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Abstract

We present an educational review of an article written by Kafri et al. [9],
where they obtain a decoherence model for the system of two resonators
which is equivalent to a previous model proposed by Diosi in [1]. In these
references it is explored the effects that emerge from treating gravity as a
merely classically mediated channel for the case of two gravitationally cou-
pled resonators.

Firstly we introduce the basis of quantum measurement theory that shall
be applied to describe the gravitational interaction between the two masses,
being of special relevance the Wiseman-Milburn feedback frame [8]. Sub-
sequently, we give both a classical and a quantum description of the two
resonators system where some key parameters are introduced, such as their
normal mode split frequency which -we will prove- is proportional to the
decoherence rate. Finally we study the system replacing gravity by a feed-
back interaction which will effectively play its role. A master equation is
found from which we extract the decoherence and heating rates. After some
estimations we will argue that these effects are difficult to observe due to
their weak intensity, though this inability to detect them lays on technology
and -in principle- not in the model proposed. Not detecting them, provided
the necessary technology, would point out that gravity must not be treated
as a classical interaction [9].
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Abstract (Español)

Presentamos una ’revisión educativa’ del art́ıculo escrito por Kafri et al. en
[9], en el que obtienen un modelo de decoherencia para el sistema de dos
resonadores que es equivalente a un modelo anterior propuesto por Diosi en
[1]. En estas referencias se exploran los efectos que emergen de tratar a la
gravedad como un canal de comunicación mediado clásicamente para el caso
de dos resonadores acoplados gravitatoriamente.

Primero introducimos las bases de la teoŕıa cuántica de la medida, que
será aplicada para describir la interacción gravitatoria entre las dos masas,
siendo de especial relevancia la teoŕıa de feedback de Wiseman-Milburn [8].
A continuación, damos la descripción clásica y cuántica del sistema de los
dos resonadores en la cual introducimos algunos parámetros clave, como
el desfase en los modos normales, que se relacionará de forma directa con
la tasa de decoherencia. Finalmente, estudiamos el sistema remplazando
la gravedad por una interacción tipo feedback que de forma efectiva actúa
como la gravedad. Encontramos la ecuación maestra de la que extraemos
las tasas de decoherencia y calentamiento. Tras algunas estimaciones, ar-
gumentaremos que estos efectos son dif́ıciles de observar debido a su baja
intensidad. Sin embargo, esta incapacidad viene dada por la tecnoloǵıa y
no por el modelo propuesto. No detectar estos fenómenos, dada la tec-
noloǵıa necesaria, indicaŕıa que la gravedad no debe ser tratada como una
interacción puramente clásica [9].
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1 Introduction

We know that the theory of general relativity is the one describing gravity,
having been tested through several experiments successfully. Nonetheless,
we fail when developing a more universal theory that involves gravity and
quantum mechanics. One could however wonder why should we find a for-
malism including both fields. As discussed in [2], in 1936 Bronstein was the
first to explore the consequences of applying the uncertainty principle to the
general theory of relativity, proving that quantum mechanics prevents the
gravitational field to be determined with infinite accuracy in an arbitrarily
small region. Many speculative attempts to gather both theories together
suggest that time-space should be quantized, being the Planck’s time and
length the corresponding quanta. Therefore, at times and lengths much
larger than those of Planck scale we would not expect to see any quan-
tum gravity effect, and relativity would suffice -for tabletop experiments
even a Newtonian description is enough-. As explained in [9], such expec-
tation have recently been called into question by Diósi and Penrose, whose
proposals point out that quantum gravitationally induced effects, specifi-
cally gravitational decoherence, can become important at larger scales given
enough control over the quantum degrees of freedom.

In this report I make an educational review of the article [9] written by
Kafri et al. There, a system of two masses gravitationally coupled is studied
aiming to obtain a proper decoherence model which may be tested experi-
mentally as far as some technical requirements are achieved. This theoretical
setup is motivated by the lately acquired skill to optically cool macroscopic
mechanical oscillators close to their ground state [9], which allows us to have
a system where both quantum and gravity effects are to be taken into ac-
count. Along this review, the procedure followed in [9] is reproduced and
explained in detail, for which first I introduce the mathematical and physical
frame needed, that is to say, the quantum theory of measurement.

Gravity is treated here as a classical communication channel, though still
compatible with quantum mechanics. Effectively, the gravitational field is
replaced by a feedback-like interaction: the position of each mass is contin-
uously measured and the information used on the other mass to modify its
future dynamics and vice versa. We study the change on the master equa-
tion due to both the measurement and the feedback processes, implementing
these changes into our system. A decoherence rate shall be obtained along
with a heating rate that, after estimation for some fixed parameters, will
reveal the strength of the effect and therefore the expectations to detect it.
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Preface

Regarding the notation, we have decided not to denote with hat ˆquantum
observables. Nonetheless, it should be clear from the context when we refer
either to an observable or to a physical quantity.

2 Quantum theory of measurement

In order to introduce gravity effects within the formalism presented in [1]
and [9], we shall provide some basic knowledge concerning measurements in
the quantum frame.

2.1 Ideal measurements

This section have been written following closely the notes [7], although any
book on quantum mechanics shall cover the topics here discussed. The same
reference is used in the next section 2.2.

Any measurable physical quantity A can be described by a self-adjoint
operator A which is called observable. This quantum operators have a spec-
tral decomposition, such that A =

∑
n |an〉 an 〈an|. The quantities an consti-

tute the spectra of A, and they represent the expected values after measuring
the observable A on a given system.

In this frame of ideal measurements, the probability of obtaining a cer-
tain value an is given by

p(an) = 〈an| ρ |an〉 , (2.1)

where ρ is the density operator that represents the state of the system. After
the measurement the state changes, according to the von Neumann - Lüders
postulate, as

ρ→ ρ′n = p(an)−1Π(an)ρΠ(an). (2.2)

Being Π(an) = |an〉 〈an| the projector over an. We can interpret this
result by considering that the original ensemble has been divided into smaller
ensembles, each one corresponding to a different value of an. By performing
the measurement we are restricting the system to one of this sub-ensembles.
In this sense, we say we have performed a selective measurement of the
system. However it might happen that we have not access to the outcome
of the measurement or we simply do not want to use such information. If
this is the case we need to describe the system as a superposition of those
sub-ensembles, such that
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ρ→ ρ′ =
∑
n

p(an)−1Π(an)ρΠ(an). (2.3)

Consequently the system is not restricted to one of the ensembles and
we talk about non-selective measurements. It is easy to check that the mean
value of A is not affected by the measurement, that is to say 〈A〉 = TrρA =
Trρ′A. This is the reason why we talk about an ideal measurement.

2.2 Generalized measurements

Previously we have implicitly assumed that the detector has infinite accu-
racy, so that the profile of the detector related to the measurement is de-
scribed by a Dirac delta function centered in the output of the measurement.
However, in the real case, one would not expect to obtain a perfect knowl-
edge of the spectra of a measured observable, this is due to the fact that
the detector has low resolution. Consequently, we must associate a wider
profile to the measurement process. Let us now consider this distribution to
be gaussian

Ωf (A) = (2πσ2)−
1
4 · e−

(f−A)2

4σ2 , (2.4)

where f ∈ (−∞,∞) are the eigenvalues of the observable A. We know that
after a measurement, the system’s evolution is perturbed. If no measure-
ment is performed the system would evolve according to

∂tρ = − i
h̄

[H, ρ] . (2.5)

We shall now find a modified effective master equation that describes
the measurement process under certain circumstances. If we measure the
observable A, the state immediately after turns out to be, according to the
Von-Neumann-Lüders postulate,

ρ→ P−1(f) · ΩfρΩf , (2.6)

where P (f) = Tr(ΩfρΩf ) is a normalization factor which corresponds to
the probability of obtaining the outcome f . The distribution 2.4 proposed
above is already normalized as∫

dfΩfΩ†f = 1. (2.7)

Continuous measurements

We are particularly interested in the case in which the measurement is per-
formed weakly and continuously. In order to model this situation we can
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consider a large amount of measurements separated in time by an arbitrary
quantity τ and afterwards we take the limit when τ goes to zero. We shall
also consider the diffusive regime, in which

g = lim
τ→0

1

τσ2
. (2.8)

This limit would appear naturally later on. As the time τ between the
measurement goes to zero, the probability function gets broadened and we
obtain less information about the system. For this reason we cannot use the
information gained in the measurements, and so we have to restrict to the
non-selective measurement regime, in which the state after the measurement
is a superposition of all the possible states

ρ→
∫
dfΩfρΩf . (2.9)

Taking the limit 2.8

Ωf (A) =
(gτ

2π

) 1
4 · e−

gτ(f−A)2

4 =
(gτ

2π

) 1
4 · e−

g(
√
τf−
√
τA)2

4 , (2.10)

hence

ρ→
∫
df
(gτ

2π

) 1
2 · e−

g(
√
τf−
√
τA)2

4 ρ · e−
g(
√
τf−
√
τA)2

4

=

(
1

2π

) 1
2
∫
dφ · e−

(φ−√τgA)2

4 ρ · e−
(φ−√τgA)2

4 ,

(2.11)

where we have replaced f → φ
√
τg

. To proceed further we expand the

exponential function in Taylor series around
√
τ = 0 as

e−
(φ−√τgA)2

4 =

(
1 + φA

√
g

2

√
τ +

A2g

8
(φ2 − 2)τ

)
· e−

φ2

4 +O(τ3/2). (2.12)

Substituting in the integral it follows

ρ→
(

1

2π

) 1
2
∫
dφ · e−

φ2

2

(
1 + φA

√
g

2

√
τ +

A2g

8
(φ2 − 2)τ

)
ρ

·
(

1 + φA

√
g

2

√
τ +

A2g

8
(φ2 − 2)τ

)
=

(
1

2π

) 1
2
∫
dφ · e−

φ2

2

[
ρ+ φ

√
g

2
(Aρ+ ρA)

√
τ + φ2 g

4
AρAτ

+
g

8
(φ2 − 2) · (A2ρ+ ρA2)τ

]
= ρ+

g

8

(
2AρA−A2ρ− ρA2

)
τ = ρ− g

8
[A, [A, ρ]] τ.

(2.13)
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Thus we obtain

∂tρ|measure = lim
τ→0

ρ(t+ τ)− ρ(t)

τ
= −g

8
[A, [A, ρ]] (2.14)

and the evolution of the system can be described as

∂tρ = − i
h̄

[H, ρ]− g

8
[A, [A, ρ]] . (2.15)

There are some subtleties in this deduction which are worth noting. Re-
garding equation 2.15, it can be solved, for instance, by a Monte Carlo inte-
gration, in which case we must have a stochastic equation for the dynamics.
In order to obtain the stochastic equation let us observe that the gaussian

integration cancels out the term φ

√
g

2

√
τ (Aρ+ ρA), while one would expect

this term to be relevant as τ goes to zero. Now note that a Wiener process
W (t) is associated to a variable which changes continuously in time, and
its change ∆W over an interval τ goes as ∆W = φ

√
τ , being φ a random

variable normally distributed with zero mean and unit variance. Keeping
this in mind we see that the term above mentioned shall be proportional to a
Wiener increment in the continuous limit satisfying the following conditions

〈dW 〉 = 0

dW 2 = τ,
(2.16)

hence, we should introduce a term of the form

√
g

2
(Aρ+ ρA) dW . However

this would lead to a dynamics in which trace is not preserved, and neither
would probability. It is immediate to check that if we subtract the change in
the trace, we get a trace-preserving dynamics. Consequently, the dynamics
of a system which is being continually measured can be described by the
following stochastic master equation (SME)

dρ = − i
h̄

[H, ρ] dt− g

8
[A, [A, ρ]] dt+

√
g

2
H[A]ρdW, (2.17)

where we have defined the super-operator H such that H[A]ρ = Aρ+ ρA−
2 〈A〉 ρ.

The last thing to note is related with the diffusive limit mentioned pre-
viously. In that limit we considered that σ ∝ 1

τ1/2
. There is no other

dependence which would lead to a desirable description of a system being
weakly and continually measured. If the exponent of τ were any smaller,
there would be no effect on the dynamics of the system and it would evolve
according to its internal degrees of freedom. It corresponds to the case
when the measurement is extremely weak. On the other hand, if the expo-
nent were any larger the system would not evolve at all. The measurement
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would be so strong that the system would be projected into an eigenstate
of the observable measured and would remain there, this corresponds to the
Quantum Zeno regime.

2.3 Simple example: Qubit dynamics

A better understanding of the consequences that carries out the process of
measurement is easily achieved with an illustrative example. Let us consider
a quantum system that has only two eigenstates, such system is called qubit.
In particular we will study the evolution of a spin momentum that obeys
the following Hamiltonian

H = ασx + βσz, (2.18)

being σx and σz the well-known Pauli matrices. We choose the measured
observable to be σz itself. Hence, the master equation of the system is

∂tρ = −i [H, ρ]− γ

8
[σz [σz, ρ]] . (2.19)

We have fixed h̄ = 1 and we have not included the stochastic term. In
the eigenbasis of σz it follows

ρ =

(
ρ11 ρ12

ρ21 ρ22

)
σz =

(
1 0
0 −1

)
σx =

(
0 1
1 0

)
. (2.20)

After some trivial manipulations we obtain a system of four lineal cou-
pled differential equations, one for each density matrix element

∂tρ11 = −iα(ρ21 − ρ12)

∂tρ22 = −∂tρ11

∂tρ12 = −i (α(ρ22 − ρ11) + 2βρ12)− γ

2
ρ12

∂tρ21 = i (α(ρ22 − ρ11) + 2βρ21)− γ

2
ρ21.

(2.21)

Note that the second equation shows explicitly that the trace is pre-
served, and so are the probabilities. Also note that the two last equations
will lead to decoherence, with γ as a weighing factor, induced by the mea-
surement process. In the following we integrate these expressions for some
particular cases, all of which have non-zero coherences in the initial state.
The simulations have been carried out with the Python framework devel-
oped in [5].

We first consider the easiest case, where the observable measured is the
energy. This corresponds to (α, β) = (0, 1), see figure 1. It is immediate
to see that the probabilities do not evolve, the measurement projects the
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Figure 1: Qubit system obeying the Hamiltonian H = σz. The parameters
employed in the simulations are α = 0, β = 1, γ = 1. The initial state of
the system has been chosen as ρ11 = 0.64, ρ12 = 0.48 · ei, ρ21 = 0.48 · e−i,
ρ22 = 0.36. Only the real part is plotted. Time is given in arbitrary units.

system into an eigenstate of σz. Furthermore, decoherence appears as a
consequence of the measurement.

Afterwards we studied the case where (α, β) = (1, 0), see figure 2. Once
again decoherence appears as a direct consequence of the measurement. The
populations now do not remain constant, instead they keep oscillating until
they get stabilized to a certain value. This situation can be understood
as follows, between measurements the system evolves freely and it tends to
be projected into an eigenstate of the Hamiltonian, nevertheless, when the
measurement takes place, it tends to be projected into an eigenstate of the
observable measured. The ’competition’ between these two processes pro-
duces such oscillation.

We finally analyzed the case (α, β) = (1, 1), see figure 3. This is intu-
itively more difficult to comprehend, although it can be regarded as some
sort of superposition of the two cases showed above. Decoherence is again
induced by the measurements.

As a reference we also simulated the case where γ = 0, which shows
the dynamics when no measurement is performed, see figure 4. It is clearly
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Figure 2: Qubit system obeying the Hamiltonian H = σx. The parameters
employed in the simulations are α = 1, β = 0, γ = 2. The initial state of
the system has been chosen as ρ11 = 0.64, ρ12 = 0.48 · ei, ρ21 = 0.48 · e−i,
ρ22 = 0.36. Only the real part is plotted. Time is given in arbitrary units.

Figure 3: Qubit system obeying the Hamiltonian H = σx +σz. The param-
eters employed in the simulations are α = 1, β = 1, γ = 1. The initial state
of the system has been chosen as ρ11 = 0.64, ρ12 = 0.48 · ei, ρ21 = 0.48 · e−i,
ρ22 = 0.36. Only the real part is plotted. Time is given in arbitrary units.
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seen than decoherence does not take place now. All this together points out
that the only responsible for decoherence is the measurement process, as
discussed after 2.21.

Figure 4: Qubit system evolving freely, i.e. without being measured. The
parameters employed in the simulations are α = 1, β = 1, γ = 0. The
initial state of the system has been chosen as ρ11 = 0.64, ρ12 = 0.48 · ei,
ρ21 = 0.48 · e−i, ρ22 = 0.36. Only the real part is plotted. Time is given in
arbitrary units.

2.4 Wiseman-Milburn Feedback

In this section we shall introduce some basic concepts on feedback that will
be of use in the following sections. Consider you perform a continuous mea-
surement of some observable A and you want the information obtained in
the measurement to have a back action on the system so that the dynamics
gets conditioned to the outcomes of the measurement. The procedure here
described is known as feedback. We aim now to describe how such procedure
modifies the master equation. The information included in this section is
contained in [8].

If we have a system which evolves according to a certain Hamiltonian
H0, then we will have to include a term associated to the feedback HFB.
This extra term takes the form
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HFB =
dJ

dt
A. (2.22)

Where A is some hermitian operator and J is a classical stochastic mea-
surement record, usually called current, which satisfies the equation

dJ

dt
= 〈x〉+

1

8k
ξ(t), (2.23)

being ξ(t) a noisy contribution. Hence, the Hamiltonian governing the dy-
namics of the system is

H = H0 +HFB. (2.24)

This contribution will lead to a final master equation of markovian na-
ture. This means that the system has no ’memory’, in the sense that the
following evolution of the system does only depend on its present state.

A real current J has a finite bandwidth (differentiable and continuous),
but it is ”idealized” as if it were white noise. We then have to apply Itô
calculus. The equation 2.23 contains a noise that is not suitable as indepen-
dent increments dW . It is an equation in Stratonovich sense. Nevertheless,
it is always possible to switch from one frame to another by following a
mathematical recipe, and construct an Itô equation whose solutions match
those of 2.23 [10]. The steps to follow are:

• Replace in 2.23 the real signal by its white-noise limit
dW

dt
.

• Rewrite the resulting equation with the usual rules of calculus, i.e.
(dW )2 = 0 instead of (dW )2 = dt.

• Transform the Stratonovich equation into an Itô equation (something
well-known in Stochastic Calculus).

Master equation

In order to simplify the following computation we define two super-operators,
which will allow to express the results in a compact way. Given an operator
A and the density matrix ρ, the super-operators H and D are such that

H(A)ρ = Aρ+ ρA† − 〈A+A†〉ρ (2.25)

D(A)ρ = −1

2
(A†Aρ+ ρA†A− 2AρA†). (2.26)

It is easily checked that in the case A = A†, then
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H(iA)ρ = i [A, ρ] D(A)ρ = D(iA)ρ = −1

2
[A, [ A, ρ]] . (2.27)

In order to obtain the modified master equation we start looking at the
effect of the feedback term in the dynamics. The evolution of the state due
to the feedback Hamiltonian is

dρFB
dt

= − i
h̄

[HFB, ρ] = − i
h̄

(
dJ

dt

)
[A, ρ] =

1

h̄

(
〈x〉+

1√
8k

dW

dt

)
H(−iA)ρ,

(2.28)

where in the last equality we have directly substituted
ξ

8k
by its white noise

limit. Equivalently, in terms of the increments we get

dρFB =
1

h̄

(
〈x〉 dt+

1√
8k
dW

)
H(−iA)ρ. (2.29)

This equation is still in Stratonovich sense. To obtain the equivalent Itô
equation we have to add an extra deterministic term which equals half the
square of the stochastic one, i.e.

1

2

(
dW

h̄
√

8k
H(−iA)

)2

ρ =
1

2

dt

8kh̄2H(−iA)H(−iA)ρ =
1

2

dt

8kh̄2H(−iA) (−i [A, ρ])

=
dt

8kh̄2

(
−1

2
[A, [A, ρ]]

)
=

1

8kh̄2D(iA)ρdt.

(2.30)

Thus, the evolution due to the feedback Hamiltonian written in Itô sense
is

dρFB(ρ) =
1

h̄

(
〈x〉 dt+

1√
8k
dW

)
H(−iA)ρ+

1

8kh̄2D(iA)ρdt. (2.31)

The modified master equation can be obtained noticing that the sequence
is such that the feedback acts after the measurement. Hence, in a time dt
the state evolves by applying the measurement and, later on, the feedback.
The change of the state due to the measurement has already been obtained
previously, and it can be written in terms of H and D as

ρM = ρ+ dρM = ρ+
(

2kD(x)dt+
√

2kH(x)dW
)
ρ. (2.32)

Consequently, the total change of the state is

ρ(t+ dt) = ρM + dρFB(ρM ) = ρ+ dρM + dρFB(ρ+ dρM )

= ρ+ dρM + dρFB(ρ) + dρFB(dρM ).
(2.33)
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Where for the last equality we have taken into account that dρFB(ρ) is
linear in ρ. A last computation yields

dρ =
(

2kD(x)dt+
√

2kH(x)dW
)
ρ+

1

h̄

(
〈x〉 dt+

1√
8k
dW

)
H(−iA)ρ

+
1

8kh̄2D(iA)dtρ+
1

h̄

(
〈x〉 dt+

1√
8k
dW

)
H(−iA)

(
2kD(x)dt+

√
2kH(x)dW

)
ρ

+
1

8kh̄2D(iA)dt
(

2kD(x)dt+
√

2kH(x)dW
)
ρ

=

{√
2kH(x)ρ+

1

h̄
√

8k
H(−iA)ρ

}
dW +

{
2kD(x)ρ+

〈x〉
h̄
H(−iA)ρ

+
1

8kh̄2D(iA)ρ+
1

2h̄
H(−iA)H(x)ρ

}
dt.

(2.34)

Where we have only conserved the terms up to order dt, and we have
used dW 2 = dt. Before carrying on the computation, we see which form
takes the term H(−iA)H(x)ρ.

H(−iA)H(x)ρ =H(−iA) (xρ+ ρx− 2 〈x〉 ρ)

=− i [A, xρ+ ρx]− 2 〈x〉H(−iA)ρ.
(2.35)

All this together allows us to write

dρ =
√

2kH
(
x− iA

4h̄k

)
dW + 2k

{
D(x)ρ+D

(
− iA

4h̄k

)
ρ+
〈x〉
2kh̄
H(−iA)ρ

− i

8h̄k
[A, xρ+ ρx]− 〈x〉

2kh̄
H(−iA)ρ

}
dt

=
√

2kH
(
x− iA

4h̄k

)
dW + 2k

{
D(x)ρ+D

(
− iA

4h̄k

)
ρ− i

8h̄k
[A, xρ+ ρx]

}
dt.

(2.36)

Finally, including the free-dynamics term

dρ =− i

h̄
[H0, ρ] dt+

√
2kH

(
x− iA

4h̄k

)
dW

+ 2k

{
D(x)ρ+D

(
− iA

4h̄k

)
ρ− i

8h̄k
[A, xρ+ ρx]

}
dt.

(2.37)

This result will be used in section 4 to find the master equation of the
resonators when we replace gravity for a feedback interaction as in [9].
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3 Quantum system gravitationally coupled

In our attempt to understand the nature of gravity at small scales, as ex-
plained in [9], we may grow some intuition by studying simple cases. If one
thinks about the simplest problem that concerns gravity, for sure will end
up with the simple pendulum. Now, as we want some interaction to take
place, we need to introduce another pendulum. From now on we will study
the interaction between these two pendulum under several circumstances,
as it has been studied in [9].

3.1 Classical analysis

Let us suppose we have a system of two simple pendulums gravitationally
coupled with masses m1 and m2, separated a distance d and with frequencies
ω1 and ω2. This system has two degrees of freedom, which will be defined
as the distance from the vertical to the centre of mass of each pendulum.
Under such conditions, the hamiltonian of the system may be written as
follows

H =

2∑
i=1

p2
i

2mi
+

1

2
miω

2
i x

2
i + Vint, (3.1)

where Vint is the gravitational interaction energy, classically determined by

Vint = −Gm1m2

r
. (3.2)

Being r the distance between the two masses: r = d− (x1 − x2). As the
gravitational interaction is weak, we expect the displacement x1 and x2 to
be small quantities. With this motivation we expand the potential energy
around the point r = d, or, equivalently, around x1 − x2 = 0

Vint(x1, x2) = −Gm1m2

d
−Gm1m2

d2
(x1−x2)−Gm1m2

d3
(x1−x2)2 + . . . (3.3)

The first term is a constant and can be neglected simply redefining the
origin of energies. On the other hand, the second term represents a con-
stant force which modifies the equilibrium position of the masses. We now
determine these equilibrium positions, that satisfy the condition

dV

dxi

∣∣∣∣
x̄

= 0. (3.4)

Where we define x̄ = (x̄1, x̄2) the equilibrium position seeked, and where
V is the total potential energy. Performing the derivatives we obtain

dV

dx1

∣∣∣∣
x̄

= 0 = m1ω
2
1x̄1 −

Gm1m2

d2
− 2Gm1m2

d3
(x̄1 − x̄2)
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dV

dx2

∣∣∣∣
x̄

= 0 = m2ω
2
2x̄2 +

Gm1m2

d2
+

2Gm1m2

d3
(x̄1 − x̄2). (3.5)

Whence, assuming the two pendulums satisfy m1ω
2
1 = κ = m2ω

2
2, we get

x̄1 =
Gm2

(ω1d)2
, and

x̄2 = − Gm1

(ω2d)2
. (3.6)

Now we may change our degrees of freedom defining x′i = xi− x̄i. Hence-
forth we refer to this degree of freedom simply as xi for the sake of simplicity
in the notation. With this change the linear term of Vint disappears, and
the total potential energy -including the harmonic potential- can be written
as

V (x1, x2) =

2∑
i=1

(
1

2
miω

2
i x

2
i −

Gm1m2

d3
x2
i

)
+

2Gm1m2

d3
x1x2

=

2∑
i=1

(
1

2
miΩ

2
ix

2
i

)
+Kx1x2, (3.7)

where we have defined

K =
2Gm1m2

d3
,

Ω2
i = ω2

i −
K

mi
(3.8)

and so we can write the Hamiltonian of the system as

H =

2∑
i=1

(
p2
i

2mi
+

1

2
miΩ

2
ix

2
i

)
+Kx1x2. (3.9)

As we can see, by taking advantage of the low intensity of the gravity
interaction, we have reduced the system effectively to two pendulum with
a proper frequency slightly lower than the original one. The two degrees
of freedom are coupled due to the last term of the Hamiltonian, which is
quadratic. This will allow us to find an exact solution for the system. With
this aim we determine now its normal modes. In order to do so we solve the
secular equation

det(Vij − ω2Tij) = 0. (3.10)

Whence, according to 3.9 we can identify
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Vij →
(
m1Ω2

1 K
K m2Ω2

2

)
, and (3.11)

Tij →
(
m1 0
0 m2

)
. (3.12)

Then, solving 3.10, we obtain the following frequencies for the normal
modes

ω2
± =

Ω2
1 + Ω2

2

2
± 1

2

[(
Ω2

1 − Ω2
2

)2
+ 4

K2

m1m2

] 1
2

. (3.13)

As we said, we are interested in studying the simplest possible case, for
this reason we will restrict to the symmetric case, that is m1 = m2 = m,
which leads to ω1 = ω2 = ω and Ω2

1 = Ω2
2 = Ω2. Substituting in 3.13 we

find that the normal modes frequencies are

ω+ = ω and ω− = ω

[
1− 2K

mω2

] 1
2

. (3.14)

Note that when the gravitational interaction is weak, the two frequencies
differ from one another in

∆ = ω+ − ω− '
K

mω
. (3.15)

This quantity is indeed pretty small and consequently it is probably hard
to observe in a laboratory. In the macroscopic case we could have m ∼ 1Kg,
d ∼ 1m and ω ∼ 1s−1, under such conditions we get ∆ ∼ 10−10s−1. In the
microscopic scale the situation is quite similar. If we have two atoms play-
ing the role of the pendulums, then m ∼ 10−26Kg. As we want the effect
to be as high as possible we should choose a small separation distance, for
example an easily achievable value would be d ∼ 10−9m. Also it would
be suitable to have a small frequency, although this is not so easy to get.
We will assume a frequency around ω ∼ 1s−1. All of this would lead to a
value of ∆ ∼ 10−9s−1. The only thing left is to calculate the normal modes
themselves.

The normal modes coordinates

q+ =
1√
2

(x1 + x2) q− =
1√
2

(x1 − x2). (3.16)

are associated to the frequencies ω±. From 3.16 we can obtain the momen-
tum associated to each normal mode by performing the temporal derivative,
consequently
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p+ =
1√
2

(p1 + p2) p− =
1√
2

(p1 − p2). (3.17)

Hence, we may write the Hamiltonian of the system in terms of the
normal modes coordinates as

H(q±, p±) =
p2

+

2m
+

1

2
mω2

+q
2
+ +

p2
−

2m
+

1

2
mω2
−q

2
− = H+ +H−. (3.18)

As we are in the frame of classical mechanics, we can happily interpret
this Hamiltonian as two independent particles and solve the dynamics ac-
cording to that. However, if we move to the quantum frame we must first
check that the canonical commutation relation holds. If we perform the
quantization in the original system, this relation can be written as

[qi, pj ] = ih̄δij i, j = {1, 2}. (3.19)

It is immediate to prove that the same canonical commutation relations
are true for the normal modes coordinates. Hence we can also interpret
the normal coordinates as the positions and momenta of two independent
pendulums.

3.2 Quantum description

In order to make the description within the quantum frame, we are interested
in writing the fundamental state of the system |0〉+⊗|0〉− ≡ |0+, 0−〉 in terms
of the centre of mass coordinates of each particle x1 and x2, as these are
quantities that can be easily measured. Using the closure relation for |x1, x2〉
we get

|0+, 0−〉 =

∫
dx1dx2 |x1, x2〉 〈x1, x2|0+, 0−〉 =

∫
dx1dx2ψ(x1, x2) |x1, x2〉 .

(3.20)
Where we must find the form of ψ(x1, x2), the wavefunction of the funda-

mental sate in the centre of mass coordinates representation. This function
contains the necessary information for describing the system. As a previous
step it may be useful to determine the wavefunction in the representation
of the normal modes previously obtained q+ and q−. In order to do so we
must solve the eigenvalue equation of the system given by

H |ψ〉 = E0 |ψ〉 . (3.21)

Where E0 is the energy of the ground state. Luckily for us, and as
we commented after 3.19, we can interpret the system as two independent
harmonic oscillators with q± as positions and p± as momenta coordinates.
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In this representation the Hamiltonian is separable and so we are able to
solve them independently from one another. The wavefunction of the total
system can be built by multiplying the two wavefunctions of the independent
Hamiltonians. Consequently, we focus on solving one of the oscillators,
which has the following Hamiltonian

hk =
p2
k

2m
+

1

2
mω2

kq
2
k. (3.22)

Hence the ground state energy for one particle is E
(k)
0 = 1

2 h̄ωk. Let us
recall that the quantum observables act in the spatial coordinates represen-
tation such that

f(q)→ f(q) p→ −ih̄∂q. (3.23)

Then we can write 3.21 for one particle as follows

〈qk|hk |0〉 = E
(k)
0 〈qk|0〉

⇒
(
− h̄2

2m

d2

dq2
k

+
1

2
mω2

kq
2
k

)
ψ(qk) =

1

2
h̄ωk ψ(qk). (3.24)

Whence the wavefunction turns out to be a gaussian of the form

ψ(qk) = A · exp
(
−mωk

2h̄
q2
k

)
, (3.25)

where A is the normalization constant. As a result, the wavefunction of the
total system is given by

Ψ(q+, q−) = N · exp
(
−mω+

2h̄
q2

+

)
· exp

(
−mω−

2h̄
q2
−

)
, (3.26)

where N is the normalization constant. Substituting 3.14 and 3.16 we get

Ψ(x1, x2) = N · exp
(
−mω

2h̄

[
1

2
(x1 + x2)2 +

1

2

√
1− β(x1 − x2)2

])

= N ·exp
(
−mω

4h̄

[
(1 +

√
1− β)x2

1 + (1 +
√

1− β)x2
2 + 2(1−

√
1− β)x1x2

])
.

(3.27)

In the last equation we have defined β =
2K

mω2
. This result can be

written in a compact form by defining the matrices

~x = (x1, x2) L =
mω

4h̄

(
1 +
√

1− β 1−
√

1− β
1−
√

1− β 1 +
√

1− β

)
, (3.28)
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thus

Ψ(x1, x2) = N exp
(
−~xT · L · ~x

)
. (3.29)

This state has the minimum uncertainty permitted by quantum mechan-
ics. In this sense we can think about it as the closest situation to classical
mechanics. This sort of states are known as squeezed states [4], they are
indeed gaussian functions which have been rotated and deformed but still
satisfy the minimum uncertainty constrain. The off-diagonal elements in
3.28 are responsible for the entanglement of the state, as it is clearly seen in
3.27. If these elements vanish, then the wavefunction would be separable,
and so would be the Hamiltonian, implying that the two pendulums are in-
dependent and there would be no entanglement. Furthermore, as discussed
in [9], the effect of decoherence will be to eliminate the off-diagonal elements,
thus reducing entanglement.

4 Gravity as a feedback interaction

In this chapter we closely follow Kafri et al. [9]. In the previous sections we
have treated gravity as a direct interaction which Hamiltonian term takes
the form x1x2. However, Kafri et al. have proposed in [9] to treat gravity as
a classical measurement channel, for which we must abandon the sort of in-
teraction term used previously. The idea of the classical channel consists in
collecting the information regarding the classical position of one pendulum
and, at every instant, using such information to modify the second pendu-
lum’s position. Obviously, the process must be reciprocal. Mathematically
this can be achieved by continuously measuring the gravitational centre of
mass co-ordinate xj of each particle. Then we define a classical stochastic
measurement record, Jj(t), that contains the information of the position.
This record will effectively act as a classical control force on the other mass.
This describes a feedback-like process. As we have seen in section 2.4, such
process can be modelled by introducing a Hamiltonian term of the form

Hgrav = χ1
dJ1(t)

dt
x2 + χ2

dJ2(t)

dt
x1. (4.1)

In the continuous weak measurement regime, the currents obey a stochas-
tic differential equation of the form

dJj(t) = 〈xj〉c dt+

√
1

8kj
dWj(t), where kj =

Γj
2h̄
, (4.2)

being Γj a constant that determines the rate at which information is gained
by the measurement, and dW1,2 are two independent Wiener increments.
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Before introducing explicitly the feedback effect, we can write the evolution
of the conditional density of states ρc of the system

dρc = − i
h̄

[H, ρc] dt+

2∑
j=1

(
Γj
h̄
D(xj)ρcdt+

√
Γj
h̄
H(xj)ρcdWj(t)

)
. (4.3)

This master equation only takes explicitly into account the process of
continuous measurement. We now introduce the effect of the feedback, for
which we follow the steps given in the Wiseman-Milburn feedback [8].

The change in the state produced by the feedback term of the Hamilto-
nian reads

dρFB = − i
h̄

[Hgrav, ρ] dt = − i
h̄

(χ1dJ1 [x2, ρ] + χ2dJ2 [x1, ρ])

= − i
h̄

(
χ1 〈x1〉 [x2, ρ] dt+ χ1

√
1

8k1
[x2, ρ] dW1

+ χ2 〈x2〉 [x1, ρ] dt+ χ2

√
1

8k2
[x1, ρ] dW2

)
.

(4.4)

This equation is in Stratonovich sense. We turn it into an Itô sense
following the prescriptions previously discussed (see section 2.4).

dρFB = − i
h̄

(
χ1 〈x1〉 [x2, ρ] dt+ χ1

√
1

8k1
[x2, ρ] dW1 + χ2 〈x2〉 [x1, ρ] dt

+ χ2

√
1

8k2
[x1, ρ] dW2

)
− χ2

1

16k1h̄
2 [x2 [x2, ρ]] dt

− χ2
2

16k2h̄
2 [x1 [x1, ρ]] dt.

(4.5)

To proceed further we recall that the change of the state owing to the
measurement is given by

dρMj = 2kjD(xj)ρdt+
√

2kjH(xj)ρdWj . (4.6)

Thus, we can write the total change of the state as

ρ(t+ dt) = ρ(t) + dρM + dρFB(ρ) + dρFB(dρM ). (4.7)

Either substituting the contributions above obtained or using the result
of the section 2.4, one gets the following master equation
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dρ

dt
=− i

h̄
[H0, ρ]− i

2h̄
(χ1 [x2, x1ρ+ ρx1] + χ2 [x1, x2ρ+ ρx2])

−
2∑
j=1

kj [xj , [xj , ρ]]− χ2
1

16k1h̄
2 [x2 [x2, ρ]]− χ2

2

16k2h̄
2 [x1 [x1, ρ]] ,

(4.8)

where we have already averaged over the noise, so that the terms linear in
the Wiener increments have vanished. This equation describes the uncon-
ditional dynamics. Taking a look at 2.14, it is clear that the third term
represents the effect of the continuous weak measurement of each position.
The two last terms have the same kind of commutator, which denotes that
the observable is being measured, however, the constant of proportionality
depends on variables concerning to the other mass. Consequently, it seems
reasonable to identify these two terms as the effect of the feedback to control
the dynamics of the masses. Finally, the second term is just the direct effect
of the control protocol. It is the analogous to the term Kx1x2 treated in
previous sections. We shall prove this result later on. As a last step we
substitute the value of kj that we defined in 4.2 and collect some terms to
obtain

dρ

dt
=− i

h̄
[H0, ρ]− i

2h̄
(χ1 [x2, x1ρ+ ρx1] + χ2 [x1, x2ρ+ ρx2])

−
(

Γ2

2h̄
+

χ2
1

8h̄Γ1

)
[x2 [x2, ρ]]−

(
Γ1

2h̄
+

χ2
2

8h̄Γ2

)
[x1 [x1, ρ]] .

(4.9)

Note that if we fix χ1 = χ2 = K then the second term turns out to be

χ1 [x2, x1ρ+ ρx1] + χ2 [x1, x2ρ+ ρx2] = 2K [x1x2, ρ] . (4.10)

Whence we can see that we recover the Hamiltonian interaction term
Hint = Kx1x2 considered previously in section 3.1. This fact provides some
background support to the model studied in this section, as it matches the
known interaction as a particular case. In the following we will restrict to
this situation.

Let us take a look at the case of highly asymmetric masses m1 � m2.
According to the definition of Γj we also expect that Γ1 � Γ2. Therefore,
the noise contribution, which is proportional to Γ−1

k , from the larger mass to
the smaller one is much smaller than reverse situation. Now remember from
section 2.3 that the measurement term unavoidably leads to decoherence,
consequently, the bigger the proportional factor of the measurement term,
the bigger the decoherence. Combining these arguments we can conclude
that the highly asymmetric case would lead to a greater decoherence rate
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for the larger mass in comparison to the smaller one.

We now focus on the symmetric case studied in the previous sections,
where m1 = m2 = m. Here we expect the coefficients Γj to have the same
value. We choose this value to be the one which minimizes the contribution
of the measurement and the feedback to the noise, pursuing the dynamics
where the decoherence rate is minimum. So we need to minimize

Γ

2h̄
+

χ2

8h̄Γ
, (4.11)

whence we get Γ =
χ

2
=
K

2
. Substituting this result into the master equation

leads to

dρ

dt
= − i

h̄
[H0, ρ]− i

h̄
K [x1x2, ρ]− K

2h̄

2∑
j=1

[xj [xj , ρ]] . (4.12)

Rewriting in terms of dimensionless operators x̃ =
(mω
h̄

)1/2
x we obtain

dρ

dt
=− i

h̄
[H0, ρ]− iK

mω
[x̃1x̃2, ρ]− K

2mω

2∑
j=1

[x̃j [x̃j , ρ]]

=− i

h̄
[H0, ρ]− ig [x̃1x̃2, ρ]− 1

4

2∑
i,j=1

Yij [x̃j [x̃j , ρ]] ,

(4.13)

where we have defined g =
K

mω
and the matrix Yij = 2gδij

4.1 System evolution

In order to understand the dynamics of the system we will work on equation
4.12. Solving the equation directly might be considerably complicated. For
this reason, instead of finding the temporal evolution of the density operator,
we shall focus on the evolution of the mean values of the positions and mo-
mentums for each particle, extracting afterwards the convenient information.

The mean value of a certain operator A can be written as

〈A〉 = Tr (ρA) = Tr (Aρ) . (4.14)

Hence, we can perform the time evolution of the mean value as

∂tTr (Aρ) = Tr (A∂tρ) . (4.15)
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where we have considered that, in Schrödinger picture, the observables do
not evolve with time. Now we shall substitute 4.12 in 4.15, obtaining

∂t 〈A〉 = − i
h̄

Tr (A [H0, ρ])− iK

h̄
Tr (A [x1x2, ρ])− K

2h̄

2∑
k=1

Tr (A [xk, [xk, ρ]]) ,

(4.16)
and therefore

∂t 〈A〉 = − i
h̄
〈[A,H0]〉 − iK

h̄
〈[A, x1x2]〉 − K

2h̄

2∑
k=1

〈[[A, xk] , xk]〉 . (4.17)

Now we apply this equation to the momentum and position observables,
as well as to the quadratic moments. Essentially, the computation can be
done easily just taking into account the canonical commutation relations
given in 3.19 and some properties of the commutators, such as

[AB,C] = A [B,C] + [A,C]B ∧ [A,B] = − [B,A] . (4.18)

The time evolution equations for the mean values and the quadratic
moments are

∂t 〈xk〉 =
〈pk〉
m

∂t 〈pk〉 = −
(
mω2

k 〈xk〉+K 〈xi〉
)

∂t
〈
x2
k

〉
= 2
〈pkpk〉
m

∂t 〈xkpk〉 =
1

m

〈
p2
k

〉
−mω2

k

〈
x2
k

〉
−K 〈x1x2〉

∂t 〈x1x2〉 =
1

m
(〈p1x2〉+ 〈x1p2〉)

∂t 〈xipk〉 =
1

m
〈p1p2〉 −mω2

k 〈x1x2〉 −K
〈
x2
i

〉
∂t 〈p1p2〉 = −mω2

k (〈p1x2〉+ 〈x1p2〉)−K (〈p1x1〉+ 〈x2p2〉)
∂t
〈
p2
k

〉
= −2mω2

k 〈pkxk〉 − 2K 〈xipk〉+ h̄K.

(4.19)

Note that the evolution of the system does only depend on moments up
to order 2. This means that if the system is originally in a Gaussian state
(and we have seen that this is the case for the ground state in section 3.2),
the system will remain Gaussian forever owing to the fact that a Gaussian
function can be perfectly described only with the first and second moments.
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Figure 5: Simulation of equation 4.19 for the pendulum of LIGO: m = 40 kg,
L = 1m, d = 1m, ω = 3 s−1. As the initial configuration we separate both
pendulum from their equilibrium position and then let the system evolve.
Moment diffusion is not observed.
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Figure 6: Simulation of equation 4.19 for two trapped Ca+ ions optically
cooled: m = 40uma, d = 1µm, ω = 1 s−1. The initial configuration consists
in the two masses displaced from the equilibrium position and with a small
initial velocity. Moment diffusion is not observed.
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Also note that the last term of the last equation leads to moment dif-
fusion, i.e. a continuous increase of the momentum. This effect arises from
the last term of 4.12, which is also the responsible of decoherence. Thus
these two effects are directly related and we can obtain information on de-
coherence by taking a look at the evolution of the momentum. We shall now
study in more detail both decoherence and diffusion processes.

The figures 5 and 6 show the dynamics predicted by the equation 4.19
in the case of a macroscopic and microscopic system respectively. The mean
values and quadratic moments that are not plotted exhibit the same oscil-
lating behaviour without change in the amplitude. In none of both figures
we can observe the effect of decoherence through moment diffusion. As we
will prove later, for observing such phenomena we should wait an immense
amount of time. The gravitational interaction between the masses is not
seen either due to its low intensity.

4.2 Decoherence rate

The master equation 4.12 describes the dynamics of the system considered
along this paper. Once again, from section 2.3 we know that the only re-
sponsible for decoherence is the last term of 4.12. We now project the last
term of the equation into the position space of one of the masses in order to
obtain the decoherence rate at which it is submitted.

d 〈x′k| ρ |xk〉
dt

=(. . . )− K

2h̄
〈x′k| [xk [xk, ρ]] |xk〉

=(. . . )− K

2h̄
〈x′k|

(
x2
kρ− 2xkρxk + ρx2

k

)
|xk〉

=(. . . )− K

2h̄
(x2
k − 2xkx

′
k + x′2k ) 〈x′k| ρ |xk〉

=(. . . )− K

2h̄
(xk − x′k)2 〈x′k| ρ |xk〉 .

(4.20)

Whence we identify the decoherence rate as

Λgrav =
K

2h̄
(xk − x′k)2 =

K

2h̄
∆x2

0, (4.21)

where for the last equality we have considered we are in the ground state.
Let us now compute the deviation

(
∆x2

)
ground

=
〈
x2
〉
ground

− 〈x〉2ground.
The position operator can be written in terms of the raising and lowering
operators as

x =

√
h̄

2mω
(a† + a). (4.22)
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Consequently, the mean value x for the ground state is null. Regarding
the mean value of x2 we have

x2 =
h̄

2mω
(a†

2
+ a2 + 1 + 2N), (4.23)

being N the number operator and 1 the identity operator. Therefore, the

mean value of x2 turns out to be
h̄

2mω
. Collecting these results and recalling

the definition 3.15 we can rewrite the decoherence rate as

Λgrav =
K

4mω
=

∆

4
. (4.24)

So the key parameter to take into account when studying decoherence
is ∆, the normal mode split for weak interaction. This parameter can be
rewritten using the definition 3.8, obtaining

∆ =
2Gm

ωd3
. (4.25)

Now if we have spherical masses, we can rewrite this expression in terms
of the density of the material such that

∆ =
8πGρ

3ω

(r
d

)3
=
πGρ

3ω

(
2r

d

)3

. (4.26)

Obviously, the relation d > 2r must hold always, the quantity is bounded,
satisfying the inequality

∆ ≤ πGρ

3ω
⇒ Λgrav ≤

πGρ

12ω
. (4.27)

After this computation we are in conditions of making some estima-
tion similar to the one made after equation 3.15. In order to detect the
decoherence rate we need a large value for the density and a rather small
value for the frequency. An optimistic estimation given by Kafri [9] provides
Λgrav ∼ 10−7, which it is argued to be out of range for observing with the
current technology.

4.3 Momentum diffusion rate

It is worth to keep working on the last term of 4.12. As we have seen, this
term not only predicts the decoherence of the system but also a momentum
diffusion, which has a special interest for our discussion as it is a classical
measurable effect. We have already seen explicitly how this effect emerges
naturally from the master equation when written in terms of the mean val-
ues of the observables 4.19.
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An alternative way of obtaining such result is by noticing that the last
term in 4.12 corresponds to the averaging of a random force with correlation
function [6]

〈F (t)F (t+ τ)〉 = Kh̄δ(τ). (4.28)

where the factor multiplying the delta function is the diffusion rate.

Let us now consider two different systems in order to evaluate the mo-
mentum diffusion rate. First of all we shall explore a microscopic situation,
for example two trapped ions. Provided that they have a mass around
m ∼ 238 uma -corresponding to uranium-, a small frequency ω ∼ 1s−1 and
a separation of d ∼ 10−6m, then we obtain K ∼ 10−41. Hence the diffusion
rate takes D ∼ 10−75(kg m/s)2/s.

This means that if we want to observe a change on the momentum δp
due to the diffusion, we should wait a time t = (δp)2/D. For example, if we
want to detect a velocity increase of mm/s we would measure δp ∼ 10−28,
so we should wait around t ∼ 1019s. Obviously this can never be observed,
as the age of the universe is around t ∼ 1016s.

We move now to the macroscopic setup. For the computation we consider
m ∼ 40 kg, ω ∼ 1 s−1 and d = 1m, thus leading to K ∼ 10−7. Therefore
the diffusion rate is around D ∼ 10−41.

Once again we would like to detect a change of the velocity of the order
of mm/s, for which we must have δp ∼ 10−2. Consequently we should wait
1037 s, so the situation gets even more complicated for the observations.

4.4 Brownian motion analogy and effective temperature

The alternative reasoning in the previous section 4.3 for determining the dif-
fusion rate through the comparison with the random force averaging strongly
suggest an analogy with the Brownian motion.

Essentially, the Brownian motion is a stochastic process where the sys-
tem is affected by both a diffusive and friction process. Furthermore it is
a process of Markovian nature, that is to say that the immediate future
dynamics of the system only depends on its present state. This Markovian
nature is mathematically described by the correlation function 4.28.

Although the Brownian motion can be satisfactorily described with the
classical model proposed by Langevin, we will use here the quantum de-
scription for comparison purposes. There is a particularly interesting term
in the quantum master equation of Brownian motion [9]
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∂tρ = (. . . )−
2∑
i=1

2γkBTm [xj [xj , ρ]] . (4.29)

It has the same dependence that the term in 4.12. The factor γ represents
the dissipation rate of the resonators in contact with a common thermal
bath of temperature T. Now it seems convenient to compare both factors
representing the dissipation rate. Thus we get an effective temperature for
the gravitational decoherence

2γkBTm = Kh̄ ⇒ T =
Kh̄

2γkBm
. (4.30)

This result can be rewritten in terms of the quality factor, defined as
Q = ω/2γ, thus

T =
h̄Q∆

kB
. (4.31)

From [6] we see that a high and achievable value of the quality factor
is Q ∼ 106. Recalling the numerical estimation of 4.2 we also have ∆ ∼
Λgrav ∼ 10−7. Using these values, the effective temperature is T ∼ 10−12.
If we were to observe the decoherence of the system we should have a lower
environment temperature than the one obtained. However this temperature
is extremely low and could hardly be achieved in the desired conditions. In
[9] they propose a more optimistic value of the quality factor Q ∼ 109. Even
with this value the temperature is of the order of nano-Kelvin, still very low.

Currently the system of interest that is closer to the desired conditions
is a chain of trapped ions. Doppler cooling is the theoretical background to
construct such systems. Basically the ions are submitted to the action of
two lasers in each axis slightly detuned to the red of the resonance frequency
of the atom [3]. A classical Doppler effect acts together with radiative forces
giving as a final result the slowing down, and therefore cooling, of the ions.
Furthermore the ions are submerged in a common harmonic trap to com-
pensate the Coulomb interaction. This setup allows us to have relatively
heavy/dense atoms separated a distance of the order of micrometers, thus
increasing the value of ∆ and our expectations to detect gravitational deco-
herence.
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5 Conclusions and discussions

This work has been a detailed educational review of the paper [9], where
gravity is introduced as a purely classical communication channel. This has
been achieved by considering that each of the masses is being continuously
and weakly measured. In this context the quantum theory of measurement
applies, providing a mathematical frame for describing such monitoring. In
this model, the result of measurement is somehow stored and feedback to
the other mass, inducing the right gravitational force and reproducing thus
the dynamics.

On our way to find the master equation some assumptions were made.
First of all we accounted for the symmetrical case, as both pendulums have
the same mass then their reciprocal effect must be equal, and so must the
weighing factor χi. Therefore, the master equation simplifies and we natu-
rally recover the classical interaction Hamiltonian Kx1x2 deduced in section
3.1. This fact alone does not prove anything, but is a reason to believe that
the model proposed indeed accurately pictures gravity. The second key im-
position is to choose a value for the rate at which information is gained
Γ such that the noise contribution from the measurement to the system is
minimum, being thus proportional to the gradient of the gravitational field
K. Its motivation comes from the fact that we want to detect decoherence,
which seems to be considerably weak, so having a big amount of noise in
the system would complicate our task.

We extract information from the evolution of the mean values and quadratic
moments instead of solving the master equation for the density operator.
Specifically the most relevant parameter for our discussion is the decoher-
ence rate, which happens to be proportional to the normal modes split of the
resonator. Its value turns out to be considerably small. Furthermore, two
classical effects associated with decoherence are studied. On one hand we
have the momentum diffusion, if decoherence is taking place then we should
expect the resonators to get heated. After estimations we see that for de-
tection of such phenomenon we should wait a large amount of time. On the
other hand, we find an effective temperature below which decoherence could
not be distinguished from environmental effects [9]. A simple computation
shows that this temperature is of the order of nano-Kelvin. All this together
pose some technological requirements that must be fulfilled before trying to
detect decoherence.
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6 Śıntesis en Español

6.1 Introducción

A d́ıa de hoy no hemos sido capaces de desarrollar una teoŕıa que aúne
gravedad y cuántica dentro del mismo marco. Aparentemente a escalas mu-
cho mayores que las de Planck, los fenómenos que emergen de una ”gravedad
cuántica” no debeŕıan ser observados. Sin embargo, recientemente Diósi y
Penrose han propuesto un marco en el que dichos efectos podŕıan obser-
varse a escala de laboratorio. El trabajo aqúı presentado es una revisión
con fines esencialmente educativos del art́ıculo [9] publicado por Kafri et
al. Estudiaremos un sistema acoplado gravitatoriamente en el marco de la
mecánica cuántica. La idea básica sobre la que se sustenta nuestro estu-
dio es el tratamiento de la gravedad como un proceso de realimentación:
la posición de cada masa es medida, y dicha información se transmite a la
segunda masa de forma que se induzca la fuerza gravitatoria. Obtendremos
una tasa de decoherencia que revelará su intensidad.

6.2 Teoŕıa cuántica de la medida

Comenzamos por introducir lo que entendemos como medida ideal. Básica-
mente se trata de una medida que no altera el valor medio de los observ-
ables, aunque śı que cambia el estado cuántico. Este proceso puede ser
generalizado al caso en el que el detector tiene resolución finita, eliminando
el carácter ideal de la mediada. En concreto estudiamos el caso de una me-
dida que se realiza de forma continuada. En este contexto, introducimos el
ĺımite difusivo a fin de encontrar el cambio en la ecuación maestra debido al
proceso de medida. Finalmente incorporamos dos términos, uno de carácter
determinista y otro de carácter estocástico. A continuación ilustramos el pa-
pel que juega el proceso de medida en la evolución de un sistema, para ello
simulamos la evolución de un qubit. Por último, incorporamos un segundo
proceso en el sistema, la retroalimentación o feedback. De nuevo analizamos
el cambio que se produce en la ecuación maestra, demostrando que debemos
añadir varios términos de carácter tanto determinista como estocástico.

6.3 Sistema cuántico acoplado gravitatoriamente

En este caṕıtulo describimos un sistema formado por dos péndulos acoplados
gravitatoriamente. En primer lugar damos un análisis desde una perspectiva
clásica, asumiendo que el efecto gravitatorio es débil, de forma que podemos
escribir el Hamiltoniano del sistema en forma cuadrática. Posteriormente
hallamos los modos normales y la frecuencia que los separa. En segundo
lugar abordamos el sistema a través del formalismo cuántico, hallando la
autofunción del estado fundamental, que resulta ser un estado squeezed. Di-
chos estados tienen mı́nima incertidumbre. Escrita en una forma compacta
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surge una matriz en la que se espera que los elementos no diagonales desa-
parezcan como consecuencia de la decoherencia.

6.4 Gravedad como una interacción retroalimentada

Remplazamos en el Hamiltoniano el potencial gravitatorio por un Hamilto-
niano que describe el proceso de feedback. Dicho proceso consiste en que
la posición de cada masa es medida y esa información almacenada en una
función y empleada para modificar la dinámica futura de su compañera de
igual forma que lo haŕıa la gravedad. Determinamos la ecuación maestra 4.8
en base a lo discutido en el caṕıtulo sobre teoŕıa de la medida. Particular-
izamos para el caso simétrico, en el que las masas son iguales, recuperando el
Hamiltoniano de interacción ya conocido de la mecánica clásica. Imponemos
en la ecuación una contribución mı́nima al ruido, obteniendo una tasa de
transmisión de información entre las masas que es proporcional al gradiente
del campo gravitatorio. El siguiente paso es resolver la ecuación maestra.
En lugar de resolverla directamente, optamos por encontrar la evolución de
los valores medios y de los momentos cuadráticos que aportarán de forma
alternativa la información necesaria. A partir de la ecuación maestra deter-
minamos la tasa de decoherencia, que resulta proporcional al desfase entre
los modos normales de los osciladores. Asimismo, estudiamos dos efectos
clásicos que surgen del proceso de decoherencia. Por una parte, encontramos
la difusión del momento, cuya tasa obtenemos a partir de la evolución de los
momentos cuadráticos. En segundo lugar, en analoǵıa con el movimiento
Browniano, definimos una temperatura efectiva por encima de la cual no
podremos detectar la decoherencia, pues quedará oculta por la agitación
térmica. Estimaciones de los tres parámetros mecionados revelan bajo que
condiciones debe estar el sistema a fin de detectar la decoherencia. En ĺıneas
generales podemos decir que aún no disponemos de la tecnoloǵıa necesesaria
para satisfacer tales condiciones, pero los avances en ”opto-mecánica” son
prometedores.

6.5 Conclusiones y discusiones

Hemos descrito la interacción gravitatoria mediante un modelo de feedback
estudiado por Kafri et al. en [9]. Para la obtención de la ecuación maestra
nos hemos apoyado en la teoŕıa cuántica de la medida. Una vez obtenida,
realizamos una serie de simplificaciones, en primer lugar consideramos el
caso simétrico en el que las masas son iguales, recuperando el término de
interacción de la mecánica clásica. Si bien esto no prueba nada, es una
razón para creer que el modelo propuesto describe de forma adecuada a
la gravedad. La segunda simplificación es minimizar la señal de ruido que
proviene del proceso de medida, a fin de poder distinguir más claramente
el proceso de decoherencia. Determinamos la tasa de decoherencia, cuyo
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valor es considerablemente pequeño y por tanto dif́ıcil de detectar en el
laboratorio. Asimismo, encontramos la tasa de difusión del momento, un
efecto clásico que tiene como origen la decoherencia. Dicho valor revela que
el efecto se hace notable tras esperar un tiempo del orden de la edad del
universo, y es por tanto indetectable e irrelevante. Por último, determinamos
una temperatura por debajo de la cual debe estar el sistema si no queremos
que el proceso de decoherencia nos pase desapercibido. Concluimos entonces
que, visto el estado del arte de la tecnoloǵıa, la detección de este fenómeno
se muestra complicada por el momento.
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