A Conserved uORF Regulates APOBEC3G Translation and Is Targeted by HIV-1 Vif Protein to Repress the Antiviral Factor.
Fecha
2021Resumen
The HIV-1 Vif protein is essential for viral fitness and pathogenicity. Vif decreases expression
of cellular restriction factors APOBEC3G (A3G), A3F, A3D and A3H, which inhibit HIV-1 replication
by inducing hypermutation during reverse transcription. Vif counteracts A3G at several levels
(transcription, translation, and protein degradation) that altogether reduce the levels of A3G in
cells and prevent its incorporation into viral particles. How Vif affects A3G translation remains
unclear. Here, we uncovered the importance of a short conserved uORF (upstream ORF) located
within two critical stem-loop structures of the 5′ untranslated region (5′
-UTR) of A3G mRNA for this
process. A3G translation occurs through a combination of leaky scanning and translation re-initiation
and the presence of an intact uORF decreases the extent of global A3G translation under normal
conditions. Interestingly, the uORF is also absolutely required for Vif-mediated translation inhibition
and redirection of A3G mRNA into stress granules. Overall, we discovered that A3G translation is
regulated by a small uORF conserved in the human population and that Vif uses this specific feature
to repress its translation.