.1.The boundary conditions are not

2.3, they must change due to the permeable plate. We consider that x axis possess

infinite permeability and the other component is not modified.

Since the parallel component of the magnetic field B vanishes, from Faraday’s

Law we can see which the component ∇ × E is zero which implies that we have

Neumann boundary condition:

kx =
π

a
(lx +

1

2
), (2.17)
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thus, the energy of the vacuum with 2.1, 2.2 and 2.17 :

Hbox
0 =

∑
l

1

2
~Ωl =

~c
2

∑
pol

∞∑
lx,ly ,lz=0

√
π2

a2

(
lx +

1

2

)2

+

(
lyπ

L

)2

+

(
lxπ

L

)2

. (2.18)

Following the same procedure we used in 2.1.1 and evaluating the difference of two

infinite energies, we obtain a finite repulsive force

F (a) =
7~cπ2

1920a4
. (2.19)

Another way, if Dirichlet boundary conditions are chosen on the plane x = 0 and

Neumann conditions on the plane x = a, i.e, mixed boundary conditions [6], we

get the announced repulsive force.

2.1.3 Temperature correction.

In real situations the systems will be at finite temperature, so it is pertinent to es-

timate the corrections that finite temperature effects may have in Casimir’s forces.

In this section we are going to calculate thermal effects in a system composed by

two parallel plates following the derivation presented in [7].

At low temperatures the corrections to the original Casimir result due to nonzero

temperature are negligibly small. On the contrary, if the temperature is high

enough the temperature corrections becomes important. This behaviour is usually

called “the classical limit” because it is determined by thermal photons.

The grand canonical partition function for an ideal Bose gas writes:

L (T, V, µ) =
∏
k

1

1− ze−βEk
. (2.20)

For a photon gas we have that Ek = ~ωk is the energy of each photon with wave

vector k. We fix the fugacity z to z = 1

The energy is obtained from the partition function as E = −∂β log L . This yields

E =
∑
k

∑
pol

~ωk
eβ~ωk − 1

. (2.21)
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We know that ω = c‖~k‖ and from equation 2.3 we can write the energy as:

E =
∞∑

nx,ny ,nz=0

∑
pol

~c
√(

nxπ
a

)2
+
(nyπ

L

)2 (nzπ
L

)2

eβ~c
√

(nxπa )
2
+(nyπL )

2
(nzπL )

2

− 1
. (2.22)

Following the same lines than those taken to reach 2.1.1, we use the definition of

Riemann Integral and change to polar coordinates to obtain

E =
~cπ2L2

4a3

∞∑
nx=0

∑
pol

∫ ∞
0

dr

√
(nx)

2 + r

e
β~cπ
a

√
(nx)2+r − 1

. (2.23)

Implementing the change of variables u =
√
n2
x + r and u = v + nx it follows

E

L2
=
π2~c
2a3

∞∑
nx=0

∑
pol

∫ ∞
0

(v + nx)
2

e
β~cπ
a

(nx+v) − 1
dv

=
~cπ2

2a3

∞∑
nx=0

∑
pol

−n2
x log

(
1− e−β~cπnxa

)
β~cπ/a

+
2nxLi2(e

−β~cπnx
a )

(β~cπ/a)2
+

2Li3(e
−β~cπnx

a )

(β~cπ/a)3
.

(2.24)

The first term is the most important one as the others are exponentially small.

Introducing the definition α = β~cπ
a

we can write

E

L2
= − π

2βa2

∑
nx

n2
x log(1− e−αnx). (2.25)

To analyze this expression we will use the Poisson summation formula:

∞∑
n=−∞

f(n) = 2π
∞∑

n=−∞

a(2πn), (2.26)

where a(µ) = 1
2π

∫∞
−∞ dxf(x)eiµx.

If we consider f(n) = n2 log(1− e−α|n|) the the Poisson formula leads to:

∞∑
n=−∞

f(n) = f(0) + 2
∞∑
n=1

n2 log(1− e−αn), (2.27)
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notice that f(n) = f(−n). We can do the same with the right-hand side of 2.26

because a(−µ) = a(µ) to get

∞∑
n=−∞

f(n) =
∞∑

k=−∞

a(2πn)

= 2πa(0) + 4π
∞∑
n=1

a(2πn),

(2.28)

with f(0) = 0. Hence the energy per unit area is given by

E

L2
= − π

2βa2

∞∑
n=1

n2 log(1− e−αn) = − π

2βa2

(
πa(0) + 2π

∞∑
n=1

a(2πn)

)
, (2.29)

since f(x) is an even function we can calculate the coefficient a(µ) as

a(µ) =
1

π

∫ ∞
0

dxf(x) cos(µx) = − 1

π

∫ ∞
0

dx x2 log(1− e−αx) cos(µx). (2.30)

Alternatively we can consider the expression

− 1

π
∂2
µ

∫ ∞
0

dx log(1− e−αx) cos(µx) = − 1

π
∂2
µ

{
α− πµ coth(πµ

α
)

2µ2

}
(2.31)

as a function of β. Because α = β~cπ
a

. and β = 1
kbT

, we take the high temperature

limit as α << 1 and write coth(x) when x >> 1 as coth(x) ' 1 + 2e−2x.

If we apply the above considerations on eq. 2.31 it follows that

− ∂2
µ

{
α− πµ(1 + 2e

πµ
α )

2πµ2

}
= − 1

µ3
+

3α

πµ4
+ ... (2.32)

The last terms are exponentially small, so we will neglect them and proceed to

obtain the solution for the coefficients a(µ). For a(0) from 2.31 we obtain a(0) =

− π3

45α3 .

Then, from 2.29

E

L2
=

π

2βa2

{
−π4

45α3
+
∞∑
µ=1

−2π

µ3
+

6α

µ4
+ ...

}
. (2.33)
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We detract the first term which correspond with the self energy ans knowing that

µ = 2πn then
E

L2
=

π

2βa2
2π

∞∑
n=1

− 1

(2πn3)
+ ... (2.34)

In this last expression we recognize the Zeta Riemann function ζ(3) in terms of

which the energy per unit area is

E

L2
= −kBTζ(3)

8πa2
. (2.35)

Consequently, the force per unit area will be F = −dE
da

given by

F = −kBTζ(3)

4πa3
. (2.36)

That is the dominant term of the Casimir force for the case studied.

2.2 Plate-Sphere configuration

In this section we are going to introduce the Proximity Force Theorem [8] which

allows the computation of proximity forces between curved objects. The theorem

states that:

The force between two curved objects in close proximity is proportional to the

interaction potential per unit area between two flat surfaces made of the same

material

We shall present a sketch of the proof goes as follows, consider the proximity

energy associated with a curved gap of variable width D:

Vp =

∫∫
e(D)dσ, (2.37)

where e(D) is in the interaction energy per unit area of two parallel surfaces at

separation D and σ is the area of the gap. We neglect further corrections to the

proximity energy.

We define Γ as the mean gap surface and D(u, v) = nR−nL. We say that nR and

nL are the normal displacements. So, we have the gap located on the right-hand
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and left-hand sides. D(u, v) is the distance between the two sides ΓR, ΓL of the

gap.

Then, the gap width is a function of the position on the surface, Γ. This is specified

by two coordinates u and v.

We can see that e(D) is a function of one variable, then we must convert the surface

integral into a 1D integral. Therefore, we have to consider a family of curves built

on the surface corresponding to constant values of D. In such situation we can

write the proximity energy as

Vp =

∫
e(D)J(D)dD, (2.38)

where J(D) is the characteristic of the geometry of the gap. Now, we introduce α

which specifies the geometry of the gap and β which specifies the structure of the

surface region. After that, we can rewrite, the proximity energy in general case:

Vp =

∫ ∫
e(β,D)J(α,D)dD. (2.39)

Finally, we are going to apply this theorem in case that we have a gap with variable

parabolic width(that correspond with the plate-sphere case).

We set the mean gap gently curved. So, u,v on the surface may be taken as

cartesian x,y coordinates and the normal coordinate n used to specify the gap

may be taken as the cartesian coordinate z. So, D = ZR − ZL.

We consider that we have a gap D which has a least valueD(x, y) = S at x = y = 0.

The Taylor expansion of D(x, y) is:

D(x, y) = s+
1

2
Dxxx

2 +
1

2
Dyyy

2. (2.40)

The derivatives can be written in terms of the principal radii of curvature Rx,Ry

of the surface obtained by plotting the gap width D as a function of x,y.

Next, implementing the change of variables: ξ = x√
2RX

and η = y√
2Ry

, which

implies that D = s+ p2 and p2 = ξ2 + η2.
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It follows that

Vp(s) =

∫∫
dxdy e(D) =

√
2RxRy

∫∫
dξdη e(D)

=
√

2RxRy

∫ ∞
0

dp 2π p e(D) =
√

2RxRy

∫ ∞
D=s

dD e(D).

(2.41)

Defining
√

2RxRy as R̄ which is the geometric mean of the two principal radii of

curvature. We finally get

Vp(s) = 2πR̄e(s). (2.42)

We can write the force using the negative of the partial derivative of Vp(s) with

respect to s to conclude that the proximity force F is given by

F (s) = 2πR̄e(s). (2.43)

From equations 2.15 and 2.43 it is possible to obtain the Casimir force for the

configuration shown in the figure 2.2. In such configuration we have an sphere with

radius R and a plate with length L in close proximity. The separation between

the surfaces is denoted by a and the force is given by.

F (a) = 2πR
~cπ2

720a3
. (2.44)

Figure 2.2: Plate-Sphere configuration.
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2.3 Plate-Sphere-Plate configuration

In this configuration, the sphere is between two plates separated a distance a as

we shown in Figure 2.3. The plates have the same length, L and the sphere has a

radius R. The displacement of the sphere to plate 1 or 2 is defined by x.

The net force can be represented as Fnet = F1 +F2. Where F1 and F2 are given by

eqn. 2.43, and have different direction, i.e, in which F1 is repulsive, F2 becomes

attractive, because when the system is in equilibrium (x = 0) the net force must

be zero. We are going to calculate the Casimir Energy when the system is not in

equilibrium. Assuming that F1 is repulsive and F2 attractive.

F1(a) =
αR

(a
2

+ x)3
. (2.45)

F2(a) = − αR

(a
2
− x)3

. (2.46)

with α = 2π~cπ2

720
.

Figure 2.3: Plate-Sphere-Plate configuration.
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The net force is Fnet = F1 + F2, after some manipulations one can obtain

Fnet = −32αxR
3a2 + 4x2

(a2 − 4x2)3
. (2.47)

In the limit: x << a the force is given by

Fnet = −94αR
x

a4
(2.48)

2.4 Scalar Field Theory

We shall show very briefly in this section how Casimir forces emerge in the context

of scalar field theories.

2.4.1 A brief introduction of Quantum Field Theory

Quantum Field Theory combines Quantum Mechanics and Special Relativity, i.e is

a Lorentz covariant theory which allows to study systems for which both Quantum

a Relativistic effects are important.[9]

We shall start from Poincaré covariant free classical fields. To quantize these

fields, a method known as canonical quantization can be used. The Canonical

Quantization consists of promoting the classic coordinates and momenta to quan-

tum mechanical operators that should satisfy the commutation relations. The

coordinates q(t) and momenta p(t) are replaced by the fields ϕ(x, t) and Πϕ(x, t)

respectively.

The fields can be expand in terms of plane waves (Fourier series). The coeffi-

cients are promoted to operators corresponding to the creation and annihilation

operators of a quantum harmonic oscillator. Vacuum excitations produced by the

field operators are particles and antiparticles. So, particles are described by the

fields that are operators on the quantum mechanical Hilbert space of the particles

states.
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Consider a real scalar field ϕ(x) which describes spin-0 bosons in two dimensional

space-time and is invariant under Lorentz transformations. The Lagrangian den-

sity for this field is

L =
~2

2
(∂µϕ)(∂µϕ)− 1

2
m2c2ϕ2. (2.49)

The equations of motion for each is given by the Euler-Lagrange equations. Intro-

ducing the Lagrangian we can get the Klein-Gordon equation[10]

�2ϕ(t, x) +
m2c2

~2
ϕ(t, x) = 0, (2.50)

where �2 = 1
c2

∂2

∂t2
− ∂2

∂x2
= ∂µ∂

µ. Alternatively it is possible to derived Klein-

Gordon equation starting from the relativistic energy for free particles

E =
√
p2c2 +m2c4, (2.51)

and making the replacement E −→ i~∂t and p −→ −i~∇.

In the next section we will calculate Casimir effect in a scalar field. The derivation

closely follows [6].

2.4.2 Local description of Casimir effect

We start form the vacuum energy densities to determine the total energy of the

ground state of the field. The total energy of the vacuum will be obtained by

the integration of the energy density over the quantization volume. The energy

density can be obtained from the expectation value of the energy density operator

of the quantized field in the vacuum state.

First we need to apply Noether’s Theorem to compute the energy-momentum

tensor [11]. The energy-momentum tensor is written as

T µν =
∂L

∂(∂µϕ)
∂νϕ− δµνL, (2.52)

where L is the Lagrangian density of the real scalar field defined in 2.49.

In particular we can write the energy density operator of the scalar field T00.

T00 =
~c
2

{
1

c2
[∂tϕ(t, x)]2 + [∂xϕ(t, x)]2 +

m2c2

~2
[ϕ(t, x)]2

}
. (2.53)
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To calculate the energy densities. First, we are going to calculate the density

energy of a real scalar field with on an interval 0 ≤ x ≤ a with Dirichlet boundary

conditions: ϕ(t, 0) = ϕ(t, a) = 0. After that, we will calculate the energy of free

Minkowski space. That allow us, as we did in the previous section, to obtain a

physical result as a subtraction of the two energy densities.

The positive and negative solutions of Klein-Gordon equation, that satisfy the

boundary conditions, are

ϕ(±)
n =

√
c

aωn
e∓iwnt sin knx. (2.54)

If we quantized the real scalar field in the interval where they are defined, it follows

ϕ(t, x) =
∑
n

(
anϕ

(+)
n (t, x) + a+

nϕ
(−)
n

)
, (2.55)

where an and a+
n′ are the annihilation and creation operators respectively which

fulfill the commutation relations [an, a
+
n′ ] = δnn′ and [an, an′ ] = [a+

n , a
+
n′ ] = 0.

The vacuum state, where there is not particles, is defined as

an |0〉 = 0. (2.56)

Hence, we can calculate the expectation value of the energy density operator in

the vacuum state using 2.53, 2.55 and the commutation relations

〈0|T00(t, x) |0〉 =
~
2a

∞∑
n=1

ωn −
m2c4

2a~

∞∑
n=1

cos 2knx

ωn
. (2.57)

At last, if we integrate over all the interval which lead us the density energy of the

field

E0(a,m) =

∫ a

0

〈0|T00(t, x) |0〉 dx =
~
2

∞∑
n=1

ωn. (2.58)

Note that the oscillating term in eqn 2.57 does not affect to the total energy.

We will repeat the computations for a scalar field define in the entire real axis

−∞ < x <∞.
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The positive and negative solutions of Klein-Gordon equations are in this case

ϕ
(±)
k =

√
c

4πωn
e∓i(wnt−kx). (2.59)

We can write the field operator as

ϕ(t, x) =

∫ ∞
−∞

dk
(
akϕ

(+)
k (t, x) + a+

k ϕ
(−)
k

)
, (2.60)

and must follow similar commutation relations [ak, a
+
k′ ] = δ(k − k′) and [ak, ak′ ] =

[a+
k , a

+
k′ ] = 0.

The vacuum state of the Minkowski space is

ak |0M〉 = 0. (2.61)

Therefore, the fluctuation of the operator in the vacuum state, is obtained with

2.53, 2.60 and commuting relations:

〈0|T00(t, x) |0〉 =
~
4π

∫ ∞
−∞

dk ωk. (2.62)

Finally, the energy density of the Minkowski is space can be determined integrating

over all Minkowski space, whose length is denoted by L.

E0M = 〈0|T00(t, x) |0〉L =
~
2

∫ ∞
−∞

dk

2π
wkL. (2.63)

We have obtained two energies that diverge, now we need to regularize the results

obtain a Casimir Force. In the next section we use two techniques to deal with

such regularization.

2.4.3 Casimir effect with cutoff regularization

From eqn. 2.58 we have the zero point energy of real scalar field of an interval. The

frequency is obtained from the relativistic energy from free particles 2.51 dividing

by ~.

ωn =

(
m2c4

~2
+ c2k2

n

)1/2

, (2.64)
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where kn is a discrete variable defined by kn = πn
a

. That give us

E0(a,m) =
~
2

∞∑
n=1

ωn =
~
2

∞∑
n=1

(
m2c4

~2
+
c2π2n2

a2

)1/2

. (2.65)

For the case of free Minkowski space, k is a continuum variable, so the in the

frequency should be an integral over the variable. From eqn. 2.63 the total energy

of the Minkowski space:

E0M(m) =
~
2

∫ ∞
−∞

dk

2π
wkL =

~
2π

∫ ∞
0

dk

(
m2c4

~2
+ c2k2

)1/2

L. (2.66)

The energies of the vacuum, E0 and E0M , are divergent. So, to subtract the infinite

energy of the vacuum we need to use a regularization procedure. For such purpose,

let us introduced some exponential cutoff functions that converge faster than the

terms that diverge. These functions converge when a parameter δ goes to zero. It

is convenient to introduce such regularization inside the summations.

We will consider, for simplicity, a massless field with m = 0 in 2.65 and introduce

the cutoff function exp(−δckn), we can rewrite the vacuum energy as

E
(δ)
0 (a) =

~
2

∞∑
n=1

cπn

a
exp(−δcπn/a), (2.67)

and taking account that
∑∞

n=1 n exp(−δcπn/a) = 1
4

sinh−2(δcπ/2a). Then

E
(δ)
0 (a) =

~cπ
8a

sinh−2(δcπ/2a). (2.68)

If δ goes to zero we can perform an expansion of sinh−2(x) that gives leads to

E
(δ)
0 (a) =

~a
2πcδ2

− ~cπ
24a

+O(δ2). (2.69)

We follow the same procedure for the total energy of Minkowski space, applying

the cutoff regularization and keeping the case of massless field, it follows

E
(δ)
0M =

~c
2π

∫ ∞
0

dk k exp(−δck)L =
~L

2πcδ2
. (2.70)
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If we separate out the interval (0, a) of entire axis. This can be written as

E
(δ)
0M(a) =

E
(δ)
0M

L
a =

~a
2πcδ2

. (2.71)

Finally, we calculate the finite energy of the vacuum, as we know, the difference

between the infinite energies and gives us a finite result, which gives:

E(δ)(a) = E
(δ)
0 (a)− E(δ)

0M(a) = −~cπ
24a

+O(δ2). (2.72)

In the limit δ → 0, the Casimir energy for a scalar field is:

E = −~cπ
24a

, (2.73)

and, again the force is F = −dE
da

, then we conclude that the the Casimir force is

F = − ~cπ
24a2

. (2.74)

2.4.4 Casimir effect with Abel-Plana formula

An alternative way to regularized the relevant quantities is use a summation for-

mula known as Abel-Plana formula [6] which reads

∞∑
n=0

F (n)−
∫ ∞

0

F (t)dt =
1

2
F (0) + i

∫ ∞
0

dt

e2πt − 1
(F (it)− F (−it)). (2.75)

We will repeat the methods of last section, to study the Casimir Effect in a scalar

field but using the Abel-Plana formula instead of cutoff functions.

First we start from the energy of the vacuum in an interval scalar field. We take∑∞
n=1 F (n) as 2.65. And separating the term with n = 0 such that:

∞∑
n=0

F (n) =
mc2

2
+

~
2

∞∑
n=1

(
m2c4

~2
+
c2π2n2

a2

)1/2

=
mc2

2
+ E0(a,m). (2.76)

From eqn 2.66, taking account the change of variable ak = πt we have∫ ∞
0

dtF (t)dt =
E0M(m)a

L
= E0M(a,m). (2.77)
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We compute the difference between 2.76 and 2.77 to write

E(a,m) = E0(a,m)− E0M(a,m) =
∞∑
n=1

F (n)−
∫ ∞

0

dtF (t)dt (2.78)

If we apply Abel-Plana formula it follows

E(a,m) = −mc
2

4
+ i

π~c
2a

∫ ∞
0

dt

e2πt − 1
(GA(it)−GA(−it)) , (2.79)

expression we need to check in order to see if it is not divergent.

If we define the right hand part as

GA(t) ≡ (A2 + t2)1/2, withA =
mca

π~
, (2.80)

it is easy to prove that

GA(it)−GA(−it) = 2i(t2 − A2)1/2θ(t− A). (2.81)

When we substitute the previous result into eqn. 2.79, this integral can be solved

to get

E(a,m) = −mc
2

4
− ~c

4πa

∫ ∞
2µ

√
y2 − 4µ2

ey − 1
(2.82)

with πA = mca ~ = µ.

Again, for simplicity, we consider a massless field(µ = 0), in such case

E(a) = − ~c
4πa

∫ ∞
0

ydy

ey − 1
= −~cπ

24a
, (2.83)

which is the result expressed in eqn. 2.73.
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Experimental demonstration

En este caṕıtulo, se dará una explicación de como se ha medido el efecto

Casimir. Para ello, nos basaremos en el primer experimento en el que se

midió con menor error. Fue hecho por Lamoreaux en 1996 y empleó un

péndulo de torsión. Debido a la dificultad de usar placa plano paralelas,

usó en su lugar una placa y una esfera [12].

The measurement of the Casimir force is a complex task. Given the small value of

the force for the experimentally accessible surface areas, the force sensitivity of the

available measurement techniques has been a severe limitation. Another limitation

is that the separation distances where the Casimir force becomes measurable are

very small and their accurate determination has been difficult. Given that the

force has a very strong dependence on the separation and on the geometrical and

material properties of the boundary surfaces, the comparison between experiment

and theory is a challenging task.

Lamoreaux did in 1996 the first successfully demonstration of the Casimir force

[12]. In his experiment he used the plate-sphere configuration. The Casimir Effect

for this configuration is given by:

Fc(a) = 2πR
~cπ2

720a3
. (3.1)

23
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This equation needs some corrections in order to compare with the experiment:

1. The effect of temperature (T = 300◦K). Temperature corrections were com-

puted by Brown and Maclay [13]. They calculate the correction temperature

in the energy density (T 00) of plate-plate configuration using the canonical

ensemble average. Then, one compute the surface area as E = aT 00. Finally,

using proximity force theorem for plate-sphere configuration. It follows

F T
c (a) = Fc(a)

(
1 +

720

π2
f(x)

)
. (3.2)

We define x = kBTa/~c and f(x) as:

f(x) =


(x3/2π)ζ(3)− (x4π2/45) if x ≤ 1/2

(x/8π)ζ(3)− (π2/720) if x > 1/2.

(3.3)

2. Another important correction is related to the fact that conductivity is not

infinite. For finite conductivity Sweinger et al. [14] demonstrate that

Fc(a) =

(
1 +

4c

aωp

)
, (3.4)

ωp represent the plasma frequency for the conductor.

Back to the experiment of Lamoreaux, he used a system based in a torsion pen-

dulum in a vacuum chamber. A vacuum of order 10−4torr. A feedback system

was used to keep the torsion pendulum angle fixed (two compesator plates form a

capacitor with respect to the pendulum body). A DC voltage was applied to the

compensators to keep the torsion pendulum angle fixed. Also a voltage of 7.5V

was applied to the compensators in order to linearize the effect of the small cor-

rection voltage δV . Its important to mention that was used a solenoid activated

pungler to press the plates gently together during the alignment. Thus, the plates

could be brought much closer. The flat plate had a 2.54cm of diameter, it was

placed on the arm of torsion pendulum. The sphere with radius of 11.3cm, it was

mounted micropositioning assembly.

Lamoreaux measured the Casimir Force by stepping the voltage applied to the

piezoelectric stack translators. For each step, he measured the restoring force.
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This must cause change in δV to compensate the change in the angle of the

torsion pendulum. This voltages counteracting were a measure of Casimir force.

The experiment gave 32 values ai for the relative plate position.

The system calibration was obtained through electrical measurements based on

the variations of the capacitance between the plates as a function of separation.

With the plates separated but externally shorted together, there was an apparent

large potential, this potential was easily canceled by setting an applied voltage

between the plates to give a minimum δV .

The piezoelectric stack translators give very accurate and reproducible relative

changes in the plate separation; the absolute separation was determined by mea-

suring the residual electrical attraction between the plates as a function of sepa-

ration.

When the electric force is subtracted the measured residual force it follows that

Fm
c = F (ai)−

β

ai
− b, (3.5)

where a0 is a fit parameter which gives the absolute plate separation, b and β are

constants to be determined.

The magnitude of Casimir force was determined by using linear least squares to

determine a parameter δ for each sweep such that:

Fm
c = (1 + δ)F (aTi ) + b

′
. (3.6)

The most important result was given with accuracy of order 5%.
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Magnitude of Casimir Force

En este caṕıtulo, se analizarán los resultados obtenidos. Para ello se rep-

resentarán gráficamente las fuerzas calculadas. Usaremos que la distancia

entre la superficies (o del campo escalar) sean entre 0.5− 8µm.

4.1 Plate-Plate

The next figure represent the eqn. 2.16 and 2.36. We present the results in

logarithmic scale and absolute value.

Figure 4.1: Plate-Plate configuration for T = 0◦K eqn. 2.16 and for T =
300◦K eqn. 2.36.

26
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The thermal correction has a lower value to the force for short separation. At

one point both force are the same. So, we can reproduce the plate-plate without

temperature using the thermal correction.

A comparison between 2.16 and 2.19 which correspond to the attractive and repul-

sive force respectively. We can see that the repulsive force has a similar magnitude

with attractive force.

Figure 4.2: Attractive force eqn. 2.16 and repulsive force eqn 2.19.

4.2 Plate-Sphere

We consider that the radius of the sphere is 0.116m. Now we compare eqn. 2.44

and 3.2. We see that the effect of the temperature in the Casimir force is only

correction that shift the value of the force. We note that the thermal correction

has the same magnitude in short distances.
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Figure 4.3: Plate-Sphere configuration for T = 0◦K eqn. 2.44 and for T =
300◦K eqn. 3.2.

4.3 Plate-Sphere-Plate

The next figure represent eqn. 2.48. We consider a small separation of the equilib-

rium x = 10−9m. The magnitude of this force depend of the distance that separate

of the equilibrium. This force has the same magnitude that the plate-sphere con-

figuration as we expected. In this case the force goes to zero more fast than the

other cases.

Figure 4.4: Plate-Sphere-Plate configuration for small displacement of the
sphere, eqn. 2.48.
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4.4 Real scalar field

The last figure corresponds to eqn. 2.74. That force is especially small in all

distances.

Figure 4.5: Casimir force of the real scalar field, eqn. 2.74

As we see to measure a Casimir force we need to put the surfaces too close. That

is one of the reasons that measuring a Casimir force is a difficult task.
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Conclusions

In this work we have studied the basic concepts of Casimir Effect. The summary

of our study is as follows:

• We have learned how vacuum energy fluctuations lead to forces, namely

Casimir Effect.

• We have analytically computed Casimir forces in different configurations.

Besides, we have studied a thermal correction in the case of high tempera-

tures.

• We have learned how to work with divergent quantities using new math-

ematical tools we have not used in our undergraduate courses. Such as

Euler-Maclaurin formula, cutoff functions and Abel Plana formula. Obtain-

ing meaningful physical results.

• We have acquired a basic knowledge of Quantum Field Theory. We have

made a canonical quantization of real scalar field.

• We have studied an experiment where Casimir Effect have been measured.

• Finally we have shown the different magnitude of the Casimir forces for

different configurations and body surfaces.

A continuation of this work would be the study of Casimir Effect using Quan-

tum Electrodynamics. Also, we could study the Casimir Effect in a topologically

nontrivial curved space.
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