• español
  • English
Universidad de La Laguna
  • Contact
    • Contact form
    • Phone numbers
    • riull@ull.es
  • Help and support
    • University Library
    • Information about the Respository
    • Document upload
    • Support to research
    • español
    • English
    • español
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
Universidad de La Laguna

Browse

All of RIULLCommunities & CollectionsBy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

My Account

Login

Statistics

View Usage Statistics

Effect of biofertilizers and rhizospheric bacteria on growth and root ultrastucture of lettuce.

Thumbnail
View/Open
Export Citations
MendeleyRefworks
Share
Collections
  • DBIOQ. Bioquímica, Microbiología, Biología Celular y Genética
Complete registry
Show full item record
Author
Alfayate Casañas, María del CarmenULL authority; Montesdeoca Flores, David; Hernández Bolaños, Eduardo; Hernández González, Mercedes; Estupiñan Afonso, Zuleima; Abreu Acosta, NéstorULL authority
Date
2024
URI
http://riull.ull.es/xmlui/handle/915/36036
Abstract
Biofertilization is a technique that uses plant and animal wastes to add organic matter and nutrients to the soil. It can also use microorganisms that can metabolize these by-products to facilitate their absorption by the plant roots. In this study, we tested the effects of rhizospheric bacteria inoculation (T1), a combination of rhizospheric bacteria with liquid fertilizer (T2) and uncombined liquid fertilizer (T3), on the growth, nutritional content, root tissue, and root cells of lettuce plants. The results showed significant positive differences in all treatments compared to control plants, in terms of morphological, nutritional, and productivity parameters. The combination of rhizospheric bacteria with liquid SEFEL fertilizer (T2) yielded the best results, showing increased fresh and dry weight, and diameter. There were no differences between treatments for nutritional content, but each treatment outperformed the control by more than 700% for all macronutrients. The best result was phosphorus content for T1, with 1272.22% more than control. Regarding root structure and ultrastructure, there was no variation in tissue organization compared to control plants, but increases in root hairs (T1), development of transfer cells (T2), and secondary growth (T3) were observed. Additionally, colonization of roots by rhizospheric bacteria was confirmed in all three treatments. In conclusion, this study suggests that inoculating with rhizospheric bacteria is a viable and environmentally friendly biofertilization for lettuce plants
Web ULLTwitterFacebook
Universidad de La Laguna

Universidad de La Laguna

Pabellón de Gobierno, C/ Padre Herrera s/n. | 38200 | Apartado Postal: 456 | San Cristóbal de La Laguna, Santa Cruz de Tenerife - España | Teléfono: (+34) 922 31 90 00