• español
  • English
Universidad de La Laguna
  • Contact
    • Contact form
    • Phone numbers
    • riull@ull.es
  • Help and support
    • University Library
    • Information about the Respository
    • Document upload
    • Support to research
    • español
    • English
    • español
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
Universidad de La Laguna

Browse

All of RIULLCommunities & CollectionsBy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

My Account

Login

Statistics

View Usage Statistics

Echolocation in Blainville's beaked whales (Mesoplodon densirostris)

Thumbnail
View/Open
Export Citations
MendeleyRefworks
Share
Collections
  • GI. Biodiversidad, Ecología marina y Conservación (BIOECOMAC)
Complete registry
Show full item record
Author
Arranz Alonso, PatriciaULL authority; Madsen, P. T.; Aguilar de Soto, NatachaULL authority; Johnson, M.
Date
2013
URI
http://riull.ull.es/xmlui/handle/915/41378
Abstract
Here we use sound and movement recording tags to study how deep-diving Blainville’s beaked whales (Mesoplodon densirostris) use echolocation to forage in their natural mesopelagic habitat. These whales ensonify thousands of organisms per dive but select only about 25 prey for capture. They negotiate their cluttered environment by radiating sound in a narrow 20 field of view which they sample with 1.5–3 clicks per metre travelled requiring only some 60 clicks to locate, select and approach each prey. Sampling rates do not appear to be defined by the range to individual targets, but rather by the movement of the predator. Whales sample faster when they encounter patches of prey allowing them to search new water volumes while turning rapidly to stay within a patch. This implies that the Griffin searchapproach–capture model of biosonar foraging must be expanded to account for sampling behaviours adapted to the overall prey distribution. Beaked whales can classify prey at more than 15 m range adopting stereotyped motor patterns when approaching some prey. This long detection range relative to swimming speed facilitates a deliberate mode of sensory-motor operation in which prey and capture tactics can be selected to optimize energy returns during long breath-hold dives.
Web ULLTwitterFacebook
Universidad de La Laguna

Universidad de La Laguna

Pabellón de Gobierno, C/ Padre Herrera s/n. | 38200 | Apartado Postal: 456 | San Cristóbal de La Laguna, Santa Cruz de Tenerife - España | Teléfono: (+34) 922 31 90 00