• español
  • English
Universidad de La Laguna
  • Contact
    • Contact form
    • Phone numbers
    • riull@ull.es
  • Help and support
    • University Library
    • Information about the Respository
    • Document upload
    • Support to research
    • español
    • English
    • español
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
Universidad de La Laguna

Browse

All of RIULLCommunities & CollectionsBy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

My Account

Login

Statistics

View Usage Statistics

Fog mitigates the consequences of a profligate water use strategy in a Macaronesian cloud forest tree species.

Thumbnail
View/Open
Export Citations
MendeleyRefworks
Share
Collections
  • DIAMN. Ingeniería Agraria y del Medio Natural
Complete registry
Show full item record
Author
Ritter Rodríguez, Axel; Regalado Regalado, Carlos M.
Date
2021
URI
http://riull.ull.es/xmlui/handle/915/40960
Abstract
How plants thrive in a cloud immersed environment where leaves are intermittently wet and the environmental conditions that drive transpiration and growth are limited, raises a relevant question in fog affected ecosystems. In order to provide insight into how cloud immersion and fog interception may affect Macaronesian laurisilva forests, micrometeorological variables, artificial fog water collection, throughfall, soil water content and the altitude of the trade wind inversion layer, together with the hourly sap flow, Qt, of a dominant tree species, Myrica faya, were measured at an exposed site of the Anaga Massif Rural Park Biosphere Reserve (Tenerife, Canary Islands) over a period of one year. Foggy conditions led to a 45.1% reduction in global radiation and a more than a 10-fold decrease in sap flow, throughout all day hours. M. faya showed a weak control of the transpiration rate and a profligate water use strategy, such that a substantial night-time sap flow, Qtn, was observed under high nocturnal atmospheric evaporative demand, representing 23.3% of the total daily Qt, even though fog was more frequent at night. Fog water interception resulted in canopy wetting and dripping for at least 55.0% of the time, and an associated downward xylematic sap transport in the most apical branches, i.e. in foliar water uptake. This represented 4.0% of the upward sap flow and was observed in 26.7% of the hourly Qt records. Nocturnal transpiration was also enhanced by the entry of previous foliar moisture. This general plant and climatic phenomenology was related at the mesoscale with the trade wind inversion height in the subtropical Macaronesia area.
Web ULLTwitterFacebook
Universidad de La Laguna

Universidad de La Laguna

Pabellón de Gobierno, C/ Padre Herrera s/n. | 38200 | Apartado Postal: 456 | San Cristóbal de La Laguna, Santa Cruz de Tenerife - España | Teléfono: (+34) 922 31 90 00