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Abstract

Históricamente, los fenómenos y sistemas en la mecánica cuántica
se comenzaron a estudiar mediante el establecimiento de analoǵıas en-
tre ellos y su homólogo clásico, siendo la mayoŕıa de estos modelos
iniciales, en realidad, modelos semiclásicos. Entre las propiedades mas
destacables de dichos tratamientos semiclásicos esta la capacidad de dar
cuenta, de forma relativamente simple e intuitiva, de fenómenos de dif́ıcil
comprensión y alejados de la realidad clásica, revelando las conexiones
entre el movimiento clásico de los sistemas f́ısicos y sus comportamien-
tos cuánticos. También es importante su utilidad para el análisis de la
espectroscoṕıa de sistemas complejos cuya dinámica clásica es caótica,
como es el caso de las moléculas en estados de vibración excitados o el
átomo de Hidrógeno en presencia de campos magnéticos de alta inten-
sidad.

En lo referido al trabajo en particular, se estudiará la utilización
del modelo WKB para la resolución de la ecuación de Schrödinger.
Además mediante un ejemplo práctico, se investigará el tratamiento
semiclásico del efecto túnel cuántico y la contribución de las trayecto-
rias clásicas complejas a dicho fenómeno.

En concreto, el trabajo consta de dos partes bien diferenciadas. En
la primera se llevará a cabo un desarrollo teórico en que se obtendrán las
expresiones en dicha aproximación semiclásica de las funciones de onda
en el caso estacionario, para una part́ıcula en una dimension sometida
a un cierto potencial, y no estacionario, para el caso de una part́ıcula
en el espacio tridimensional también sometida a un potencial suave, el
propagador y la función de Green, y finalmente, la densidad de estados.
Además en esta sección se obtendrán también las condiciones bajo las
que esta aproximación es válida, aśı como la condición de cuantización
de Bohr-Sommerfeld, antiguamente empleada en la obtención de la en-
erǵıas de los estados estacionarios. A continuación, pasamos a aplicar
dicha idea al problema de una part́ıcula en un potencial cúbico, cuyo
espectro será continuo y presentará estados resonantes para el cual ob-
tendremos acciones y periodos (tanto en el pozo como bajo la barrera)
sumando las contribuciones de las posibles trayectorias clásicas (reales
y complejas). Finalmente, a esta sección se añaden las representaciones
gráficas de dichas magnitudes frente a la enerǵıa.
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Part I

Theoretical background
En esta primera sección se dará un trasfondo teórico a los métodos semiclásicos,

es decir, vamos a obtener la forma de diferentes operadores (propagador y
función de Green) y funciones de onda (casos estacionario y no estacionario)
en el ĺımite semiclásico.

Nuestro primer paso consistirá en obtener la función de onda para una
sola part́ıcula en una dimensión el caso estacionario, haciendo uso de la ecuación
de Scrödinger independiente del tiempo. Las aproximaciones aqúı realizadas
nos llevaran a conocer los ĺımites en los que nuestro modelo dejará de ser apli-
cable y obtendremos por último la regla de cuantización de Bohr-Sommerfeld.

Después pasamos al caso no estacionario, haciendo uso de una forma
para la función de onda similar al del caso anterior. Finalmente obtenemos
el propagador y la función de Green. La parte imaginaria de la traza de esta
última nos dará la densidad de estados.

1 WKB model

The WKB approximation is a method used in this case for a semi-classical
calculation in quantum mechanics in which the wavefunction is recast as an ex-
ponential function, and its phase is taken to be slowly changing in time. WKB
is an acronym for Wentzel-Kramer-Brillouin, the three physicists who devel-
oped it in 1926. In our case we are going to follow the theoretical development
by Landau and Lifshitz [1] and Cvitanovic [2].

1.1 WKB ansatz

As in the case of wave optics, which is reduced to geometric optics when the
wavelength tends to zero, if the De Brolie wavelengths of the particles were
small compared to the condition of our problem, their properties look like those
of a classical system. Analyzing the time-independent Schrödinger equation

~2

2m
4ψ + (E − V )ψ = 0

and substituting a solution like

ψ = exp(
i

~
σ), (1)

we obtain
~2

2m
∇(∇(e

i
~σ)) + (E − V )e

i
~σ = 0.
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Taking into account that

∇(e
i
~σ) =

∂(e
i
~σ)

∂x
î+

∂(e
i
~σ)

∂y
ĵ +

∂(e
i
~σ)

∂z
k̂ =

=
∂σ

∂x
[
∂(e

i
~σ)

∂σ
]̂i +

∂σ

∂y
[
∂(e

i
~σ)

∂σ
]ĵ +

∂σ

∂z
[
∂(e

i
~σ)

∂σ
]k̂ = ∇σ(

∂(e
i
~σ)

∂σ
) = ∇σ(

i

~
e
i
~σ)

and with the property, ∇(A ·B) = A(∇B) + B(∇A), which leads us to

∇[∇σ(
i

~
e
i
~σ)] =

i

~
(4σ)e

i
~σ − 1

~2
(∇σ)2e

i
~σ

we finally find the equality

1

2m
(∇σ)2 − i~

2m
4σ = E − V (2)

By its properties the system is considered semi-classical, so σ could be ex-
panded in powers of the ”small” ~ parameter

σ = σ0 +
~
i
σ1 + (

~
i
)2σ2 + ... (3)

In the most simple case, the one-dimensional motion of a particle, equation
(2) is reduced to

1

2m
(
dσ

dx
)2 − i~

2m

d2σ

dx2
= E − V (x). (4)

By substituting equation (3) in equation (4), the lowest order approximation
σ=σ0, is a solution of the equation.

1

2m
(
dσ0

dx
)2 = E − V (x), i.e.,

σ0 =

∫
dx p(x),

where p(x) = ±
√

2m(E − V (x)), is the classical momentum.
We only could neglect ~ term in equation (4) if it is small in comparison

with the other one. In other words,

~|σ′′/(σ′)2| = |d(~/σ′)/dx| � 1.

In first order approximation σ
′
= ±p and we have

|d(λ/2π)/dx| � 1,

where λ(x) =
2π~
p(x)

is the x-dependent de Broglie wave-length. Here, we

have obtained a quantitative condition for the validity of the semi-classical
approach. Also, taking into account that

dp

dx
= −m

p

dV

dx
=
m|F |
p

,
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we find the condition
m~|F |
p3

� 1,

where F = −dV/dx is the classical force. From here it follows that close to
the turning points (p(x) = 0, E = V (x)), where classically the particle stops
and starts to move in the opposite way, the semi-classical approximation fails.

Regarding the next term in (3), the first order terms in ~ leads us to

dσ0

dx

dσ1

dx
+

1

2

d2σ0

dx2
= 0

As σ′0 = p, we finally obtain

σ′1 =
dσ1

dx
= −1

2

σ′′0
σ′0

= −1

2

p′

p
therefore σ1 = −1

2
ln p(x) + C.

Now we have an expression for σ0 and σ1 so we obtain a semi-classical
wavefunction (1) with the form

ψ =
C1√
p
e
i
~
∫
pdx +

C2√
p
e−

i
~
∫
pdx =

C1√
p
e
i
~S +

C2√
p
e−

i
~S. (5)

In this expression, the presence of the factor 1/
√
pmeans that the probability

of finding the particle between x and x+dx, |ψ|2, is proportional to 1/p. That
is exactly what is expected for a semi-classical particle, which spends a time
in the interval between x and x+ dx inversely proportional to its momentum.

1.2 Bohr-Sommerfield quantization condition

If x = a is a turning point (V (a) = E, p(a) = 0), and if for x > a, V > E,
then the classical momentum is imaginary and the region is classically banned.
Because of this, the quantum wavefunction has to tend to zero in this region,
which leads us to

ψ =
C

2
√
|p|

exp(−1

~
|
∫ x

a

p dx|) ; x > a. (6)

This expression corresponds, in fact, to the second term in (5).
On the other hand, on the classically allowed region, the wavefunction

is the linear combination of the two semi-classical solutions of the Schrödinger
equation

ψ =
C1√
p

exp(
i

~

∫ x

a

p dx) +
C2√
p

exp(− i
~

∫ x

a

p dx) ; x < a. (7)

In order to obtain the value of C, C1 and C2,it would be necessary to fol-
low the wavefunction across x = a, where the semi-classical solution is not
applicable. It is possible to avoid this problem considering ψ as a function of
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a complex variable x, which cross from negative to positive values of x − a
sufficiently far from x = a, where the semi-classical condition is always met.

First, the wavefunction will surround the point x = a from right to left
in a semi-circumference with big radio in the upper complex half-plane of x.
While we go through this contour, the function (6) should be transformed
in the second term of (7), due to the fact that the first one tends to zero
exponentially. As in this process the phase of the difference V (x)−E increases
in π, we obtain C2 = 1

2
Ce−iπ/4. In the same way when we travel through the

semi-circumference in the lower half-plane, (6) turns into the first term of (7)
with the coefficient C1 = 1

2
Ceiπ/4. This leads us finally to

ψ =
C

2
√
|p|

exp(−1

~
|
∫ x

a

p dx|) ; x > a.

ψ =
C
√
p

cos(
1

~

∫ x

a

p dx+
π

4
) =

C
√
p

sin(
1

~

∫ a

x

p dx+
π

4
) ; x < a.

With this result we could deduce the condition which determines the quan-
tum energy levels in the semi-classical case. If we take into account the one-
dimensional movement of one particle in a potential well, the classical domain,
a ≤ x ≤ b, is restricted by the turning points. The wavefunction for x > a is

ψ =
C
√
p

sin(
1

~

∫ x

a

p dx+
π

4
).

The wavefunction for x < b is

ψ =
C ′
√
p

sin(
1

~

∫ b

x

p dx+
π

4
).

Necessarily this expressions have to coincide in all the interval a ≤ x ≤ b,
so the sum of the phases have to be a whole multiple of π,

1

~

∫ b

a

p dx+
π

2
= (n+ 1)π

∮
p dx = 2π~(n+

1

2
) (8)

with C = (−1)nC ′ and
∮
p dx = 2

∫ b
a
p dx. This condition determines the sta-

tionary states of a particle in the semi-classical approximation and it is known
as the Bohr-Sommerfeld quantification rule of the semi-classical quantum the-
ory.

Besides, in order to normalize the wavefunction, we integrate |ψ|2 be-
tween x = a and x = b∫

|ψ|2 dx ∼=
C2

2

∫ b

a

dx

p(x)
=
πC2

2mω
= 1,

6



where we have substituted the sine square by its middle value 1/2 and taking
into account that ω = 2π/T , which is a function of the energy, the semi-
classical wavefunction is

=

√
2mω

pπ
sin(

1

~

∫ b

x

p dx+
π

4
).

2 Semi-classical evolution

In the last section, we have been working with the stationary states of a 1D
particle moving in a smooth potential. Now, we are going to work with the non
stationary solutions corresponding to a particle in a d-dimensional space, with
mass m and coordinates q = (q1, q2, ..., qd), moving in an external potential
V (q). The particle wavefunction ψ(q, t) is a solution of the time dependent
Schrödinger equation

i~
∂

∂t
ψ(q, t)− ~2

2m
[
d∑
i=1

∂2

∂q2
i

ψ(q, t)]− V (q)ψ(q, t) = 0.

Taking into account the last section wavefunction our ansatz will be

ψ(q, t) = A(q, t)e
i
~R(q,t),

with rapidly varying phase R(q, t) and and slowly varying amplitude A(q, t),
both real magnitudes.

If A 6= 0 and we separate the real and imaginary part, we get two equa-
tions, the real part governs the time evolution of the phase

∂R

∂t
+

1

2m
(
d∑
i=1

∂R

∂qi
)2 + V (q)− ~2

2mA

d∑
i=1

∂2A

∂q2
i

= 0, (9)

and the imaginary part the time evolution of amplitude

∂A

∂t
+

1

m

d∑
i=1

∂A

∂qi

∂R

∂qi
+

A

2m

d∑
i=1

∂2R

∂q2
i

= 0. (10)

Is important to see that the coupling term in (9) is of order ~2 and thus
small in the semi-classical limit ~ −→ 0. Taking this into account equation (9) is 
finally the classical Hamilton-Jacobi equation,

∂R

∂t
+H(q,p) = 0, (11)

being p =
∂R

∂q
the canonical momenta.
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2.1 Hamilton’s equations

In order to obtain the phase R(q, t), and knowing that

dR

dt
=
∂R

∂t
+

d∑
i=1

∂R

∂qi
q̇i = −H(p(t),q(t)) + p(t)q̇(t), (12)

we have to integrate equation (12), which leads us to

R(q, t) = R(q′, t0) +R(q, t; q′, t0)

R(q, t; q′, t0) =

∫ t

t0

dτ [q̇(τ)p(τ)−H(q(τ),p(τ))], (13)

Our trajectory should satisfy a two-time boundary condition. At the final
time (t), q(t) = q and p(t) is arbitrary and, at the initial time (t0), q(t0) = q′

and p(t0) = p′, which fulfills the relationship

p′ =
∂R

∂q
(q′, t0).

If energy is conserved the only time dependence of H(q,p) is through
(q(τ),p(τ)), so R(q, t; q′, t0) does not depend on t0, but only on the elapsed
time t− t0. If we set t0 = 0 we finally obtain

R(q, t) = R(q′, 0) +R(q,q′, t).

When the energy is conserved, H(q,p) = E, the
∫
H(q, p)dτ integral in (13)

is Et. The other part is the action

S(q,q′, E) =

∫ t

0

dτ q̇(τ)p(τ) =

∫ q

q′
dq p. (14)

By (13) we can say that the action is the Legendre transform of 
Hamilton’s principal function

S(q,q′, E) = R(q,q′, t) + Et. (15)

2.2 Semi-classical wavefuntion

In order to obtain the full solution of the Schrödinger equation, we have

to integrate (10) too. To the leading order in ~, the gradient of R might 
be interpreted as the semi-classical momentum density

∗(q, t)(−i~
d∑
i=1

∂

∂qi
)ψ(q, t) = −i~A

d∑
i=1

∂A

∂qi
+ ρ

d∑
i=1

∂R

∂qi
,

where ρ(q, t) = A2 =ψ∗ψ. The equation (10) leads us the continuity equation,

∂ρ

∂t
+

d∑
i=1

∂

∂qi
(ρνi) = 0.
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Here, νi(q, t) = q̇i =
pi
m

denotes the component i of a velocity field,

νi(q, t) =
1

m

∂

∂qi
R(q, t).

In a small configuration space volume ddq around a point q at time t, the
number of particles in it is ρ(q, t)ddq. Initially, this swarm of particles, are in a
small volume ddq′ around q′. The conservation of the particle number implies
that

ρ(q(t), t)ddq = ρ(q′, 0)ddq′,

so we finally obtain,

ρ(q(t), t) = | det
∂q′

∂q
|ρ(q′, 0),

where the determinant is the Jacobian of the transformation q = q(q′, t).
With these considerations, the semi-classical wavefunction at time t is

ψsc(q, t) = A(q, t)e
i
~R(q,t) =

√
det

∂q′

∂q
A(q’, 0)e

i
~ (R(q′,0)+R(q,q′,t)) =

=

√
det

∂q′

∂q
e
i
~R(q,q′,t)ψ(q′, 0).

In this case we are considering that our initial wave function can be written
in terms of single-valued functions A(q′, 0) and R(q′, 0). Besides, for short
times, R(q, t) will remain single-valued.

As time goes by, ∂qR(q, t) can develop folds and consequently, the value of
the phase is not unique, i.e., more than one trajectory will connect q′ and q
with different phases R(q,q′, t) accumulated along these paths.

We expect different trajectories from q′ to q which we will index by j and
with different phases Rj(q,q

′, t).
Whenever the Lagrangian manifold develops a fold, the orientation of the

pieces of the Lagrangian manifold changes (q, ∂R(q,t)
∂q

) with regard to the initial
one, so the eigenvalues’ sign changes at each fold crossing. So, to keep track
of the signs we write the Jacobian determinant as

det
∂q′

∂q
|j = e−iπmj(q,q

′,t)| det
∂q′

∂q
|j,

where the topological index of the trajectory, mj(q,q
′, t), counts the number

of sign changes of the Jacobian determinant on the way from q to q′ along the
j − th trajectory.

Finally, the semi-classical aproximation to the wave function is a sum over
possible trajectories that start at q′ and end in q at time t, with each contri-
bution weighted by the corresponding phase increment, the topological index
and density,

ψsc(q, t) =
∑
j

| det
∂q′

∂q
|1/2j e

i
~ (Rj(q,q

′,t)−π
2
~mj(q,q′,t))ψ(q

′

j, 0). (16)
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3 Semi-classical propagator

The quantum evolution operator, or the propagator, in the coordinate repre-
sentation, satisfies the Schrödinger equation

i~
∂

∂t
K(q,q′, t) = H(q,p)K(q,q′, t).

In terms of the stationary solutions, the non-stationary solutions of the time-
dependent Scrödinger equation for time-independent Hamiltonian operators
have the form

ψ(q, t) =
∑
n

cne
−iEnt/~φn(q),

where the expansion coefficient cn is given by

cn =

∫
dqφ∗n(q)ψ(q, 0).

so we obtain

ψ(q, t) =

∫
dq′K(q,q′, t)ψ(q′, 0)

with
K(q,q′, t) =

∑
n

φn(q)e−iEnt/~φ∗n(q′).

From the completeness relation, we obtain the boundary condition at t = 0:

lim
t−→0+

K(q,q′, t) = δ(q− q′).

To obtain a semi-classical approximation to the propagator we follow now
the ideas developed in last section. The only problem is that the initial con-
dition demands that the propagator a t = 0 is a δ-funtion at q = q′, so our
hypothetical cloud of particles is initially located at q = q′ with arbitrary
velocity. However in the previous section we assumed that the particles at a
certain point q have a defined velocity given by q̇i = ∂piH(q,p). This is the
main reason why we will derive the semiclassical propagator considering it for
short times first, and extrapolating from there to arbitrary times t.

3.1 Short times propagator

Away from t = 0 and for infinitesimally short times δt we write the propa-
gator as,

K(q,q′, δt) = A(q,q′, δt)e
i
~R(q,q′,δt).

If the particle starts at q = q′ = (q′1, q
′
2, ..., q

′
d) and q̇ ≈ (q − q′)/δt, the

phase R(q,q′, δt) is

R(q,q′, δt) =
m

2δt
(q− q′)2 − V (q)δt.
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For infinitesimal times we can neglect the term V (q)δt, so Ksc(q,q
′, δt) could

be considered as a d-dimensional Gaussian with width σ2 = i~δt/m. As we
have seen, when t tends to zero, the propagator should be a Dirac delta. Thus,
A(q,q′, δt) is fixed by

δ(z) = lim
σ−→0

1√
2πσ2

e−z
2/2σ2

,

and we obtain

Ksc(q,q
′, δt) ≈ (

m

2πi~δt
)
3
2 e

i
~ (
m(q−q′)2

2δt
−V (q)δt).

Also, the value of p at short times is

p =
∂R

∂q
' m

δt
(q− q′).

We could reinterpret the prefactor (m/δt)
3
2 as the determinant of the Ja-

cobian of the transformation from final position coordinates (q) to the initial
momentum coordinates (p′), if we notice that

∂pi
∂qj

=
∂

∂qj
(
∂R

∂q′i
) = − ∂2R

∂qj∂q′i
= −∂p

′
i

∂qj
=
m

δt
δij.

So the final expression for the semi-classical propagator at short times is

Ksc(q,q
′, δt) =

1

(2πi~)3/2
(det

∂p′

∂q
)1/2e

i
~ (R(q,q′,δt), (17)

where
∂p′i
∂qj
|t,q′=

∂2R

∂qj∂q′i
.

The subscript ...|t,q′ i ndicates that the partial derivatives are evaluated with 
q′ and t  fixed.

In order to obtain the final expression we only have to evolve our short 
time approximation of the propagator according t o (16)

Ksc(q
′′,q′, t′ + δt) =

∑
j

| det
∂q

∂q′′
|1/2j e

i
~ (Rj(q

′′,q,t′)−π
2
~mj(q′′,q,t′))K(q,q

′
, δt).

Here the topological index mj(q
′′,q′, t) represents the number of singularities

in the Jacobian along the j-th trajectory from q′ to q′′. Here we have included
the possibility that the phase becomes multi-valued, this is, that there are
more than one path from q′ to q′′.

If we take into account that R(q′′,q′, t′) +R(q,q′, δt) = R(q′′,q′, t′+ δt)
and also

det
∂q

∂q′′
|t det

∂p′

∂q
|q′,δt = det

∂p′

∂q′′
|q′,t′+δt,

the final form of the semi-classical propagator (or Van Vleck propagator), is

Ksc(q,q
′, t) =

∑
j

1

(2πi~)3/2
(det

∂p′

∂q
)1/2 e

i
~R(q,q′,t)− i

2
πmj .
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4 Semi-classical Green funtion

In the previous sections we have obtained approximate solutions to the time
dependent Scrödinger equation and this solution remained valid for more com-
plicated and time-dependent Hamiltonians. On the one hand, the propagator
is important when we are interested in finite time quantum effects. On the
other hand, and for time-independent Hamiltonian operators, the time depen-
dence in the wave function and the propagator will be given in terms of the
energy eigen-spectrum of the system as a given wave function can be expanded
in energy eigen-basis

ψ(q, t) =
∑
n

cne
−iEnt/~φn(q)

and also the propagator

K(q,q′, t) =
∑
n

φn(q)e−iEnt/~φ∗n(q′),

Due to this fact, it is a good idea to change from a time to an energy
representation, this is from the propagator to the Green’s function. The semi-
classical approximation of the Green’s function Gsc(q,q

′, E) is the Laplace
transform of the Van Vleck operator Ksc(q,q

′, t)

Gsc(q,q
′, E) =

1

i~

∫ ∞
0

dt eiEt/~Ksc(q,q
′, t). (18)

In order to evualate this integral we need to use the stationary phase method
(Apendix I).

4.1 Green function for long trajectories

In order to evaluate the integral (18), in an approximate way, we have to
distinguish between two types of contributions: one coming from stationary
point of the phase and those coming from infinitesimally short times.

This is due to the singular behavior of the propagator for t −→ 0, where
the amplitude does not change slowly compared with the phase.

Taking into account the form of the Van Vleck propagator, the stationary
phase point (t∗) will be given by

∂

∂t
R(q,q′, t∗) + E = 0,

which is exactly the derivative with respect to time of the equation (15) so
t∗ = t∗(q,q′, E) is the arbitrary time in which a particle goes from q′ to q,
with a fixed energy E. And the second derivate evaluated at the stationary
phase point is

R(q,q′, t) + Et = R(q,q′, t∗) + Et∗ +
1

2

∂2

∂t2
R(q,q′, t∗)(t− t∗)2 + ...

12



So for a certain trajectory j in the Van Vleck propagator, the stationary
phase approximation of the integral is

Gj(q,q
′, E) =

1

i~(2iπ~)(d−1)/2
| detCj(

∂2Rj

∂t2
)−1|1/2ei(

Sj
~ −mj

π
2

), (19)

where Cj =
∂p′

∂q
and Rj are evaluated at time t∗ and mj includes now also the

possible additional phase arising from the stationary phase integration.
First of all, we re-express the phase in terms of the action(which depends

on energy)

S(q,q′, E) = R(q,q′, t∗) + Et∗, with t∗ = t∗(q,q′, E)

and it is important to notice that the first derivative of the action respect to
the coordinates is (Cvitanovic [2])

∂S(q,q′, E)

∂q
=
∂R(q,q′, t∗)

∂q
(20)

Also, we will try to simplify the amplitude term in (19), rewriting it as 
a function of energy. Considering the matrix

D(q,q′, E) =


∂2S

∂q∂q′
∂2S

∂E∂q′

∂2S

∂q∂E

∂2S

∂E2

 =

−
∂p′

∂q
−∂p′

∂E
∂t

∂q

∂t

∂E


taking into account the derivatives of (15) with respect to the energy and (14)
with respect to the position

∂

∂E
S(q,q′, E) = t

∂

∂q′i
S(q,q′, E) = p′i.

Also is important to notice that the minus signs follow from the action defi-
nition (14), which implies that S(q,q′, E) = −S(q′,q, E). It is easy to notice
that, for a fixed q′, D is the Jacobian matrix of the coordinate transformation
(q, E) −→ (p′, t).

detD = (−1)d+1[ det
∂(p′, t)

∂(q, E)
]q′ = (−1)d+1[ det

∂(p′, t)

∂(q, t)

∂(q, t)

∂(q, E)
]q′

= (−1)d+1(det
∂p′

∂q
)t,q′ (det

∂t

∂E
)q′,q = detC(

∂2R

∂t2
)−1

In order to obtain this relation we have taken into account that

∂2R

∂t2
∂2S

∂E2
=
∂2R

∂t2
∂t

∂E
= −1.

13



We can now rewrite the semi-classical approximation of the contribution of
the jth trajectory to the Green’s function in explicity energy dependent form

Gj(q, q
′, E) =

1

i~(2iπ~)(d−1)/2
| detDj|1/2e

i
~ (Sj−π~2 mj) (21)

Taking into account that Gj(q,q
′, E) is constrained to a certain energy

H(q,p = ∂S
∂q

) = E we obtain

0 =
∂

∂q
H(q,p) =

d∑
j=1

∂H

∂pj

∂pj
∂q

=
d∑
j=1

∂2S

∂qj∂q
q̇j

0 =
∂

∂q
H(q′,p′) =

d∑
j=1

∂H

∂p′j

∂p′j
∂q

=
d∑
j=1

∂2S

∂q∂q′j
q̇′j

Now we rotate the coordinate system to a new local configuration where the
first coordinate (q‖) is going to be always parallel to the trajectory and the
rest (d− 1) perpendicular to it

(q1, q2, ..., qd) −→ (q‖, q⊥1, ..., q⊥(d−1)),

also taking this into account, the velocity vector will be

(q̇1, q̇2, ..., q̇d) −→ (q̇‖, 0, ..., 0).

As the longitudinal coordinate axis q‖ point always along the velocity
vector of magnitude q̇, the matrix of S(q,q′, E) has a column and a row of
zeros because the initial and final velocities (q̇‖ and q̇‖

′) are non-vanishing
except for the turning points

0 = q̇′
∂2S

∂q∂q′‖
= q̇

∂2S

∂q‖∂q′
.

Evaluating also
∂2S

∂q‖∂E
=

∂t

∂q‖
=

1

q̇‖

∂2S

∂E∂q′‖
=

∂t

∂q′‖
=

1

q̇‖
′

we can reduce the determinant of the [(d+1) x (d+1)] dimensional matrix

detD(q,q′, E) = (−1)d+1 det


0 0

∂2S

∂E∂q′‖

0
∂2S

∂q⊥∂q′⊥
∗

∂2S

∂q‖∂E
∗ ∗

 ,

14



to the [(d− 1)x(d− 1)] dimensional transverse matrix D⊥(q,q′, E)

detD(q, q′, E) =
1

q̇‖q̇‖
′ detD⊥(q,q′, E)

D⊥(q,q′, E)ik = −
d−1∑
i=1

d−1∑
k=1

∂2S(q, q′, E)

∂q⊥i∂q′⊥k
.

Everything together for the jth trajectory is

Gj(q,q
′, E) =

1

i~(2iπ~)(d−1)/2

1

|q̇‖q̇‖′|1/2
| detDj

⊥|
1/2 exp(

i

~
Sj −

iπ

2
mj),

where mj counts now the number of changes of sign of detDj
⊥ along the tra-

jectory j which connects q′ with q at energy E.

4.2 Green function for short trajectories

For short times we evaluate the integral involving the short time form of the
exact quantum mechanical propagator (17).

G0(q,q′, E) =
1

i~

∫ ∞
0

dt(
m

2itπ~
)d/2e

i
~ ([

m(q−q′)2
2t

−V (q)t]+Et)

=
m

i~2(2iπ)d/2
(

√
2m(E − V )

~|q− q′|
)
d
2
−1

∫ ∞
0

dτ

τ d/2
e
i
2~S0(q,q′,E)(τ+1/τ),

where we have introduced the variable τ =

√
2m(E − V )

~|q− q′|
t and the action in

the short distance form is S0 =
√

2m(E − V )|q− q|.
Now if we use the integral representation of the Hankel function

H+
ν (z) = − i

~
e−iνπ/2

∫ ∞
0

e
iz
2

(τ+1/τ)τ−ν−1dτ,

we can write the short distance form of the Green’s function as

G0(q,q′, E) ≈ − im
2~2

(

√
2m(E − V )

2~π|q− q′|
)
d−2
2 H+

d−2
2

(S0/~). (22)

5 Trace formula and average density of states

As we are just interested in the spectra, our task is to evaluate the trace of
the Green’s function, this is formally talking,

TrG(q,q′, E) =

∫
dq G(q,q, E) =

∫
ddq

∑
n

φn(q)φ∗n(q)

E ′ + iε− En

15



=
∑
n

1

E − En

∫
ddqφn(q)φ∗n(q) =

∑
n

1

E − En
,

defined in the half upper complex plane and E = E ′+ iε is complex with imag-
inary positive part. In order to obtain this result we have taken into account
the orthonormality of the basis for a bound systems

∫
ddq φn(q)φ∗m(q) = δnm

and also the definition of the Green’s function as the Laplace transform of the
propagator. It is important to notice that this is only a formal trace because
this sum is usually divergent.

The main reason to calculate this trace is that our final aim is to obtain
the density of states, a representation with a delta peak at each eigen-energy.

d(E) =
∑
n

δ(E − En) = − lim
ε−→0

1

π
Im TrG(q,q′, E ′ + iε), (23)

where we have used the identity

δ(E − En) = − lim
ε−→+0

1

π
Im

1

E ′ − En + iε
.

5.1 Trace formula

So our task now is to evaluate the Green’s function trace in the semi-classical
approximation.

TrGsc(E) =

∫
ddq Gsc(q,q, E) = TrG0(E) + TrGosc(E) =

= T rG0(E) +
∑
j

∫
ddq Gj(q,q, E),

where there are contributions from the ”zero length” trajectories, whose lengths
approach to zero as q′ −→ q, and the ”long” classical ones, which start and
end in q after a finite time.

We will begin with these last ones. As now we identify q with q′,and
perform the integral by using the stationary phase approximation.

∂Sj(q,q
′, E)

∂qi
|q′=q +

∂Sj(q,q
′, E)

∂q′i
|q′=q = pi(q,q, E)− p′i(q,q, E) = 0,

so the trace receives contributions only from those long classical trajectories
which are periodic in the full phase space (like positions, the initial and the
final momenta coincide as well).

For a periodic orbit the natural coordinate system is the intrinsic one,
with q‖ axis pointing in the q̇ direction along the orbit and the rest transverse
to it. So, in this coordinates the jth periodic orbit contribution to the trace
of the semi-classical Green’s function is

16



TrGj(E) =
1

i~(2π~)(3−1)/2

∮
j

dq‖
q̇

∫
j

dq⊥| detDj
⊥|

1/2e
i
~ (Sj− ~π

2
mj),

where the integration in q‖ goes from 0 to Lj. As always, in the stationary
phase approximation we assume that the density varies smoothly so is well
approximated by Dj

⊥(q‖,0, E) on the classical trajectory, q⊥ = 0. Also the
topological index mj(q‖,q⊥, E) does not depend on the initial point q‖, so we
set mj(E).

The transverse integration is carried out by the stationary phase method
again, with the phase stationary on the periodic orbit, q⊥ = 0. If we express
the determinant of the second derivative matrix as

detD′⊥j = det(
∂2S

∂q⊥i∂qk
+

∂2S

∂q′⊥i∂qk
+

∂2S

∂q⊥i∂q′k
+

∂2S

∂q′⊥i∂q
′
k

),

we obtain as a result of the transverse integration

TrGj =
1

i~

∮
dq‖
q̇
|
detD⊥j(q‖,0, E)

detD′⊥j(q‖,0, E)
|1/2e

i
~ (Sj−π~2 mj).

So our next task is to obtain the value of detD⊥j/ detD′⊥j. In terms of
the monodromy matrix of the periodic orbit we could give to this determinant
the next meaning

detD⊥ = |∂p′⊥
∂q⊥
| = |∂q′⊥

∂q⊥

∂p′⊥
∂q′⊥
| = |∂(q′⊥,p

′
⊥)

∂(q⊥,q
′
⊥)
|

detD′⊥ = |∂p⊥
∂q⊥

− ∂p′⊥
∂q⊥

+
∂p⊥
∂q′⊥

− ∂p′⊥
∂q′⊥
| = |∂(p⊥ − p′⊥,q⊥ − q′⊥)

∂(q′⊥,q⊥)
|,

and defining the transverse vector x⊥ = (q⊥,p⊥) in the full phase space, the
ratio is now

detD′⊥
detD⊥

= |∂(p⊥ − p′⊥,q⊥ − q′⊥)

∂(q′⊥,q⊥)
||∂(q⊥,q

′
⊥)

∂(q′⊥,p
′
⊥)
| = |∂(p⊥ − p′⊥,q⊥ − q′⊥)

∂(q′⊥,p
′
⊥)

|

= |∂(x⊥ − x′⊥)

∂x′⊥
| = det(M− 1),

where M is the monodromy matrix for a surface of section transverse orbit
within the constant energy E = H(q,p) shell.

Furthermore, the classical periodic orbit action Sj(E) is an integral
around the loop defined by the periodic orbit, but does not depend on the
starting point q‖, and is defined as

Sj(E) =

∮
p(q‖, E)dq‖,
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as M neither depends on it, the action and the term det(1−Mj) can be taken
out of the q‖ integral

trGj(E) =
1

i~
∑
j

1

| det(1−Mj)|1/2
e
i
~ (Sj− ~π

2
mj)

∮
dq‖
q̇
.

Here we have assumed that Mj has no marginal values. The action Sj(E), the
topological index mj and Mj are classical invariants of the periodic orbit.

Taking into account the fact that any repeat of a periodic orbit is also a
periodic orbit and as the action and the topological index are additive along
the trajectory, for rth repeat we simply multiply by r. Also, because of the
chain rule of derivatives, the monodromy matrix of the rth repeat of a prime
cycle p is simply (Mp)r, where Mp is the prime cycle monodromy matrix.

Now we denote the time period of the prime cycle p, the single transversal
of a periodic by Tp. As dt = dq‖/q̇(t)∫ Lp

0

dq‖
q̇(t)

=

∫ Tp

0

dt = Tp.

All in all, we obtain the Gutzwiller trace formula

TrGsc = TrG0 +
1

i~
∑

p

Tp

∞∑
r=1

1

| det(1−Mr
p)|1/2

e
ir
~ (Sp− ~π

2
mp) (24)

where the topological index mp(E) counts the number of changes of sign of
the second derivatives evaluated along the periodic orbit p. (24) is valid only
for isolated periodic orbits as occurs in 1d systems and chaotic systems.

5.2 Average density of states

The semi-classical contribution to the density of states is given by the imag-
inary part of the Gutzwiller formula (24) multiplied with -1/π. Also the con-
tribution coming from zero length trajectories is the imaginary part of (22) for
q′ → q integrated over the configuration space

d0(E) = − 1

π

∫
dqImG0(q,q, E),

and coincides with the classical value of the density of states, whose expression
is in general

d0(E) =

∫
dpdq

(2π~)d
δ(E −H(q,p))

The final form for the semi-classical density of states is a sum of this average
density and the oscillation density of states around the average, derived from
the second part of (24), dsc(E) = d0(E) + dosc(E) where

dosc =
1

π~
∑

p

Tp

∞∑
r=1

cos(rSp(E)/~− rmpπ/2)

| det(1−Mr
p)|1/2
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Part II

Application
Ahora, partiendo del formalismo anteriormente desarrollado, procederemos

a la resolución de un problema concreto. Este consistirá en un sistema de una
sola part́ıcula unidimensional atrapada en un potencial cúbico.

El primer paso para el cálculo de las acciones y periodos tanto en la
barrera como en el pozo es obtener los puntos en los que el potencial se anula
para cada valor de la enerǵıa. Además, como hemos visto en la sección anterior,
a la traza contribuirán todas las posibles trayectorias cerradas, tanto reales
como imaginarias y tendremos que considerarlas a la hora de obtener la misma.

Finalmente, mediante teoŕıa de perturbaciones , obtenemos las correc-
ciones a las auto-enerǵıas a orden cero, de la que recuperaremos la condición de
cuantización de Bohr-Sommerfeld, y a primer orden, que podremos relacionar
con el tiempo de vida de los estados.

6 Cubic potential problem

Our next step is to use this formalism in a particular case. We will study
the semi-classical dynamics of a particle with mass m under the effect of a
cubic potential in 1d configuration space. This potential will have a relative
minimum at q = 0, and a relative maximum, this is, a potential barrier.

The Hamiltonian operator for this system in the coordinate (q) repre-
sentation is

Ĥ = − ~2

2m

∂2

∂q2
+

1

2
kq2 − αq3.

Performing now the coordinate change

q = aq∗,

which leads us to

Ĥ = − ~2

2ma2

∂2

∂q2
∗

+
1

2
ka2q2

∗ − αa3q3
∗.

Choosing a so that

ka2 =
~2

ma2

which gives

a =

√
~√
mk

.

Now, scaling Ĥ in the form
Ĥ = ka2Ĥ ′,
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where the scaled Hamiltonian operator is then

Ĥ ′ =
Ĥ

~ω0

= −1

2

∂2

∂q2
∗

+
1

2
q2
∗ − α∗q3

∗,

where ω0 =

√
k

m
is the frequency at the minimum of the potential and α∗ is

the only parameter of the problem. Ĥ ′ measures energy in units of ~ω0, and
is a reduced Hamiltonian operator in which ~ = 1.

Now,with q∗ ≡ q the classical Hamiltonian operator will be

H =
p2

2
+
q2

2
− α∗q3.

First of all, we want to re-express the constant α∗ in the potential V (q) =
q2

2
− α∗q3 as a function of D, the energy at the barrier top. If we take into

account that, when we are at the top of our potential

∂V

∂q
= q − 3α∗q

2 = 0,

this leads us to

qm =
1

3α∗
.

Now in order to obtain the relation between α∗ and D, we substitute this
qm value in V (q)

V (qm) = D =
1

2
(

1

3α∗
)2 − α∗(

1

3α∗
)3 =

1

9α2
∗
(
1

2
− 1

3
) =

1

54α2
∗
.

Taking this into account, the final expression for the potential will be

V (q) =
q2

2
− q3

√
54D

,

which fulfills
lim

q−→−∞
V (q) = +∞

lim
q−→∞

V (q) = −∞.

A plot of this potential is given in Figure 1.

Taking these conditions into account we will have a non-degenerate con-
tinuous spectrum (Cohen-Tannoudji, Diu and Laloe [3]).

We will study our system for energies 0 < E < D, i.e., within the
potential well region. As far as the spectrum is concerned, there is a certain
probability of trapped states within the barrier, which decay through tunelling
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Figure 1: Potential V(q)

across the barrier. These states are called resonances in scattering theory and 
are immersed in the continuous spectrum.

One can associate a complex energy with them

E = Er − iEi.

The imaginary part is responsible for the decay of the state into the continuum.
The rate of this decay will be

Γ =
2Ei
~
,

and the lifetime

τ =
1

Γ
.

Since we want to obtain, for the different values of the energy (E), the
three points where the potential cuts the q-axis, we make p = 0 and then

p =
√

2(E − V ) = 0⇒ 2(E − V ) = 0,

so the final equation which we have to solve is

2√
54D

q3 − q2 + 2E = 0

This equation depends on E as a parameter and we are going to find its solu-
tions using the Cardano’s Method. This method allows us to solve analytically
any cubic equation in one variable. So for an equation like

αx3 + βx2 + γx+ δ = 0
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where α, β, γ, and δ are real numbers, we first divide the whole equation by
the coefficient α so we obtain

x3 + ax2 + bx+ c = 0.

and in our problem a = −
√

27D

2
, b = 0 and c =

√
54DE.

Now we are going to obtain the reduced form of the cubic equation

z3 + pz + q = 0

where

z = x+
a

3
= x− 3

2

√
54D,

p = b− a2

3
= −9D

2
,

q =
2a3

27
− ab

3
+ c = −

√
27D

2
+
√

54DE.

Taking into account the value of the discriminant ∆ = (q/2)2 + (p/3)3 it is
easy to calculate one of the roots as

x = 3

√
−q

2
+
√

∆ + 3

√
−q

2
−
√

∆− a

3

Once this root is obtained (for each value of E) it is simple to calculate the
other two using Ruffini’s rule.

To study this problem we need, not only real trajectories, but also imag-
inary ones in order to describe the tunnelling.

For a general Hamiltonian operator

H =
p2

2
+ V (q),

the Hamilton’s equations will be

q̇ = p

ṗ = −∂V
∂q

As the momentum p is

p = ±
√

2(E − V ) =
dq

dt
(25)

we can obtain the time necessary to go from q′ to q as

t =

∫ q

q′

dq

±
√

2(E − V )
. (26)
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Here, we have two different possibilities. When E > D, this is, when the
movement of the particle takes place over the barrier, 2(E − V ) > 0, which
implies that, not only q, p and t are always real, but also the trajectories.
However, when E < D, which is the case we are dealing with, we will have
real and imaginary trajectories. In the well, where E > V , q, p ,t and the
trajectories will be real, but below the barrier, as E < V , q remains real but
t and p, according to (25) and (26), will both be imaginary. This leads us
to a complex trajectory, which means that, when we enter the barrier we are
increasing the imaginary parts of the time (t) and the momentum (p), and
when we enter the well, their real parts.

In this region, performing now the changes

p→ ip′

t→ −it′

q → q′,

where p′ and t′ are now real.
The Hamilton’s equations are then

dq′

dt′
= p′

dp′

dt′
=
∂V

∂q′
,

and the new Hamiltonian operator

H ′ =
p′2

2
− V (q′),

so, by performing this change, we have real trajectories in a reversed potential.
Taking this into account, we are going to evaluate actions and periods in

two regions (Γ and Γb). These periods and actions will be calculated from the
periodic trajectories with their beginnings and ends in the well and the barrier.
Also, we will denote as S the real action of the periodic orbits at energy E
in the well and Sb the imaginary action of a round-trip oscillation under the
potential barrier.

Now, we are going to write the trace of the Green’s function as an ad-
dition over all the real and imaginary periodic trajectories which begin in any
of these two regions. Keeping in mind all the possibilities we will follow the
procedure followed by Mart́ın-Fierro [4] in the resolution of another problem.
It is important to remember that the only trajectories which contribute to the
trace of the Green’s function are the periodic ones, also called orbits, as we
said in (24).
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First, we are going to study the trajectories which start below the barrier.
In the case in which the particle starts in a point under the barrier and goes
back after a certain number of laps in the well

−eSb/~
∞∑
l=0

(−eiS/~)l.

Another possibility is a similar process, but performing two passes down the
barrier instead of one

e−Sb/2~
∞∑
l=0

(−eiS/~)l(−e−Sb/2~)e−Sb/2~
∞∑
l=0

(−eiS/~)l(−e−Sb/2~)

= [(−e−Sb/~)
∞∑
l=0

(−eiS/~)l]2

And all the trajectories which start and end below the barrier will be then
characterized by

∞∑
n=1

[(−e−Sb/~)
∞∑
l=0

(−eiS/~)l]n.

On the other hand, as far as the trajectories which start in the well is
concerned, we should take into account that here we could make infinite oscil-
lations in the well without leaving it

∞∑
n=1

(−eiS/~)n,

and if the particle also makes a round-trip oscillation within the barrier

∞∑
n=1

(−eiS/~)n(−e−Sb/2~)e−Sb/2~
∞∑
l=0

(−eiS/~)l =
∞∑
n=1

(−eiS/~)ne−Sb/~
∞∑
l=0

(−eiS/~)l.

For two laps under the barrier

∞∑
n=1

(−eiS/~)n(−e−Sb/~)
∞∑
l=0

(−eiS/~)l(−e−Sb/2~)e−Sb/2~
∞∑
l=0

(−eiS/~)l =

=
∞∑
n=1

(−eiS/~)n[(−e−Sb/~)
∞∑
l=0

(−eiS/~)l]2.

Taking this into account, all the trajectories which begin at the well will be
characterized by

∞∑
n=1

(−eiS/~)n
∞∑
j=0

[(−e−Sb/~)
∞∑
l=0

(−eiS/~)l]j.
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These two cases lead us to a trace of the Green’s functions with the next
shape

TrGosc(E) =
1

i~
(
∞∑
n=1

[(−e−Sb/~)
∞∑
l=0

(−eiS/~)l]n
∫

Γb

dq
1

q̇
+

+
∞∑
n=1

(−eiS/~)n
∞∑
j=0

[(−e−Sb/~)
∞∑
l=0

(−eiS/~)l]j
∫

Γ

dq
1

q̇
)

=
1

i~
(−iTb

∞∑
n=1

[(−e−Sb/~)
∞∑
l=0

(−eiS/~)l]n+T
∞∑
n=1

(−eiS/~)n
∞∑
j=0

[(−e−Sb/~)
∞∑
l=0

(−eiS/~)l]j)

If we keep in mind the geometrical series

∞∑
n=0

xn =
1

1− x
,

and we apply it to the terms of our trace formula:

∞∑
l=0

(−eiS/~)l =
1

1 + eiS/~
,

what we obtain is

TrGosc(E) =
1

i~
[−iTb

∞∑
n=1

(
−e−Sb~

1 + eiS/~
)n + T

∞∑
n=1

(−eiS/~)n
∞∑
j=0

(
−e−Sb/~

1 + eiS/~
)j ].

Now we are going to treat these three additions separately

∞∑
n=1

(
−e−Sb~

1 + eiS/~
)n =

1

1 + e−Sb~

1+eiS/~

− 1 =
1 + eiS/~

1 + eiS/~ + e−Sb~
− 1 =

−e−Sb~

1 + eiS/~ + e−Sb~

∞∑
n=1

(−eiS/~)n =
1

1 + eiS/~
− 1 =

−eiS/~

1 + eiS/~

∞∑
j=0

(
−e−Sb/~

1 + eiS/~
)j =

1

1 + −e−Sb/~
1+eiS/~

=
1 + eiS/~

1 + eiS/~ + e−Sb~
,

and because of this

TrGosc(E) =
1

i~
[
iTbe

−Sb~ − TeiS/~

1 + eiS/~ + e−Sb~
] (27)

The contribution of the zero length is easy to obtain. We just calculate it
as the half of the terms corresponding to the zero order term in the TrGosc

expression, so we finally obtain:

TrG(E) =
T − iTb

2i~
+

1

i~
[
iTbe

−Sb~ − TeiS/~

1 + eiS/~ + e−Sb~
], (28)
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where T =
∂S

∂E
and Tb = −∂Sb

∂E
are the periods in the well and the barrier.

The integrals to calculate the periods and the actions (S and Sb) are

S = 2

∫ x2

x1

dx
√

2(E − V ) = 2

√
2√
54D

∫ x2

x1

dx
√

(x− x1)(x− x2)(x− x3)

Sb = 2

∫ x3

x2

dx
√

2(E − V ) = 2

√
2√
54D

∫ x3

x2

dx
√

(x− x1)(x− x2)(x− x3)

T = 2

∫ x2

x1

dx√
2(E − V )

= 2

√√
54D

2

∫ x2

x1

dx√
(x− x1)(x− x2)(x− x3)

Tb = 2

∫ x3

x2

dx√
2(E − V )

= 2

√√
54D

2

∫ x3

x2

dx√
(x− x1)(x− x2)(x− x3)

,

where x1, x2 and x3 are the three turning points of our cubic potential with
(x1 ≤ x2 ≤ x3).

First of all, we are going to calculate the action in the well (S):

S = 2

√
2√
54D

∫ x2

x1

dx
√

(x− x1)(x− x2)(x− x3) =

= 2

√
2√
54D

∫ x2

x1

dx
√

(x− x1)(x2 − x)(x3 − x).

If we perform the next variable change:

y = x− a,

we obtain

S = 2

√
2√
54D

∫ x2−x1

0

dx
√
y (x2 − x1 − y)(x3 − x1 − y),

and then a second variable change:

y = (x2 − x1)z,

leads us to

S = 2

√
2√
√
x3 − x1 (x2 − x1)2

∫ 1

dz

√
z(1− z)(1− x2 − x1

x3 − x1

z).
         54 D 0

Taking into account (Gradshteyn, Ryzhik, Tseytlin[5])∫ 1

0

xλ−1(1− x)µ−1(1− βx)−νdx = B(λ, µ) 2F1(ν, λ;λ+ µ; β),
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where B(λ, µ) is the Beta function and 2F1(ν, λ;λ+µ; β) is a hypergeometric
function, we obtain

S = 2

√
2√
54D

√
x3 − x1 (x2 − x1)2B(

3

2
,
3

2
) 2F1(

3

2
,−1

2
, 3;

x2 − x1

x3 − x1

).

Following this same procedure we can obtain T , Sb and Tb

T = 2

∫ x2

x1

dx√
2(E − V )

= 2

√√
54D

2

∫ x2

x1

dx√
(x− x1)(x− x2)(x− x3)

= 2

√√
54D

2

1√
x2 − x1

1√
x2 − x1

1√
x3 − x1

(x2−x1)

∫ 1

0

dz
1√

z(1− z)(1− x2 − x1

x3 − x1

z)

=
4
√

54D

2

1√
x3 − x1

B(
1

2
,
1

2
) 2F1(

1

2
,
1

2
, 1;

x2 − x1

x3 − x1

).

Sb = 2

√
2√
54D

√
x2 − x1 (x3 − x2)2B(

3

2
,
3

2
) 2F1(

3

2
,−1

2
, 3;

x3 − x2

x1 − x2

)

Tb =
4
√

54D

2

1√
x2 − x1

B(
1

2
,
1

2
) 2F1(

1

2
,
1

2
, 1;

x3 − x2

x1 − x2

).

We are going to obtain now an approximation to the complex energies
of the resonances. From the previous analysis we know that the trace of the
Green’s function shows singularities or poles at the energies of the discrete
spectrum. If we have a continuous spectrum, these poles will correspond to
resonances. From (27), these poles correspond to the zeros of the denominator,
i.e.

1 + eiS/~ = −εe−Sb/~,
where we have proceeded in a perturbative way, introducing a parameter (ε),
to explicitly show the smallness of e−Sb/~.

If we made a series expansion of the eigen-energies as powers of ε

En = E(0)
n + εE(1)

n + ε2E(2)
n + ...

and we expand both actions around E
(0)
n

S(En) ' S(E(0)
n ) +

∂S

∂En
|
E

(0)
n

(En − E(0)
n ) +

1

2

∂2S

∂E2
n

|
E

(0)
n

(En − E(0)
n )2 =

= S(E(0)
n ) + T (εE(1)

n + ε2E(2)
n ) +

1

2

∂T

∂En
|
E

(0)
n

(E(1)
n )2

Sb(En) ' Sb(E
(0)
n )− Tb(En − E(0)

n )− ε2

2

∂Tb
∂En
|
E

(0)
n

(En − E(0)
n )2 =
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= Sb(E
(0)
n )− Tb(εE(1)

n + ε2E(2)
n )− ε2

2

∂Tb
∂En
|
E

(0)
n

(E(1)
n )2

to finally substitute them in the pole condition

1 + e
i
~S(E

(0)
n )e

iT
~ (εE

(1)
n +ε2E

(2)
n )e

i
2~

∂T
∂En

(E
(1)
n )2 =

= −εe−
Sb
~ (E

(0)
n )e

Tb
~ (εE

(1)
n +ε2E

(2)
n )e

1
2~

∂Tb
∂En
|(εE(1)

n )2 (29)

Our next step is to apply the McLaurin series to the exponentials in (29)

ex =
∞∑
k=0

xk

k!
= 1 + x+

x2

2
+ ...+

xn

n!

with it, up to second order, we obtain

1 + e
i
~S(E

(0)
n )[1 +

iT

~
(εE(1)

n + ε2E(2)
n )− T 2

2~
(εE(1)

n )2][1 +
i

2~
∂T

∂En
(εE(1)

n )2] =

= −εe−Sb(E
(0)
n )[1 +

Tb
~

(εE(1)
n + ε2E(2)

n ) +
T 2
b

2~
(εE(1)

n )2][1 +
1

2~
∂T

∂En
(εE(1)

n )2].

Now if we indentify the coefficients at each order of ε. At zero order

1 + e
i
~S(E

(0)
n ) = 0 (30)

we obtain the Bohr-Sommerfeld quantization condition (8)

S(E(0)
n ) = (2n+ 1)π~.

At first order

1 + e
i
~S(E

(0)
n )[1 +

iT

~
(εE(1)

n )] = −εe−Sb(E
(0)
n )

1 + e
i
~S(E

(0)
n ) +

iT

~
(εE(1)

n )e
i
~S(E

(0)
n ) = −εe−Sb(E

(0)
n )

Taking into account (30)

i

~
TE(1)

n = e−Sb(E
(0)
n )

E(1)
n =

~
iT
e−Sb(E

(0)
n ) (31)

So, this leads us to a correction to the zero order eigen-energies

En ' E(0)
n −

i~
T
e−Sb(E

(0)
n ), (32)

and the rate is then
Γ

2
=
e−Sb(E0)/~

T
(33)
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Now we will show some plots of the magnitudes that are relevant in this
problem. Figure 2 plots the actions in the well (S) and under the barrier
(Sb) for a height of the barrier D = 2.5. As it is expected, the action in the well
(S) with E increases, while the action under the barrier (Sb) decreases. Figure
3 gives the periods of the real periodic orbit in the well (T ) and the complex
periodic orbit (Tb) under the barrier as a function of E. One can check these
periods are the derivatives of the action in figure 2 with respect to the energy
(E). These periods go to infinity either at E = 0 or E = D. In these plots,
and for the density of states represented in figure 6, we have used 10000 points
from E = 0 to E = D = 2.5. The calculation needed to obtain the results of
this project have been performed using a python lenguage program.

Figure 2: Actions in the well and below the barrier for D=2.5

There is an upper bound for the number of resonances we can find for a
D value. Using the Bohr-Sommerfield quantization condition (8), with ~ = 1

S(E) = 2π(n+
1

2
)

we can find the n value for E = D, which is the maximum n value in the well.
From this value of n, we can obtain the maximun number of resonaces in the
well (N) as

N = n+ 1 = (
S(D)

2π
− 1

2
) + 1 =

S(D)

2π
+

1

2
For example, as can be seen in figure 6, in the particular case of D = 2.5 we
have three resonaces, while for D = 4.5, as we can see in figure 7, we have five.

Now we will use the Bohr-Sommerfield quatization condition (8) and (32)
to find complex energies of the quantum resonaces. With this objective, we
will use a root finder routine to find E

(0)
n and then we apply it to (31) in order

to obtain the imaginary part of the energy (E
(1)
n ). In figures 4 and 5 we give
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Figure 3: Periods in the well and below the barrier for D=2.5

the value of the complex energy (E) of the resonances for each n value in both
examples.

Figure 4: Values of the real (Er) and the imaginary (Ei) part of the Energy
(E) for each n in the case D = 2.5.

As n increases, the magnitude of the imaginary part of the energy in-
creases too, and as Sb decreases (see figure 2),and taking into account the
expresion for the ratio (33), the tunelling probability increases and the res-
onant states decay faster. As you can see, for low n values, particulary for
D = 4.5, the imaginary contribution to the E is very small.

One can ask what the contribution of the resonance to the density of
states is. The answer to this question is given by (23).

For a single resonance with complex energy E = Er − iEi we obtain

dR(E) = − 1

π
Im(

1

E − Er + iEi
) = − 1

π

Ei
(E − Er)2 + E2

i

which is a Lorentzian function centred at E = Er with half width at half
maximum (HWHM) ∆ = Ei.

If Ei is small, then the width of this Lorentzian function will be small
and dificult to see in the density of states.In figure 6 we plot the density of
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Figure 5: Values of the real (Er) and the imaginary (Ei) part of the Energy
(E) for each n in the case D = 4.5.

Figure 6: Density of states for D=2.5

Figure 7: Density of states for D=4.5
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states obteined from equation (28). In this figure, we can hardly see the first
resonace (n = 0) at Er ' 0.49723. However, we can clearly see the second
peak at Er ' 1, 42667 and the third, which is wider because of its greater Ei
value, at Er ' 2, 25679 (see figure 4).

In figure 7 we plot the same density but for D = 4.5,we have used 50000
points from E = 0 to E = D = 4.5. The first two peaks are so narrow that we
can not see them with our resoultion. In order not to miss a resonance, we can
plot the density of states in the neighbourhood of a resonance. For instance,
figure 8 shows the density of states for the third resonace to D = 2.5, which
corresponds to the Er ' 2, 25679. In this plot, we express the density of states
as a function of x, an scaled magnitude from which the energy E is obtained
as

E = −xEi + Er.

Notice that the form of the peak corresponds to the Lorentzian function of
the dR(E)

Figure 8: Third peak for D=2.5 as a function of the scaled magnitude x,
centred at x = 0 and with ∆(HWHM)=1.
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Conclusions
-We have introduced the WKB approximation as a fundamental aprroxima-

tion of semi-classical mechanics, and found its analitical solutions in the case
of 1d problems, which leads to the Bohr-Sommerfield quantization condition
WKB solution.

-We have also presented the semiclassical WKB solution to the time de-
pendent Schrödinger equation for a particle in the precense of a potential in
the multidimesional configuration space.

-From the previous semi-classical solution we have obtained the semi-classical
Van-Vleck propagator.

-From the Van-Vleck expression by Laplace transformand stationary phase
aproximation (Apendix I) we have obtained the semi-classical expresion for
the Green function.

-Based on this expression we have obtained the Gutzwiller trace formula,
which gives the trace of the Green function as an addition of the contributions
of all the classical periodic orbits of the system. An additional step leads
straightforwardly to the semi-classical density of states.

-We have applied this formalism to the case of 1d particle in a cubic po-
tential and we have obtained, for this system an analythical expression for the
complex energy (E) of the quantum resonances and for the density of states.
An important result is that we have required the use of complex trayectories
to account for the tunelling phenomena that are relevant in this system.
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Apendix I: Method of
stationary face

We need to evaluate integrals of the type

I =

∫
dxA(x)eisΦ(x), x,Φ(x) ∈ <,

where s is a real parameter. Here s will always be assumed large.
In this case, the phase oscillates fastly and ”averages to zero” every-

where except at the extremal points Φ′(x0) = 0. Consider first the case of a
1-dimensional integral, and expand Φ(x0 + δx) around x0 to the second order
in δx,

I =

∫
dxA(x)eis(Φ(x0)+ 1

2
Φ′′(x0)δx2+...).

If near x0 ther amplitude A(x) changes slowly over many oscilations of the
exponential function, we obtain

I ≈ A(x0)eisΦ(x0)

∫
dxe

1
2
isΦ′′(x0)(x−x0)2 .

The Fresnel integral formula

1√
2π

∫ +∞

−∞
dxe−

x2

2ia =
√
ia = |a|

1
2 e

iπ
4

a
|a| ,

takes us to

I ≈ A(x0)| 2π

sΦ′′(x0)
|
1
2 eisΦ(x0)±iπ

4 .

Now, we will generalize this method for d dimensions, considering stationary
phase point fulfilling the condition

d

dxi
Φ(x) |x=x0= 0 ∀i = 1, ..., d,

and the second order expantion of the phase involves the symmetric matrix

Dij(x0) =
∂2

∂xi∂xj
Φ(x) |x=x0 .

In a suitable coordinate system (which diagonalize D), we could approximate
the d-dimentional integral by d 1-dimentional Fresnel integrals, obtaining

I ≈
∑
x0

(2πi/s)d/2| detD(x0)|−1/2A(x0) ei(sΦ(x0)−π
2
m(x0)),

where the sum runs over all stationary phase points x0 of Φ(x) and m(x0)
counts the number of negatives eigenvalues of D(x0), which can not have zero
eigenvalues.
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