Mostrar el registro sencillo del ítem

dc.contributor.authorSouto, Ricardo Manuel 
dc.contributor.authorVarvara, Simona
dc.contributor.authorBerghian-Grosan, Camelia
dc.contributor.authorBostan, Roxana
dc.contributor.authorLucacel Ciceo, Raluca
dc.contributor.authorSalarvand, Zohreh
dc.contributor.authorTalebian, Milad
dc.contributor.authorRaeissi, Keyvan
dc.contributor.authorIzquierdo Pérez, Javier 
dc.contributor.otherQuímica
dc.contributor.otherGrupo de Electroquímica y Corrosión, Instituto de Materiales y Nanotecnología
dc.date.accessioned2021-10-05T18:25:36Z
dc.date.available2021-10-05T18:25:36Z
dc.date.issued2021
dc.identifier.urihttp://riull.ull.es/xmlui/handle/915/25549
dc.description.abstractAn oxadiazole derivative with functional groups favouring its adsorption on copper surface, namely 5-(4-Pyridyl)-1,3,4-oxadiazole-2-thiol, has been explored as potential inhibitor of copper corrosion in 3.5 wt.% NaCl. Electrochemical evaluation by electrochemical impedance spectroscopy, potentiodynamic polarization and SVET reveals inhibition efficiencies exceeding 99%. Surface microscopy inspection and spectroscopic analysis by Raman, SEM-EDX and XPS highlight the formation of a compact barrier film responsible for long-lasting protection, that is mainly composed of the organic molecules. Machine Learning algorithms used in combination with Raman spectroscopy data were used successfully for the first time in corrosion studies to allow discrimination between corroded and inhibitor-protected metal surfaces. Quantum Chemistry calculations in aqueous solution and Molecular Dynamic studies predict a strong interaction between copper and the thiolate group and an extensive coverage of the metal surface, responsible for the excellent protection against corrosion.en
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.relation.ispartofseriesElectrochimica Acta, 398 (2021)
dc.rightsLicencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es_ES
dc.titleExperimental characterization, machine learning analysis and computational modelling of the high effective inhibition of copper corrosion by 5-(4-pyridyl)-1,3,4-oxadiazole-2-thiol in saline environment.en
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1016/j.electacta.2021.139282
dc.subject.keywordoxadiazole derivativeen
dc.subject.keywordcopper corrosion inhibitionen
dc.subject.keywordelectrochemical impedance spectroscopyen
dc.subject.keywordRaman spectroscopyen
dc.subject.keywordMachine Learningen
dc.subject.keywordSVETen
dc.subject.keywordXPSen
dc.subject.keywordMolecular Dynamicsen


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Licencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)
Excepto si se señala otra cosa, la licencia del ítem se describe como Licencia Creative Commons (Reconocimiento-No comercial-Sin obras derivadas 4.0 Internacional)