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Ach, die Physik! Die ist ja für die Physiker viel zu schwer! (Oh, physics! That’s just too
difficult for the physicists!) (¡Ay, la física! ¡Es demasiado difícil para dejársela a los físicos!)

David Hilbert.
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by David PÉREZ GONZÁLEZ

Since years, optimization methods have been implemented in several fields to
enhance the chances of getting solutions of problems where the time for solving
them is practically the main obstacle. Their applications have been tested a plenty of
times in different branches of science, from basics electronics to molecular biology,
or even for calculating crystal structures in chemistry.

In this work, we are seeking for getting to know better the working mode of
these methods. For that, we are focusing on the global optimization of Lennard-
Jones clusters.

Our main goal is to explain the algorithms used for optimizing the potential
that describes these clusters with its implementation in Python. With that, we will
measure the efficiency of our programs testing some special clusters deeply and we
will compare them checking which one is more efficient.

Durante años, los métodos de optimización global han sido implementados en
diversos campos para mejorar las oportunidades de conseguir soluciones a
problemas donde el tiempo para resolverlos es su mayor obstáculo. Sus
aplicaciones han sido probadas con rigor en muchas ramas de la ciencia, desde
electrónica básica hasta biología molecular, o incluso en el cálculo de estructuras
cristalinas para diversos compuestos químicos.

En este trabajo de fin de grado, buscamos la manera de conocer mejor cómo se
trabaja con estos métodos. Para ello, nos centramos en la optimización global de
agregados de Lennard-Jones.

Nuestro principal objetivo es dar a conocer los algoritmos que hemos utilizado
para la optimización de este potencial que describe a los agregados y luego, su
implantanción en el lenguaje de Python. Con ello, podremos medir la eficiencia de
nuestros programas analizando algunos agregados especiales con un estudio más
exhaustivo y observar cuál es el más eficiente.

HTTP://WWW.ULL.ES
https://www.ull.es/la-universidad/facultades-centros-departamentos/facultad-de-ciencias/
https://www.ull.es/la-universidad/facultades-centros-departamentos/fisica/
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Chapter 1

Introduction

Global Optimization is all about finding the most effective conditions to reach
our goal that is to determine the optimal value of a given function from all possible
solutions. However, we also have to mention the concept of Local Optimization that,
at the end, is the same but restricted to a set of possible solutions that are near by the
same domain.

These definitions fit quite well with our global understanding of mathematics,
but we cannot let Fermat, Euler, Lagrange, Newton, Leibniz and many others
scientists out. Optimization is like it is nowadays, thanks to their development of a
theory from extreme problems. Because of that, this discipline became one of the
most useful fields in several branches of science and even other fields such as
economics or engineering.

There are several examples of the utility of optimization, but since our objective is
to focus on a specific one, we will only shortly mention a few of them. From the well-
known traveling salesman-type problem, the design of microprocessor circuitry, the
flow in a pipe network, the notorious protein folding problem [11] until all the new
GPS apps that are really famous today, we can see the application of optimization at
the bottom of their algorithm.

To express this concept mathematically:

Let be f (x) a function where x ∈ R.

We set a domain D ∈ R where if x0 ∈ D ⇒ |x− x0| ≤ δ

When 1� δ > 0 and f (x0) ≤ f (x) ⇒ x0 is a local minimum.

Once we can extend δ to the whole space we are working with, or at least that
it is big enough for our purposes, in other words that x0 is not only as good as any
nearby points (local minimum), but also as every feasible point; then, we can define
x0 as ’global minimum’, though we must know that it is not definitive. [1]

Otherwise, we know that for getting the minimum, if we have the form of the
function, it is enough with equalling the derivative of the function to zero,
mathematically, through the Fermat’s theorem:

"Assuming f (x) as the function before, if f (x) is differentiable at the region near
by x0 and we know x0 is a local minimum, it implies that f ′(x) = 0" [2]

Then, we can get the conditions for that. If the form of the function is still not
clear or we cannot get the conditions for that in a proper way, we can still use it for
computing.
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Moreover, once we want to compute a program for calculating the global
minimum, it turns out that most of the times the program is getting a local
minimum instead. That is because of the constraints we are giving to the domain D.
Thus, the main task is trying to figure out how these parameters or restrictions
should be tuned for efficiency.

In this work, our target is to focus on one of the most interesting optimization
problems and explaining the methods used for solving it. Within materials science,
finding the structure that minimizes the (free or not) energy of a system given is
a hot topic still. In our case, the ground-state structure of a nanocluster of atoms
interacting is the problem to solve. [3]

For this problem, we need to figure out which simple model can describe the
system we are interested in. We know there are forces between atoms that depend
on the position of them and the structural optimization we want to calculate means
finding the positions of these atoms and for that, we have to take into account the
potential energy of the structure we are looking for. The chosen model is the classical
Lennard-Jones (LJ) pair potential, a well-known potential in physics that will be
described in the chapter 2. [4]

“Why is it important to locate the global minimum?” Once we achieve the global
minimum, the positions of the atoms is likely the one that a real cluster would form
although we always have to check if the final distribution is the one obtained by an
experiment with temperature equal to 0 and whether it is physically reasonable or
not. [5]

The traditional approach to compute the global minimum is to perform several
calculations of the potential from an initial distribution of the atoms. This first
structure can be taken from either a specific one or random one. Then, we can use a
special algorithm for calculating the local minimum. If we do this a lot of times or
we choose the initial configuration in a proper way, we can find the global
minimum.

However, as N (number of atoms) increases and consequently the size of the
cluster, the time-consuming increases as well because the number of local minimum
grows exponentially which reduces the likelihood of finding the global minimum,
as we can observe in the table 1.1 that shows the known (or estimated) number of
minima for different Lennard-Jones clusters. For this reason, some researchers are
using heuristic methods based on an analogy to some natural process. [3]

N 2 4 7 10 13 15 19 33
Minima 1 1 4 57 366 ∼ 10700 ∼ 2 · 106 ∼ 4 · 1014

TABLE 1.1: Number of minima found in some Lennard-Jones clusters
[6].

One of these natural processes used for the analogy is the simulated annealing
(SA) [3], a method that we will explain in the chapter 3. Also some traditional Monte
Carlo methods can be used.

Nevertheless, some of these methods as the one we mentioned before (SA) are
not able to find some more complex structures in bigger clusters or they take too
much time. It is caused by the different and particular types of interatomic
interactions. Thus, some investigators have proposed either modifying the methods
mentioned before or using new ones that depend on another kind of strategy. [3]
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On one hand, from the first group, we have a very common and popular method
for calculating cluster structures, the basin-hopping [7]. We will take a closer look at
it in the chapter 3.

On the other hand, from the second group, we have a very innovative and
recently developed method not only for simple or theoretical cluster structures, but
also for more complex and specific ones, the genetic algorithm [5]. In the chapter 3
we are explaining the theoretical frame this method is based on.

Finally, in the appendix B and C, we are also including the development of a
program written in Python using the techniques mentioned in the respective
chapters. Thanks to that, we will analyze the way the parameters (constraints)
behave and the iterations needed from our programs to find the global minimum.
Then, we are comparing the efficiency or even the succeed of both methods in the
chapter 4. Apart from that, we are comparing some examples and interesting cases
using our program with an official database [7] in the same chapter 4. With that, we
can use the LJ potential as a test-bed for the global optimization algorithms we are
developing to get to know if we can use them for other purposes.
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1.1 Resumen en Español

La optimización global es un problema matemático que consiste en encontrar el
valor óptimo de una función, que puede estar sujeta a ligaduras. Es un tema muy
activo estos últimos años por sus enormes aplicaciones prácticas en diversos
campos, desde problemas típicos del vendedor que quiere realizar el recorrido más
corto posible, el diseño de circuitos electrónicos para encajarlos en carcasas
especiales o reducir el calor que producen, hasta el plegamiento de proteínas y un
largo etcétera que ocupa una extensa bibliografía.

La forma de obtener este valor óptimo puede ser muy variada, utilizando
algoritmos de todo tipo. En este trabajo, sin embargo, nos centraremos en los tres
métodos más eficientes y contrastados que existen en la bibliografía: a) Algoritmo
Genético (“Algorithm Genetic”), b) Enfriamiento Simulado (“Simulated
annealing”) y c) Salto entre mínimos (“Basin-Hopping”). Estos dos últimos los
estudiaremos con gran detalle analizando los resultados encontrados en los
agregados de Lennard-Jones y comprobando su utilidad. Por otro lado, el
denominado Algoritmo Genético será materia de estudio de forma bibliográfica
para su descripción y comprensión.



5

Chapter 2

Lennard-Jones Potential

In this chapter we are discussing shortly about the Lennard-Jones potential for
computing the potential energy surface of a cluster knowing the positions of the
atoms we are working with.

2.1 Presenting the Lennard-Jones potential

This potential is useful when we can take into account only the interaction
caused by the electrostatic force induced between the dipole atoms, a consequence
of fluctuations in the charge distribution. This model is named van der Waals
solids. [8]

The formula for our potential between only two atoms with r the distance
between them is:

VLJ(r) = 4ε

[(σ

r

)12
−
(σ

r

)6
]

(2.1)

where ε is the depth of the potential well and σ is the finite distance at which the
interparticle potential is zero. This potential function is plotted in figure 2.1.

"Why are the terms of the potential as they are?" The second term of the potential,
with the exponent 6, can be derived from a second order perturbation theory of the
induced dipole induced dipole interaction energy.

If we let the potential only with that term, the atoms would tend to come closer
and closer to each other. Thus, to fix this in the LJ potential, they included the first
term in a way that energy will increase rapidly when r is getting smaller and smaller.

By choosing these exponents, we can manipulate the potential easily in a way
that, for example, in the case we have only two atoms, as we can see in the figure
2.1, getting the minimum of the function is straight forward (for the derivation, see
the appendix A):

V = −ε and rmin = 6
√

2σ
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Once we want to take into account a longer amount of atoms, we use a Lennard-
Jones 12-6 pairwise potential:

Vij(r) = 4ε

[(
σ

rij

)12

−
(

σ

rij

)6
]

(2.2)

And the final potential would be:

V(r) =
N

∑
i=2

N

∑
j<i

Vij(r) (2.3)

FIGURE 2.1: LJ pair potential with ε = 1 and σ = 1.

Lennard-Jones potential provides us clusters with numerous features. They are
not only an useful testing ground for global optimization algorithm (it is easy to
program and some clusters, such as LJ38 and LJ75, can discriminate between
methods that are likely to be useful and those that are not), but also for analysis of
structure, dynamics and thermodynamics in terms of the underlying potential
energy surface. Otherwise, taking into account its simplicity, it is really remarkable
that many of the global minimum structures have been observed experimentally
for clusters of atoms and molecules from real elements. [9]

For getting the global minimum, we can also use the derivative, since for the
programming methods we are using it is going to be really useful in a way that we
can get the final solution easier and it will be more accurate. There are even some of
them that are asking for it explicitly. For that, we are following the same steps as for
the derivative with only two atoms.
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In the following line we are presenting the derivative of the LJ potential for a
dimer:

V ′(r) = 24ε
N

∑
j 6=i

(
σ6

r7
ij
− 2σ12

r13
ij

)
(2.4)

The lower bound obtained for N = 2 coincides with the one for N = 3 and N =
4 that actually follows an equation: -N(N - 1)/2 (assuming that all pairs are at their
equilibrium separation. However, from N = 5 onwards it is impossible to follow this
rule and the energy is becoming larger and larger. [3]
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2.2 Resumen en Español

En este capítulo discutimos acerca de la obtención del potencial de
Lennard-Jones y su manera de computar la superficie de energía potencial de los
agregados con su mismo nombre, a través de la posición que ocupan sus átomos en
el espacio. También, describimos qué información podemos obtener acerca del
mismo según los agregados que estudiemos. Añadimos su derivada puesto que
muchos de los algoritmos de cálculo suelen requerir la misma para encontrar el
propio mínimo local (un punto estacionario de la superficie de energía potencial).
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Chapter 3

Global Optimization Methods

In this chapter, we are describing the three principle methods for global
optimization. In the first section, we are briefly introducing in a bibliographical
way one of the most innovative method, genetic algorithm (GA) [5]. In the second
place, we will have a closer approach to one of the first global optimization
methods, simulated annealing (SA) [3], because we are using it for finding the
global minimum of the LJ potential given for calculating the most stable structure
for a given number of atoms. Examples from that are presented in the next
chapters. Finally, a third method is considered in this report, basin-hopping [7], a
global optimization method whose results have been proved several times
successfully. For this last method, we are also calculating the same as for the
simulated annealing [3]. Thus, we are able to compare both methods with the
examples mentioned before.

3.1 Genetic Algorithm

In this section, we are explaining the basic concepts of genetic algorithm [5]
within its theoretical framework taking into account that it is an important method
nowadays, but we are not applying it to our system.

We have a global optimization method that uses the principles of genetics, the
natural evolution. For that, it is taking some operators that have the same function
that their names in nature have. This analogy can be used with the parameters of
the problem, too. Since we can compare ’genes’ with variables, the compounds of
genes (’alleles’) with the individual value of the variables and even a chain of genes
(’chromosomes’) with a string that is a trial solution of the problem. This comparison
can be observed in the figure 3.1. [5]

Assume an initial population generated randomly that corresponds to the
starting set of possible solutions of the function we want to optimize with genetic
algorithm (GA) [5]. Then, all the strings are relaxed into the nearest local minimum
by a minimization routine. With this new configuration, we are analyzing this first
attempt giving to every string a parameter, called fitness, that is generating a
measurement of the quality of this string in comparison with the function being
optimized. This parameter is working with a chosen function to be more restricted
with the solution or not. For example, if we are interested in minimizing a function,
a low fitness will tell us that this string is good. [5]
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Once all the strings are defined by a value of fitness, then they are compared
to be chosen for being mating. Here, the fitness is important because it is giving
more likelihood to be chosen to the ones that have a good fitness. This selection is
done by mainly one way. This technique is named ’roulette wheel’ and it consists on
comparing the fitness with a random number given to each string. Since the fitness
is taking values only from 0 to 1, this random value will be in the same interval as
well. [5]

FIGURE 3.1: Schematic representation of the mutation operation of
one individual where a single variable is modified. [5]

Since the strings are chosen, they are modified by some different operators such
as ’mutation’. This one is modifying the values inside of the string, exchanging them
or removing some of them to take new ones, as we can see in the figure 3.1 where
we are removing one ’gene’ for a new one. Then, the function is again relaxed and
evaluated. [5]

After the new evaluation, where a new fitness value is given, is done, we will
proceed with the ’natural selection’. In this step, the strings whose fitness value is
not good enough are removed from our population and new ones are taken. [5]

Finally, we check if the new set of solutions converges to the one we are looking
for. If yes, we keep this new set of solutions as the final set of solutions. If not, we
start again the loop assigning a new fitness value. [5]

3.2 Simulated Annealing

Some researchers use some natural processes as an analogy for programming an
algorithm of optimization. How this method is built is always compared with the
process that has the same name in the metallurgy industry, but its theoretical basis
approach is deeply rooted in statistical mechanics. Otherwise, there are some
problems with this method if you want to use it for finding a global free energy
minimum that changes with temperature because then, the system may become
trapped inside of a well. [10]
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This method imitates the dynamic process in which a system (generally metals)
is heated until all their parts are malleable and then it is shaped in the way one wants
meanwhile it is being cooled down. We will apply something similar to calculate the
global minimum in the Lennard-Jones potential. For example, in the figure 3.2, we
can observe how a random potential looks like and then, our trial (the ball) is being
modified randomly as well for getting the global minimum (x∗).

3.2.1 Method itself

We will take advantage of the fact that we have programmed this method in
Python already (see Appendix B for a more detail version). Thanks to that we can
explain the method itself by describing the code we programmed following the
instructions of the supervisor. In the following, we will explain the implementation
of this method.

First of all, we need to generate a random distribution of atoms in a
tridimensional space. Keeping this thought in mind, we are generating a sphere
(with radius r = 5σ) from where the ’atoms’ that are chosen are located all in
places where the distance to the nearest ones is at least the equilibrium separation
(rmin = 6

√
2).

After that, we are using the distances calculated before for obtaining the LJ
potential (taking into account that ε = 1 and σ = 1 for simplicity). For that,
depending on how many atoms we have, there will be more or less terms.

Once we have the initial value for the potential from the initial distribution of
atoms, we define the parameters we need for modifying the position or not.

These parameters are ∆ and T. On one hand, the ∆ value is used for changing
the position of the atoms a certain quantity. On the other hand, the T (temperature)
value is following the analogy mentioned at the beginning because its main purpose
is to determine the likelihood for choosing a new value for the potential that, in
principle, is not lower. We will explain that in more detail later.

After that, we set a condition for the loop we want to run based on the experience
of our supervisor. This condition is the difference between the new value of the
potential and the one we had before. This difference has to be less than 10−3 to stop
the loop. Inside this loop we are choosing one atom randomly and changing its
position following the next formula:

xnew = xold + 2∆(ξ − 0.5) (3.1)

where ξ is a random number distributed uniformly between 0 to 1.

We are doing that with all three axes and then recalculating the distances
between the atoms this position affected. Here, we are also including a condition
for the variation of the position to not let them leave a box of size 10 x 10 x 10. This
condition is only made to avoid the possible case that the atoms are all going away
from each other.
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FIGURE 3.2: The horizontal line marks the maximum variation our
trial can take depending on its temperature (from high T to low T:

red>orange>yellow>green>blue). [18]
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Hence, we recalculate the potential as well and here, it follows one of the most
important steps in the program and also one of the characteristics of the Simulated
Annealing method [3], the application of the Metropolis criterion to accept or reject
new positions.

In the following, we will explain this criterion. If the new potential value is
lower than the one we had before, the old one is exchanged by this new one
immediately. Nevertheless, if this does not hold, then the new position of the atoms
and, in consequence, the change in the potential, are accepted according to a
Boltzmann probability that obeys the next expression:

exp((−(Vnew −Vold))/kBT)

where, T is the ’temperature’, V is the LJ potential and kB is the Boltzmann
constant. The Boltzmann constant is set to one and, in consequence, the
’temperature’ has reduced units.

Since we know the new value for the potential will not be larger than the old one,
we know the value of the exponential will be always positive and one as maximum.
Thus, we are taking a random number between 0 to 1 and if this value is lower than
the one obtained for the exponential, we are accepting the new value of the potential
and exchanging the position of the atoms. If not, we set the old values again.

Here, the ’temperature’ is becoming more important because if the T value is
high, then the likelihood of accepting the new state is also higher and once the
’temperature’ is falling, the probability of changing the position of the atoms is
practically nothing. Moreover, the T value is decreasing following a negative
exponential function and only every 50 iterations in the loop.

Additionally, we set a condition for changing the ∆ value. If after 100 iterations,
we are accepting more new values than we reject, we change the ∆ value multiplying
it by 1.05 in a way that then, the changes are bigger and we can find a better value. If
it is in the other way around, we change the ∆ value multiplying it by 0.95 in a way
that then, the changes are smaller and we can go more straightforward to the global
minimum.

Once the loop is done, the minimization routine takes place to quench the
structure found to the global minimum. This step is also telling us how far the
trajectory is going down because the routine has its own condition. The fully
trajectory is then, the sum of the iterations from the method itself and the routine,
as we will show later. It is noticed that this method has problem obtaining a local
minimum instead of the global one as we will compare in the next chapters.

Moreover, we are plotting the final solution to get to know if the structure
obtained does have physical sense or not.

Furthermore, by plotting the final positions of the atoms, we can compare them
with the ones that are plotted in some database [7], as we will do in the chapter 4 in
more detailed.
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3.3 Basin-Hopping

This method arises from the necessity of generating a more complex algorithm
for getting more complex structures. It was developed to be useful for functions
that consist of many minima separated by large barriers. Moreover, it is based on
stochastic algorithm and precisely for that reason, although there is no way to
determine if a true global minimum is found, we can check if from a plenty of
random starting points, the function always converges to the same point. It is also
an iterative method whose steps will be explained later, but they are mainly three
[11]:

1o) Random perturbation of the set of solution we have generated.

2o) Use of routine minimization for getting the local minimum.

3o) Accepting or rejecting the new set of solution based on the Metropolis
criterion.

At the end, the potential energy for every point in the catchment basin of each
local minimum becomes the energy of that minimum in a way we can divide the
surface of our function into different basins and then, comparing them to get the
global minimum. A graphical way to observe that is given in the figures 3.3 and 3.4.
From a mathematical point of view:

Ṽ(X) = min{V(X)} (3.2)

where we are carrying out an energy minimization from different points (X)
producing a landscape consisting of plateaux at the energies of the local minimum.
This transformation does not affect the relative energies at those minima.[10]
Actually, "aside from removing all the transition state regions from the surface, the
catchment basin transformation also accelerates the dynamics, because the system
can pass between basins all along their boundaries. Atoms can even pass through
each other without encountering prohibitive energy barriers."[11]

FIGURE 3.3: The effect of the basin transformation on an one-
dimensional potential function. The solid and dashed black lines
corresponds to the original and transformed potentials, V and Ṽ,

respectively. [7]
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FIGURE 3.4: The effect of the basin transformation on a two-
dimensional potential function. (A) Original surface. (B)
Transformed surface. Each local minimum of V(X) corresponds to
a plateau or catchment basin for Ṽ(X). The surfaces are colored
consistently according to the energy. (C) Cut through the combined
Ṽ(X) and V(X) surfaces for the red boxed region shown in all the
other panels. (D) View of the transformed surface from above. [11]
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3.3.1 Method itself

Since we have also programmed this method in Python (see Appendix C for
checking how to implement this method in Python), we can explain the method itself
by describing the code we programmed following the instructions of the supervisor.

The beginning of the basin-hopping algorithm [7] is pretty much the same as
the one for the simulated annealing algorithm [3]. First, we generate a random
distribution of atoms in a tridimensional space. For that, we create a sphere (with
radius r = 5σ) from where the ’atoms’ that are chosen are located all in places
where the distance to the nearest ones is at least the equilibrium separation
(rmin = 6

√
2).

Now, we directly call the routine minimization to quench the random
distribution chosen at the beginning obtaining a local minimum from the LJ
potential (taking into account that ε = 1 and σ = 1 for simplicity) already.

Again, the number of terms is depending on the number of atoms we have.

Now, we have to define the parameters we need for modifying the positions of
the atoms. As before, these parameters are ∆ and T with the same meaning as the
one explained for the simulated annealing algorithm [3], except for the
’temperature’ that now stays constant and, in this case, it does not refer to the real
system temperature, it is only a parameter.

This time we set an input to determine the number of iterations we want the
program to run instead of a condition.

Inside this loop we are choosing all the atoms to change their position following
the exactly same formula as before (see formula 3.1). Here, we are not making the
same condition as before for not letting them leave a box since we are using the
routine of minimization directly.

Thus, we recalculate the potential using the routine of minimization again and
then, we compare this new potential with the one obtained before applying the
Metropolis criterion once again.

If the new potential value is lower than the one we had before, the old one is
exchanged by this new one immediately. Nevertheless, if this does not hold, then
the new position of the atoms and, in consequence, the change in the potential are
accepted according to a Boltzmann probability that obeys the next expression:

exp((−(Vnew −Vold))/kBT)

where, T is the ’temperature’, V is the LJ potential and kB is the Boltzmann
constant. The Boltzmann constant is set to one and, in consequence, the
’temperature’ has reduced units.

Since we know the new value for the potential will not be larger than the old
one, we know the value of the exponential will be always positive and maximum
one. Thus, we are taking a random number from zero to one and if this value is
lower than the one obtained for the exponential, we are accepting the new value of
the potential and exchanging the position of the atoms. If not, we set the old values
again.
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Here, the ’temperature’ is playing an important role because once we fix it, we
can jump from one local minimum to another in an easier way.

However, we set the ∆ value to 0.5 but it is modifiable. If after 100 iterations,
we are accepting more new values than we are rejecting, we change the ∆ value
multiplying it by 1.05 in a way that then, the changes are bigger and we can find a
better value. If it is in the other way around, we change the ∆ value multiplying it by
0.95 in a way that then, the changes are smaller and we can go more straightforward
to the global minimum.

Once the loop is accomplished, the distribution we get should be our global
minimum, even though we know may not be. For getting to know that, we can
compare the output value of our potential to the ones that are in a reliable database
[7].

Finally, we are plotting the final solution to get to know if the obtained structure
does have physical sense or not.
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3.4 Resumen en Español

En este capítulo, describimos los tres métodos principales para la optimización
global que habíamos comentado en la introducción. En la primera sección,
introducimos de manera bibliográfica el que sería el método más innovador en
cuanto que es el más reciente de los aquí estudiados, algoritmo genético
(“Algorithm Genetic”). En segundo lugar, tenemos un acercamiento, más en
detalle, de uno de los primeros métodos de optimización global, enfriamiento
simulado (“Simulated Annealing”), donde programamos el propio método en
Python y comprobamos su utilidad con diversos agregados de Lennard-Jones que
serán presentados en los capítulos siguientes. Finalmente, el tercer y último método
que hemos tenido en cuenta es el de salto entre mínimos (“Basin-Hopping”), un
método de optimización global cuyos resultados han sido probados numerosas
veces de forma satisfactoria y que nos permitirá comparar los ejemplos
mencionados anteriormente.
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Chapter 4

Simulation

In this chapter, we are describing the results obtained from the optimization of
the LJ clusters to check if our programs are doing well or not. For that, up to 55
clusters from the LJ potential are tested. Actually, the main objective of our work is
detailed here because if we are able to code a program based on the methods
explained, it means we know the methods far enough down and therefore, we can
also get to know the way the results from databases [7] are accomplished. Apart
from that, in the second part, we are getting deeper in the explanation of why some
clusters are special and we are trying to explain it based on our results and
comparing them with the references we have.

4.1 General Analysis

Here, we are seeking for the global minimum of the first 55 LJ clusters and we
are also including a comparison of the methods and their features to get to know the
advantages from one to the other.

In the previous chapter, meanwhile we were explaining the method itself, we
were introducing some parts of the code for supporting the explanation. Now, we
are describing the parts that affect the efficiency in greater detail and the rest of it
can be checked in the appendixes B and C.

The choice of the routine of minimization is directly related to the efficiency of
the program, but not with its succeed finding the global minimum since this is
depending on how complex the potential energy surface (PES) is. However, some
other factors such as the initial temperature or the initial value of delta are also
important. Of course, the size of our program and its simplicity are some very
significant factors for the run-time as well. We needed to change several times the
way we wanted to calculate the new positions and the new distances, coming up at
the end with a solution consisting in recalculating only the ones that are affected by
the change. Nevertheless, changing this in our algorithm took some thinking
caused by the way the loops in Python work.

We have noticed that depending on the problem we are facing, we need a
different kind of routine of minimization. Not only for that, but also for selecting
the best values for the initial temperature and the delta, we have chosen the clusters
LJ13 and LJ38 as trials. This choice was made in order to detect how the time per
iteration in the algorithms behaves with a big enough but very stable cluster (LJ13)
and a very difficult one (LJ38). Thanks to them, we realized which parameters are
the ones that make our algorithm as fast as possible.
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Before that, there was a very relevant part from our program that had to be
done. The definition of the potential and its partial derivatives from the Cartesian
coordinates we are using (X, Y, Z) for every pair interaction needed to be
introduced in our algorithm in a way it can work with them. Although these partial
derivatives are explicitly asked by the routine of minimization we are using, there
were some that did not need them, but then they were not that accurate finding the
local minimum.

The used routines of minimization were some of the ones given by the library of
Python, ’scipy’. This library has a package called ’optimize’ where we can find
them. The chosen ones are: ’CG’ (Conjugate Gradient), ’BFGS’
(Broyden-Fletcher-Goldfarb-Shanno), ’Newton-CG’, ’TNC’ (Truncated Newton)
and ’L-BFGS-B’ (Limited ’BFGS’ Bound) [13].

In every different routine, we set a configuration with different initial
temperatures (0.5, 0.8, 1, 3, 5, 10) and delta (0.4, 0.5, 0.6). Nevertheless, the
difference produced by the change of these initial values was almost unappreciated
except for the temperature in the basin-hopping [7] (it is fixed) where 0.8 was the
best. In consequence, for the simulated annealing [3] we chose the ones
recommended by the professor, 1 for the temperature and 0.5 for the delta value
and for the basin-hopping [7], we only changed the temperature to 0.8.

With respect to the different routines, it was deduced from the trials taken that
the best ones for our purposes were ’BFGS’ for the simulated annealing algorithm
[3] and ’L-BFGS-B’ for the basin-hopping algorithm [7].

This difference in the efficiency of the chosen routines of minimization made us
wondering why this is happening. Having a look to some references, we figured out
that the reason why it is like this is the way how these routines work.

On one hand, the ’BFGS’ works calculating some matrices at each step. This
requires a lot of space from the disk of our computer, although the final result will
be more accurate even though our initial distribution is not good at all. [14]

On the other hand, ’L-BFGS-B’ is an approximation to ’BFGS’, which requires a
lot less memory. ’L-BFGS-B’ computes and stores an approximation to the matrices
mentioned before, what means we need less disk space. [15]

At the end, each step of ’L-BFGS-B’ is an attempt at approximating what the
corresponding step of ’BFGS’ would do. However, a single step of ’L-BFGS-B’ takes
a lot less space and time than a single step of ’BFGS’. Consequently, we can do many
more steps of ’L-BFGS-B’ within a particular time bound than ’BFGS’. Therefore,
we might find that ’L-BFGS-B’ converges faster, because it can do so many more
iterations within a given amount of time than ’BFGS’ can. Nevertheless, if the initial
distribution of the solution for our function is not good enough, this approximation
done by the ’L-BFGS-B’ routine is actually making it harder to find the final solution.

That is why the best routine of minimization for the simulated annealing
algorithm [3] is ’BFGS’, where we do not have a good enough initial distribution for
calculating the global minimum as we need for ’L-BFGS-B’, when it is supposed to
be faster.

Hence, for the basin-hopping algorithm [7], it turns out that since we are using
the routine of minimization directly from the beginning, the initial distributions
running afterwards are so much faster to calculate with ’L-BFGS-B’.
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Once we have decided all the parameters we are taking and the algorithms are
ready for running, we are testing them with the LJ clusters.

4.1.1 Examples

First, we are testing the simulated annealing algorithm [3]. For that, we are
running the program one by one selecting the number of atoms we want to
introduce in our cluster. Then, with five trajectories we are calculating the average
of iterations the program is doing before the routine of minimization is called, what
means before the condition we set (the difference between two energies calculated
in a row has to be less than 10−3) is reached. After that, we include these iterations
in our work, as we can see in the figure 4.1. There, we can also check that the
maximum number of iterations taken for one trajectory is 76 for the case of the LJ26.
The problem, as we can observe, is that the number of trajectories chosen is not
enough for getting the global minimum for big clusters (from LJ26 on was not
possible with only five trajectories in any case) and for some not that big ones
either, such as LJ18, LJ21, LJ24 and LJ25. However, we keep this in order to be able to
compare this method with the basin-hopping [7] one, where we are setting the
same number of trajectories. The number of trajectories that reach the global
minimum per cluster is showed in the table 4.1 (only until LJ26).

FIGURE 4.1: Number of iterations to obtain the global minima as
a function of number of atoms. The red lines determine the global

minima not obtained.
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N Succeed N Succeed N Succeed N Succeed N Succeed
2 5 7 1 12 2 17 1 22 1
3 5 8 5 13 4 18 0 23 1
4 5 9 3 14 1 19 2 24 0
5 5 10 1 15 2 20 1 25 0
6 1 11 2 16 1 21 0 26 1

TABLE 4.1: Number of trajectories (out of 5) that succeed finding the
global minimum.

Actually, in these clusters where the global minimum was not found is observed
that the tendency is to have a peak of iterations that maybe is making the algorithm
unable to obtain the global minimum. In between the stable clusters found, the
relative stability, which gives us the number of iterations, first decreases before
increasing again as the next icosahedron is approached. [16] The main reason why
this is happening is the structure how the clusters are packaged (how complex the
PES is). The red lines showed in the figure 4.1 are directly those clusters whose
relative stability decrease a lot because they have too many overlayers on the
smaller Mackay icosahedron (it is a special kind of icosahedral packing that exposes
only 111 close-packed type faces [9]). With 13 ’atoms’ we can see perfectly how the
algorithm is able to get it really fast because it is a complete Mackay icosahedra [16]
and then, the iterations are increasing a lot until the next stable structure is reached
with 19 ’atoms’ because it is a double icosahedron, which can be considered as a
13-atom icosahedron with a particularly favourable overlayer. [16]

Otherwise, the number of iterations used for computing the global minimum
are not comparable with the one from basin-hopping [7] since we are rating
different steps. Here, we are setting the number of iterations before the routine is
called and then, the number of iterations the routine needs to obtain the global
minimum. However, in the basin-hopping [7] we are counting the number of times
we need to call the routine of minimization for an initial distribution of atoms.
Furthermore, the number of taken iterations here is determined by the own routine
of minimization instead of being chosen by us as it happens in the basin-hopping
algorithm [7].

About how temperature and delta are changing their values, we have to remark
that, in the most of the cases the final temperature (set in 0.05) was never
approached, but the delta value was all the time oscillating around 0.5.

Now, it is time for testing the basin-hopping algorithm [7]. For that, we are
running the program one by one selecting the number of atoms we want to introduce
in our cluster. Then, with five trajectories we are calculating the average of iterations
the program is taking for approaching the global minimum that, at the end, it is the
number of times we are calling the routine of minimization for calculating the local
minimum. The iterations needed are plotted in the figures 4.2 and 4.3, where we
have distinguished between small clusters and big clusters because of the difference
in the number of iterations.
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In this case, it is pretty clear that we are obtaining all the global minima without
any exception. There are some whose number of iterations is really high, but still
possible and reasonable. Moreover, in all the trajectories, the global minimum was
found. Since we were using the LJ38 cluster as a trial for our algorithm, we noticed
we needed almost 10000 iterations for getting it. Hence, for the rest of the clusters
we use 10000 iterations per trajectory as a safe number in a way that, for sure, we
are getting the global minimum since they are easier to obtain.

The LJ13 cluster is again showing the same behaviour as in the simulated
annealing algorithm [3], but now we can also see the same in the LJ55 cluster for the
same reason, both are complete Mackay icosahedra [16]. This can be checked in the
formula where the total number of atoms in a complete Mackay icosahedron is
given:

1
3 (10n3 + 15n2 + 11n + 3), n = 1, 2, 3, ...,

which produces the sequence 13, 55, 147, 309, etc. [9]

FIGURE 4.2: Number of iterations to obtain the global minima as a
function of number of atoms.

As we can see in the figures 4.2 and 4.3, in between the stable clusters found
from 2 to 55 ’atoms’, the relative stability, which gives us the number of iterations,
first decreases before increasing again as the next icosahedron is approached again,
as it happened wit SA. [16]

Almost all the remaining clusters are incomplete Mackay icosahedra where the
stability of their global minimum or the iterations needed for achieving it is
depending on the amount of overlayers from smaller Mackay icosahedra they are
formed with [16]. The only exception in this group is the one that actually was
more difficult to obtain, the LJ38.
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Otherwise, even though we were doing some analysis about the structure and
consequently, about the potential energy surface, we have to admit that these
numbers are qualitative since we have not accomplished any statistical work with a
huge number of trajectories.

FIGURE 4.3: Number of iterations to obtain the global minima as a
function of number of atoms.

4.2 Special Cases

As special cases, we are taking the LJ13 and the LJ38 clusters. The first one is
chosen based on its special stability compared to the other sizes that is giving it the
name of ’magic number’ (also LJ55 is called like this) caused by its structure of a
complete Mackay icosahedra. The other one is selected because, as we mentioned
before, almost all the clusters have an incomplete Mackay icosahedra structure and
this one is the only one from the clusters we are studying that does not have it. The
global minimum at N = 38 is an fcc (face-centred-cubic) truncated octahedron. [16]

The distribution that is obtained, once our algorithms (in this case, both) find the
global minimum, is plotted in the figure 4.4. Since there are not that many atoms, it
is easy to see that the structure obtained is a complete Mackay icosahedra. It is also
shown the one obtained from database in the figure 4.5 confirming our programs are
doing well and calculating the correct set of positions for this cluster.
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FIGURE 4.4: Global Minimum for LJ13. A complete Mackay
icosahedron plotted with Matplotlib [17].

FIGURE 4.5: Cluster obtained by database for N = 13. [16]

Moreover, for the LJ38 the second-lowest minimum competes directly with the
global one based upon icosahedral packing. Both are showed in the figure 4.6. Thus,
the global minimum is relatively difficult to locate because it lies at the bottom of a
narrow side potential energy funnel [9]. Both distributions obtained in our algorithm
(in this case, only in the basin-hooping [7] one) are plotted in the figures 4.7 and 4.8.
The geometry of both clusters is drawn to effectively check that it coincides with the
ones in the figure 4.6.
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FIGURE 4.6: Clusters obtained by database for N = 38. a)
Global minimum (Octahedron) and b) Second-lowest minimum

(icosahedron packed) ([16]

FIGURE 4.7: Global Minimum for LJ38 based upon nonicosahedral
packing, it is a Octahedron, plotted with Matplotlib [17].
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FIGURE 4.8: Second-lowest minimum for LJ38 based upon
icosahedral packing plotted with Matplotlib [17].
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4.3 Resumen en Español

En este capítulo, describimos los resultados obtenidos de la optimización
realizada con los agregados de Lennard-Jones con nuestros programas para
comprobar si los hemos realizado de manera correcta. Para ello, la idea es analizar
los agregados que contienen hasta 55 átomos. De hecho, el principal objetivo de
nuestro trabajo de fin de grado es detallado en este capítulo puesto que con estos
programas se ha comprobado que hemos sido capaces de verificar los modelos
teóricos con solvencia a través del código ideado, hallando los resultados ya
conocidos. Esto significa que los hemos entendido lo suficiente para llegar a
comprender cómo han sido calculados los mínimos globales de la base de datos de
Cambridge. Aparte de esto, en una segunda sección, indagaremos en la explicación
de por qué algunos de los agregados estudiados son especiales, teniendo en cuenta
nuestros resultados y comparándolos con los que se obtienen en otros estudios.
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Chapter 5

Conclusions

First of all, we have to admit that the use of the Lennard-Jones potential is making
easier to check the efficiency of our methods. However, as an objective for future
reports we should try to figure out a new potential that is able to describe the system
we study in a better way or maybe, we can still use the LJ potential but adding other
terms that let us be more accurate. For example, the addition of harmonic spring
terms between adjacent atoms in the sequence can be useful for describing complex
polymer [12]:
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∑
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+
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2
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∑
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2 (5.1)

Also, a Lennard-Jones potential including zero-point energies can vary these
results since its contribution to the potential energy of Van der Waals atomic
clusters may be large. [9]

Apart from that, we were wondering why we did not find the global minimum
on big clusters with the simulated annealing algorithm [3]. We could have run the
program with more trajectories to check if the global minimum can be found at
least, but the time-consuming was too high for making that work worthy.
Nevertheless, we figured out that this behaviour is normal since even in some
reference some researchers comment that this method is basically for small and
intermediate clusters sizes. [3]

Therefore, either we still have to optimize the algorithm, which is a possible
future direction, for example focusing on alternative cooling schedules, or we need
to find other kind of condition for stopping the program, forcing it to be more
accurate before entering the routine of minimization.

About the basin-hopping method [7], an important fact that affects the
algorithm is that if we set an initial temperature that is wrong, we can maybe miss
the global minimum. Then, maybe a possible new way to enhance this method can
be modifying it after a certain amount of steps is reached as we do with the δ value.

In general, we have implemented two methods for performing structural
optimization of a variety amount of atoms. We used Python as our programming
language and it turned out to be such an useful tool for this purpose. Since we do
not have to recompile the code every time it is modified, it is very fast and easy to
change when it is necessary.
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It is also remarkable to add that the time or iterations needed by our basin
hopping [7] was approximately the same as for the one found in the Python library
[13].

Another way to optimize the algorithms could be trying to run some parts of
them in parallel. However, for that, we would have needed to compute our
programs in a different language, such as Fortran or C, since for Python, this is not
possible.

At the end, the main purpose of this work have been reached with both methods,
understanding how they were built and the infinite possibilities they have for future
works. Even for the genetic algorithm [5], we have got to know a lot about it and we
can use that knowledge as a basis for future works as well.

For example, the simulated annealing method [3] can be used for different
applications such as providing a model that generates valid Sudoku boards or a
model that solves ’nonograms’ (picture logic puzzles). [18]

Furthermore, the genetic algorithm (GA) method [5] cannot be used only for
simple or theoretical cluster structures, but also for more complex and specific ones.
From model Morse clusters to fullerenes, ionic clusters, water cluster, metal clusters
and bimetallic ’nanoalloy’ clusters, GA has proved its efficiency. In other fields such
as chemistry, notable applications have been also found like, for example, "the
prediction of protein secondary and tertiary structure, simulation of protein folding
and structural studies of RNA and DNA, the design and docking of drug
molecules, quantitative structure–activity relationships (QSAR), pharmacophore
mapping and receptor modelling and combinatorial library design; the prediction
of crystal structures and the solution of crystal structures from single crystal,
powder and thin film diffraction data; the determination of molecular (including
biomolecular) structure from NMR spectroscopy; and the control and optimisation
of chemical processes". [5]

About the basin-hopping method [7] that we have computed, the main reason
why there are not thousands of references about its applications is because it is a
technique that was developed for a very precise objective, to exploit the features
that must be present in an energy landscape for efficient relaxation to the global
minimum [7]. Nevertheless, for its purpose is one of the best because it can even be
developed to get new methods more and more efficient, such as minima hopping
that it is a non-thermodynamic and reduce the rate of return to already visited
minima. [19]

Nowadays, the frame of this research and its implementation in other fields is a
really hot topic because it turned out that can be a very useful tool to get to know
how to focus some others problems.

Moreover, there are more global optimization algorithms that need to be tested
and maybe some that we do not even know since most papers focus on just one
method. There are too many different possible approaches in even one single
method and some features are common to a plenty of them, but all the methods
need always to be improved to get more and more reliable results.
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5.1 Resumen en Español

En las conclusiones, detallamos la manera en la que el potencial utilizado puede
ser mejorado en vista a incrementar la posibilidad de encontrar estructuras de uso
más realista. También, incluimos la explicación del porqué de la necesidad de
utilizar diferentes rutinas de minimización en función del método que estemos
empleando.

Por otro lado, intentamos comprender la superioridad del método del salto
entre mínimos (“Basin-Hopping”) respecto al enfriamiento simulado (“Simulated
Annealing”), remarcando que, al fin y al cabo, el objetivo planteado como principal
para este trabajo de fin de grado ha sido alcanzado, que no ha sido otro que la
satisfactoria consecución de ambos métodos entendiendo su funcionamiento y
dando a conocer su metodología. Incluso para el método de algoritmo genético
(“Genetic Algorithm”) se han sentado las bases para un posible estudio en el futuro
entrando en más detalles e incluso llegando a programar el mismo.

Así, se comentan las posibilidades de los métodos aquí estudiados y se indica que
más investigación es necesaria para poder tratar problemas cada vez más complejos
de optimizar.
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Appendix A

Derivation of Lennard-Jones Pair
Potential

In this Appendix we are explaining the process for the derivation of the LJ pair
potential, getting the minimum value of the potential from the value of the distance
needed.

First, assume our potential as follows:

VLJ(r) = 4ε
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The expression of the derivative of our potential is easy to get following the
principles rules of derivation:
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Once we have rearranged the terms, we equal to zero the potential to get the
condition for the minimum:
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r13 ⇒ r6 = 2σ6 (A.6)

After all this process, we obtain the minimum distance for the minimum of our
potential:

rmin =
6
√

2σ (A.7)
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Now, we sustitute this value into the potential to get to know which value of the
potential is the minimum:
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Finally, we are getting:

Vmin = −ε (A.10)
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Appendix B

Simulated Annealing Code

� �
1 from numpy import ∗
2 from pylab import ∗
3 import random as rd
4 import m a t p l o t l i b . pyplot as p l t
5 from mpl_too lk i t s . mplot3d import Axes3D
6 from sc ipy . optimize import ∗
7 #We ask f o r the number of atoms you want to organize ,
8 N = i n t ( input ( ’ Introduce the number of atoms you want : ’ ) )
9 # the i t e r a t i o n s needed

10 i t e = i n t ( input ( ’ Introduce the number of p a r a l l e l i t e r a t i o n s you want : ’ ) )
11 # and the s i z e of the box the atoms are loc a te d in
12 lim = i n t ( input ( ’ Introduce the s i z e of the box you want : ’ ) )
13 # Creat ing a sphere of radius 5∗sigma and putt ing some spots around

randomly in a way t h a t
14 # they represent atoms in a sphere
15 r = 5 .
16 x = array ( [ ] )
17 y = array ( [ ] )
18 z = array ( [ ] )
19 a_range = arange ( 0 . , 2 ∗ pi , 0 . 3 )
20 b_range = arange ( 0 . , pi , 0 . 3 )
21 for t h e t a in a_range :
22 for phe in b_range :
23 x = append ( x , 5 + r∗ cos ( t h e t a ) ∗ s i n ( phe ) )
24 y = append ( y , 5 + r∗ s in ( t h e t a ) ∗ s i n ( phe ) )
25 z = append ( z , 5 + r∗ cos ( phe ) )
26 for i _ i t e in range ( i t e ) :
27 #We s e l e c t the points now . For t h a t we have chosen a bidimensional array ,

we s e t ones to not
28 # have problems . We choose them randomly with the condi t ion of not being

c l o s e r than (2^(1/6) )
29 p o s i t i o n = ones ( ( 3 ,N) )
30 p o s i t i o n _ i = ones ( ( 3 ,N) )
31 #To determine the len of the array we are taking the atoms from
32 s = len ( x )
33 # This number i s f o r g e t t i n g to know the number of colums we need l a t e r
34 suma = 0
35 for i in range (N) :
36 a = rd . randrange ( 0 , s ) # the random number f o r choosing the ’ atom ’
37 #Each row i s an axe
38 p o s i t i o n [ 0 , i ] = x [ a ]
39 p o s i t i o n [ 1 , i ] = y [ a ]
40 p o s i t i o n [ 2 , i ] = z [ a ]
41 suma = suma + i
42 # In t h i s step , we are c a l c u l a t i n g the d i s t a n c e s in a l l three axes we need

between a l l atoms
43 #We s e t ones again to avoid problems . We s e t 5 row including 3 f o r the
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44 # three dimensions and 2 f o r the l a b e l s and the colums come from the
number of atoms we chose

45 r_dis tancexyz = ones ( ( 5 , suma ) )
46 #We s e t t h i s value f o r taking the d i s t a n c e we want in the loop
47 i t = 0
48 l on g i t u = len ( p o s i t i o n [ 0 , : ] )
49 j = −1
50 #We go through a l l the atoms we have on−by−one to check the d i s t a n c e s

between them a l l
51 while j < N:
52 i f j == −1:
53 i t = 0
54 e lse :
55 pass
56 j = j + 1
57 #Once we are in one atom , we go through the next ones to c a l c u l a t e the

d i s t a n c e s between them
58 #We are doing t h a t only f o r the atoms whose d i s t a n c e has not been

c a l c u l a t e d
59 for k in arange ( j + 1 , lo n g i tu ) :
60 r_dis tancexyz [ 0 , i t ] = abs ( p o s i t i o n [ 0 , j ]−p o s i t i o n [ 0 , k ] )
61 r_dis tancexyz [ 1 , i t ] = abs ( p o s i t i o n [ 1 , j ]−p o s i t i o n [ 1 , k ] )
62 r_dis tancexyz [ 2 , i t ] = abs ( p o s i t i o n [ 2 , j ]−p o s i t i o n [ 2 , k ] )
63 r_dis tancexyz [ 3 , i t ] = i n t ( j )
64 r_dis tancexyz [ 4 , i t ] = i n t ( k )
65 #We are checking the d i s t a n c e in 3D between atoms to be l e s s than s i x t h

root
66 # of two to avoid the repuls ion f o r c e s
67 t e s t _ d i s t a n c e = s q r t ( r_dis tancexyz [ 0 , i t ]∗∗2+ r_dis tancexyz [ 1 , i t

]∗∗2+
68 r_dis tancexyz [ 2 , i t ]∗∗2 )
69 # J u s t in the case we want to c a l c u l a t e the equi l ibr ium d i s t a n c e (2 atoms )
70 i f N == 2 :
71 pass
72 e l i f t e s t _ d i s t a n c e < ( 2∗∗ ( 1 / 6 ) ) :
73 # Since t h i s happens , we are taking a new c o n f i g u r a t i o n
74 a = rd . randrange ( 0 , s )
75 p o s i t i o n [ 0 , k ] = x [ a ]
76 p o s i t i o n [ 1 , k ] = y [ a ]
77 p o s i t i o n [ 2 , k ] = z [ a ]
78 #We make the loop running again , s e t t i n g t h i s value to −1
79 j = −1
80 e lse :
81 pass
82 i t = i t + 1
83 #Once a l l the atoms s a t i s f y the condit ion , we c r e a t e the array f o r the

d i s t a n c e s
84 r _ d i s t a n c e = array ( [ ] )
85 #Now, we take a l l the d i s t a n c e s in the three axes and c a l c u l a t e the

d i s t a n c e in 3D
86 for p in arange ( len ( r_dis tancexyz [ 0 , : ] ) ) :
87 r _ d i s t a n c e = append ( r_dis tance , s q r t ( ( ( r_dis tancexyz [ 0 , p ] ) ∗∗2) +
88 ( ( r_dis tancexyz [ 1 , p ] ) ∗∗2) +
89 ( ( r_dis tancexyz [ 2 , p ] ) ∗∗2) ) )
90 # Define the p o t e n t i a l with these r _ d i s t a n c e
91 V_f = 0 .
92 for d in arange ( len ( r _ d i s t a n c e ) ) :
93 V_i = 4∗ ( ( r _ d i s t a n c e [ d]∗∗(−12) ) − ( r _ d i s t a n c e [ d]∗∗(−6) ) )
94 V_f = V_f + V_i
95 #We s e l e c t the i n i t i a l temperature a parameter f o r Boltzmann s t a t i s t i c s
96 T = 1
97 T_i = T
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98 #We j a i l the atoms in a box of limxlimxlim . We c r e a t e a v i r t u a l copy to
modify .

99 #We s e l e c t a d e f a u l t p o s i t i o n f o r i t e r a t i o n s and the d i s t a n c e s in three
axes

100 # with l a b e l s included
101 for p _ j _ j in arange ( len ( p o s i t i o n _ i [ 0 , : ] ) ) :
102 p o s i t i o n _ i [ 0 , p _ j _ j ] = p o s i t i o n [ 0 , p _ j _ j ]
103 p o s i t i o n _ i [ 1 , p _ j _ j ] = p o s i t i o n [ 1 , p _ j _ j ]
104 p o s i t i o n _ i [ 2 , p _ j _ j ] = p o s i t i o n [ 2 , p _ j _ j ]
105 r _ d i s t a n c e x y z _ i = r_dis tancexyz
106 #We def ine d e l t a as the value f o r changing pos i t ions , we are a l s o planning
107 # to modify i t depending on the numbers of changing we are accept ing
108 d e l t a = 0 . 5
109 #We def ine a value to check i f we are accept ing or not new values f o r the
110 # p o t e n t i a l and then , changing the d e l t a
111 accept = 0
112 r e j e c t = 0
113 # For changing the T and d e l t a
114 i t e r a c c = 0
115 f a c t o r = 1
116 f a c t o r 2 = 1
117 # For comparing the energ ies we are accept ing to stop the loop
118 V_f_i = 0 .
119 V_f_ant = 1 .
120 #Running the loop with the condi t ion we want . In t h i s case , the d i f f e r e n c e

between
121 # energ ies before and a f t e r we change i t i s supposed to be l e s s than

0 . 0 0 1 .
122 while abs ( V_f_ant−V_f_i ) > 0 . 0 0 1 :
123 i t e r a c c = i t e r a c c + 1
124 #We s e l e c t an atom randomly to change i t s p o s i t i o n
125 a_xyz = rd . randrange ( 0 , len ( p o s i t i o n _ i [ 0 , : ] ) )
126 #We change the p o s i t i o n of t h i s atom
127 #Choosing a random value f o r t h i s purpose in the three axes
128 s c r i b b l e 1 = rd . random ( )
129 s c r i b b l e 2 = rd . random ( )
130 s c r i b b l e 3 = rd . random ( )
131 # Conditions f o r j a i l i n g , keeping the atoms i n s i d e of the box
132 i f ( ( p o s i t i o n _ i [ 0 , a_xyz ] ) + 2 ∗ d e l t a ∗ ( s c r i b b l e 1 − 0 . 5 ) ) > lim :
133 p o s i t i o n _ i [ 0 , a_xyz ] = ( ( p o s i t i o n _ i [ 0 , a_xyz ] ) − 2 ∗ d e l t a ∗
134 ( s c r i b b l e 1 − 0 . 5 ) )
135 e l i f ( ( p o s i t i o n _ i [ 0 , a_xyz ] ) + 2 ∗ d e l t a ∗ ( s c r i b b l e 1 − 0 . 5 ) ) < 0 :
136 p o s i t i o n _ i [ 0 , a_xyz ] = ( ( p o s i t i o n _ i [ 0 , a_xyz ] ) − 2 ∗ d e l t a ∗
137 ( s c r i b b l e 1 − 0 . 5 ) )
138 e lse :
139 p o s i t i o n _ i [ 0 , a_xyz ] = ( ( p o s i t i o n _ i [ 0 , a_xyz ] ) + 2 ∗ d e l t a ∗
140 ( s c r i b b l e 1 − 0 . 5 ) )
141 i f ( ( p o s i t i o n _ i [ 1 , a_xyz ] ) + 2 ∗ d e l t a ∗ ( s c r i b b l e 2 − 0 . 5 ) ) > lim :
142 p o s i t i o n _ i [ 1 , a_xyz ] = ( ( p o s i t i o n _ i [ 1 , a_xyz ] ) − 2 ∗ d e l t a ∗
143 ( s c r i b b l e 2 − 0 . 5 ) )
144 e l i f ( ( p o s i t i o n _ i [ 1 , a_xyz ] ) + 2 ∗ d e l t a ∗ ( s c r i b b l e 2 − 0 . 5 ) ) < 0 :
145 p o s i t i o n _ i [ 1 , a_xyz ] = ( ( p o s i t i o n _ i [ 1 , a_xyz ] ) − 2 ∗ d e l t a ∗
146 ( s c r i b b l e 2 − 0 . 5 ) )
147 e lse :
148 p o s i t i o n _ i [ 1 , a_xyz ] = ( ( p o s i t i o n _ i [ 1 , a_xyz ] ) + 2 ∗ d e l t a ∗
149 ( s c r i b b l e 2 − 0 . 5 ) )
150 i f ( ( p o s i t i o n _ i [ 2 , a_xyz ] ) + 2 ∗ d e l t a ∗ ( s c r i b b l e 3 − 0 . 5 ) ) > lim :
151 p o s i t i o n _ i [ 2 , a_xyz ] = ( ( p o s i t i o n _ i [ 2 , a_xyz ] ) − 2 ∗ d e l t a ∗
152 ( s c r i b b l e 3 − 0 . 5 ) )
153 e l i f ( ( p o s i t i o n _ i [ 2 , a_xyz ] ) + 2 ∗ d e l t a ∗ ( s c r i b b l e 3 − 0 . 5 ) ) < 0 :
154 p o s i t i o n _ i [ 2 , a_xyz ] = ( ( p o s i t i o n _ i [ 2 , a_xyz ] ) − 2 ∗ d e l t a ∗
155 ( s c r i b b l e 3 − 0 . 5 ) )
156 e lse :
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157 p o s i t i o n _ i [ 2 , a_xyz ] = ( ( p o s i t i o n _ i [ 2 , a_xyz ] ) + 2 ∗ d e l t a ∗
158 ( s c r i b b l e 3 − 0 . 5 ) )
159 #Now, we are using the l a b e l s we included before . Thanks to them we know

the d i s t a n c e s
160 # t h a t have to be modified and in consequence we are taking them to

r e c a l c u l a t e them
161 for m in arange ( len ( r _ d i s t a n c e x y z _ i [ 4 , : ] ) ) :
162 i f r _ d i s t a n c e x y z _ i [ 3 ,m] == a_xyz :
163 r _ d i s t a n c e x y z _ i [ 0 ,m] = abs ( p o s i t i o n _ i [ 0 , a_xyz]−
164 p o s i t i o n _ i [ 0 , i n t ( r_dis tancexyz [ 4 ,m] ) ] )
165 r _ d i s t a n c e x y z _ i [ 1 ,m] = abs ( p o s i t i o n _ i [ 1 , a_xyz]−
166 p o s i t i o n _ i [ 1 , i n t ( r_dis tancexyz [ 4 ,m] ) ] )
167 r _ d i s t a n c e x y z _ i [ 2 ,m] = abs ( p o s i t i o n _ i [ 2 , a_xyz]−
168 p o s i t i o n _ i [ 2 , i n t ( r_dis tancexyz [ 4 ,m] ) ] )
169 e l i f r _ d i s t a n c e x y z _ i [ 4 ,m] == a_xyz :
170 r _ d i s t a n c e x y z _ i [ 0 ,m] = abs ( p o s i t i o n _ i [ 0 , a_xyz]−
171 p o s i t i o n _ i [ 0 , i n t ( r_dis tancexyz [ 3 ,m] ) ] )
172 r _ d i s t a n c e x y z _ i [ 1 ,m] = abs ( p o s i t i o n _ i [ 1 , a_xyz]−
173 p o s i t i o n _ i [ 1 , i n t ( r_dis tancexyz [ 3 ,m] ) ] )
174 r _ d i s t a n c e x y z _ i [ 2 ,m] = abs ( p o s i t i o n _ i [ 2 , a_xyz]−
175 p o s i t i o n _ i [ 2 , i n t ( r_dis tancexyz [ 3 ,m] ) ] )
176 e lse :
177 pass
178 #We put them to one dimensional array
179 r _ d i s t a n c e _ i = array ( [ ] )
180 for p_i in arange ( len ( r _ d i s t a n c e x y z _ i [ 0 , : ] ) ) :
181 r _ d i s t a n c e _ i = append ( r _ d i s t a n c e _ i ,
182 s q r t ( ( ( r _ d i s t a n c e x y z _ i [ 0 , p_i ] ) ∗∗2) +
183 ( ( r _ d i s t a n c e x y z _ i [ 1 , p_i ] ) ∗∗2) +
184 ( ( r _ d i s t a n c e x y z _ i [ 2 , p_i ] ) ∗∗2) ) )
185 #We s e t a d e f a u l t value f o r energy to c a l c u l a t e the new one
186 V_f_i = 0 .
187 for d_i in arange ( len ( r _ d i s t a n c e _ i ) ) :
188 V_i_ i = 4∗ ( ( r _ d i s t a n c e _ i [ d_i ]∗∗(−12) )−( r _ d i s t a n c e _ i [ d_i ]∗∗(−6)

) )
189 V_f_i = V_f_i + V_i_ i
190 # Let ’ s compare the energy obtained and see i f we change i t or not
191 # I f the p o t e n t i a l i s lower , then yes both energy and p o s i t i o n are replaced
192 i f V_f_i < V_f :
193 V_f_ant = V_f
194 V_f = V_f_i
195 for p _ i _ j in arange ( len ( p o s i t i o n _ i [ 0 , : ] ) ) :
196 p o s i t i o n [ 0 , p _ i _ j ] = p o s i t i o n _ i [ 0 , p _ i _ j ]
197 p o s i t i o n [ 1 , p _ i _ j ] = p o s i t i o n _ i [ 1 , p _ i _ j ]
198 p o s i t i o n [ 2 , p _ i _ j ] = p o s i t i o n _ i [ 2 , p _ i _ j ]
199 accept = accept + 1
200 # I f not , we are using Boltzmann s t a t i s t i c f o r choosing the new one or not
201 e lse :
202 a _ i = rd . random ( )
203 i f a _ i < exp ((− ( V_f_i − V_f ) ) / T ) :
204 V_f_ant = V_f
205 V_f = V_f_i
206 for p_i in arange ( len ( p o s i t i o n _ i [ 0 , : ] ) ) :
207 p o s i t i o n [ 0 , p_i ] = p o s i t i o n _ i [ 0 , p_i ]
208 p o s i t i o n [ 1 , p_i ] = p o s i t i o n _ i [ 1 , p_i ]
209 p o s i t i o n [ 2 , p_i ] = p o s i t i o n _ i [ 2 , p_i ]
210 accept = accept + 1
211 # I f we are not choosing the new energy , then the p o s i t i o n s are the ones we

had before again
212 e lse :
213 V_f = V_f
214 for p _ i _ i in arange ( len ( p o s i t i o n _ i [ 0 , : ] ) ) :
215 p o s i t i o n _ i [ 0 , p _ i _ i ] = p o s i t i o n [ 0 , p _ i _ i ]
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216 p o s i t i o n _ i [ 1 , p _ i _ i ] = p o s i t i o n [ 1 , p _ i _ i ]
217 p o s i t i o n _ i [ 2 , p _ i _ i ] = p o s i t i o n [ 2 , p _ i _ i ]
218 r e j e c t = r e j e c t + 1
219 #We are changing the temperature fol lowing an exponent ia l func t ion
220 # every 500 s teps u n t i l i t i s 0 . 0 5
221 ex = 0
222 i f i t e r a c c == (50∗ f a c t o r ) :
223 ex = ex + 0 . 1
224 T = exp ( log ( T )−ex )
225 i f T < 0 . 0 5 :
226 T = 0 . 0 5
227 e lse :
228 T = T
229 f a c t o r = f a c t o r + 1
230 e lse :
231 T = T
232 #We are checking the acceptance of the p o t e n t i a l every 1000 s teps
233 i f i t e r a c c == (100∗ f a c t o r 2 ) :
234 i f accept < r e j e c t :
235 d e l t a = d e l t a ∗ 0 . 9 5
236 e lse :
237 d e l t a = d e l t a ∗ 1 . 0 5
238 f a c t o r 2 = f a c t o r 2 + 1
239 e lse :
240 d e l t a = d e l t a
241 #Once the loop i s ended , we are using a minimization rout ine f o r g e t t i n g

the minima
242 # Because of the way to work of t h i s rout ine , we cannot use 2D arrays

anymore
243 # and t h a t i s why we are appending them a l l to a s i n g l e row
244 p o s i t i o n _ i _ s e r i e = array ( [ ] )
245 p o s i t i o n _ i _ s e r i e = append ( p o s i t i o n _ i _ s e r i e , p o s i t i o n _ i [ 0 , : ] )
246 p o s i t i o n _ i _ s e r i e = append ( p o s i t i o n _ i _ s e r i e , p o s i t i o n _ i [ 1 , : ] )
247 p o s i t i o n _ i _ s e r i e = append ( p o s i t i o n _ i _ s e r i e , p o s i t i o n _ i [ 2 , : ] )
248 # For l e t t i n g the rout ine which funct ion we want to minimize , we have to

def ine i t f i r s t .
249 #Furthermore , in t h i s rout ine i s p o s s i b l e to def ine both the funct ion and

the d e r i v a t i v e ( j a c )
250 # a t the same time . However , one has to def ine them with the v a r i a b l e s one

wants to obta in
251 #On t h i s case , they are the p o s i t i o n _ i _ s e r i e . For the funct ion , we need

the f i n a l value a f t e r
252 # i n s e r t i n g the p o s i t i o n s . Nevertheless , the j a c has to return an array

with the p a r t i a l
253 # d e r i v a t i v e s of every s i n g l e v a r i a b l e we are taking .
254 def funcionDderiv ( p o s i t i o n _ i _ s e r i e ) :
255 V_f = 0 .
256 F_f_x = array ( [ ] )
257 F_f_y = array ( [ ] )
258 F_f_z = array ( [ ] )
259 longi = len ( p o s i t i o n _ i [ 0 , : ] )
260 # I t i s the same loop t h a t one defined before so far , but inc luding the

p a r t i a l d e r i v a t i v e s
261 # and s i n c e i t needs to be c a l c u l a t e d between one atom with the r e s t of

them , we need to
262 # include a loop f o r the ones we were avoiding before to not c a l c u l a t e the

same twice .
263 for j 3 in arange ( longi ) :
264 F _ i _ i _ x = 0 .
265 F _ i _ i _y = 0 .
266 F _ i _ i _ z = 0 .
267 for k3 in arange ( j 3 + 1 , longi ) :
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268 V_i = 4 ∗ ( ( ( ( abs ( p o s i t i o n _ i _ s e r i e [ j 3 ]−p o s i t i o n _ i _ s e r i e [ k3 ] ) )
∗∗2)

269 + ( ( abs ( p o s i t i o n _ i _ s e r i e [ j 3 +longi ]−p o s i t i o n _ i _ s e r i e [ k3+
longi ] ) ) ∗∗2)+

270 ( ( abs ( p o s i t i o n _ i _ s e r i e [ j 3 +2∗ longi ]−p o s i t i o n _ i _ s e r i e [ k3+2∗
longi ] ) ) ∗∗2) ) ∗∗(−6)

271 − ( ( ( ( abs ( p o s i t i o n _ i _ s e r i e [ j 3 ]−p o s i t i o n _ i _ s e r i e [ k3 ] ) ) ∗∗2)
272 + ( ( abs ( p o s i t i o n _ i _ s e r i e [ j 3 +longi ]−p o s i t i o n _ i _ s e r i e [ k3+

longi ] ) ) ∗∗2)+
273 ( ( abs ( p o s i t i o n _ i _ s e r i e [ j 3 +2∗ longi ]−p o s i t i o n _ i _ s e r i e [ k3+2∗

longi ] ) ) ∗∗2) ) ) ∗∗(−3) )
274 F_i_x =24∗ ( ( p o s i t i o n _ i _ s e r i e [ j 3 ]−p o s i t i o n _ i _ s e r i e [ k3 ] ) )

∗ ( ( (−2) ∗
275 ( ( ( p o s i t i o n _ i _ s e r i e [ j 3 ]−p o s i t i o n _ i _ s e r i e [ k3 ] ) ∗∗2+
276 ( p o s i t i o n _ i _ s e r i e [ j 3 +longi ]−p o s i t i o n _ i _ s e r i e [ k3+longi ] )

∗∗2+
277 ( p o s i t i o n _ i _ s e r i e [ j 3 +2∗ longi ]−p o s i t i o n _ i _ s e r i e [ k3+2∗ longi

] ) ∗∗2) ∗∗(−7) ) ) +
278 ( ( ( p o s i t i o n _ i _ s e r i e [ j 3 ]−p o s i t i o n _ i _ s e r i e [ k3 ] ) ∗∗2+
279 ( p o s i t i o n _ i _ s e r i e [ j 3 +longi ]−p o s i t i o n _ i _ s e r i e [ k3+longi ] )

∗∗2+
280 ( p o s i t i o n _ i _ s e r i e [ j 3 +2∗ longi ]−p o s i t i o n _ i _ s e r i e [ k3+2∗ longi

] ) ∗∗2) ∗∗(−4) ) )
281 F_i_y =24∗ ( ( p o s i t i o n _ i _ s e r i e [ j 3 +longi ]−p o s i t i o n _ i _ s e r i e [ k3+

longi ] ) ) ∗ ( ( (−2) ∗
282 ( ( ( p o s i t i o n _ i _ s e r i e [ j 3 ]−p o s i t i o n _ i _ s e r i e [ k3 ] ) ∗∗2+
283 ( p o s i t i o n _ i _ s e r i e [ j 3 +longi ]−p o s i t i o n _ i _ s e r i e [ k3+longi ] )

∗∗2+
284 ( p o s i t i o n _ i _ s e r i e [ j 3 +2∗ longi ]−p o s i t i o n _ i _ s e r i e [ k3+2∗ longi

] ) ∗∗2) ∗∗(−7) ) ) +
285 ( ( ( p o s i t i o n _ i _ s e r i e [ j 3 ]−p o s i t i o n _ i _ s e r i e [ k3 ] ) ∗∗2+
286 ( p o s i t i o n _ i _ s e r i e [ j 3 +longi ]−p o s i t i o n _ i _ s e r i e [ k3+longi ] )

∗∗2+
287 ( p o s i t i o n _ i _ s e r i e [ j 3 +2∗ longi ]−p o s i t i o n _ i _ s e r i e [ k3+2∗ longi

] ) ∗∗2) ∗∗(−4) ) )
288 F_i_z =24∗ ( ( p o s i t i o n _ i _ s e r i e [ j 3 +2∗ longi ]−p o s i t i o n _ i _ s e r i e [

k3+2∗ longi ] ) ) ∗ ( ( (−2) ∗
289 ( ( ( p o s i t i o n _ i _ s e r i e [ j 3 ]−p o s i t i o n _ i _ s e r i e [ k3 ] ) ∗∗2+
290 ( p o s i t i o n _ i _ s e r i e [ j 3 +longi ]−p o s i t i o n _ i _ s e r i e [ k3+longi ] )

∗∗2+
291 ( p o s i t i o n _ i _ s e r i e [ j 3 +2∗ longi ]−p o s i t i o n _ i _ s e r i e [ k3+2∗ longi

] ) ∗∗2) ∗∗(−7) ) ) +
292 ( ( ( p o s i t i o n _ i _ s e r i e [ j 3 ]−p o s i t i o n _ i _ s e r i e [ k3 ] ) ∗∗2+
293 ( p o s i t i o n _ i _ s e r i e [ j 3 +longi ]−p o s i t i o n _ i _ s e r i e [ k3+longi ] )

∗∗2+
294 ( p o s i t i o n _ i _ s e r i e [ j 3 +2∗ longi ]−p o s i t i o n _ i _ s e r i e [ k3+2∗ longi

] ) ∗∗2) ∗∗(−4) ) )
295 F _ i _ i _ x = F _ i _ i _ x + F_i_x
296 F _ i_ i _ y = F _ i_ i _ y + F_i_y
297 F _ i _ i _ z = F _ i _ i _ z + F_i_z
298 V_f = V_f + V_i
299 #Here , we are taking the ones we were avoiding only f o r the p a r t i a l

d e r i v a t i v e s
300 for k3 in arange ( j 3 ) :
301 F_i_x =24∗ ( ( p o s i t i o n _ i _ s e r i e [ j 3 ]−p o s i t i o n _ i _ s e r i e [ k3 ] ) )

∗ ( ( (−2) ∗
302 ( ( ( p o s i t i o n _ i _ s e r i e [ j 3 ]−p o s i t i o n _ i _ s e r i e [ k3 ] ) ∗∗2+
303 ( p o s i t i o n _ i _ s e r i e [ j 3 +longi ]−p o s i t i o n _ i _ s e r i e [ k3+longi ] )

∗∗2+
304 ( p o s i t i o n _ i _ s e r i e [ j 3 +2∗ longi ]−p o s i t i o n _ i _ s e r i e [ k3+2∗ longi

] ) ∗∗2) ∗∗(−7) ) ) +
305 ( ( ( p o s i t i o n _ i _ s e r i e [ j 3 ]−p o s i t i o n _ i _ s e r i e [ k3 ] ) ∗∗2+



Appendix B. Simulated Annealing Code 41

306 ( p o s i t i o n _ i _ s e r i e [ j 3 +longi ]−p o s i t i o n _ i _ s e r i e [ k3+longi ] )
∗∗2+

307 ( p o s i t i o n _ i _ s e r i e [ j 3 +2∗ longi ]−p o s i t i o n _ i _ s e r i e [ k3+2∗ longi
] ) ∗∗2) ∗∗(−4) ) )

308 F_i_y =24∗ ( ( p o s i t i o n _ i _ s e r i e [ j 3 +longi ]−p o s i t i o n _ i _ s e r i e [ k3+
longi ] ) ) ∗ ( ( (−2) ∗

309 ( ( ( p o s i t i o n _ i _ s e r i e [ j 3 ]−p o s i t i o n _ i _ s e r i e [ k3 ] ) ∗∗2+
310 ( p o s i t i o n _ i _ s e r i e [ j 3 +longi ]−p o s i t i o n _ i _ s e r i e [ k3+longi ] )

∗∗2+
311 ( p o s i t i o n _ i _ s e r i e [ j 3 +2∗ longi ]−p o s i t i o n _ i _ s e r i e [ k3+2∗ longi

] ) ∗∗2) ∗∗(−7) ) ) +
312 ( ( ( p o s i t i o n _ i _ s e r i e [ j 3 ]−p o s i t i o n _ i _ s e r i e [ k3 ] ) ∗∗2+
313 ( p o s i t i o n _ i _ s e r i e [ j 3 +longi ]−p o s i t i o n _ i _ s e r i e [ k3+longi ] )

∗∗2+
314 ( p o s i t i o n _ i _ s e r i e [ j 3 +2∗ longi ]−p o s i t i o n _ i _ s e r i e [ k3+2∗ longi

] ) ∗∗2) ∗∗(−4) ) )
315 F_i_z =24∗ ( ( p o s i t i o n _ i _ s e r i e [ j 3 +2∗ longi ]−p o s i t i o n _ i _ s e r i e [

k3+2∗ longi ] ) ) ∗ ( ( (−2) ∗
316 ( ( ( p o s i t i o n _ i _ s e r i e [ j 3 ]−p o s i t i o n _ i _ s e r i e [ k3 ] ) ∗∗2+
317 ( p o s i t i o n _ i _ s e r i e [ j 3 +longi ]−p o s i t i o n _ i _ s e r i e [ k3+longi ] )

∗∗2+
318 ( p o s i t i o n _ i _ s e r i e [ j 3 +2∗ longi ]−p o s i t i o n _ i _ s e r i e [ k3+2∗ longi

] ) ∗∗2) ∗∗(−7) ) ) +
319 ( ( ( p o s i t i o n _ i _ s e r i e [ j 3 ]−p o s i t i o n _ i _ s e r i e [ k3 ] ) ∗∗2+
320 ( p o s i t i o n _ i _ s e r i e [ j 3 +longi ]−p o s i t i o n _ i _ s e r i e [ k3+longi ] )

∗∗2+
321 ( p o s i t i o n _ i _ s e r i e [ j 3 +2∗ longi ]−p o s i t i o n _ i _ s e r i e [ k3+2∗ longi

] ) ∗∗2) ∗∗(−4) ) )
322 F _ i _ i _ x = F _ i _ i _ x + F_i_x
323 F _ i_ i _ y = F _ i_ i _ y + F_i_y
324 F _ i _ i _ z = F _ i _ i _ z + F_i_z
325 #We are summing both and then appending them
326 F_f_x = append ( F_f_x , F _ i _ i _ x )
327 F_f_y = append ( F_f_y , F _ i _ i _ y )
328 F_f_z = append ( F_f_z , F _ i _ i _ z )
329 #We put them a l l toge ther in a way there i s a correspondence
330 # between p o s i t i o n ( v a r i a b l e ) and p a r t i a l d e r i v a t i v e
331 F_f = array ( [ ] )
332 F_f = append ( F_f , F_f_x )
333 F_f = append ( F_f , F_f_y )
334 F_f = append ( F_f , F_f_z )
335 return V_f , F_f
336 #We p r i n t the number of i t e r a t i o n s needed , T and d e l t a f o r g e t t i n g the

minimum
337 print ( i t e r a c c )
338 print ( T )
339 print ( d e l t a )
340 #Now, we are c a l l i n g the minimization rout ine based on BFGS
341 r es= minimize ( funcionDderiv , p o s i t i o n _ i _ s e r i e , method= ’BFGS ’ , j a c =True ,

opt ions ={ ’ disp ’ : True } )
342 #Now, we are p l o t t i n g in 3D the f i n a l r e s u l t
343 Xf = re s . x [ 0 :N]
344 Yf = re s . x [N: 2∗N]
345 Zf = re s . x [2∗N: 3∗N]
346 f i g = p l t . f i g u r e ( ( 2∗ i _ i t e ) + 1)
347 ax = p l t . axes ( p r o j e c t i o n = ’ 3d ’ )
348 ax . s c a t t e r ( Xf , Yf , Zf , c= ’ r ’ , marker= ’ o ’ )
349 p l t . show ( )� �
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Appendix C

Basin-Hopping Code

� �
1 from numpy import ∗
2 from pylab import ∗
3 import random as rd
4 import m a t p l o t l i b . pyplot as p l t
5 from mpl_too lk i t s . mplot3d import Axes3D
6 from sc ipy . optimize import ∗
7 #We ask f o r the number of atoms you want to organize ,
8 N = i n t ( input ( ’ Introduce the number of atoms you want : ’ ) )
9 # the i t e r a t i o n s in p a r a l e l l we want to execute ,

10 i t e = i n t ( input ( ’ Introduce the number of p a r a l e l l i t e r a t i o n s you want : ’ ) )
11 # the number of i t e r a t i o n s in the loop we want to run
12 i t e r a c i o n e s = i n t ( input ( ’ Introduce the number of i t e r a t i o n s you want : ’ ) )
13 # Creat ing a sphere of radius 5∗sigma and putt ing some spots around

randomly in a way
14 # t h a t they represent atoms in a sphere
15 r = 5 .
16 x = array ( [ ] )
17 y = array ( [ ] )
18 z = array ( [ ] )
19 a_range = arange ( 0 . , 2 ∗ pi , 0 . 3 )
20 b_range = arange ( 0 . , pi , 0 . 3 )
21 for t h e t a in a_range :
22 for phe in b_range :
23 x = append ( x , 5 + r∗ cos ( t h e t a ) ∗ s i n ( phe ) )
24 y = append ( y , 5 + r∗ s in ( t h e t a ) ∗ s i n ( phe ) )
25 z = append ( z , 5 + r∗ cos ( phe ) )
26 for i _ i t e in range ( i t e ) :
27 #We s e l e c t the points now . For t h a t we have chosen a bidimensional array ,

we s e t ones to not
28 # have problems . We choose them randomly with the condi t ion of not being

c l o s e r than (2^(1/6) )
29 p o s i t i o n = ones ( ( 3 ,N) )
30 p o s i t i o n _ i = ones ( ( 3 ,N) )
31 #To determine the len of the array we are taking the atoms from
32 s = len ( x )
33 # This number i s f o r g e t t i n g to know the number of colums we need l a t e r
34 suma = 0
35 for i in range (N) :
36 a = rd . randrange ( 0 , s ) # the random number f o r choosing the ’ atom ’
37 p o s i t i o n [ 0 , i ] = x [ a ]
38 p o s i t i o n [ 1 , i ] = y [ a ]
39 p o s i t i o n [ 2 , i ] = z [ a ]
40 suma = suma + i
41 # In t h i s step , we are c a l c u l a t i n g the d i s t a n c e s in a l l three axes we need

between a l l atoms
42 #We s e t ones again to avoid problems . We s e t 5 row including 3 f o r the

three dimensions and
43 # 2 f o r the l a b e l s and the colums come from the number of atoms we chose
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44 r_dis tancexyz = ones ( ( 5 , suma ) )
45 #We s e t t h i s value f o r taking the d i s t a n c e we want in the loop
46 i t = 0
47 l on g i t u = len ( p o s i t i o n [ 0 , : ] )
48 j = −1
49 #We go through a l l the atoms we have one−by−one to check the d i s t a n c e s

between them a l l
50 while j < N:
51 i f j == −1:
52 i t = 0
53 e lse :
54 pass
55 j = j + 1
56 #Once we are in one atom , we go through the next ones to c a l c u l a t e the

d i s t a n c e s between them
57 #We are doing t h a t only f o r the atoms whose d i s t a n c e has not been

c a l c u l a t e d
58 for k in arange ( j + 1 , lo n g i tu ) :
59 r_dis tancexyz [ 0 , i t ] = abs ( p o s i t i o n [ 0 , j ]−p o s i t i o n [ 0 , k ] )
60 r_dis tancexyz [ 1 , i t ] = abs ( p o s i t i o n [ 1 , j ]−p o s i t i o n [ 1 , k ] )
61 r_dis tancexyz [ 2 , i t ] = abs ( p o s i t i o n [ 2 , j ]−p o s i t i o n [ 2 , k ] )
62 r_dis tancexyz [ 3 , i t ] = i n t ( j )
63 r_dis tancexyz [ 4 , i t ] = i n t ( k )
64 #We are checking the d i s t a n c e in 3D between atoms to be l e s s than s i x t h

root
65 # of two to avoid the repuls ion f o r c e s
66 t e s t _ d i s t a n c e = s q r t ( r_dis tancexyz [ 0 , i t ]∗∗2+ r_dis tancexyz [ 1 , i t

]∗∗2+
67 r_dis tancexyz [ 2 , i t ]∗∗2 )
68 # J u s t in the case we want to c a l c u l a t e the equi l ibr ium d i s t a n c e (2 atoms )
69 i f N == 2 :
70 pass
71 e l i f t e s t _ d i s t a n c e < ( 2∗∗ ( 1 / 6 ) ) :
72 # Since t h i s happens , we are taking a new c o n f i g u r a t i o n
73 a = rd . randrange ( 0 , s )
74 p o s i t i o n [ 0 , k ] = x [ a ]
75 p o s i t i o n [ 1 , k ] = y [ a ]
76 p o s i t i o n [ 2 , k ] = z [ a ]
77 #We make the loop running again , s e t t i n g t h i s value to −1
78 j = −1
79 e lse :
80 pass
81 i t = i t + 1
82 #We need to use the rout ine minimization from the beginning , we s e t a 1D

array f o r p o s i t i o n s
83 p o s i t i o n _ s e r i e = array ( [ ] )
84 p o s i t i o n _ s e r i e = append ( p o s i t i o n _ s e r i e , p o s i t i o n [ 0 , : ] )
85 p o s i t i o n _ s e r i e = append ( p o s i t i o n _ s e r i e , p o s i t i o n [ 1 , : ] )
86 p o s i t i o n _ s e r i e = append ( p o s i t i o n _ s e r i e , p o s i t i o n [ 2 , : ] )
87 p o s i t i o n _ i _ s e r i e = p o s i t i o n _ s e r i e
88 #We c r e a t e a v i r t u a l copy to modify . We s e l e c t a d e f a u l t p o s i t i o n f o r

i t e r a t i o n s and the
89 # d i s t a n c e s in three axes with l a b e l s included . For l e t t i n g know the

rout ine which funct ion we
90 # want to minimize , we have to def ine i t f i r s t . Furthermore , in t h i s

rout ine i s p o s s i b l e to
91 # def ine both the funct ion and the d e r i v a t i v e ( j a c ) a t the same time .

However , one has to
92 # def ine them with the v a r i a b l e s one wants to obta in . In t h i s case , they

are the
93 # p o s i t i o n _ i _ s e r i e . For the funct ion , we need the f i n a l value a f t e r

i n s e r t i n g the p o s i t i o n s .
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94 # Nevertheless , the j a c has to re turn an array with the p a r t i a l d e r i v a t i v e s
of every s i n g l e

95 # v a r i a b l e we are taking .
96 def funcionDderiv ( p o s i t i o n _ i _ s e r i e ) :
97 V_f = 0 .
98 F_f_x = array ( [ ] )
99 F_f_y = array ( [ ] )

100 F_f_z = array ( [ ] )
101 longi = len ( p o s i t i o n [ 0 , : ] )
102 # I t i s a loop f o r c a l c u l a t i n g the p o t e n t i a l , but inc luding the p a r t i a l

d e r i v a t i v e s and s i n c e
103 # i t needs to be c a l c u l a t e d between one atom with the r e s t of them , we

need to include a loop
104 # f o r the ones we were avoiding before .
105 for j 3 in arange ( longi ) :
106 F _ i _ i _ x = 0 .
107 F _ i _ i _y = 0 .
108 F _ i _ i _ z = 0 .
109 for k3 in arange ( j 3 + 1 , longi ) :
110 V_i = 4 ∗ ( ( ( ( abs ( p o s i t i o n _ i _ s e r i e [ j 3 ]−p o s i t i o n _ i _ s e r i e [ k3 ] )

) ∗∗2)+
111 ( ( abs ( p o s i t i o n _ i _ s e r i e [ j 3 +longi ]−p o s i t i o n _ i _ s e r i e [ k3+longi

] ) ) ∗∗2)+
112 ( ( abs ( p o s i t i o n _ i _ s e r i e [ j 3 +2∗ longi ]−p o s i t i o n _ i _ s e r i e [ k3+2∗

longi ] ) ) ∗∗2) ) ∗∗(−6)−
113 ( ( ( ( abs ( p o s i t i o n _ i _ s e r i e [ j 3 ]−p o s i t i o n _ i _ s e r i e [ k3 ] ) ) ∗∗2)+
114 ( ( abs ( p o s i t i o n _ i _ s e r i e [ j 3 +longi ]−p o s i t i o n _ i _ s e r i e [ k3+longi

] ) ) ∗∗2)+
115 ( ( abs ( p o s i t i o n _ i _ s e r i e [ j 3 +2∗ longi ]−p o s i t i o n _ i _ s e r i e [ k3+2∗

longi ] ) ) ∗∗2) ) ) ∗∗(−3) )
116 F_i_x =24∗ ( ( p o s i t i o n _ i _ s e r i e [ j 3 ]−p o s i t i o n _ i _ s e r i e [ k3 ] ) )

∗ ( ( (−2) ∗
117 ( ( ( p o s i t i o n _ i _ s e r i e [ j 3 ]−p o s i t i o n _ i _ s e r i e [ k3 ] ) ∗∗2+
118 ( p o s i t i o n _ i _ s e r i e [ j 3 +longi ]−p o s i t i o n _ i _ s e r i e [ k3+longi ] )

∗∗2+
119 ( p o s i t i o n _ i _ s e r i e [ j 3 +2∗ longi ]−p o s i t i o n _ i _ s e r i e [ k3+2∗ longi

] ) ∗∗2) ∗∗(−7) ) ) +
120 ( ( ( p o s i t i o n _ i _ s e r i e [ j 3 ]−p o s i t i o n _ i _ s e r i e [ k3 ] ) ∗∗2+
121 ( p o s i t i o n _ i _ s e r i e [ j 3 +longi ]−p o s i t i o n _ i _ s e r i e [ k3+longi ] )

∗∗2+
122 ( p o s i t i o n _ i _ s e r i e [ j 3 +2∗ longi ]−p o s i t i o n _ i _ s e r i e [ k3+2∗ longi

] ) ∗∗2) ∗∗(−4) ) )
123 F_i_y =24∗ ( ( p o s i t i o n _ i _ s e r i e [ j 3 +longi ]−p o s i t i o n _ i _ s e r i e [ k3+

longi ] ) ) ∗ ( ( (−2) ∗
124 ( ( ( p o s i t i o n _ i _ s e r i e [ j 3 ]−p o s i t i o n _ i _ s e r i e [ k3 ] ) ∗∗2+
125 ( p o s i t i o n _ i _ s e r i e [ j 3 +longi ]−p o s i t i o n _ i _ s e r i e [ k3+longi ] )

∗∗2+
126 ( p o s i t i o n _ i _ s e r i e [ j 3 +2∗ longi ]−p o s i t i o n _ i _ s e r i e [ k3+2∗ longi

] ) ∗∗2) ∗∗(−7) ) ) +
127 ( ( ( p o s i t i o n _ i _ s e r i e [ j 3 ]−p o s i t i o n _ i _ s e r i e [ k3 ] ) ∗∗2+
128 ( p o s i t i o n _ i _ s e r i e [ j 3 +longi ]−p o s i t i o n _ i _ s e r i e [ k3+longi ] )

∗∗2+
129 ( p o s i t i o n _ i _ s e r i e [ j 3 +2∗ longi ]−p o s i t i o n _ i _ s e r i e [ k3+2∗ longi

] ) ∗∗2) ∗∗(−4) ) )
130 F_i_z =24∗ ( ( p o s i t i o n _ i _ s e r i e [ j 3 +2∗ longi ]−p o s i t i o n _ i _ s e r i e [

k3+2∗ longi ] ) ) ∗ ( ( (−2) ∗
131 ( ( ( p o s i t i o n _ i _ s e r i e [ j 3 ]−p o s i t i o n _ i _ s e r i e [ k3 ] ) ∗∗2+
132 ( p o s i t i o n _ i _ s e r i e [ j 3 +longi ]−p o s i t i o n _ i _ s e r i e [ k3+longi ] )

∗∗2+
133 ( p o s i t i o n _ i _ s e r i e [ j 3 +2∗ longi ]−p o s i t i o n _ i _ s e r i e [ k3+2∗ longi

] ) ∗∗2) ∗∗(−7) ) ) +
134 ( ( ( p o s i t i o n _ i _ s e r i e [ j 3 ]−p o s i t i o n _ i _ s e r i e [ k3 ] ) ∗∗2+
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135 ( p o s i t i o n _ i _ s e r i e [ j 3 +longi ]−p o s i t i o n _ i _ s e r i e [ k3+longi ] )
∗∗2+

136 ( p o s i t i o n _ i _ s e r i e [ j 3 +2∗ longi ]−p o s i t i o n _ i _ s e r i e [ k3+2∗ longi
] ) ∗∗2) ∗∗(−4) ) )

137 F _ i _ i _ x = F _ i _ i _ x + F_i_x
138 F _ i_ i _ y = F _ i_ i _ y + F_i_y
139 F _ i _ i _ z = F _ i _ i _ z + F_i_z
140 V_f = V_f + V_i
141 #Here , we are taking the ones we were avoiding only f o r the p a r t i a l

d e r i v a t i v e s
142 for k3 in arange ( j 3 ) :
143 F_i_x =24∗ ( ( p o s i t i o n _ i _ s e r i e [ j 3 ]−p o s i t i o n _ i _ s e r i e [ k3 ] ) )

∗ ( ( (−2) ∗
144 ( ( ( p o s i t i o n _ i _ s e r i e [ j 3 ]−p o s i t i o n _ i _ s e r i e [ k3 ] ) ∗∗2+
145 ( p o s i t i o n _ i _ s e r i e [ j 3 +longi ]−p o s i t i o n _ i _ s e r i e [ k3+longi ] )

∗∗2+
146 ( p o s i t i o n _ i _ s e r i e [ j 3 +2∗ longi ]−p o s i t i o n _ i _ s e r i e [ k3+2∗ longi

] ) ∗∗2) ∗∗(−7) ) ) +
147 ( ( ( p o s i t i o n _ i _ s e r i e [ j 3 ]−p o s i t i o n _ i _ s e r i e [ k3 ] ) ∗∗2+
148 ( p o s i t i o n _ i _ s e r i e [ j 3 +longi ]−p o s i t i o n _ i _ s e r i e [ k3+longi ] )

∗∗2+
149 ( p o s i t i o n _ i _ s e r i e [ j 3 +2∗ longi ]−p o s i t i o n _ i _ s e r i e [ k3+2∗ longi

] ) ∗∗2) ∗∗(−4) ) )
150 F_i_y =24∗ ( ( p o s i t i o n _ i _ s e r i e [ j 3 +longi ]−p o s i t i o n _ i _ s e r i e [ k3+

longi ] ) ) ∗ ( ( (−2) ∗
151 ( ( ( p o s i t i o n _ i _ s e r i e [ j 3 ]−p o s i t i o n _ i _ s e r i e [ k3 ] ) ∗∗2+
152 ( p o s i t i o n _ i _ s e r i e [ j 3 +longi ]−p o s i t i o n _ i _ s e r i e [ k3+longi ] )

∗∗2+
153 ( p o s i t i o n _ i _ s e r i e [ j 3 +2∗ longi ]−p o s i t i o n _ i _ s e r i e [ k3+2∗ longi

] ) ∗∗2) ∗∗(−7) ) ) +
154 ( ( ( p o s i t i o n _ i _ s e r i e [ j 3 ]−p o s i t i o n _ i _ s e r i e [ k3 ] ) ∗∗2+
155 ( p o s i t i o n _ i _ s e r i e [ j 3 +longi ]−p o s i t i o n _ i _ s e r i e [ k3+longi ] )

∗∗2+
156 ( p o s i t i o n _ i _ s e r i e [ j 3 +2∗ longi ]−p o s i t i o n _ i _ s e r i e [ k3+2∗ longi

] ) ∗∗2) ∗∗(−4) ) )
157 F_i_z =24∗ ( ( p o s i t i o n _ i _ s e r i e [ j 3 +2∗ longi ]−p o s i t i o n _ i _ s e r i e [

k3+2∗ longi ] ) ) ∗ ( ( (−2) ∗
158 ( ( ( p o s i t i o n _ i _ s e r i e [ j 3 ]−p o s i t i o n _ i _ s e r i e [ k3 ] ) ∗∗2+
159 ( p o s i t i o n _ i _ s e r i e [ j 3 +longi ]−p o s i t i o n _ i _ s e r i e [ k3+longi ] )

∗∗2+
160 ( p o s i t i o n _ i _ s e r i e [ j 3 +2∗ longi ]−p o s i t i o n _ i _ s e r i e [ k3+2∗ longi

] ) ∗∗2) ∗∗(−7) ) ) +
161 ( ( ( p o s i t i o n _ i _ s e r i e [ j 3 ]−p o s i t i o n _ i _ s e r i e [ k3 ] ) ∗∗2+
162 ( p o s i t i o n _ i _ s e r i e [ j 3 +longi ]−p o s i t i o n _ i _ s e r i e [ k3+longi ] )

∗∗2+
163 ( p o s i t i o n _ i _ s e r i e [ j 3 +2∗ longi ]−p o s i t i o n _ i _ s e r i e [ k3+2∗ longi

] ) ∗∗2) ∗∗(−4) ) )
164 F _ i _ i _ x = F _ i _ i _ x + F_i_x
165 F _ i_ i _ y = F _ i_ i _ y + F_i_y
166 F _ i _ i _ z = F _ i _ i _ z + F_i_z
167 #We are summing both and then appending them
168 F_f_x = append ( F_f_x , F _ i _ i _ x )
169 F_f_y = append ( F_f_y , F _ i _ i _ y )
170 F_f_z = append ( F_f_z , F _ i _ i _ z )
171 #We put them a l l toge ther in a way there i s a correspondence
172 # between p o s i t i o n ( v a r i a b l e ) and p a r t i a l d e r i v a t i v e
173 F_f = array ( [ ] )
174 F_f = append ( F_f , F_f_x )
175 F_f = append ( F_f , F_f_y )
176 F_f = append ( F_f , F_f_z )
177 return V_f , F_f
178 r e s u l t = minimize ( funcionDderiv , p o s i t i o n _ s e r i e , method= ’L−BFGS−B ’ ,

j a c = True )
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179 # I f we want to modify the accuracy of the rout ine : opt ions ={ ’ f t o l ’ : 1 e−6, ’
g t o l ’ : 1 e−6}

180 V_f = r e s u l t . fun
181 for p in arange ( len ( p o s i t i o n [ 0 , : ] ) ) :
182 p o s i t i o n [ 0 , p ] = r e s u l t . x [ p ]
183 p o s i t i o n [ 1 , p ] = r e s u l t . x [ p+len ( p o s i t i o n [ 0 , : ] ) ]
184 p o s i t i o n [ 2 , p ] = r e s u l t . x [ p+2∗ len ( p o s i t i o n [ 0 , : ] ) ]
185 p o s i t i o n _ i [ 0 , p ] = r e s u l t . x [ p ]
186 p o s i t i o n _ i [ 1 , p ] = r e s u l t . x [ p+len ( p o s i t i o n [ 0 , : ] ) ]
187 p o s i t i o n _ i [ 2 , p ] = r e s u l t . x [ p+2∗ len ( p o s i t i o n [ 0 , : ] ) ]
188 print ( V_f )
189 #We s e l e c t a temperature as a parameter f o r Boltzmann s t a t i s t i c s
190 T = 0 . 8
191 #We def ine d e l t a as the value f o r changing pos i t ions , we are a l s o planning
192 # to modify i t depending on the numbers of changing we are accept ing
193 d e l t a = 0 . 5
194 #We def ine a value to check i f we are accept ing or not changing
195 accept = 0
196 r e j e c t = 0
197 # For changing the T and d e l t a
198 i t e r a c c = 0
199 f a c t o r = 1
200 f a c t o r 2 = 1
201 ex = 0
202 #Running the loop with the condi t ion we want .
203 for i t e r a c i o n in arange ( i t e r a c i o n e s ) :
204 i t e r a c c = i t e r a c c + 1
205 #We s e l e c t a l l atoms to change t h e i r p o s i t i o n
206 for a_xyz in arange ( len ( p o s i t i o n _ i [ 0 , : ] ) ) :
207 #We change the p o s i t i o n of these atoms
208 #Choosing a random value f o r t h i s purpose in the three axes
209 s c r i b b l e 1 = rd . random ( )
210 s c r i b b l e 2 = rd . random ( )
211 s c r i b b l e 3 = rd . random ( )
212 p o s i t i o n _ i [ 0 , a_xyz ] = ( ( p o s i t i o n _ i [ 0 , a_xyz ] ) + 2 ∗ d e l t a ∗ (

s c r i b b l e 1 − 0 . 5 ) )
213 p o s i t i o n _ i [ 1 , a_xyz ] = ( ( p o s i t i o n _ i [ 1 , a_xyz ] ) + 2 ∗ d e l t a ∗ (

s c r i b b l e 2 − 0 . 5 ) )
214 p o s i t i o n _ i [ 2 , a_xyz ] = ( ( p o s i t i o n _ i [ 2 , a_xyz ] ) + 2 ∗ d e l t a ∗ (

s c r i b b l e 3 − 0 . 5 ) )
215 # Minimization Routine ( Root f inding )
216 # After that , we are using a minimization rout ine f o r g e t t i n g the minima

again
217 p o s i t i o n _ i _ s e r i e = array ( [ ] )
218 p o s i t i o n _ i _ s e r i e = append ( p o s i t i o n _ i _ s e r i e , p o s i t i o n _ i [ 0 , : ] )
219 p o s i t i o n _ i _ s e r i e = append ( p o s i t i o n _ i _ s e r i e , p o s i t i o n _ i [ 1 , : ] )
220 p o s i t i o n _ i _ s e r i e = append ( p o s i t i o n _ i _ s e r i e , p o s i t i o n _ i [ 2 , : ] )
221 re s = minimize ( funcionDderiv , p o s i t i o n _ i _ s e r i e , method= ’L−BFGS−B ’ ,

j a c = True )
222 # I f we want to modify the accuracy of the rout ine : opt ions ={ ’ f t o l ’ : 1 e−6, ’

g t o l ’ : 1 e−4}
223 V_f_i = re s . fun
224 # I f energy i s lower , then yes both energy and p o s i t i o n are replaced
225 i f V_f_i < V_f :
226 V_f_ant = V_f
227 V_f = V_f_i
228 for p_i in arange ( len ( p o s i t i o n _ i [ 0 , : ] ) ) :
229 p o s i t i o n _ i [ 0 , p_i ] = r es . x [ p_i ]
230 p o s i t i o n _ i [ 1 , p_i ] = r es . x [ p_i+len ( p o s i t i o n _ i [ 0 , : ] ) ]
231 p o s i t i o n _ i [ 2 , p_i ] = r es . x [ p_i +2∗ len ( p o s i t i o n _ i [ 0 , : ] ) ]
232 p o s i t i o n [ 0 , p_i ] = r es . x [ p_i ]
233 p o s i t i o n [ 1 , p_i ] = r es . x [ p_i+len ( p o s i t i o n _ i [ 0 , : ] ) ]
234 p o s i t i o n [ 2 , p_i ] = r es . x [ p_i +2∗ len ( p o s i t i o n _ i [ 0 , : ] ) ]
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235 accept = accept + 1
236 print ( V_f )
237 print ( d e l t a )
238 # I f not , hence we are using a Boltzmann s t a t i s t i c f o r whether choose or

not the new value
239 e lse :
240 a _ i = rd . random ( )
241 i f V_f == V_f_i :
242 for p _ i _ j _ j in arange ( len ( p o s i t i o n _ i [ 0 , : ] ) ) :
243 p o s i t i o n _ i [ 0 , p _ i _ j _ j ] = p o s i t i o n [ 0 , p _ i _ j _ j ]
244 p o s i t i o n _ i [ 1 , p _ i _ j _ j ] = p o s i t i o n [ 1 , p _ i _ j _ j ]
245 p o s i t i o n _ i [ 2 , p _ i _ j _ j ] = p o s i t i o n [ 2 , p _ i _ j _ j ]
246 r e j e c t = r e j e c t + 1
247 print ( V_f )
248 print ( d e l t a )
249 print ( ’ I g u a l e s ’ )
250 print ( V_f_i )
251 e l i f a _ i < exp ((− ( V_f_i − V_f ) ) / T ) :
252 V_f_ant = V_f
253 V_f = V_f_i
254 for p _ i _ j in arange ( len ( p o s i t i o n _ i [ 0 , : ] ) ) :
255 p o s i t i o n _ i [ 0 , p _ i _ j ] = r es . x [ p _ i _ j ]
256 p o s i t i o n _ i [ 1 , p _ i _ j ] = r es . x [ p _ i _ j +len ( p o s i t i o n _ i [ 0 , : ] )

]
257 p o s i t i o n _ i [ 2 , p _ i _ j ] = r es . x [ p _ i _ j +2∗ len ( p o s i t i o n _ i

[ 0 , : ] ) ]
258 p o s i t i o n [ 0 , p _ i _ j ] = r es . x [ p _ i _ j ]
259 p o s i t i o n [ 1 , p _ i _ j ] = r es . x [ p _ i _ j +len ( p o s i t i o n _ i [ 0 , : ] ) ]
260 p o s i t i o n [ 2 , p _ i _ j ] = r es . x [ p _ i _ j +2∗ len ( p o s i t i o n _ i [ 0 , : ] )

]
261 accept = accept + 1
262 print ( V_f )
263 print ( d e l t a )
264 # I f we are not choosing the new energy , then the p o s i t i o n s are the ones we

had before again
265 e lse :
266 print ( V_f_i )
267 for p _ i _ j in arange ( len ( p o s i t i o n _ i [ 0 , : ] ) ) :
268 p o s i t i o n _ i [ 0 , p _ i _ j ] = p o s i t i o n [ 0 , p _ i _ j ]
269 p o s i t i o n _ i [ 1 , p _ i _ j ] = p o s i t i o n [ 1 , p _ i _ j ]
270 p o s i t i o n _ i [ 2 , p _ i _ j ] = p o s i t i o n [ 2 , p _ i _ j ]
271 r e j e c t = r e j e c t + 1
272 print ( V_f )
273 print ( d e l t a )
274 i f i t e r a c c == (100∗ f a c t o r 2 ) :
275 i f accept < r e j e c t :
276 d e l t a = d e l t a ∗ 1 . 0 5
277 e lse :
278 d e l t a = d e l t a ∗ 0 . 9 5
279 f a c t o r 2 = f a c t o r 2 + 1
280 e lse :
281 d e l t a = d e l t a
282 print ( i t e r a c c )
283 #Once the loop i s done we c o l l e c t the data of the atoms and represent ing

them
284 X = p o s i t i o n [ 0 , : ]
285 Y = p o s i t i o n [ 1 , : ]
286 Z = p o s i t i o n [ 2 , : ]
287 f i g = p l t . f i g u r e (2∗ i _ i t e + 1)
288 ax = f i g . add_subplot ( 1 1 1 , p r o j e c t i o n = ’ 3d ’ )
289 ax . s c a t t e r (X , Y , Z , c= ’ r ’ , s = 250 , marker= ’ o ’ )
290 p l t . show ( )� �
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